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We investigate correlations between the spin-splitting energy and the orbital angular momentum (OAM) of
the L-gap surface states on Au(110)-(1 × 1) and −(1 × 2) surfaces by first-principles calculations. It is revealed
that their spin-splitting energies can be expressed approximately as �ε ≈ 2|ξpL(p) + ξd L(d )|, where L(p) and
L(d ) are the p- and d-orbital contributions to the OAM in the absence of spin-orbit interaction (SOI), and ξp and
ξd are the atomic SOI parameters for the p and d orbitals of Au. For all the surface states studied, the major
component L(d ) exhibits rather weak anisotropy in the space of two-dimensional wave vector k, whereas the
minor component L(p) is more anisotropic between the [1̄10] and [001] directions. Since ξp for Au is several
times larger than ξd , �ε becomes more strongly anisotropic than the total OAM L in the k space. In particular,
the Rashba parameter in the [001] direction of the unoccupied surface band on the (1 × 1) surface becomes
nearly vanishing due to strong cancellation of the p- and d-orbital contributions. We also discuss how the OAM
of surface states calculated without SOI is modified when SOI is turned on.
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I. INTRODUCTION

Currently, there is a large interest in the orbital Rashba
effect at solid surfaces because of its potential technological
applications. Its key quantity is the orbital angular momentum
(OAM) induced in the wave function of surface states due
to inversion symmetry breaking (ISB) [1–10]. The OAM of
a surface band is locked to two-dimensional wave vector k
and exhibits a chiral texture around a symmetry point in the
surface Brillouin zone (SBZ), which is similar to the chiral
texture of electron spin resulting from spin-orbit interaction
(SOI) due to surface potential gradient [11]. However, the
orbital Rashba effect is independent of SOI and occurs by the
ISB at the surface alone. To describe the subsequent spin split-
ting of a surface state, one does not need the aforementioned
surface-specific SOI. Instead, one only needs the standard
atomic SOI of the form Ĥso = λ �L · �σ , where �L and �σ are
the local OAM operator and a vector of the Pauli matrices,
respectively. In the strong SOI regime, the OAM and electron
spin are strongly coupled mutually so their relative directions
in the resulting two spin-split states are the same. On the other
hand, in the weak SOI regime, the OAM acts as an effective
magnetic field to spin polarize the surface state so the electron
spin is oriented parallel to the OAM in the higher spin-split
state and is antiparallel to the OAM in the lower spin-split
state.

Kim et al. [3] revealed that the spin splitting of the
L-gap surface state on Au(111) [12,13] and Cu(111) [14]
originates from the orbital Rashba effect in the weak SOI
regime. The OAM of the two spin-split surface bands exhibits
a clockwise chiral texture around �̄ (k = 0) seen from the
vacuum, whereas the electron spin of the upper and lower
spin-split bands exhibits clockwise and counterclockwise chi-
ral textures, respectively. More interestingly, while the wave

function of the L-gap surface state has strong pz character
(the z axis is the surface normal), the momentum-locked OAM
originates dominantly from the d orbitals with much smaller
weight than pz [15,16].

Surface states associated with the L point bulk band gap
also emerge on (110) surfaces of Cu, Ag, and Au [17–25].
For the (1 × 1) surfaces of Cu and Ag, they appear near the
Ȳ point in the SBZ, onto which the bulk L point is projected.
On the unreconstructed Au(110) surface, a partially occupied
surface band with anisotropic energy dispersion similar to
the one on Cu(110) [25] was observed by angle-resolved
photoemission spectroscopy (ARPES) [24]. In contrast, on
the missing-row reconstructed Au(110) surface, inverse pho-
toemission experiments and density functional theory (DFT)
calculations have revealed that this band is shifted upward
and becomes unoccupied [18–20,24]. For both (1 × 1) and
(1 × 2) surfaces, Nagano et al. [26] calculated anisotropic
spin-splitting energies of the lowest surface band. Simon et al.
analyzed the spin splitting of the partially occupied surface
band on the (1 × 1) surface using the k · p perturbation theory.
Yet, it was only very recently that the spin splitting of the
L-gap surface states on Au(110) was observed experimentally
[27].

In the present paper, we study the OAM-induced spin
splitting of the L-gap surface states on semi-infinite Au(110)
surfaces by first-principles DFT calculations. We will demon-
strate that the calculated spin-splitting energy �ε can be
explained by the expression derived from perturbation theory,
�ε ≈ 2|ξpL(p) + ξd L(d )|, where L(p) and L(d ) are the p- and
d-orbital contributions to the OAM of the surface states calcu-
lated in the absence of SOI, and ξp and ξd are the atomic SOI
parameters of Au. We show that while L(d ) is much larger than
L(p) as in the case of the corresponding ones on Au(111), the
spin-splitting energy becomes more anisotropic than OAM,
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since the weight of the more anisotropic L(p) is amplified as
ξp is several times larger than ξd . The cancellation of the p
and d components leads to a very small Rashba parameter for
the unoccupied surface band on Au(110)-(1 × 1) in the [001]
direction.

