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Regularized lattice theory for spatially dispersive nonlinear optical conductivities
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Nonlinear optical responses are becoming increasingly relevant for characterizing the symmetries and quan-
tum geometry of electronic phases in materials. Here, we develop an expanded diagrammatic scheme for
calculating spatially dispersive corrections to nonlinear optical conductivities, which we expect to enhance or
even dominate even-order responses in materials of recent interest. Building upon previous work that enforces
gauge invariance of spatially uniform nonlinear optical responses, we review the cancellation of diagrams
required to ensure the equivalence between velocity gauge and length gauge formulations, and provide a simple
vertex rule for extending optical responses to first order in the light wave vector q. We then demonstrate the
method with calculations on a prototypical centrosymmetric model where spatial dispersion admits anomalous
second-harmonic generation, a response that is symmetry forbidden under the dipole approximation.
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I. INTRODUCTION

Optical responses are an extremely valuable tool for un-
derstanding the electronic structure of quantum matter, from
materials to molecules [1,2]. Not only are they vital for char-
acterizing a host of different devices from photovoltaics to
lasers but they are also immensely useful as probes for sym-
metry breaking and quantum geometric properties in materials
[3–11]. Over the past several decades, the development of a
straightforward and general means of systematically calcu-
lating these responses has been a surprisingly difficult task,
revealing a number of subtleties that are still being worked out
to this day. A main reason is that there are different choices of
gauge for describing the light-matter coupling with various
advantages and disadvantages. One option is to couple the
electric field E(t ) with the position operator r̂,

Ĥ → Ĥ − q r̂ · E(t ), (1)

which goes by the name length gauge (also known as po-
sition gauge or dipole gauge.) Here, q = −|e| denotes the
electron charge. Another option, called the velocity gauge,
employs a minimal substitution in the k-dependent Bloch
Hamiltonian,

Ĥ(k) → Ĥ(k − q A(t )), (2)

where A(t ) is the magnetic vector potential satisfying E(t ) =
−∂t A(t ). (At first order in A(t ), this takes the form of a
coupling −q v̂ · A(t ) where v̂ = ∇kĤ is the velocity opera-
tor; hence the name velocity gauge.) These two gauges are
related by a time-dependent unitary transformation, and are
hence equivalent [12] in a fully microscopic theory. However,
maintaining this equivalence for effective Hamiltonians that
are projected into a partial sector of the full Hilbert space
requires additional consideration.
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Velocity gauge, while having the advantage of being diag-
onal in k space and easier for numerical calculations, has the
serious disadvantage of introducing artificial low-frequency
divergences that must be regularized systematically. Histori-
cally, this has been attempted using sum rules, developed by
Sipe and coworkers [13,14] and later generalized by Ventura
et al. [15,16], which formally show that the weight of these
divergent terms vanishes only after a full k-space integration.
In more recent work with Wannierized tight-binding models,
Schüler et al. identified a sum rule encoding the cancel-
lation between the paramagnetic and diamagnetic currents
calculated at linear order in A(t ), and showed that enforc-
ing this sum rule improves the accuracy of velocity gauge
calculations [17].

In this paper, we relate a convenient diagrammatic method
[18] and the traditional reduced density matrix perturbation
theory approach [15,16]. Representing terms in the perturba-
tion theory by their associated diagrams, we can understand
in a physically transparent manner the general cancellation
between the paramagnetic and diamagnetic contributions in
the linear response and investigate the analogs of that cancel-
lation that occurs for nonlinear responses. We also introduce a
scheme for extending these results to first order in the wave
vector q of the incident radiation. We call these responses
spatially dispersive, because they take into account at lowest
order the effects of the spatial gradient of the electric field
on the optical response. As a prototypical example, we in-
vestigate the anomalous second-harmonic generation (SHG)
response that appears in a centrosymmetric 1D model. While
SHG is typically understood to vanish in centrosymmetric
systems in the dipole approximation (and hence is often used
experimentally as a probe for inversion breaking in crystals),
this selection rule is violated when one takes into account
the spatial variation of the electromagnetic field on the length
scale of the electronic states being coupled in optical transi-
tions. This becomes especially relevant for artificial lattices
where the lattice constants are inflated and can greatly ex-
ceed the microscopic atomic scale or more generally for band
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structures in which the Wannier representation introduces co-
herence over large length scales.

II. CALCULATIONS OF NONLINEAR
OPTICAL RESPONSES

A. Generalities

To calculate nonlinear optical conductivities, we employ
the density matrix equation of motion approach detailed in
Refs. [15,16] and connect it to the diagrammatic approach
developed in Ref. [18]. Recall the density matrix equation of
motion,

ih̄ ∂t ρ̂(t ) = [Ĥ(t ), ρ̂(t )], (3)

Assume that Ĥ(t ) = Ĥ(0) + V̂ (t ), with V̂ (t ) a weak perturba-
tion. Transforming to Fourier representation,

ρ̂(t ) =
∫

dω e−iωt ρ̂(ω), (4)

V̂ (t ) =
∫

dω e−iωt V̂ (ω), (5)

we can reexpress the equation of motion as an iterative equa-
tion in the eigenbasis of the unperturbed Hamiltonian, Ĥ(0)

ab =
εaδab,

(h̄ω(n) − εab)ρ (n)
ab (ω(n) ) = [V̂ (ωn), ρ̂ (n−1)(ω(n−1))]ab

⇒ ρ
(n)
ab (ω(n) ) = [V̂ (ωn), ρ̂ (n−1)(ω(n−1))]ab

h̄ω(n) − εab
, (6)

with ω(n) =∑n
j=1 ω j and εab ≡ εa − εb, where εa are the

eigenvalues of Ĥ(0). Introducing a matrix ε̂ whose entries are
εab (and henceforth setting h̄ = 1), we can compactly write
the solution to the equation of motion as

ρ̂ (n)(ω(n) ) = 1

ω(n) − ε̂
◦ [V̂ (ωn), ρ̂ (n−1)(ω(n−1))], (7)

where ◦ denotes the Hadamard product, or elementwise mul-
tiplication: (Â ◦ B̂)ab = AabBab. As a final bit of notation, we
will assume V̂ is a sum of terms from which we can select a
different term V̂i with each iteration i of Eq. (7). We therefore
write

ρ̂
(n)
V̂1...V̂n

= 1

ω(n) − ε̂
◦ [V̂n, ρ̂

(n−1)
V̂1...V̂n−1

]
, (8)

dropping the implied dependence of ρ̂ (n) on ω(n) as well as
the dependence of V̂n on ωn. The utility of this notation will
become clear shortly.

