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Light controlled topological plasmonics in a graphene lattice arrayed by metal nanoparticles
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The implementation of topology on photonics has opened new functionalities of photonic systems, such as
the topologically protected boundary photonic modes. In this study, we investigate topological plasmonics in
a graphene lattice arrayed with metal nanoparticles and irradiated by a polarized light. While surface plasmon
polaritons are typically excited in such systems, our study shows that the system exhibits a different photonic
response with observable edge photonic modes corresponding to distinct topological states. Importantly, we show
that the topological phase transition between these states can be easily achieved by controlling the polarization
of the external optical field, making it more feasible in experiments than changing the structural parameters.
Our system provides a controllable platform for studying topological phenomena in photonics and has potential
applications in nanoscale optical devices.
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I. INTRODUCTION

The development of topological state theory in condensed
matter physics [1–3] has attracted extensive attention. Though
insulating in the bulk, these structures support unidirectional
and topologically robust edge modes at their boundaries with
considerable immunity against backscattering. Because of
their special properties, topological insulators have a wide
range of potential applications in optical and electrical devices
[4–11]. Extension of the concept to photonic systems brings
about topological photonics, which uses the topological ideas
to design and control the behavior of photons, such as the
properties of robust optical transport against defects and disor-
ders, which is not available in the traditional photonic system.

Light-excited arrays of coupled metal nanoparticles
(MNPs) are a class of plasmonic systems deeply studied
for their extensive applications [12–14], such as the sub-
diffraction waveguiding [15], and have become potential
candidates for waveguides in dense integrated nanophotonic
systems. Nontrivial topology has been previously realized in
one-dimensional (1D) plasmonic arrays and quasi-1D zigzag
chains [16–19]. These systems, similar to the Su-Schrieffer-
Heeger (SSH) [20] model, exhibit highly localized edge states
and strong robustness against perturbations. However, since
these edge modes are zero dimensional or, say, localized,
they cannot deliver the most exciting promise of photonic
topological insulators (PTIs), namely, the robust transmission
using edge states.

To overcome this limitation, the PTIs beyond one-
dimensional (1D) cases are designed and therefore the 2D
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plasmonic structures has naturally been paid attentions to. In
2D lattices, the Dirac point [21] is full of vitality in recent
studies on topological insulators and topological supercon-
ductors. Because the topological properties usually change
through the process of band closure and opening, and the
Dirac point is just a transition point of closing and opening of
energy bands, it plays an important role in topological energy
band theory. Graphene is well known to hold Dirac points
and has many special physical transport properties such as
the anomalous integer quantum Hall effect, Zitterbewegung,
and Klein paradox due to its linear band structure of a Dirac
cone without a band gap [22]. However, the Dirac cones in
graphene is fixed at the corners of the Brillouin zone. If we
could shift their positions, there would be at least one more
freedom added to the system for more exotic topological
properties.

In this work, we investigate the 2D PTI in the MNPs-
arrayed graphene lattices. To excite the plasmon modes within
the MNPs, an AC electric field is required, which is typically
generated by irradiating with light. While research has been
conducted on plasmonic graphene lattices excited by perpen-
dicular AC electric fields [14], this system is challenging to
obtain through optical methods due to the transverse nature of
light. Our approach involves irradiating the graphene lattice
with perpendicular light, which adds the AC electric field in
the lattice plane. The anisotropy caused by the external field
transforms the system from a common graphene lattice to a
complex one, but can exhibit nontrivial topological proper-
ties. The system holds both space inversion and time-reversal
symmetries, and therefore the Berry curvature cannot be used
to characterize its nontrivial topological nature. Importantly,
the topological properties can be controlled by the external
field’s polarization, providing practical applications in PTIs.
Our results confirm the existence of a nontrivial topological
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FIG. 1. Schematic representation of the plasmonic lattice con-
sisting of MNPs arranged in a graphene lattice and irradiated
perpendicularly by a polarized light. The polarization angle is given
relative to the positive direction of the x axis.

phase with zero Berry curvature in 2D plasmonic photonic
crystals. We found that this ultracompact plasmonic structure
supports one-way topological edge states at its boundaries,
allowing light to be guided through arbitrary paths without
backscattering. This system’s deep subwavelength operation
at optical frequencies and simple planar design make it com-
patible with integrated nanofabrication techniques, enabling
the utilization of its exotic photonic topological phases in
highly integrated nanophotonic devices.