The outline of this paper is as follows. In Sec. II, we
briefly describe the method of the calculations. In Sec. III,
we present results of DFT calculations for the unreconstructed
and missing-row reconstructed Au(110) surfaces and eluci-
date the interconnection between the spin splitting and the
OAM of the L-gap surface states. In addition, we present
a general discussion on how the OAM of a surface state is
modified when SOI is turned on. We conclude in Sec. IV.

II. METHOD OF CALCULATION

The atomic structure of the unreconstructed and missing-
row reconstructed Au(110) surfaces is determined by total-
energy minimization within generalized gradient approxima-
tion (GGA) in DFT, where we adopt the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation energy functional [28].
Calculations are made by using the VIENNA AB INITIO SIMU-
LATION PACKAGE (VASP) [29,30], an implementation of the
projector augmented-wave method [31]. For both systems,
the surface is represented by a 13-layer periodic slab model,
where the outer five atomic layers on both sides are relaxed
and the three central layers are fixed at bulk positions. The
bulk lattice constant of Au, which determines atomic positions
of the central layers, is chosen as acal = 4.16 Å derived from a
separate bulk calculation for Au in face-centered-cubic (FCC)
structure.

The electronic structure of semi-infinite Au(110) surfaces
is calculated by an embedded Green’s-function (EGF) pro-
gram [16] that combines the embedding theory of Inglesfield
[32,33] and the full-potential linearized augmented plane-
wave (LAPW) approach [34]. The SOI inside the muffin-tin
(MT) sphere surrounding each atomic core is incorporated by
the standard �L · �σ term. We note that while full-relativistic
approaches based on the Dirac equation [35–38] might be
necessary for heavier chemical elements such as actinides, the
present formalism combining the scalar-relativistic Hamilto-
nian with the atomic SO term is accurate enough for Au. For
example, the energy dispersion of the L-gap surface state on
Au(111) calculated with the present formalism agrees well
with that obtained by a full-relativistic calculation [35]. The
plane-wave cutoff energy of the LAPW basis is chosen as
Ec = 3.52 Ry and radial orbitals with angular momentum
l � 6 are included in the basis functions within MT spheres
of Au atoms. To be consistent with the structural calculation,
we employ the GGA-PBE functional in performing the EGF
calculations. We include eight to ten outermost atomic layers
and the vacuum region in the embedded surface region for
both the (1 × 1) and (1 × 2) surfaces.

Recently, we revealed that the binding energy of the L-gap
surface state on Au(111) relative to the Fermi energy (EF )
is considerably underestimated as compared with the exper-
imental one if the bulk lattice constant of Au is set to the
GGA value instead of the experimental one, aexp = 4.08 Å
[39]. To avoid similar underestimations, we multiplied surface
atomic coordinates output by the VASP program by a factor

of f = aexp/acal = 4.08/4.16 = 0.98 and used these slightly
modified atomic coordinates as the input to the EGF calcula-
tions. In the following, we use symbol a to mean aexp.

The output of the EGF calculation is the Green’s function
Ĝ(k, ω, r, r′), where Ĝ is a 2 × 2 matrix with respect to spin
index, ω = ε + iγ is a complex energy with γ � 0, and r and
r′ are position vectors in the embedded surface region. The k-
resolved DOS projected on the MT sphere of an atom located
at ra is defined by

ρ(k, ε) = −1

π

∫
|r−ra|�R

dr Tr[ImĜ(k, ω, r, r)], (1)

where R is the MT sphere radius and trace is taken with
respect to spin index.

III. RESULTS AND DISCUSSION

A. Au(110)-(1 × 1) surface

First, we present results for the unreconstructed (1 × 1)
surface. The z axis is chosen as the surface normal pointing
toward the vacuum ([110] direction), and the x and y axes
are chosen as the [1̄10] and [001] directions, respectively.
The origin of the (x, y, z) coordinates is placed at one of the
first-layer atoms. The surface has mirror reflection symmetry
about four vertical cut-planes, x = 0 (the yz plane), x = a

2
√

2
,

y = 0 (the xz plane), and y = a
2 . The corresponding operators

will be denoted by M̂x(0), M̂x( a
2
√

2
), M̂y(0), and M̂y( a

2 ).
In Fig. 1(a), we show a logarithmic intensity plot of ρ(k, ε)

for a first-layer surface atom along the Ȳ �̄ and Ȳ S̄ lines
around the Ȳ point with kȲ = (0, π

a ) in the SBZ depicted in
Fig. 1(b). In contrast to Au(111), which exhibits only one
surface band within the surface-projected L-point bulk band
gap [12], two parabolic-shaped, spin-split surface bands called
S1 and S2 henceforth appear within the band gap. We denote
the upper and lower branches of Si by S(+)