1. Velocity gauge: Diagrammatic method

Let us first apply this density matrix perturbation theory to
light-matter coupling in velocity gauge. In this case,

Ĥk(t ) = Ĥ(0)
k+eA(t ) ≡ Ĥ(0)

k + V̂k(t ), (9)

which means that V̂k(t ) takes the form

V̂k(t ) = ∂Ĥ(0)
k

∂kα1

eAα1 (t ) + 1

2

∂2Ĥ(0)
k

∂kα1∂kα2

e2Aα1 (t )Aα2 (t ) + . . .

=
∞∑

n=1

en

n!
ĥα1...αn Aα1 (t ) . . . Aαn (t ), (10)

where we introduce the shorthand ĥα1...αn ≡ ∂α1 . . . ∂αnĤ(0)
k

with ∂α ≡ ∂
∂kα

. Here and throughout, Greek indices denote
spatial directions and repeated indices are summed over. We
can calculate the density matrix to any desired order in Aα (t ).
At first order, we have

ρ̂ (1)(ω1) = 1

ω1 − ε̂
◦ [ĥα1 , ρ̂ (0)]Aα1 (ω1). (11)

At second order, we have an additional term:

ρ̂ (2)(ω(2) ) = 1

ω(2) − ε̂
◦ [ĥα2 , ρ̂ (1)(ω1)]Aα2 (ω2)

+ 1

ω(2) − ε̂
◦
[

1

2
ĥα1α2 , ρ̂ (0)

]
Aα1 (ω1)Aα2 (ω2)

≡ (ρ̂ (2)
ĥα1 ,ĥα2

(ω(2) ) + ρ̂
(1)
1
2 ĥα1α2

(ω(2) )
)
Aα1 (ω1)Aα2 (ω2).

(12)

Hence, the utility of the notation in Eq. (8) is to split the
density matrix at nth order in Aα (t ) into a sum of density
matrices ρ̂

(m)
V̂1...V̂m

that are perturbed with relatively simple op-

erators V̂i. In fact, each of these operators V̂i is simply a jth
k derivative (for some j) of the bare Hamiltonian Ĥ(0)

k , which
has the physically transparent meaning of a vertex interaction
with j photons. (A word of caution: the (n) in ρ̂

(n)
V̂1...V̂n

no
longer means at nth order in Aα (t ) (as opposed to the more
conventional notation ρ̂ (n)) and now simply means perturbed
with n operators V̂i, i = 1, . . . , n.)

This decomposition is the basis for the connection with
the diagrammatic scheme in Ref. [18]. At zeroth order in
Aα (t ), the expectation value of the current is simply a trace
of the current operator with respect to the equilibrium density
matrix:

〈 ĵμ〉0 = tr
{

ĵμ(0) · ρ̂ (0)}. (13)

At nonzero order in Aα (t ), both the density matrix and the
current operator must be expanded in powers of Aα (t ):

ĵμ(t ) ≡ −∂Ĥk(t )

∂Aμ(t )

= −
∞∑

n=0

en+1

n!
ĥμα1...αn Aα1 (t ) . . . Aαn (t ),

(14)

ρ̂(t ) =
∞∑

n=0

ρ̂ (n)(t ). (15)

Keeping only terms at some desired order in Aα (t ), the result
is always a sum of traces, where each trace (expressible by a
diagram) is acting on a product between some term in Eq. (14)
and a density matrix of the form ρ̂

(n)
V̂1...V̂n

. We express this dia-
grammatically in terms of Feynman rules illustrated in Fig. 1.
This approach can be viewed as a hybrid approach making
connection between the density matrix equation of motion
method of Refs. [15,16] and the Matsubara Green’s function
approach of Ref. [18], which lead to the same results. That
is, one can alternatively view the calculation of tr{Ô · ρ̂

(n)
V̂1···V̂n

}
for a particular diagram as a trace of a product of Matsubara
Green’s functions multiplied by vertex operators, summed
over a single unconstrained fermionic Matsubara frequency.
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FIG. 1. Summary of Feynman rules employed for computing
optical responses in velocity gauge. Following the convention of
Ref. [18], the output vertex is marked with a ⊗ and represents some
output current operator Ô. Measuring this output current amounts to
a trace of this operator with a density matrix, which is represented by
a fermion loop. This density matrix is perturbed [as in Eq. (8)] with
operators V̂i represented by black vertices. The vertex operators take
the form of k derivatives of the Hamiltonian (denoted ĥα1 ...αn ) with
the directions of the derivatives given by the polarizations (denoted
with Greek letters) of the photons entering the vertex. The multipho-
ton vertex operators are symmetrized with a factor 1/n!, where n is
the number of photons excluding the photon representing the output
current (we reserve the index μ to indicate the polarization of the
output photon).

The reduced density matrix can therefore be alternatively un-
derstood as a lesser Green’s function G<(k, ω) [19].

The last step is to convert the response in terms of Aα j (ω j )
to a response in terms of Eα j (ω j ) ≡ iω jAα j (ω j ). We formally
define

〈 jμ(ω(n) )〉 = σμα1...αn (ω(n); ω1, . . . , ωn)Eα1 (ω1) . . . Eαn (ωn).

(16)

Recalling ω(n) ≡∑n
j=1 ω j , this is the fully general nonlinear

conductivity at frequency ω(n) due to input electric fields at
frequencies {ω j} j=1,...,n. We calculate this by first calculating

a quantity which we will call κ
μα1...αn
k (ω(n); {ω j}):

σμα1...αn (ω(n); {ω j}) = −en+1

h̄n

n∏
j=1

(
1

iω j

)

×
∫

[dk] κ
μα1...αn
k (ω(n); {ω j}).