II. MODEL AND THEORY

The proposed system consists of metal nanoparticles
(MNPs) which are arrayed as a two-dimensional graphene
lattice, as shown in Fig. 1. Each MNP is modeled as a sphere
with the radius of rs and the nearest-neighbor MNPs are
separated by a distance of d with the lattice constant of a.
The primitive cell can be constructed by the vectors a1 and a2.
The lattice is embedded inside the background medium with
a permittivity of εg. A polarized light is irradiated perpendicu-
larly on the lattice to excite the plasmons within these MNPs.
The interaction of the MNPs through the plasmons reshapes
the energy distribution in the system, enabling control of the
plasmonics by an external field. The polarization direction
of the light is a critical factor and the polarization angle is
denoted by θ , as shown in Fig. 1.

The plasmonic nanoparticle structure can be accurately
modeled using the multipole expansion method [23]. When
the condition rs/d � 1/3 is satisfied, the MNPs can be ap-
proximated as point dipoles pi that interact through dipolar
coupling [24]. In linear and nonmagnetic media, the induced
dipole moment pi within each MNP is directly proportional to
the electric field strength at its position Ri. In the absence of
other external excitations, the electric field at each lattice site
is the summation of the contributions from all other dipole
moments in the array,

pi = αE

∑
G(Ri − R j )p j, (1)

where αE is the polarizability of an individual nanosphere,
αE = 4πε0r3[ε(ω) − εg]/[ε(ω) + 2εg]. The permittivity of
the MNPs ε(ω) can be derived by the Drude model ε(ω) =
ε∞ − ω2

p/(ω2 + iωγ ), where ωp is the plasma frequency, γ

is the damping frequency, and ε∞ is the permittivity when

frequency goes to infinity. G(R) is the dipole-dipole interac-
tion tensor, G(r) = 1/4πε0(k2 + ∇∇)eikr/r [25].

Within each primitive cell, there are two MNPs whose
dipole moments can be treated as a pseudospin, denoted as
pn = [p1

n, p2
n]T , located at the position Rn. Since the strength

of the dipole-dipole interaction attenuates rapidly with the
increasing separation R by (∝ 1/R3), we only consider the
nearest-neighbor coupling. Additionally, we can use the qua-
sistatic approximation because the wavelength of interest is
much larger than the lattice constant. As a result, the radiation
loss and retardation effect can be ignored. To ensure that the
eigenproblem is Hermitian, we do not consider loss in the
eigenequation. The vector pn must satisfy a self-consistent
equation that accounts for the dipole interaction,

1

α̃E
pn =

∑
H (�Rm,n)pm. (2)

This is actually an eigenequation: H is the Hamiltonian and
α̃−1

E = 4πε0/αE is the eigenvalue.
Consider the periodicity of the lattice. The transformed

Hamiltonian in momentum space is

H (k) =
(

0 H.c.
t1eik·a1 + t2eik·a2 + t3 0

)
, (3)

where t3 and t1, t2 are the intracell and intercell interaction
strengths between nearest-neighbor MNPs, respectively. By
adjusting the polarization, we can change the parameters t1,
t2, and t3. For a typical polarization, these parameters cannot
be the same at the same time, which means the lattice is no
longer the common graphene lattice when irradiated by the
external field. The interplay between these three parameters is
the key factor in producing the topological phase transition.
The evolutions of these three parameters with polarization
are plotted in Fig. 2(a), and six special cases are listed in
Figs. 2(b)–2(g), where a wider line means a stronger coupling
between lattice sites.

