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Four-dimensional topological Anderson insulator with an emergent second Chern number
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Four-dimensional (4D) topological insulators, which are impossible in real materials, have attracted much
attention by virtue of the recent progress achieved in quantum simulations of higher-dimensional systems. In
this paper, we employ the supercell approximation to investigate the disorder effects on a system that supports
the 4D topological insulator phases characterized by quantized second Chern numbers and the normal insulator
phase. We demonstrate that the 4D topological insulator phases are robust against weak disorders. Moreover,
we reveal that disorder can transform a normal insulator to a 4D topological insulator with an emergent second
Chern number, referred to as a 4D topological Anderson insulator. An effective-medium theory based on the
Born approximation further confirms the numerical conclusions.
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I. INTRODUCTION

Since the discovery of topological insulators [1–4], tremen-
dous effort has been devoted to generalizing the exotic phase
of matter to higher dimensions [5–23]. Recently, signifi-
cant advances have been achieved in the field of quantum
simulation of higher-dimensional systems (d � 4), such as
four-dimensional (4D) topological insulators in optical lat-
tices [24], photonic systems [25], acoustic lattices [26],
and electric circuits [27,28], which led to a surge of in-
terest in higher-dimensional topological phases [29–34]. 4D
topological phases are characterized by the second Chern
number [35–38], a topological invariant that appears in the
quantization of the transverse conductivity for the nonlin-
ear response. Moreover, research into higher-dimensional
systems has provided valuable insight into the topological
phenomena observed in two-dimensional (2D) quasicrystals
[39,40] and hyperbolic lattices [41,42].

On the other hand, disorder plays a significant role in
determining the transport properties of low-dimensional
electronic systems. The topological Anderson insulator
(TAI) is a type of disorder-induced phase with remarkable
topologically nontrivial properties, which was proposed by
Li et al. [43]. Since then, the disorder-induced topological
phases have been investigated in various low-dimensional
systems [44–59]. So far, the TAI phase had been observed
experimentally in one-dimensional (1D) disordered atomic
wires [60], photonic platforms [61–63], and a quantum
simulator on a superconducting-circuit device [64]. Recently,
the TAI phase was proposed to be realized in an electric
circuit [65]. Then a question naturally arises whether such an
exotic phase can occur in higher dimensions and differ from
its low-dimensional counterpart. However, the demanding
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computation requirement has hindered the further exploration
on disorder effects in higher dimensions.

In this paper, we adopt a supercell approximation to in-
vestigate the disorder effects on a 4D system. Depending on
the value of the Dirac mass, the system supports both the
normal insulator phase with a zero topological index and the
4D topological insulator phase characterized by a nonzero
second Chern number. We first show that the 4D topological
insulator phase is robust against weak disorder. Then we find
that disorder can induce a phase transition from a normal insu-
lator phase to a topological insulator phase with an emergent
second Chern number C2 = 1, indicating the occurrence of the
4D TAI phase. Moreover, we find disorder can also transform
a topological insulator phase with C2 = 1 to another topo-
logical phase with a higher second Chern number C2 = −3.
The disordered phase diagram is explained based on using
the Born approximation method. Finally, the disorder-induced
topological phase transition is further confirmed by calculat-
ing the disorder-averaged local density of states.

II. MODEL AND TOPOLOGICAL INDEX

A. Model

We start with the Dirac model describing the 4D topologi-
cal insulator [35,36]:

H =
∑

i

di(k)�i, (1)

with d (k) = [(m + c
∑

i cos ki ), sin kx, sin ky, sin kz, sin kw]
as a five-dimensional vector. The parameter m determines
the value of the Dirac mass. The Dirac matrices � =
(sxs0, sys0, szsx, szsy, szsz ) satisfying the anticommutation re-
lations {�μ, �ν} = 2δμν , where sx,y,z are Pauli matrices and s0

is an identity matrix. The bulk spectrum of the system has the
form E± = ±

√∑5
i=1 di(k), with both eigenvalues being dou-

bly degenerate. The system is always gapped at half-filling,
except for some special points at m/c = ±2, ±4, and 0.
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FIG. 1. (a) The second Chern number C2 as a function of the
parameter m/c. (b) Schematic illustration of the supercell approxi-
mation in two dimensions. Here, the color indicates the strength of
the on-site energy. The region colored by gray corresponds to a super
unit cell.