(17)

The task is therefore reduced to calculating κ
μα1...αn
k via Feyn-

man diagrams. We will do this for the example cases of the
linear conductivity and SHG conductivity, and note the can-
cellations that occur to eliminate the apparent 1/ω and 1/ω2

divergences, respectively.

2. Length gauge

Length gauge is another commonly used gauge in which to
calculate susceptibilities to nonlinear order in the electric field
[11,14,20–23]. In this gauge, one has the perturbation,

V̂ (t ) = e r̂αEα (t ), (18)

where r̂α denotes the position operator. Care needs to be taken
when interpreting the k-space form of the operator r̂α [24].
When calculating commutators with other operators, r̂α acts
as a covariant derivative,

[r̂α, Ô]ab ≡ i[D̂α, Ô]ab = i∂αÔab + [Âα, Ô]ab, (19)

where Aα
ab(k) ≡ 〈ua(k)|∂αub(k)〉 is the non-Abelian Berry

connection. With this definition, nonlinear conductivity ten-
sors in length gauge can be computed directly as (suppressing
frequency dependence)

σμα1...αn = −en+1

h̄n

∫
[dk] tr

{
v̂μ · ρ̂

(n)
r̂α1 ...r̂αn

}
, (20)

with

ρ̂
(n)
r̂α1 ...r̂αn = 1

ω(n) − ε̂
◦ [r̂αn , ρ̂

(n−1)
r̂α1 ...r̂αn−1

]
, (21)

without need for extra terms as in the diagrammatic scheme
for velocity gauge. While the length gauge yields expres-
sions that are analytically more compact, it is numerically
less straightforward to use since k derivatives act iteratively
on the density matrix. In velocity gauge, all the k deriva-
tives act on the Hamiltonian, so they can be computed ahead
of time to speed up calculations. We argue that the dia-
grammatic treatment makes velocity gauge both analytically
concise and numerically expedient, so we focus primarily
on velocity gauge when we make our extension to spatially
dispersive responses. However, we will always make com-
parisons to length gauge, and numerically demonstrate the
equivalence between the two gauges in each response we
consider. Since our analysis makes clear the connection be-
tween the density matrix picture (favorable to length gauge)
and the diagrammatic picture (favorable to velocity gauge),
generating formulas in either gauge will be seamless.

3. Relaxation time approximation

We remark that, in both gauges, we adopt the relaxation
time approximation that manifests in a shift of each frequency
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FIG. 2. Diagrams relevant to computing the linear conductivity
tensor σμα (ω) in velocity gauge.

ω j → ω j + iη for a small relaxation rate η, as discussed in
Ref. [16]. Note that this is not equivalent to shifting ev-
ery pole in a nonlinear conductivity by iη; for instance, it
leads to shifts in second-harmonic resonances of the form
(2ω + 2iη − εab)−1. Treating phenomenological relaxation in
this way is crucial for getting a properly regularized response
at low frequency in velocity gauge.

B. Examples

1. Linear conductivity

The linear conductivity σμα (ω; ω) ≡ σμα (ω) is defined as
follows:

〈 ĵμ(ω)〉 = σμα (ω)Eα (ω). (22)

The calculation in velocity gauge can be written as the sum of
two terms, represented diagrammatically in Fig. 2,

σμα (ω) = −e2

h̄

(
1

iω

)∫
[dk] κ

μα

k (ω),

κ
μα

k (ω) = tr
{
v̂μ · ρ̂

(1)
v̂α (ω)

}+ tr{ĥμα · ρ̂ (0)}, (23)

where each operator within the traces is understood to be
evaluated at k. Note that v̂μ ≡ ĥμ, so we will use these in-
terchangeably. Physically, these two terms correspond to the
well-known paramagnetic current and diamagnetic current,
respectively. The apparent 1/ω divergence in the conductivity
formula is canceled when these two terms are summed and
integrated over k. It is interesting to note that this cancellation
does not occur in the case of a superconductor, where the
low-frequency divergence of the conductivity is physical and
results in the linear-in-A current in the London equation.

Assuming ρ
(0)
ab = faδab, we can reexpress the linear con-

ductivity as follows:

σμα (ω) = ie2

h̄ω

∫
[dk]

(∑
ab

fab
v

μ

abv
α
ba

ω − εba
+
∑

a

fahμα
aa

)
, (24)

which matches velocity gauge results from the literature [16].
In length gauge, recalling that [r̂α, Ô]ab = i∂αOab +

[Âα, Ô]ab, where Âα is the non-Abelian Berry connection, we
write

σ
μα

len.(ω) = −e2

h̄

∫
[dk] tr

{
v̂μ · ρ̂

(1)
r̂α (ω)

}

= −e2

h̄

∫
[dk]

(∑
ab

fab
v

μ

abAα
ba

ω − εba
+
∑

a

ivμ
aa∂

α fa

ω

)
.

(25)

Using vα
ab = iεabAα

ab for a 
= b, this allows us to write

σ
μα

len.(ω) = ie2

h̄

∫
[dk]

(∑
ab

fab
v

μ

abv
α
ba

εba(ω − εba)
−
∑

a

vμ
aa∂

α fa

ω

)
.

(26)

2. Second-harmonic generation conductivity

The SHG conductivity σμαβ (2ω; ω,ω) ≡ σ
μαβ

SHG (ω) is de-
fined as follows:

〈 ĵμ(2ω)〉 = σ
μαβ

SHG (ω)Eα (ω)Eβ (ω). (27)

The calculation in velocity gauge can be written as the sum of
four terms, represented diagrammatically in Fig. 3:

σ
μαβ

SHG (ω) = − e3

h̄2

(−1

ω2

)∫
[dk] κ

μαβ

SHG,k(ω),

κ
μαβ

SHG,k(ω) = tr
{
v̂μ · ρ̂

(2)
v̂α,v̂β (2ω)

}+ tr
{
v̂μ · ρ̂

(1)
1
2 ĥμα

(2ω)
}

+ tr
{
ĥμα · ρ̂

(1)
v̂β (ω)

}+ tr

{
1

2
ĥμαβ · ρ̂ (0)

}
. (28)