To get the energy spectrum, the eigenvalue equa-
tion H (k)ψ (k) = α̃−1

E ψ (k) is solved for the optical frequency
ω(k). The Hamiltonian can be represented as a concise form
by the Pauli matrix as

H (k) = h(k) · σ. (4)

Then the eigenvalue is ε± = ±|h(k)|. The energy spectrum
contains two subbands and is symmetric around zero energy.
Eigenvectors for bulk states are obtained as

|ψ±(k)〉 = 1√
2

(±1
eiφ

)
, (5)

where φ = arg[h(k)], k = (kx, ky).
The typical parameters are set as follows in our calcula-

tions: the lattice constant a = 50 nm, the radius of NP rs = 5
nm. The eigenfrequency is normalized by the Dirac frequency
of the NP, ωD = ωp/

√
2εg + ε∞. We use εg = 1 for the back-

ground medium. The Drude parameter of gold is taken as
ε∞ = 1, ωp = 2 × π × 2.07 × 1015 rad/s, and γ = 2 × π ×
4.45 × 1012 rad/s [26]. Our system is non-Hermitian in a
strict sense due to the loss. However, because γ is more than
two orders of magnitude smaller than ωp (γ � ωp), all simu-
lated results showed indistinguishable change under a lossless
assumption, that is, γ = 0 is a reasonable assumption.

085402-2



LIGHT CONTROLLED TOPOLOGICAL PLASMONICS IN A … PHYSICAL REVIEW B 108, 085402 (2023)

FIG. 2. Evolution of nearest-neighbor hoppings in the nanopar-
ticle lattice as a function of polarization angle. (a) Plots of hopping
strengths (t1, t2, and t3) for varying polarization angles. (b) Schematic
representation of the lattice structure with nearest-neighbor hopping
strengths depicted by the depth of the red color for six selected
polarization angles.

The energy spectra are plotted in Figs. 3(a) and 3(b)
for two polarization angles, θ = 0◦ and θ = 30◦, respec-
tively. It is obvious that these two spectra are different
from each other: one is gapped and the other is gap-
less. We explore the spectra for all of the polarization and
reach the following conclusion: For the gapped case, the
condition |t3| < |t1 ± t2| (or |t3| > |t1 ± t2|) should be satis-
fied, where the polarization angle falls in the ranges θ =
[m60◦ − 20◦, m60◦ + 20◦] (m = 0, 1, . . . , 5). The gap disap-
pears when |t1 − t2| < |t3| < t1 + t2 (or t1 + t2 < |t3| < |t1 −
t2|), which corresponds to the polarization locating within
the ranges θ = [m60◦ + 20◦, m60◦ + 40◦] (m = 0, 1, . . . , 5).
All of these are summarized in Fig. 3(c). It should be
noted that the mechanism of the band gap formation here
is different from the Bragg interference in wavelength-scale
photonic crystals, but relies on the resonance of individ-
ual nanoparticles. Similar low-frequency band gaps in deep
subwavelength resonant electromagnetic or acoustic meta-
materials have been previously reported in the literature
[27,28], in which the band gap frequency is determined
by the resonance frequency of an individual resonator, in-
stead of the specific arrangement of the resonators in the
array.

The case of a graphene lattice by a perpendicular excitation
has been researched, i.e., all the excited dipoles are along the
perpendicular direction of the lattice plane. In that case, the
condition t1 = t2 = t3 meets and the energy spectrum is just
like that of graphene with the Dirac points locating at the
corners of the first Brillouin zone. However, introducing the
in-plane polarization as we do, the situation becomes com-
plex. The condition t1 = t2 = t3 cannot be satisfied, but there
still exist two Dirac points when |t1 − t2| < |t3| < t1 + t2 (or
t1 + t2 < |t3| < |t1 − t2|), as mentioned before. The positions
of these Dirac points can be solved analytically as k = ±kD,