i and S(−)
i and their

energies at k by ε
(±)
i (k) (i = 1, 2). The upper branches of

S1 and S2 are spin-polarized clockwise around Ȳ , while their
lower branches are spin polarized counterclockwise as seen
from the vacuum. The spin-split dispersion curves of S1 in
Fig. 1(a) agree well with previous theoretical ones [24,26,40].
Experimentally, the anisotropic energy dispersion of S1 on
Au(110)-(1 × 1) was studied by ARPES, although its spin
splitting was not observed [24]. To our knowledge, the unoc-
cupied S2 band on Au(110)-(1 × 1) has rarely been studied.
This is in contrast to Cu(110) and Ag(110), for which the
parabolic dispersion curve of S2 with its bottom located at
1.5 − 2.0 eV above EF was observed by inverse photoemis-
sion spectroscopy [17,23]. On the theory side, the S2 band
with a parabolic dispersion curve similar to ours was reported
in Fig. 4 of Ref. [24] without being mentioned.

Why two surface bands emerge in the case of the (110) sur-
face is explained by the fact that two nonequivalent points in
the bulk Brillouin zone, L : π

a (e1 + e2 + e3) and L′ : π
a (−e1 −

e2 + e3), are projected onto Ȳ , where e1, e2, and e3 are the unit
vectors in the [100], [010], and [001] directions, respectively.
As a consequence, when one plots the bulk complex band
structure at Ȳ as a function of kz, the wave number in the nor-
mal direction, the real bands (Bloch states) exhibit a minimum
and a maximum at both L (kz =

√
2π
a ) and L′ (kz = −

√
2π
a ).
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FIG. 1. (a) Logarithmic intensity plot of ρ(k, ε) for a first-layer
atom on Au(110)-(1 × 1). Imaginary energy γ = 0.5 meV. (b) Sur-
face Brillouin zone (SBZ) of Au(110)-(1 × 1) (solid line) and −(1 ×
2) (red dashed line) surfaces. (c) The same as panel (a) except that
SOI is turned off. (d), (e) Spin-splitting energies of the S1 and S2 sur-
face bands along the Ȳ �̄ and Ȳ S̄ lines as a function of �k = k − kȲ

with kȲ = (0, π

a ). In all panels, wave vectors and wave numbers are
in units of π

a with a, the lattice constant of FCC Au.

As a result, at both points, there appears a complex band
with nonvanishing Imkz (evanescent wave) that connects the
minimum and maximum of the real bands. Since the surface-
state wave function on the bulk side is expressed as a linear
combination of the evanescent waves arising from both L and
L′, it has more chance of being smoothly connected to the
decaying solution on the vacuum side than that for Au(111),
for which evanescent waves on the bulk side arise only from
the complex band at L.

To examine how strongly SOI modifies the two surface
bands, we made an EGF calculation in which we turned off
the SOI term while adopting the same self-consistent DFT
potential. The obtained ρ(k, ε) for a first-layer atom is shown
in Fig. 1(c). The energy dispersion with k of S1 and S2 hardly
changes except that both bands become spin degenerate,
which implies that SOI is not essential for the occurrence of
S1 and S2. Instead, its main effect is to cause the spin splitting
of S1 and S2. We plot in Figs. 1(d) and 1(e) the spin-splitting
energies of the two bands, �ε = ε

(+)
i (k) − ε

(−)
i (k) (i = 1, 2)

as a function of �k = k − kȲ along two symmetry lines in the
SBZ. The curve for S1 along Ȳ �̄ ends at |�ky| ∼ 0.31π

a , since
S(−)

1 is merged into the projected bulk band and disappears.
Surprisingly, �ε for S2 along Ȳ �̄ at small �ky is by more
than one order of magnitude smaller than the corresponding
one for S1. To elucidate the physical mechanism that produces

FIG. 2. (a) Planar-averaged charge densities of the doubly degen-
erate S1 and S2 states at Ȳ on Au(110)-(1 × 1) in the presence of SOI.
Solid triangles on the z axis show positions of the (110) lattice planes.
(b), (c) Contour maps of the same charge densities as in (a) on a (1̄11)
vertical cut-plane. (d), (e) Orbital composition of the wave function
of S1 and S2 at Ȳ in the absence of SOI. Solid and dashed lines
illustrate (1 × 1) unit cells of odd-numbered and even-numbered
lattice planes, respectively. Red dash-dotted line in (d) indicates the
vertical cut-plane on which charge densities in (b) and (c) are plotted.

this large difference is one of the main themes of the present
paper.