Assuming ρ
(0)
ab = faδab, this becomes

κ
μαβ

SHG,k(ω) =
∑
a,b,c

v
μ

ab

v
β

bc

vα
ca fac

ω − εca
− fcbv

α
bc

ω − εbc
vβ

ca

2ω − εba

+
∑
a,b

v
μ

ab

1
2 hαβ

ba fab

2ω − εab
+
∑
a,b

hμα

ab

v
β

ba fab

ω − εba

+
∑

a

1

2
hμαβ

aa fa. (29)

We note that, under k-space symmetry considerations alone,
the contributions from the first and last diagrams in Fig. 3
should vanish under k-space integration over the full Bril-
louin zone (that is, their integrands are odd in k while the
integration region is symmetric in k). Therefore, the content
of the cancellation required to eliminate the 1/ω2 prefactor
in the conductivity comes solely from the second and third
diagrams, just as the cancellation in the linear conductivity
comes from only two diagrams.
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FIG. 3. Diagrams relevant to computing the SHG conductivity tensor σ
μαβ

SHG (ω) in velocity gauge.

III. CALCULATIONS OF SPATIALLY DISPERSIVE
NONLINEAR OPTICAL RESPONSES

A. Generalities

A nonlinear optical conductivity tensor is in full generality
a function of the wave vectors of the input/output optical
fields qi, but is typically treated in the q → 0 limit. This is
justified within the so-called dipole approximation, in which
it is assumed that the length scale of the electronic states
being coupled by optical transitions (for instance, the size of
electronic orbitals) is very small compared to the wavelength
of the field driving the transition. However, there are many
cases where this approximation should be expected to fail (for
instance, in band systems whose Wannier representation has
poor localization). For these reasons, one may be interested
in the lowest-order contribution of the spatial variation of the
optical fields:

Eα j (r, t ) = Eα j (0, t )(1 − iq j · r̂) + O(q2). (30)

We can include q in calculations of nonlinear optical re-
sponses by allowing photons to transfer momentum when
coupling electronic states, which can be straightforwardly
understood in the diagrammatic Green’s function scheme
written in terms of Green’s functions [19]. However, it is
helpful to have a physically transparent heuristic for treating
just the lowest-order spatially dispersive correction, which
has an interpretation in terms of beyond-electric-dipole light-
matter coupling. Previous works [25,26] have identified how
to expand the linear optical conductivity to first order in q.
Interpreting the zeroth-order contribution to the current oper-
ator as the time-derivative of the electric dipole, P̂μ = −er̂μ,
the first-order terms include contributions from the electric

quadrupole and magnetic dipole [27],

ĵμ = ∂t P̂
μ − iqν

(
1
2∂t Q̂

νμ + cενμρM̂ρ

)+ O(q2), (31)

where Q̂νμ = −er̂ν r̂μ is the electric quadrupole operator and
M̂ρ = − e

2c εραβ r̂α ĵβ is the magnetic dipole operator. Equa-
tion (31) constitutes the starting point for a velocity gauge
form for light-matter coupling up to first order in q. In this pa-
per, we will focus on the electric quadrupole contribution and
determine the velocity gauge and length gauge expressions
for treating this contribution. In length gauge, the perturbation
takes the form

V̂ (ω) =
(

r̂α − iqν

(
1

2
Q̂να + c

ω
εναρM̂ρ

))
Eα (ω). (32)

We constrain the exact form of the electric quadrupole op-
erator by ensuring that we recover − ∂

∂rα V (ω) = Eα (ω)(1 −
iqνrν ) + O(q2). Notably, this gives a relative factor of 2 to
the off-diagonal spatial components of Q̂νμ. For example, in
d = 2, we have

Q̂νμ =
(

Q̂xx Q̂xy

Q̂yx Q̂yy

)
=
(
Âx · Âx 2Âx · Ây

2Ây · Âx Ây · Ây

)
, (33)

where we recall the non-Abelian Berry connection Aμ

ab ≡
〈uak|∂μubk〉.

It has been shown [25] that the first-order-in-q contribution
to the current operator matrix element can be cast in terms of
the following object:

〈
un,k+ q

2

∣∣v̂μ

k

∣∣um,k− q
2

〉 = − i

2
qν

{
Âν

k, v̂
μ

k

}
nm

≡ − i

2
qν

(
∂t Q̂

νμ

k

)
nm,

(34)
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FIG. 4. Rule for determining the first-order-in-q contribution
from a vertex operator. We change a vertex from a dot to a square
to indicate that it is being perturbed to first order in q.

where in the last line we make the crucial identification that
this should equal the time derivative of the electric quadrupole
moment. This is the basis for the vertex rule we introduce, il-
lustrated in Fig. 4 and summarized in the following expression
for the velocity-gauge perturbation:

V̂k(t ) =
∞∑

n=1

en

n!
Aα1 (t ) . . . Aαn (t )

(
D̂α1...αn

k [Ĥk]

+ 1

2

n∑
j=1

(q j )νD̂α1...α j−1α j+1...αn

k

[
Ĥk , Q̂

να j

k

])
, (35)

where the vectors q j are the wave vectors from the n fields
Aα1 (t ), . . . , Aαn (t ). We can interpret this as introducing an
additional type of vertex in the diagrammatic method, one
that takes into account at first order the momentum (h̄q j) of
each photon connected to that vertex. We will use the terms
momentum and wave vector interchangeably.