FIG. 3. The energy band structure and topological invariants of the graphene lattice under perpendicular polarized light. (a),(b) Typical
gapped and gapless band structures, respectively. (c) The range of polarization angles. The gapless cases are shown in areas without numbers,
where the pair of Dirac points moves in the Brillouin zone as indicated by the arrowed curves. The numbered areas represent ranges of
polarization angles allowing for gapped cases, with the number indicating the topological invariant or phase gathered around half of the
Brillouin zone enclosed by the red lines in (d). (e) The end of vector h(k) as k varies from 0 to 2π . The winding number is connected to the
topological invariant.
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with

kD =

⎛
⎜⎜⎝

2√
3a

sgn(t3 − t2) arccos

(
− t2+t3

t1

√
t2
1 −(t2−t3 )2

4t2t3

)
2
a arccos

(√
t2
1 −(t2−t3 )2

4t2t3

)
⎞
⎟⎟⎠. (6)

In Fig. 3(c), we have plotted the traces of two Dirac points
in momentum space with arrowed curves in the same colors
as the areas where the band gap closes. We observe that
these two Dirac points appear in a symmetric position around
the � point when the parameters permit it. Furthermore, the
locations of the Dirac points are not fixed, but evolve with
the parameters. This behavior is very different from classical
topological phase transition models, such as the famous SSH
model, where the band closing and reopening happen at a
particular parameter condition to fulfill the topological phase
transition. In our system, there is a parameter range rather than
a point from one gapped phase to another. Therefore, our next
task is to determine whether the band closing and reopening
are accompanied by any kind of topological phase transition.

III. TOPOLOGICAL INVARIANT

To topologically differentiate these states when polar-
ization changes, we need to find a topological invariant.
Unfortunately, the usually used Berry curvature vanishes in
the system due to the existence of both inversion and time-
reversal symmetries [29,30]. Nevertheless, the topological
properties can still be characterized in terms of the Berry
phase in such 2D system, which may be nontrivial even for
vanished Berry curvature. Recent studies have shown that
topologically nontrivial electronic band structures can emerge
even though the Berry curvature is zero, such as in the square
lattice [29,31], T-graphene lattice [32], and hexagonal Flo-
quet system [33]. The topological state is characterized by
an integration of the Berry connection over the momentum
space, the magnetic vector potential whose curl gives the
Berry curvature [30], resulting in a nontrivial Zaks phase.

For better analysis, we rewrite the Hamiltonian as

Hk =
(

0 h∗(k)
h(k) 0

)
, (7)

where

h(k) = hx(k) + ihy(k), (8)

hx(k) = t3 + t1 cos(k · a1) + t2 cos(k · a2), (9)

hy(k) = t1 sin(k · a1) + t2 sin(k · a2). (10)

The Berry connection is then Ai = i〈ψ |∂ki|ψ〉 (i = x, y), and
the 2D Berry phase is defined as the line integration around
a certain zone. The Berry phase around the whole Brillouin
zone (BZ) is zero. But if we turn to the contribution from each
half BZ, the underlying mechanism may be clear. The BZ of
the lattice is drawn in Fig. 3(d), where the hexagonal BZ is
equivalent to that enclosed by the parallelogram. We calculate
the Berry phase enclosed by the arrowed red lines in Fig. 3(d),

γ =
∮

L1

A(k)dk. (11)

FIG. 4. The nanoribbon obtained by cutting the plasmonic
graphene lattice. The nanoribbon is infinite along the y direction and
has zigzag edges in the x direction. The shaded area represents a unit
cell for the nanoribbon.