Before doing so, we want to discuss the real-space sym-
metry and orbital character of the two surface bands. In
Fig. 2(a), we show planar-averaged charge densities of the
doubly degenerate S1 and S2 at Ȳ as a function of z in the
presence of SOI. We observe that S2 has more weight on the
vacuum side of the topmost Au layer. Also, its wave function
decays more rapidly toward the interior of the metal than that
of S1. In Figs. 2(b) and 2(c), we show contour maps of the
charge densities of the same states as in Fig. 2(a) on a (1̄11)
vertical cut-plane, which bisects rectangular unit cells of the
(110) lattice plane diagonally. In the absence of SOI, the wave
function of S1 is spin diagonal and as illustrated in Fig. 2(d),
its spatial part at Ȳ is odd with respect to M̂y(0) and even
with respect to M̂y( a

2 ), M̂x(0), and M̂x( a
2
√

2
). Thus, the spatial

part of the wave function is made out of py and dyz orbitals
in odd-numbered layers and of s, pz, dx2−y2 , and d3z2−r2 or-
bitals in even-numbered layers. Although atomic orbitals with

085401-3



H. ISHIDA PHYSICAL REVIEW B 108, 085401 (2023)

TABLE I. Eigenvalues of S1 and S2 with respect to mirror reflec-
tion operators in the absence of and in the presence of SOI along Ȳ �̄

and Ȳ S̄ for Au(110)-(1 × 1).

Ȳ �̄ Ȳ S̄
SOI M̂x (0) M̂x ( a

2
√

2
) M̂y(0) M̂y( a

2 )

No S1 +1 +1 −1 +1
S2 +1 +1 +1 −1

Yes S(+)
1 +i +i −i +i

S(−)
1 −i −i +i −i

S(+)
2 +i +i +i −i

S(−)
2 −i −i −i +i

opposite spin directions and opposite spatial parities are
slightly mixed when SOI is turned on, the orbital character
of S1 at Ȳ shown in Fig. 2(b) is well represented by that in
Fig. 2(d).

As seen from Fig. 2(e), the symmetry of the wave function
of S2 at Ȳ is identical with that of S1, if it is spatially translated
by a lattice vector d = a

2
√

2
(1,

√
2,−1) connecting two lattice

points in neighboring (110) planes. This may also be seen in
Figs. 2(b) and 2(c) where the charge density of S2 in Fig. 2(c)
looks similar to that of S1 in Fig. 2(b) if the former is translated
by d toward the interior of the metal. Why this can occur
is again attributed to the complex band structure at Ȳ : One
can construct two evanescent waves related by d from the two
independent complex bands arising from L and L′. Therefore,
the large difference in the spin-splitting energies between
S1 and S2 in Fig. 1(d) cannot be ascribed to the different
orbital symmetry of the two states [8]. Off the Ȳ point, the
wave functions of S1 and S2 are eigenfunctions of M̂x(0) and
M̂x( a

2
√

2
) along Ȳ �̄, and eigenfunctions of M̂y(0) and M̂y( a

2 )

along Ȳ S̄. We tabulate their eigenvalues in the absence and in
the presence of SOI in Table I.

The energy dispersion curves of S1 and S2 along Ȳ �̄ and
Ȳ S̄ can be approximated in the vicinity of Ȳ as

ε
(±)
i (k) = E0 + h̄2

2m∗ |�k|2 ± αR|�k|, (2)

where m∗ is the electron effective mass and αR is the so-
called Rashba parameter. We observe from Figs. 1(d) and 1(e)
that the linear energy splitting as implied by Eq. (2), �ε =
2αR|�k|, holds only for |�k| � 0.1π

a . The αR parameters
evaluated by least squares fitting with the calculated sur-
face state energies in the interval [0, km] with km = 0.08π

a =
0.06 Å−1 are listed in Table II. They are strongly anisotropic,
and, as mentioned in the above, the one for S2 along Ȳ �̄

is surprisingly small. We also estimated m∗ by fitting the
calculated 1

2 (ε(+)
i + ε

(−)
i ) with the function E0 + h̄2

2m∗ |�k|2.
The m∗ values without brackets in Table II were obtained by
using a fitting interval [0, km] with km = 0.08π

a , while we used
a wider interval with km = 0.32 π

a = 0.24 Å−1 for the second
ones in brackets. That m∗ of S1 obtained by fitting increases
significantly with increasing km implies that Eq. (2) holds only
in a small range of |�k|. By ARPES, Nuber et al.[24] reported
m∗ = (0.25 ± 0.01)me for S1 along Ȳ S̄, which agrees well
with the present value derived with km = 0.32 π

a .

TABLE II. Parameters describing the spin-split energy disper-
sion curves of the L-gap surface states on Au(110) surfaces along the
[001] and [1̄10] directions. E0 is measured relative to EF . The first
and second (in brackets) m∗ values were estimated by using a fitting
interval [0, km] with km = 0.08 π

a and km = 0.32 π

a , respectively. αR

was estimated by using km = 0.08 π

a .