B. Second Chern number

In 4D, the response of the current to an electric field E
and a magnetic field B is related to two kinds of topological
invariants. The linear and nonlinear responses are related to
the total Chern number and the total second Chern number,
respectively. The second Chern number is obtained by numer-
ically calculating the following formula [35]:

C2(εF ) = 1

4π2

∫
FBZ

dk Tr[FxyFzw + FwxFzy + FzxFyw], (2)

where the non-Abelian Berry curvature [Flm(k)]αβ =
∂kl A

αβ

km
(k) − ∂km Aαβ

kl
(k) + i[Akl , Akm ]αβ is written in

terms of the Berry connection of the occupied bands
Aαβ

km
(k) = i〈ψα (k)|∇km |ψβ (k)〉 = i〈ψα |∂H/∂km|ψβ 〉

Eα−Eβ
, and the

trace is taken over the occupied bands [36,38,42].
Figure 1(a) shows the numerically calculated second Chern

number C2 as a function of the Dirac mass m. The system
is topologically trivial with C2 = 0 when |m/c| > 4, sup-
ports the topological phase characterized by quantized second
Chern numbers C2 = ±1 when 2 < |m/c| < 4, and has topo-
logical phases with higher second Chern numbers C2 = ±3
when |m/c| < 2. In Appendix A, we calculate the spectrum of
the 4D system and provide more details on the bulk-boundary
correspondence of the topological phases characterized by
quantized Chern numbers.

C. Supercell approximation

In general, disorder effects in topological insulators can be
studied in either momentum space [66] or real space [67–69].
A drawback of studying disorder effects in momentum space
is that the stability of a topological state can only be calcu-
lated perturbatively [66]. Computations in real space apply
to the disorder of arbitrary strengths, but this often requires
significant computational resources. Disorder effects in lower-
dimensional topological insulators have been widely studied
by adopting real-space techniques [70–83]. However, the de-
manding computation requirement and a lack of computing
method for the real-space second Chern number has hindered
its further exploration in higher dimensions.

Here, we adopt the supercell approximation to investigate
the disorder effects in the 4D system. This can be understood
from Fig. 1(b), where a 2D supercell system is illustrated. The
real-space configurations are approximately investigated by
considering a supercell within the first Brillouin zone (FBZ).
The quantities calculated in real space can be accurately ap-
proximated with the increasing supercell size. Moreover, the
supercell approximation has been adopted in various disor-
dered systems [84–88].

In Appendix B, we investigate the disorder effects on a
2D Dirac model that supports the 2D topological insulator
phase. We compare the results obtained by calculating the Bott
index in the real space and the results obtained by calculating
the Chern number in a supercell system. In the presence of
disorder, the results obtained via the supercell approximation
can reproduce that by calculating the Bott index in the real
space. Moreover, the supercell approximation requires much
less memory than the calculations in the real space. These
features provide the possibility to study the disorder effects
in higher-dimensional systems.

III. DISORDER EFFECT

Now we investigate disorder effects on the 4D system in
Eq. (1) by adopting the supercell approximation. In the numer-
ical calculations, we discretize the effective Hamiltonian on a
4D hypercubic lattice and set the lattice constants as a = 1.
The volume of the 4D supercell is V = LxLyLzLw, where
Lx,y,z,w = nx,y,z,wa are the side lengths of the hypercube, and
nx,y,z,w correspond to the numbers of lattice sites. We adopt
the Anderson-type disorder by considering random on-site
energies fluctuating in the energy interval [−W,W ], where W
is the disorder strength. The k points used in the integrals in
Eq. (2) are 204 in the 4D Brillouin zone.