Schematically, this leads to a spatially dispersive correction
to nonlinear optical conductivities,

σμα1...αn (q) = σ
μα1...αn
(0) + qνσ

νμα1...αn
(1) + O(q2), (36)

where q is some characteristic momentum of the input fields.
To declutter notation, we have suppressed the ω dependence,
which is understood to be (ω(n); ω1 . . . ωn) in general. As
before, in velocity gauge, we write this as

σ
νμα1...αn
(1) = −en+1

h̄n

n∏
j=1

(
1

iω j

)∫
[dk] κ

νμα1...αn
(1),k (37)

and calculate κ
νμα1...αn
(1),k using a diagrammatic scheme. As a

consequence of Eq. (35), this diagrammatic scheme amounts
to taking each diagram for the O(q0) response and, for each
vertex ĥα1...αn , creating a diagram with the following replace-
ment rule (dropping k dependence for brevity),

ĥα1...αn → 1

2

n∑
j=1

(q j )νD̂α1...α j−1α j+1...αn [Ĥ, Q̂να j ]

≡ − i

2

n∑
j=1

(q j )ν∂t Q̂
να j ;α1...α j−1α j+1...αn ,

(38)

where (q j )ν is the ν component of the wave vector for the pho-
ton with polarization α j (again, summation over the repeated
index ν is implied). In the second line, we introduce a compact
notation, whereby indices after the semicolon indicate covari-
ant k derivatives. To make sense of Eq. (38), note that for a
single-photon vertex, the replacement rule reduces to

ĥα1 → − i

2
(q1)ν∂t Q̂

να1 . (39)

In other words, it replaces an electric dipole coupling ĥα1 ≡
v̂α1 ≡ ∂t r̂α1 with an electric quadrupole coupling ∂t Q̂να1 . The
extension to multiphoton vertices can then be understood as
a sum of terms that change the coupling from dipolar to
quadrupolar for one photon at a time while having the rest of
the photons contribute covariant k derivatives of the resulting
quadrupolar current operator. We illustrate this vertex rule in
Fig. 4.

We note that the output vertex should also be perturbed to
linear-in-q order in this scheme, and we denote this by a �
symbol in the diagrams. As in the spatially uniform case, the
only special treatment that must be given to the output vertex
is that the symmetry factor 1/n! should only include the n
input photons (i.e., excluding the output photon, for whom we
reserve the index μ to denote its polarization).

FIG. 5. Diagrams relevant to computing the spatially dispersive
linear conductivity tensor to lowest order [σ νμα

(1) (ω)] in velocity
gauge. The third diagram is shown for completeness, but has a
vanishing contribution since it only contains a vertex with net-zero
momentum flow. (We omit a common factor of − i

2 from each
diagram.)
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B. Examples

1. Spatially dispersive linear conductivity

Applying the Feynman rules in Fig. 4 to the linear conduc-
tivity diagrams in Fig. 2, we obtain the diagrams in Fig. 5.
These diagrams represent the following two terms:

κ
νμα

(1),k(ω) = − i

2

(
tr
{
v̂μ · ρ̂ (1)

∂t Q̂να
(ω)
}+ tr

{
∂t Q̂

νμ · ρ̂
(1)
v̂α (ω)

}
+ tr{(∂t Q̂

νμ;α + ∂t Q̂
να;μ) · ρ̂ (0)}).

(40)

The conductivity can therefore be written as

σ
νμα
(1) (ω) = e2

2h̄ω

∫
[dk]

{∑
ab

fab
v

μ

abQ̇να
ba + Q̇νμ

ab vα
ba

ω − εba

+
∑

a

fa
(
Q̇νμ;α

aa + Q̇να;μ
aa

)}
,

(41)

where we abbreviate 〈uak|∂t Q̂νμ|ubk〉 ≡ Q̇νμ

ab ≡ i[Ĥ, Q̂νμ]ab.

Despite the apparent divergence from the prefactor 1/ω, this
response is regularized in the low-frequency limit, as we show
numerically for an example model in Sec. IV. To further
justify this, we can rederive this result in length gauge, using
Eqs. (32)–(34):

σ
νμα
(1) (ω) = ie2

2h̄

∫
[dk]

(
tr
{
v̂μ · ρ̂

(1)
Q̂να

(ω)
}

+ tr
{
∂t Q̂

νμ · ρ̂
(1)
r̂α (ω)

})
. (42)

We show numerically in Sec. IV that Eqs. (41) and (42) are
equivalent.

2. Spatially dispersive second-harmonic generation conductivity

Figure 6 displays the eight diagrams for calculating the
linear-in-q SHG conductivity. These yield the following seven
terms:

κ
νμαβ

SHG,(1),k(ω) = − i

2

[
tr
{
v̂μ · ρ̂ (2)

v̂α,∂t Q̂νβ
(2ω)

}+ tr
{
v̂μ · ρ̂

(2)
∂t Q̂να,v̂β

(2ω)
}+ tr

{
∂t Q̂

νμ · ρ̂
(2)
v̂α,v̂β (2ω)

}+ tr
{
v̂μ · ρ̂ (1)

1
2 ∂t Q̂να;β+ 1

2 ∂t Q̂νβ;α (2ω)
}

+ tr
{
∂t Q̂

νμ · ρ̂
(1)
1
2 ĥαβ

(2ω)
}+ tr

{
ĥμα · ρ̂

(1)
∂t Q̂νβ

(ω)
}+ tr

{(
∂t Q̂

νμ;α + ∂t Q̂
να;μ) · ρ̂

(1)
v̂β (ω)

}
+ tr

{
1

2
(∂t Q̂

νμ;αβ + [perms.]) · ρ̂ (0)

}]
, (43)

where [perms.] indicates the two other permutations of μ, α, β modulo exchanges of the indices after the semicolon. Assuming
ρ

(0)
ab = faδab, this becomes

κ
νμαβ

SHG,(1),k(ω) = − i

2

∑
a,b

(
v

μ

ab

Nναβ

1,ba (ω)

2ω − εba
− Q̇νμ

ab

Nαβ

2,ba(ω)

2ω − εba
+ 1

2
v

μ

ab

(
Q̇να;β

ba + Q̇νβ;α
ba

)
fab

2ω − εab
+ 1

2
Q̇νμ

ab

hαβ

ba fab

2ω − εab
+ hμα

ab

Q̇νβ

ba fab

ω − εba

+ (Q̇νμ;α
ab + Q̇να;μ

ab

) v
β

ba fab

ω − εba

)
− i

4

∑
a

(
Q̇νμ;αβ

aa + Q̇να;βμ
aa + Q̇νβ;μα

aa

)
fa, (44)

where

Nναβ

1,ba (ω) =
∑

c

(
Q̇νβ

bc

vα
ca fac

ω − εca
− fcbv

α
bc

ω − εbc
Q̇νβ

ca

+ v
β

bc

Q̇να
ca fac

ω − εca
− fcbQ̇να

bc

ω − εbc
vβ

ca

)
,

Nαβ

2,ba(ω) =
∑

c

(
v

β

bc

vα
ca fac

ω − εca
− fcbv

α
bc

ω − εbc
vβ

ca

)
. (45)