E0 (eV) m∗/m αR (eVÅ)

(1 × 1) S1 Ȳ �̄ −0.56 0.11 (0.17) 0.74
Ȳ S̄ −0.56 0.14 (0.22) 0.32

(1 × 1) S2 Ȳ �̄ 1.31 0.53 (0.49) 0.02
Ȳ S̄ 1.31 0.62 (0.65) 0.19

(1 × 2) S1 �̄Ȳ ′ 0.12 0.29 (0.28) 0.64
�̄X̄ 0.12 0.22 (0.29) 0.32

Let us now demonstrate that the anisotropic spin splitting
of the two surface bands originates from the orbital Rashba
effect. The orbital Rashba effect occurs even without SOI.
Moreover, comparison of Figs. 1(a) and 1(c) suggests that
the spin splitting of the two surface bands via SOI can be
treated by perturbation theory. Therefore, we first calculate
the OAM of surface states in the absence of SOI. Within
the atom-centered approximation, the OAM of a surface state
with the spatial part of the wave function 
 is given by

L = 〈
|�L|
〉 = 〈
|
∑

a

�La|
〉, (3)

where �La = (r − ra) × p̂ with momentum operator p̂ is the
local angular momentum operator of an atom placed at ra,
the volume integration is performed inside the MT sphere
surrounding the atomic core, and summation is taken over all
atoms. Inside each MT sphere, 
 can be expanded as 
 =∑

l�0 
l , where 
l = ∑
|m|�l Ylm φlm(|r − ra|) with spherical

harmonics Ylm. We denote the contributions of 
l=1 and 
l=2

to L by L(p) and L(d ), respectively.
The vector plots in Figs. 3(a) and 3(b) illustrate the k-space

distribution of the planar components of L(p) and L(d ) for the
S1 band in the vicinity of Ȳ . The corresponding ones for S2

are shown in Figs. 4(a) and 4(b). We used different scales
for the length of vectors representing L(p) and L(d ) to better
illustrate the smaller p component. The z component of L
is negligibly small and is not shown. From Figs. 3 and 4,
we see that the L(p) is small but nonnegligible and oriented
mostly opposite the major component L(d ). Also, L(p) exhibits
stronger anisotropy between Ȳ �̄ and Ȳ S̄ than L(d ). Looking
into more details, we see that while |(L(p) )x| for S1 is very
small, |(L(p) )x| for S2 amounts to more than 20% of |(L(d ) )x|.
As for the y component, |(L(p) )y| increase linearly with �kx

as does |(L(d ) )y|, and its magnitude is as large as 7 − 10%
of |(L(d ) )y| for both bands. The k-space distributions of the
major component L(d ) for the two bands shown in Figs. 3(b)
and 4(b) are qualitatively similar. They exhibit a clockwise
chiral texture around Ȳ and rather weak anisotropy between
Ȳ �̄ and Ȳ S̄. We show in Figs. 3(c) and 4(c) the total OAM for
the two surface bands. Since |L(d )| is much larger than |L(p)|,
L is not very distinguishable from L(d ) at first glance.
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FIG. 3. The k-space distribution around Ȳ of (a) L(p), (b) L(d ),
and (c) the total OAM L for the S1 band on Au(110)-(1 × 1) in the
absence of SOI. (d) Vector field U inducing the spin splitting of the
S1 band around Ȳ . In all panels, �kx and �ky are given in units of π

a .

Now, we introduce the SOI term in the Hamiltonian,

Ĥso =
∑

a

fa(r)(�La · �σ ), (4)

FIG. 4. The same as Fig. 3 for the S2 band on Au(110)-(1 × 1).

with

fa(r) = h̄

4M2c2

1

r

dva(r)

dr
, M = me + ε − va(r)

2c2
, (5)

where r = |r − ra|, c is light velocity and va(r) is the spher-
ical part of the one-electron DFT potential within the MT
sphere centered at ra. According to the perturbation theory
in the lowest-order of SOI, the spin Hamiltonian lifting the
degeneracy of a surface state is given by �Ĥ = U · �σ with

U = 〈
|
∑

a

fa(r)�La|
〉, (6)

where 
 is the spatial part of the wave function of the surface
state in the absence of SOI. The energies of the resultant spin-
split states are ±|U| relative to the energy of the original spin
degenerate state, and the upper and lower branches become
spin polarized in the eu and −eu directions (eu = U/|U|).

In Figs. 3(d) and 4(d), we show the k-space distribution
of U for the two bands. U of both bands swirls clockwise
around Ȳ , indicating that the upper (lower) branch of them
exhibits clockwise (counterclockwise) chiral texture around Ȳ
in agreement with the numerical results. Comparing the two
figures, we observe that |U| for S1 is considerably larger than
that for S2 in line with the αR values in Table II. Above all,
|U| for S2 along Ȳ �̄ is particularly small in accord with the
surprisingly small αR parameter, 0.02 eV Å for S2 in Table II.
Why U exhibits stronger anisotropy than L between Ȳ �̄ and
Ȳ S̄ is explained as follows: Like L, U can be decomposed
into U = U(p) + U(d ) with the p and d components. If we
ignore small dependence of 〈φlm| fso|φlm′ 〉’s on m and m′ and
approximate them by the atomic SOI parameter ξl , U can
be expressed as U ≈ ξpL(p) + ξd L(d ). The point is that ξp is
much larger than ξd for Au. Actually, according to Table I
in Ref. [16], ξp/ξd ∼ 4.4. Therefore, when U(p) and U(d ) are
summed up, the major component U(d ) is modified by U(p)

more significantly than L(d ) is modified by L(p), leading to
larger anisotropy between Ȳ �̄ and Ȳ S̄ of U. As a whole, the
k distribution of U shown in Figs. 3(d) and 4(d) reproduces
qualitatively very well the anisotropic spin-splitting energies
of the two surface bands shown in Figs. 1(d) and 1(e).