A. Numerical results obtained by supercell approximation

We first study the disorder effects on two topologically
nontrivial cases. In the clean limit, the 4D topological insula-
tor is characterized by quantized second Chern numbers C2 =
1 and −3 for m/c = −3.5 and −1.5, respectively [Fig. 1(a)].
With increasing disorder strength, C2 keeps the quantized
value until the disorder strength exceeds about W/c = 3
[Fig. 2(a)]. Therefore, like the previous studies on disordered
topological systems [43,44], the topological nature of the 4D
topological insulator is robust against disorder. Further in-
creasing the disorder strength, the quantized C2 is suppressed
by disorder, then gradually decreases and finally collapses to
zero.

For a topologically trivial phase with m/c = −4.2, in the
clean limit, the system is characterized by C2 = 0 [Fig. 2(b)].
With increasing disorder strength, the disorder-averaged sec-
ond Chern number C2 increases and then forms a quantized
plateau with C2 = 1. The quantized plateau is observed for a
certain range of disorder strength, and it decreases and finally
disappears with increasing the disorder strength. The zero
conductance fluctuation of the quantized plateau indicates that
it may be a topological phase. Moreover, we find disorder can
also induce a phase transition. When m = −2.2, the system is
characterized by C2 = 1 in the clean limit. With increasing
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FIG. 2. (a) and (b) Disorder-averaged second Chern number as a function of disorder strength W for different Dirac mass m. (c) Disorder-
averaged second Chern number as a function of m and W . Here, the black dashed lines are obtained by Born approximation in Eq. (3).
In the numerical calculations, the system size is taken as Lx,y,z,w = 3. Each point is obtained after averaged on 200 independent disorder
configurations. In (a) and (b), the Fermi energy EF is taken as EF = 0.

disorder strength, C2 drops and reaches another quantized
plateau with C2 = −3.

In Fig. 2(c), we plot the diagrams of the system as a
function of m and U . The disorder-induced topological phase
transitions can be observed more clearly. In Appendix C, we
investigate the finite-sized effect of the 4D system and show
that a system size of Lx,y,z,w = 3 is enough to capture essential
features of the disorder-induced phase transitions in the 4D
system.

B. Born approximation

To corroborate the physical interpretation of numerical
simulation, we analyze the present model within an effective
medium theory based on the Born approximation in which
high-order scattering processes are neglected [45]. In the self-
consistent Born approximation, the self-energy � for a finite
disorder strength is given by the following integral equation:

� = W 2

3

( a

2π

)d
∫

FBZ
dk

1

EF − H (k) − �
, (3)

where H (k) is the model Hamiltonian of the system and d is
the dimension. The coefficient 1

3 originates from the variance
〈W 2〉 = W 2/3 of a random variable uniformly distributed in
the range [−W,W ]. This integration is over the FBZ. We
will use the lowest-order Born approximation, which means
setting � = 0 on the right-hand side of Eq. (3).

Through numerical calculations, we find the self-energy
has the following form:

� = �0I4 + �1�1, (4)

where I4 is an identity matrix. This means the Fermi energy
EF and Dirac mass m are renormalized by disorder. Then the
effective Fermi energy and effective Dirac mass have the form
ẼF = EF − �0 and m̃ = m + �1. By calculating the topologi-
cal properties of the renormalized Hamiltonian, we can obtain
the phase boundaries in Fig. 2(c). The two black lines corre-
spond to points where the energy gap is zero, which depict
the phase transition lines between two different topological
phases, and are determined by calculating the corresponding
second Chern number of the occupied bands. Specifically, the
lower black line corresponds to a band inversion at the �

point (see Appendix A), which separates the normal insulator
phase with C2 = 0 and the topological phase with C2 = 1. The

upper black line corresponds to band inversions at M points,
which separates the two topological phases with C2 = 1 and
−3. The results based on the Born approximation fit well with
the numerical calculations for weak disorders, which confirms
that disorder has a renormalization effect on the system pa-
rameters, leading to the various topological phase transitions
in the 4D system. Therefore, we identify this disorder-induced
topological phase as a 4D TAI phase.