The Berry phase of this half BZ can be related to the winding
number of the eigenvectors h(k) by the relationship

γ = 1

2

∑
�φi(ki ) (i = x, y). (12)

The winding number is defined as

ν = 1

2π i

∫ π

−π

dk
d

dk
ln[h(k)], (13)

where h(k)=v + weik . If the end of the vector h(k) cannot
enclose the origin of the complex plane as k goes from 0 to
2π , then ν is zero. On the contrary, if the end encircles the
origin once, we can get a nontrivial value of ν = 1, and so
on, as shown in Fig. 3(e). The change of the winding number
means the topological phase transition. The numerical results
are drawn in Fig. 3(c). It is seen that for all those polarizations
causing the gapped band structure, the Berry phase gathered
around the half part of the BZ is either zero or π . The nonzero
Berry phase obtained in this way means the contributions from
this and that half parts of the BZ are different, which means
an uneven Berry phase distribution. This is the topological
invariant chosen by us to describe the different topological
phases in the system.

IV. EDGE STATES

One essential feature of the 2D system in nontrivial topo-
logical phases is the existence of topological edge states in
the corresponding 1D case. We will demonstrate the feature
in our system. The 1D case is chosen as a nanoribbon with the
width of 20 unit cells along the x direction and with periodic
boundary assumption along the y direction, as shown in Fig. 4.
It is actually a zigzag graphene nanoribbon if the differences
among t1, t2, and t3 are neglected. Numerical results show
that when θ ∼ 0◦–20◦ (or ∼160◦–180◦), edge states appear
in the energy spectrum, as shown in Fig. 5(a) where a typical
polarization θ = 10◦ is chosen. In contrast, when θ ∼ 40◦–
80◦ (or ∼100◦–140◦), there are no edge states, as shown in
Fig. 5(b) where a typical polarization θ = 120◦ is used. The
results are consistent with the analytical analysis in the last
section.

By solving the eigenproblem, we can determine the dipole
moments of all the MNPs and obtain the corresponding elec-
tric field distribution. Figure 5(c) shows the field distribution
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FIG. 5. Projected bulk states and edge states of a plasmonic
nanoribbon with 20 sites aligned along the x axis for two polarization
angles: (a) θ = 10◦ and (b) θ = 120◦. The red line in (a) indicates
the edge state that appears. (c) The distributions of |pi|2 in a unit
cell for the in-plane polarized edge modes, where the blue (red)
line corresponds to θ = 10◦ (θ = 120◦) with ky = 0. Insets show the
normalized electric field distributions in a unit cell caused by these
dipoles for each case.

for polarizations of 10◦ and 120◦, respectively, which cor-
respond to two topologically distinct states with completely
different energy distributions. Switching between these two
states can be achieved by simply adjusting the polarization of
the external field, making it a practical method. The ability to
control topological states in photonics has generated signifi-
cant interest due to its potential application in the design of
all-optical topological photonics.

V. THE DIPOLE RESPONSE

A classical method to calculate the dipole response to an
external polarized field is developed here as an independent
way to check the validity of the eigenequation. There is a
dipole excitation inside each MNP when the plasmons are
excited out by the external electric field. For each MNP, the
strength of its dipole is determined by the total electric field at
its position, which includes the contributions from all other
dipoles inside other MNPs. Therefore, we can obtain the
dipole response in a consistent way with the help of classical
electromagnetic theory.

We assume that all the MNPs have the same size. Since the
parameters of rs and d are 5 nm and 50/

√
3 nm, respectively,

the long-wave approximation is still valid. The electric field
generated by a single dipole p is

E = 1

4πε0

[
3(p · r)r

r5
− p

r3

]
. (14)

Summing up all the contributions from other MNPs, we can
obtain the electric field at the position of any MNP, which
should comply with the induced dipole inside this MNP. For
instance, the electric field at the position of site A in the
primary cell numbered (0,0), denoted as EA0,0 , includes the
contributions from all A-MNPs EAA0,0 and that from all B-
MNPs EBA0,0 . (n, m) is the position of primary cell, in which
there are two sites A and B, as illustrated in Fig. 1. For
the two-dimensional problem, it is convenient to decompose
each dipole and the electric field into x and y components.
Therefore, the electric field at A0,0 generated by other MNPs
has four contributions:

E(x)
BA0,0

= 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3pBx vd1(x)2

[vd1(x)2 + vd1(y)2]
5
2

− pBx

[vd1(x)2 + vd1(y)2]
3
2

]
x̂, (15)

E(x)
AA0,0

= 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3pAx vd2(x)

[vd2(x)2 + vd2(y)2]
5
2

− pAx

[vd2(x)2 + vd2(y)2]
3
2

]
x̂, (16)

E(y)
BA0,0

= 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3pByvd1(y)2

[vd1(x)2 + vd1(y)2]
5
2

− pBy

[vd1(x)2 + vd1(y)2]
3
2

]
ŷ, (17)

E(y)
AA0,0

=
∞∑

m=−∞

∞∑
n=−∞

1

4πε0

[
3pAyvd2(y)2

[vd2(x)2 + vd2(y)2]
5
2

− pAy

[vd2(x)2 + vd2(y)2]
3
2

]
ŷ, (18)

where

vd1 = 1 − 3m

2
d x̂ +

√
3(1 − m − 2n)

2
d ŷ, (19)

vd2 = −3m

2
d x̂ +

√
3(−m − 2n)

2
d ŷ, (20)

vd3 = −1 − 3m

2
d x̂ +

√
3(−1 − m − 2n)

2
d ŷ. (21)

Similarly, we get

E(x)
AB0,0

= 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3pAx vd3(x)

[vd3(x)2 + vd3(y)2]
5
2

− pAx

[vd3(x)2 + vd3(y)2]
3
2

]
x̂, (22)

E(x)
BB0,0

=
∞∑

m=−∞

∞∑
n=−∞

1

4πε0

[
3pBx vd2(x)2

[vd2(x)2 + vd2(y)2]
5
2

− pBx

[vd2(x)2 + vd2(y)2]
3
2

]
x̂, (23)
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FIG. 6. The distributions of |pi|2 within a unit cell for the in-
plane polarized edge modes in the lattice of 20-nanosphere width in
the x direction. The blue (red) line corresponds to the polarization
θ = 10◦ (θ = 120◦). Inset: The normalized electric field distribution
in the unit cell.

E(y)
AB0,0

= 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3pAyvd3(y)

[vd3(x)2 + vd3(y)2]
5
2

− pAy

[vd3(x)2 + vd3(y)2]
3
2

]
ŷ, (24)

E(y)
BB0,0

=
∞∑

m=−∞

∞∑
n=−∞

1

4πε0

[
3pByvd2(y)2

[vd2(x)2 + vd2(y)2]
5
2

− pBy

[vd2(x)2 + vd2(y)2]
3
2

]
ŷ. (25)

Adding all these parts, we get the field EA0,0 ,

E(x)
A0,0

= E(x) + E(x)
BA0,0

+ E(x)
AA0,0

, (26)

E(y)
A0,0

= E(y) + E(y)
BA0,0

+ E(y)
AA0,0(y). (27)

Then, the induced dipole of the A0,0 MNP should satisfy the
relation

pA0,0 = 4πr3ε0αEA0,0 . (28)

The electric field at the MNP B0,0 is

E(x)
B0,0

= E(x) + E(x)
AB0,0

+ E(x)
BB0,0

, (29)

E(y)
B0,0

= E(y) + E(y)
AB0,0

+ E(y)
BB0,0

. (30)

Finally, we can express all these dipoles by the following
equations:

pAx

4πr3
s ε0αA

= Ex + 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3vd1(x)2

[vd1(x)2 + vd1(y)2]
5
2

− 1

[vd1(x)2 + vd1(y)2]
3
2

]
pBx

+ 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3vd2(x)2

[vd2(x)2 + vd2(y)2]
5
2

− 1

[vd2(x)2 + vd2(y)2]
3
2

]
pAx ; (31)

FIG. 7. Check of the robustness of the edge state against the
position disorder. (a) The introduced disorder in the lattice with a
width of 20 nanospheres in the x direction and 40 nanospheres along
the y direction. Only a section in the y direction of the nanoribbon
is drawn. The enlarged part shows the offsets of position, where the
hollowed circles are the real positions after the disorder is introduced.
(b) The field distribution in the disordered lattice.