B. Au(110)-(1 × 2) surface

Next, we present results for the missing-row reconstructed
Au(110)-(1 × 2) surface, in which every second close-packed
atomic row parallel to the [1̄10] (x) direction is removed from
the topmost layer [41]. The short aspect of the SBZ in the
[001] (y) direction is halved by the reconstruction as depicted
in Fig. 1(b). The original Ȳ and S̄ points become equivalent
to �̄ and X̄ , and new zone boundary points, Ȳ ′ with kȲ ′ =
(0, π

2a ) and S̄′ with kS̄′ = (
√

2π
a , π

2a ), are defined. We place the
origin of the real-space coordinate again at one of the first-
layer atoms. The surface structure is invariant with respect to
four mirror reflection operators, i.e., M̂x(0), M̂x( a

2
√

2
), M̂y(0),

and M̂y(a).
We show in Fig. 5(a) a logarithmic intensity plot of ρ(k, ε)

for a first-layer surface atom. Due to the back-folding of bulk
bands into the smaller SBZ, the surface-projected L-point bulk
band gap is completely lost around �̄ (Ȳ ). Further, the S2 band
on the (1 × 1) surface, which is more strongly localized on the

085401-5



H. ISHIDA PHYSICAL REVIEW B 108, 085401 (2023)

FIG. 5. (a) Logarithmic intensity plot of ρ(k, ε) for a first-layer
atom on Au(110)-(1 × 2). Imaginary energy γ = 0.5 meV. (b) A
magnified view of ρ(k, ε) for a first-layer atom within the boxed re-
gion marked by red solid line in panel (a). (c) ρ(k, ε) versus energy ε

at k = (0, 0), (0, 1
8 ), and (0, 1

4 ) along �̄Ȳ ′. Imaginary energy γ = 0.
(d) Spin-splitting energy of S1 on Au(110)-(1 × 2) along �̄Ȳ ′ and �̄X̄
as a function of �k = k − k�̄ with k�̄ = (0, 0). In all panels, wave
vectors and wave numbers are given in units of π

a .

vacuum side of the topmost Au layer, disappears. On the other
hand, the two spin-split branches of S1 persist, although they
become a surface resonance with a finite energy width due to
hybridization with bulk states. Moreover, their energies shift
upward by ∼0.7 eV as compared with those on the (1 × 1)
surface. As a result, S1 becomes an unoccupied band above
EF . The energy dispersion curves of S1 near �̄ in Fig. 5(a)
are in good agreement with the ones in previous calculations
[19,24,26]. The band minimum E0 = 0.12 eV in the present
calculation is a little lower than E0 = 0.35 eV reported in
a very recent inverse photoemission study [27]. A merit of
the present semi-infinite surface calculation is that we can
investigate not only the peak energy but also the energy width
of a surface resonance. In Fig. 5(c), we plot ρ(k, ε) for a first-
layer surface atom at three k points along �̄Ȳ ′ with ky = 0,
π
8a , and π

4a . The two DOS peaks at ky = π
4a are seen to be

much broader than those at the other points. This occurs since
the dispersion curves of S(+)

1 and S(−)
1 cross the boundary

of a surface-projected bulk band marked by red dashed line
in Fig. 5(a) and merged into the energy region of one more
surface-projected bulk bands between ky = π

8a and π
4a .

Remarkably, S(+)
1 and S(−)

1 persist up to the zone boundary
Ȳ ′ despite orbital hybridization with bulk states and become

FIG. 6. (a) Planar-averaged charge density of the doubly degen-
erate S1 at �̄ (Ȳ ) on Au(110)-(1 × 2) in the presence of SOI. Solid
triangles on the z axis indicate z coordinates of Au atoms. Two
triangles at around z = −5 a.u. arise due to a small buckling of atoms
in the third layer. (b) Contour map of the same charge density as in
panel (a) on a (1̄11) vertical cut-plane indicated by dash-dotted line
in panel (c). (c) Symmetry of the the wave function of S1 at �̄ in the
absence of SOI. Solid rectangles are (1 × 2) unit cells of the topmost
layer.

localized surface states in a narrow k-space region near Ȳ ′S̄′,
where the surface-projected bulk band gap survives the back-
folding of bulk bands. Figure 5(b) shows a magnified view
of ρ(k, ε) within the boxed region marked by red solid line
in panel (a). It is seen that the dispersion curves of S(+)

1 and
S(−)

1 exhibit a mini band gap εg associated with the (1 × 2)
superlattice potential near the zone boundary Ȳ ′. Similar mini
gaps were recently observed for the L-gap surface state on the
Au(111)-(22 × √

3) surface [39].
In Fig. 5(d), we show the spin-splitting energies of S1 along

two symmetry lines as a function of �k = k − k�̄ = k. The
�ε curve for �̄Ȳ ′ exhibits a nonsmooth behavior at ky ∼
0.15π

a , at which the dispersion curves of S1 cross the boundary
of a surface-projected bulk band as mentioned above. We fit-
ted the energy dispersion with k of the two spin-split branches
by using Eq. (2). The effective masses and the Rashba pa-
rameters are listed in Table II. By comparing the (1 × 1) and
(1 × 2) surfaces, we see that m∗ of S1 is significantly modified
by the reconstruction.