In our forthcoming results, we compare to the follow-
ing length gauge formula, obtained by starting from the
usual length gauge formulation of SHG and applying
Eqs. (32)–(34):

σ
νμαβ

(1) (ω) = ie3

2h̄2

∫
[dk]

(
tr
{
v̂μ · ρ̂

(2)
Q̂να,r̂β

}+ tr
{
v̂μ · ρ̂

(2)
r̂α,Q̂νβ

}
+ tr
{
∂t Q̂

νμ · ρ̂
(2)
r̂α,r̂β

})
. (46)

IV. RESULTS FOR MINIMAL MODELS

In this section, we test our scheme on a minimal tight-
binding model with three useful features: (1) inversion
symmetry, (2) a quasi-2D structure allowing for multiple
different polarizations, and (3) a clear decoupling limit in
which the model reduces to the well-understood problem of
multipole optical responses in a molecule [27–29]. We will
confirm that, up to electric quadrupole order, a nonzero SHG
response indeed exists in this centrosymmetric system, and we
can therefore treat q on the same footing as a static inversion-
breaking parameter in this model.

A. Rectangular molecule

We first establish the response up to first order in q and up
to second order in the field strength for a four-site rectangular
molecule with only nearest-neighbor hoppings between the
sites. Here, the position operators are unambiguous up to a
choice of origin, and so one can straightforwardly describe

085403-7



STEVEN GASSNER AND E. J. MELE PHYSICAL REVIEW B 108, 085403 (2023)

FIG. 6. Diagrams for computing lowest-order spatially dispersive corrections to the SHG conductivity tensor [σ νμαβ

SHG,(1)(ω)] in velocity
gauge.

the problem in length gauge. We write the Hamiltonian as

Ĥ = −

⎛
⎜⎜⎝

0 tx 0 ty
tx 0 ty 0
0 ty 0 tx
ty 0 tx 0

⎞
⎟⎟⎠. (47)

Assume tx and ty are both positive and, without loss of gen-
erality, assume tx > ty. We use a basis in which the position
operators r̂x and r̂y take the form

r̂x = Rx

⎛
⎜⎜⎝

−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠, r̂y = Ry

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

⎞
⎟⎟⎠,

(48)

where Rx and Ry denote half the length of the molecule in
the x and y directions, respectively. Note that the quadrupole
operators r̂x r̂x and r̂yr̂y are proportional to the identity ma-
trix, so they cannot mediate any nonzero responses in the
density matrix equation of motion. On the other hand, r̂x r̂y ≡
r̂yr̂x = RxRydiag(−1, 1,−1, 1), which can mediate a nonzero
response. So one should only expect a response when the
electric field is perpendicular to the incident q vector, which
is sensible.

This Hamiltonian is diagonalized by a unitary transforma-
tion such as

Û = 1

2

⎛
⎜⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

⎞
⎟⎟⎠, (49)

yielding levels with energies −tx − ty, −tx + ty, tx − ty, tx + ty,
in ascending order. We calculate the electric quadrupole SHG
response using

σ
νμαβ

SHG,(1)(ω) = ie3

2h̄2

(
tr
{
v̂μ · ρ̂

(2)
Q̂να,r̂β

(2ω)
}

+ tr
{
v̂μ · ρ̂

(2)
r̂α,Q̂νβ

(2ω)
}

+ tr
{
∂t Q̂

νμ · ρ̂
(2)
r̂α,r̂β (ω)

})
, (50)

starting from an initial density matrix of ρ̂ (0) =
diag( f1, f2, f3, f4). We find

σ
xxyy
SHG,(1)(ω) = −4ie3

h̄2

( f12 − f34)txtyωR2
xR2

y

(ω2 − t2
x )(ω2 − (2ty)2)

, (51)

σ
yyxx
SHG,(1)(ω) = −4ie3

h̄2

( f12 − f34)txtyωR2
xR2

y

(ω2 − (2tx )2)
(
ω2 − t2

y

) . (52)

This result reveals a number of interesting features. First,
it is an example of a nonzero second-harmonic response in
an inversion-symmetric system, where the inversion breaking
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is allowed by the nonzero order in q. Second, the response
intriguingly vanishes for half-filling, owing to a symmetry be-
tween the Bloch states in the occupied and unoccupied energy
levels. We note that introducing diagonal hoppings breaks this
symmetry, and therefore allows a nonzero response at half
filling, at the expense of the energetic factors in Eqs. (51)
and (52) becoming considerably more complicated. In other
words, the response takes the form

σ
xxyy
SHG,(1)(ω) = − ie3

h̄2 F (ω)R2
xR2

y , (53)

where F (ω) only depends on ω, the hopping amplitudes, and
the Fermi factors.

Appealingly, σ
νμαβ

SHG,(1)(ω) can be seen to depend on four
factors of the length of a molecule, in the directions specified
by q, j, and the two E fields. Therefore, a larger molecule
exhibits a larger magnitude for this spatially dispersive cor-
rection. The size of the molecule can be considered as a proxy
for the coherence length of electronic states. Crucially, in the
case of obstructed band systems forcing delocalized Wannier
states, this characteristic coherence length may be on the order
of many unit cells, and therefore one should expect substantial
spatially dispersive corrections from these systems.

B. Chain of rectangular molecules

Transitioning to a band theory, we study a quasi-1D model
in which two copies of the Rice-Mele model form the legs of
a ladder. We define the Hamiltonian as

Ĥo
k = −

⎛
⎜⎜⎝

 go(k) 0 ty
g∗

o(k) − ty 0
0 ty − g∗

o(k)
ty 0 go(k) 

⎞
⎟⎟⎠, (54)

go(k) = tx + t ′
xe−ik . (55)

This Hamiltonian reduces to the molecule Hamiltonian in
Eq. (47) in the limit t ′

x → 0 (and  → 0). The purpose of the
parameter  (which breaks inversion if tx 
= t ′

x) is to allow
calculation of the spatially dispersive correction to the lin-
ear conductivity (which vanishes under inversion symmetry).
Here, we assume translational symmetry in the x direction,
with crystal momentum k ∈ [0, 2π ).