pBx

4πr3
s ε0αB

= E(x)+ 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3vd3(x)2

[vd3(x)2 + vd3(y)2]
5
2

− 1

[vd3(x)2 + vd3(y)2]
3
2

]
pAx

+ 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3vd2(x)2

[vd2(x)2 + vd2(y)2]
5
2

− 1

[vd2(x)2 + vd2(y)2]
3
2

]
pBx ; (32)

pAy

4πr3
s ε0αA

= E(y)+ 1

4πε0

∞∑
m=−∞

∞∑
n=−∞

[
3vd1(y)2

[vd1(x)2 + vd1(y)2]
5
2

− 1

[vd1(x)2 + vd1(y)2]
3
2

]
pBy

+
∞∑

m=−∞

∞∑
n=−∞

1

4πε0

[
3vd2(y)2

[vd2(x)2 + vd2(y)2]
5
2

− 1

[vd2(x)2 + vd2(y)2]
3
2

]
pAy ; (33)

pBy

4πr3
s ε0αB

= E(y) +
∞∑

m=−∞

∞∑
n=−∞

1

4πε0

[
3vd3(y)2

[vd3(x)2 + vd3(y)2]
5
2

− 1

[vd3(x)2 + vd3(y)2]
3
2

]
pAy
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+
∞∑

m=−∞

∞∑
n=−∞

1

4πε0

[
3vd2(y)2

[vd2(x)2 + vd2(y)2]
5
2

− 1

[vd2(x)2 + vd2(y)2]
3
2

]
pBy . (34)

These are linear equations about the quantities pA and pB

and can be solved numerically. In numerical calculations,
an array with the width of 20 nanospheres in the x direc-
tion is designed to simulate the one-dimensional nanoribbon.
The dipole strengths and the field distribution are plot-
ted in Fig. 6, where two typical polarizations θ = 10◦ and
θ = 120◦ are used. As predicted before, when polarization
is θ ∼ 40◦–80◦ (or ∼100◦–140◦), there is no edge state,
whereas when θ ∼ 0◦–20◦ (or ∼160◦–180◦), the edge state
appears. The numerical results obviously agree well with the
theory.

To testify the robustness of the edge states, random x-
direction offsets within [−5 nm, +5 nm] to the otherwise
perfect lattice sites are introduced, as shown in Fig. 7(a).
Now that the translation symmetry is broken, we cannot
get an eigenequation, but the dipole responses under the
perturbation can be numerically solved by the classical
method. A finite lattice with a width of 20 nanospheres in
the x direction and 40 nanospheres along the y direction
is chosen to do the simulation. In Fig. 7(b), the electric
field distribution in the nanoribbon is plotted, which clearly
shows that the edge state survives after the disorder is
introduced.

VI. CONCLUSION

In this study, we investigated the topological physics
of a graphene lattice irradiated perpendicularly by a
polarized light. Through modeling the photonic system as an
eigenproblem and solving it analytically, we showed that the
photonic band structure alternately switches from the gapped
to gapless structure. Using the Berry phase gathered around
the half Brillouin zone as a topological index, we identified
the existence of topologically nontrivial states in some of
the gapped structures as the polarization angle changes. Our
findings reveal the existence of topological nontrivial states
in such plasmonic system, and the expected topological phase
transition occurs across a range of parameters rather than a
single point. We also confirmed the topological nature of the
system by examining the edge states in the corresponding
lattice nanoribbon. Furthermore, the validity of the theory
is also checked by solving the dipole responses through
the classical electromagnetic theory; so is the robustness
of the edge state under certain lattice disorders. Our results
demonstrate the potential for using polarization as a different
degree of freedom to control the topological properties in
metal nanoparticle lattices, paving the way for multifunctional
photonic devices with robust wave control.
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