Here, we address briefly the real-space behavior of the
wave function of S1. In Fig. 6(a), we show the planar av-
eraged charge density of the doubly degenerate S1 at �̄ on
Au(110)-(1 × 2), which resembles that of S1 on the (1 × 1)
surface in Fig. 2(a). In Fig. 6(b), we plot the contour map of
the same charge density as in Fig. 6(a) on a (1̄11) vertical
cut plane shown by a red dash-dotted line in Fig. 6(c), which
agrees well with the one in the work of Nagano et al. [26].
In Fig. 6(c), we illustrate the real-space symmetry of S1 at �̄

in the absence of SOI. The spatial part of its wave function is
odd with respect to M̂y(0) and M̂y(a), and even with respect
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FIG. 7. The k-space distribution around �̄ of (a) L(p), (b) L(d ),
and (c) the total OAM L for the S1 band on Au(110)-(1 × 2) in the
absence of SOI. (d) Vector field U inducing the spin splitting of the
S1 band around �̄. In all panels, �kx and �ky are given in units of π

a .

to M̂x(0) and M̂x( a
2
√

2
). As mentioned before, when SOI is

present, the orbital components with opposite spin directions
and opposite spatial parities are slightly mixed.

We now show that the anisotropic spin splitting of the S1

band is driven by the OAM, following the same procedure as
that in the preceding section. To do so, we first need to calcu-
late L and U of S1 in the absence of SOI. This is not an obvious
task in the present case because S1 is a resonance hybridized
with bulk states. Fortunately, as seen from Fig. 5(b), the
DOS peaks of S1 are very sharp near �̄ (say |k| < 0.1π

a ) and
much larger than the nearly constant background DOS of bulk
states. Thus, we calculated the two quantities approximately
by evaluating the contributions to L and U of all one-electron
states with energy ε from the Green’s function and further
integrating these quantities over an energy interval containing
the full DOS peak of S1. We show in Fig. 7 the k-space
distributions of L(p), L(d ), L, and U calculated in this way.
They are seen to behave similarly to the corresponding ones
on the (1 × 1) surface shown in Fig. 3. The major component
L(d ) exhibits a clockwise chiral texture around �̄ and weak
anisotropy between �̄Ȳ ′ and �̄X̄ . Since |L(d )| is much larger
than |L(p)|, the total OAM in panel (c) looks similar to L(d )

in panel (b). The vector field U in panel (d) exhibits also a
clockwise chiral texture. Comparing L and U, we see that the
anisotropy between �̄Ȳ ′ and �̄X̄ in the k-space distribution
of U is larger than that of L by the same reason as discussed
for the (1 × 1) surface. From the overall agreement between
2|U| in Fig. 7(d) and �ε in Fig. 5(d), we conclude that the
spin splitting of S1 is driven by the OAM and its anisotropy is
enhanced by the difference in atomic SOI parameters between
the p and d orbitals.

C. OAM in the presence of SOI

So far, we have studied the OAM of surface bands in the
absence of SOI. While this is appropriate from the viewpoint
of calculating �ε by perturbation theory, it may be of interest
to examine how the OAM calculated without SOI is modified
when SOI is turned on.

Let {
0,
1,
2, · · · } ⊗ {| + 1〉, | − 1〉} be the complete
set of the eigenfunctions of the Hamiltonian with k in the
absence of SOI, where 
n is the spatial part of the wave
function, and | + 1〉 and | − 1〉 are spin wave functions for
the up-spin and down-spin states. We denote the total wave
function of an electron by �n,α ≡ 
n|α〉 (α = ±1) and its
energy in the absence of SOI by εn. Now, let 
0 be the surface
state of our interest. We calculate U defined by Eq. (6) for 
0

and choose eu as the spin quantization axis so Ĥso becomes
diagonal with respect to {�0,+1, �0,−1}. Then, the change in
�0,α in the presence of SOI is given to the first order of Ĥso by

��0,α =
∑
n �=0

∑
β=±1

�n,β

〈�n,β |Ĥso|�0,α〉
ε0 − εn

, (7)

which means that the change in L of �0,α is given by

�L(α) = 2Re
∑
n �=0

∑
β=±1

〈�0,α|�L|�n,β〉〈�n,β |Ĥso|�0,α〉
ε0 − εn

. (8)

Since �L is spin-diagonal, β in Eq. (8) must be equal to α. Then,
the second matrix element is simplified as