We have written the Hamiltonian in what we will call or-
bital form (hence the subscript o), in which it has the desirable
property of being periodic with respect to k-space translations
by a reciprocal lattice vector:

Ĥo
k = Ĥo

k+2π . (56)

However, this comes at the cost of neglecting Bloch phases
eikx for intracell hoppings, and hence the normal Peierls
substitution k → k + eA(t ) with this Hamiltonian will neglect
intracell currents. We will call this form of the Hamiltonian
the orbital form, (hence the superscript o) since it may be
viewed as treating all states within the unit cell as orbitals
on a single generalized site in the unit cell. There are two
equivalent options for dealing with this. One is to define the
position operator with an intercell and intracell part,

r̂i → r̂i + τ̂ , (57)

and to explicitly add the intracell part of the velocity operator
v̂intra ≡ i[Ĥ, τ̂ ] when calculating currents. Alternatively, one
can define a form of the k-space Hamiltonian such that the
Bloch phases do accurately reflect intracell processes,

Ĥs
k = −

⎛
⎜⎜⎝

 gs(k) 0 ty
g∗

s (k) − ty 0
0 ty − g∗

s (k)
ty 0 gs(k) 

⎞
⎟⎟⎠, (58)

gs(k) = txeik/2 + t ′
xe−ik/2, (59)

and find the unitary transformation Û s→o
k that takes this

Hamiltonian back to the orbital form

Ĥo
k = Û s→o†

k · Ĥs
k · Û s→o

k . (60)

We call this alternative form of the Hamiltonian the sublattice
form since it treats states within the unit cell as being located
on different sublattice sites. We now show that implementing
the Peierls substitution with Ĥo

k before the unitary transfor-
mation is equivalent to taking into account both the intercell
and intracell currents (we set the electric charge q = −1 for
simplicity):

ĵx = ∂

∂A

(
Û s→o†

k Ĥs
k+AÛ s→o

k

)
= ∂

∂k

(
Û s→o†

k Hs
kÛ s→o

k

)
− ∂

∂k
Û s→o†

k Ĥs
kÛ s→o

k − Û s→o†
k Ĥs

k

∂

∂k
Û s→o

k

= ∂Ĥo
k

∂k
− ∂

∂k
Û s→o†

k Û s→o
k Ĥo

k − Ĥo
k Û s→o†

k

∂

∂k
Û s→o

k

= ∂Ĥo
k

∂k
+ i

[
Ĥo

k , i Û s→o†
k

∂

∂k
Û s→o

k

]

≡ v̂x
inter + v̂x

intra.

We therefore recognize the identity i Û s→o†
k

∂
∂k Û s→o

k ≡ τ̂ or, in
other words, Û s→o

k ≡ e−ikτ̂ . In the case at hand, we have (up
to an overall phase representing a shift in origin)

Û s→o
k =

⎛
⎜⎜⎝

eik/4 0 0 0
0 e−ik/4 0 0
0 0 e−ik/4 0
0 0 0 eik/4

⎞
⎟⎟⎠ (61)

⇒ τ̂ =

⎛
⎜⎜⎝

− 1
4 0 0 0

0 1
4 0 0

0 0 1
4 0

0 0 0 − 1
4

⎞
⎟⎟⎠. (62)

That is, the position operator acquires an intracell part encod-
ing the fact that two of the sublattices are displaced in the x
direction by half the width of the unit cell. Therefore, in what
follows, we use the following form for the Peierls-substituted
Hamiltonian:

Ĥs
k = −

⎛
⎜⎜⎝

 gA(k) 0 ty
g∗

A(k) − ty 0
0 ty − g∗

A(k)
ty 0 gA(k) 

⎞
⎟⎟⎠, (63)

gA(k) = e−ik/2[(t + δ)ei(k−A)/2 + (t − δ)e−i(k−A)/2], (64)
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FIG. 7. Results for the spatially dispersive correction to the linear conductivity [σ νμα

(1) (ω)] calculated on a minimal quasi-2D model. This
model takes the form of a chain of rectangular molecules with intermolecule couplings, with a sensible decoupling limit in which the problem
reduces to the well-understood problem of a multipole response in a molecule. Top: Agreement is demonstrated for the molecular chain
between our scheme (in both length and velocity gauge) and the expression determined in Ref. [25] from the Kubo formula expanded to first
order in q. Bottom: Agreement is also demonstrated in the decoupling limit between our scheme (in both length and velocity gauge) and the
electric quadrupole linear response from an isolated molecule. Note that inversion breaking is needed to observe this response, so we introduce
a small static on-site potential () of ±0.1 on sublattices AD/BC to produce these results.

which has both the periodicity k → k + 2π and a dependence
on A that encodes both intracell and intercell currents.

We can then define the current operators in the x direction
in terms of derivatives with respect to A,

v̂x ≡ ĥx = Û†
k · ∂ĤA

k

∂A
· Ûk

∣∣∣∣∣
A=0

, (65)

ĥxx = Û†
k · ∂2ĤA

k

∂A2
· Ûk

∣∣∣∣∣
A=0

, (66)

ĥxxx = Û†
k · ∂3ĤA

k

∂A3
· Ûk

∣∣∣∣∣
A=0

, (67)

where Ûk is some (nonunique) unitary transformation that
diagonalizes ĤA=0

k . As for the current operators in the y di-
rection, since there is no periodicity in y, we use

v̂y = i Û†
k · [Ĥo

k, r̂y
] · Ûk , (68)

with r̂y defined just as in the molecule case [Eqs. (48)]. For
simplicity, we set the width of the chain in the y direction

to be 1/2, to match up with the half-unit-cell width in the x
direction of a single decoupled molecule. [That is, in com-
paring with Eqs. (48), we will set Rx = Ry = 1/4.] One can
then formally compute higher-order currents in the y direction
using the covariant derivative, where in this case there is no
partial derivative, and so the covariant derivative reduces to a
commutator with the Berry connection Ây ≡ r̂y,

ĥyy = −i[Ây, v̂y], (69)

and so on for all other current operators ĥα1...αn .