〈�n,α|Ĥso|�0,α〉 = α〈
n|
∑

a

fa(r)(�La)u|
0〉, (9)

where we used the fact that the matrix elements of the
Pauli matrices are given by 〈α|σu|α〉 = α and 〈α|σv,w|α〉 = 0,
where the u axis is parallel to eu, and the v and w axes are
orthogonal to eu. From Eqs. (8) and (9), we obtain �L(±) =
±�L with �L defined by

�L = 2Re
∑
n �=0

〈
0|�L|
n〉〈
n|
∑

a fa(r)(�La)u|
0〉
ε0 − εn

, (10)

which indicates that when SOI is turned on, L’s of the upper
and lower spin-split bands change in the opposite directions
by the same amount.

As an example, we show in Fig. 8 (L)y versus �kx of
the S1 band on Au(110)-(1 × 1) along Ȳ S̄, on which (L)x,z

vanishes due to mirror reflection symmetry M̂y(0). We denote
L of S(+)

1 , L of S(−)
1 , and L in the absence of SOI by L(+),

L(−), and L0, respectively. In Figs. 8(a) and 8(b), we plot the
p and d components of these three quantities by red, blue, and
green lines. The dashed magenta lines in both panels show
the p and d components of the average of L(+) and L(−). As
seen, for both the p and d components, L(+) and L(−) split
in opposite directions from L0. That the average of L(+) and
L(−) (dashed lines) agrees well with L0 (green lines) signifies
that Eq. (10) derived by perturbation theory holds well. The
difference between the two lines may be attributed to the
higher-order terms not included in Eq. (10).

Since |(L(p)
0 )y| (green line) is smaller than |(�L(p) )y|,

(L(p)
(+) )y and (L(p)

(−) )y in Fig. 8(a) possess positive and negative
signs. This means that the p component of L(+) and L(−)
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FIG. 8. (a) (L(p) )y and (b) (L(d ) )y of the S1 band on Au(110)-
(1 × 1) along Ȳ S̄ as a function of �k = k − kȲ with kȲ = (0, π

a ). In
both panels, red, blue, and green lines correspond to L(+), L(−), and
L0, respectively. The dashed magenta lines in both panels show the
average of L(+) and L(−). L is given in units of 0.1h̄ and �kx in units
of π

a .

exhibits counterclockwise and clockwise chiral textures in the
k space, respectively. This feature was also observed for the
L-gap surface state on Au(111) in the paper of Kim et al. [3].
On the other hand, since |(L(d )

0 )y| is larger than |(�L(d ) )y|
(�kx > 0.02 π

a ), both (L(d )
(+) )y and (L(d )

(−) )y in Fig. 8(b) possess
negative signs. This means that the d component of both L(+)

and L(−) exhibits a clockwise chiral texture in the k space.
This was also the case for the L-gap surface state on Au(111)
[3].

IV. SUMMARY

We studied the L-gap surface states on semi-infinite clean
Au(110) surfaces by first-principles DFT calculations. On the
(1 × 1) surface, two surface bands, the partially occupied S1

and the unoccupied S2, appear within the surface-projected
L-point bulk band gap. We calculated the energy dispersion
with k of both bands and discussed the symmetry of their
wave functions. On the missing-row reconstructed (1 × 2)
surface, the projected bulk band gap is mostly lost due to the
back-folding of bulk bands. As a result, S2 disappears while
S1 persists as an unoccupied surface resonance. We calculated
not only the spin-split peak energies but also the energy widths
of S1 as a function of k.

For both surfaces, we discussed the physical mechanism
of strongly anisotropic spin-splitting energies of the surface
bands in terms of the orbital Rashba effect. For this pur-
pose, we first calculated L, the OAM of the surface bands in
the absence of SOI. Then, by applying perturbation theory,
we derived a vector field U, which can be approximated as
U ≈ ξpL(p) + ξd L(d ), where L(p) and L(d ) are the p and d
components of L of the surface band under consideration,
and ξp and ξd are the atomic SOI parameters for the Au p
and d orbitals. The spin-splitting energy of the surface band,
�ε, is given by �ε = 2|U|, and its upper and lower branches
are spin-polarized parallel and antiparallel to U. It was found
that the major component L(d ) for S1 and S2 is only weakly
anisotropic in the k-space, whereas the minor component L(p)

is more anisotropic and oriented opposite L(d ). Most impor-
tantly, since ξp is several times larger than ξd , the resultant
U becomes more anisotropic than L and is able to explain
the anisotropic �ε and the chiral spin textures of S1 and S2

well. Specifically, with this scenario, we can explain why
the Rashba parameter for S2 along Ȳ �̄ on Au(110)-(1 × 1)
becomes exceptionally small. We have also clarified how L
of a surface band calculated without SOI is modified in the
presence of SOI. Our analysis suggests that the expression
U ≈ ξpL(p) + ξd L(d ) may hold if L in this expression is re-
placed by the OAM averaged over the two spin-split surface
bands.
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