C. Numerical results

Figures 7 and 8 show numerical results for the spatially
dispersive corrections to the linear conductivity and SHG
conductivity, respectively. We benchmark our methodology in
two ways. First, we compare the conductivities of the chain in
the t ′

x → 0 limit to the conductivities calculated for a single
rectangular molecule. Second, for the linear conductivity, we
also benchmark against established results [25,26] for the spa-
tially dispersive linear conductivity calculated by expanding
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FIG. 8. Results for the spatially dispersive correction to the second harmonic generation conductivity [σ νμαβ

SHG,(1)(ω)] calculated on the
molecular chain model detailed in Fig. 7. Agreement is shown between length gauge and velocity gauge in both the molecular chain and in the
decoupling limit. Agreement is also shown with the analogous single-molecule calculation. We use t ′

x = 0.8.

the Kubo formula to first order in q. Figures 7 and 8 show
agreement in all cases. In our plots, we introduce a phe-
nomenological relaxation parameter η by taking ω → ω + iη,
with η = 0.01. We set tx = 1, without loss of generality, and
in the case for the linear conductivity, we set  = 0.1 in both
the chain and the molecule to statically break inversion (and
to therefore allow a nonzero spatially dispersive correction).
We also always assume the lowest three bands in this model
are filled:

ρ̂ (0) =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

⎞
⎟⎟⎠, (70)

because the spatially dispersive correction to SHG depends
on a peculiar combination of the filling factors (e.g., for the
molecule it is proportional to f1 − f2 − f3 + f4).

As a note on symmetries, the molecular chain we consider
is inversion symmetric when either  = 0 or δ = 0, where
we define δ = tx − t ′

x. This is only evident from the sublattice
form Ĥs

k of the Hamiltonian in Eq. (58). When δ = 0, the
system has an inversion center on a vertical bond, represented
by the following matrix transformation:

Ĥs
k −→ Ĥs

−k . (71)

Additionally, the system has an inversion center at the mid-
point of the unit cell whenever  = 0, represented by

Ĥs
k −→

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠ · Ĥs

−k ·

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎟⎠. (72)

So, inversion is only broken when both δ 
= 0 and  
= 0.
Given these considerations, we can directly compare SHG

resulting from static inversion breaking with SHG resulting
from a spatially dispersive correction. Figure 9 plots the mag-
nitude of the total SHG response resulting from diagonally
polarized light at a frequency of half the minimum gap in this
model. We choose diagonal polarization because x-polarized
light triggers a uniform SHG response (σ xxx

SHG,(0)) when  is
nonzero, while y-polarized light triggers a spatially dispersive
correction (σ xxyy

SHG,(1)) at first order in qx. In that plot, we choose
a window such that the contours are roughly circular in shape,
and find a pair of dimensionless parameters in which the two
axes have roughly the same scale. We find these relevant
dimensionless parameters to be /t ′

x and qxRx. That is, the
effects of spatial dispersion on the length scale of half the
width of an individual molecule create a similar magnitude
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FIG. 9. Magnitude of the total SHG response computed up to
electric quadrupole order resulting from off-axis linearly polarized
light incident on the molecular chain model, evaluated at ω0 =√

(tx − t ′
x )2 + 2 (half the minimum gap between the filled and

empty bands). Light polarized in x (chain direction) leads to a con-
ventional SHG response when inversion is broken ( 
= 0) while
light polarized in y leads to a spatially dispersive correction (q 
= 0).
Here, tx − t ′

x = 0.5 and ty = 0.8.

of SHG to that of a static inversion breaking parameter on the
energy scale of the intercell hopping. This heurstic has intrigu-
ing implications for real systems where spatially dispersive
effects may be present. For instance, moiré systems famously
create extremely inflated artificial lattice constants, in which
case qR is very large (where R is interpreted generally as
some coherence length for localized electronic states). So
long as the hopping amplitude between superlattice sites is
not too small, the spatially dispersive correction to SHG may
be on the same order as a typical static inversion-breaking
mechanisms for which SHG is often used as a probe. This has
important ramifications for using SHG to detect spontaneous
breaking of inversion symmetry, since many systems of recent
interest may have sufficiently large coherence length scales
R to allow spatially dispersive effects to dominate such a
response.

V. OUTLOOK

We have introduced a scheme for calculating spatially
dispersive corrections to nonlinear optical responses in
velocity gauge. Reviewing from a diagrammatic stand-
point the subtle cancellations that make up the sum rules
guaranteeing equivalence between the length and velocity
gauges, we compactly write velocity gauge expressions for
nonlinear optical conductivities and introduce spatially disper-
sive corrections as an additional vertex rule. Though we only
treat the electric quadrupole contribution here, we expect the
formalism can be straightforwardly extended to include the
magnetic dipole contribution, as well as higher-multipole cor-
rections as desired. We expect spatially dispersive corrections
to be important for understanding anomalously strong bulk
second-order responses in centrosymmetric materials where
the response is typically expected to vanish.

We anticipate our hybrid diagrammatic/density matrix
scheme to compactly represent other extensions to tradi-
tional calculations of nonlinear susceptibilities, in addition to
spatially dispersive corrections. For instance, one can treat
responses beyond the relaxation time approximation ω j →
ω j + iη by more carefully treating coupling to a bath, such
as in a Keldysh formulation of dissipative systems [4,30,31].
Here, we expect the dissipation to be encoded in a lesser
Green’s function G<(k, ω), which is equivalent to the reduced
density matrix that we associate to each diagram. Adapting
this scheme to account for different models of dissipation
would be an intriguing direction for future work.

Our results put forward a tool for using nonlinear optics
to study quantum materials beyond electric dipole order. We
expect spatially dispersive corrections to optical responses
to reveal information about intrinsic nonlocality in material
systems, since they should be strong when the electric field
varies appreciably on the length scale of the electronic states
being coupled by optical transitions. A number of materials
of recent interest fall into this category, including moiré ma-
terials [32,33] and systems whose bands exhibit nontrivial
quantum geometry [34–36] for which maximally localized
Wannier representations still feature coherence over length
scales of many unit cells. Searching for measurable spatially
dispersive corrections in these systems and linking them to
quantum geometry is a promising direction for future work.
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