C. Local density of states

As shown in Fig. 3(a), the 4D system can be regarded
as a quasi-1D system with each site representing a three-
dimensional (3D) cube. As illustrated in Appendix A, the 4D
TAI phase is expected to demonstrate boundary states along
the w direction.

Figure 3(b) shows the disorder-averaged local density of
states D(w) as a function of the coordinate w for the 4D TAI
phase, where D(w) = ∑

x,y,z D(x, y, z,w) is the total density

of states of each cube, D(x, y, z,w) = − 1
π

ImGr (x, y, z,w) is
the local density of states on each site, and Gr (x, y, z,w)
is the retarded Green’s function obtained by the recursive
Green’s function method. As expected, the disordered system
exhibits localized states near the two boundaries along the
w direction, which further confirms that the system corre-
sponds to a topologically nontrivial phase. Moreover, D(w)
exhibits a nonvanishing local density of states at the bulk. This
phenomenon is also observed in the 2D TAI phase, and we
confirmed that they originate from the disorder-induced bulk
localized states.

It should be noticed that the local density of states at the
boundary should always be larger than that within the bulk
region. To eliminate the contribution of the bulk, we plot
D(w) − D(25) as a function of w in Fig. 3(c), where D(25)
corresponds to the bulk contribution. The density of states of
the boundary states increases as the system size grows. This
procedure allows us to distinguish between the contributions
from the bulk and the boundary states.

IV. CONCLUSIONS

In this paper, we adopt the supercell approximation to
investigate the disorder effects in a 4D system. We show that
the 4D topological insulator phase, which is characterized
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FIG. 3. (a) The four-dimensional (4D) system can be regarded
as a quasi-one-dimensional (1D) system with each site representing
a three-dimensional (3D) cube. Here, the red and green sites corre-
spond to the boundary and the bulk of the quasi-1D system. (b) The
disorder-averaged local density of state D(w) of the 4D topological
Anderson insulator (TAI) phase within the quasi-1D geometry shown
in (a). (c) is the same as (b), except that the vertical axis corre-
sponds to D(w) − D(25). Here, the parameters are m/c = −4.2 and
W = 3. The length of the quasi-1D system is nw = 50. We take open
boundary conditions along the w direction and periodic boundary
conditions along the x, y, and z directions.

by a quantized second Chern number, is robust against weak
disorder. Moreover, the disorder can also trigger a topological
phase transition from a normal insulator to a 4D topological
insulator, leading to the 4D TAI phase with an emergent
second Chern number. Furthermore, the 4D TAI phase is
explained by the self-consistent Born approximation. We also
calculate the disorder-averaged density of states, which fur-
ther confirms that the 4D TAI phase arises from the boundary
states induced by disorder.

In addition, we expect the 4D TAI phase can be exper-
imentally realized in an electric circuit, considering the 4D
topological insulator [27,28] and the 2D TAI [65] have been
realized and proposed in electric circuits, respectively. The
hopping terms in the tight-binding Hamiltonian of the system
in Eq. (1) are either purely real or purely imaginary, which

can be experimentally realized in a four-subnode LC circuit
[89]. The disorder effects can be introduced by considering
the random-inductance-induced on-site potential [65]. The
disorder-induced boundary state as well as the TAI phase
can be experimentally detected by directly measuring the
impedance in circuits [65]. Therefore, all of these features
offer the possibility of realizing our proposal in the future.
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APPENDIX A: BULK-BOUNDARY CORRESPONDENCE

The bulk-boundary correspondence is one of the most
salient features of topologically ordered phases of matter
[90,91]. In general, a nonzero topological index indicates the
emergence of the boundary states. Next, we investigate the
energy spectrum of the 4D system with open boundary condi-
tions along the w direction and periodic boundary conditions
along the x, y, and z directions. The system can be treated as
a quasi-1D system, and kx, ky, and kz are regarded as tuning
parameters. At ky = kz = 0, gapless boundary modes appear
inside the bulk energy gap at kx = 0 (kx = π ) for the topo-
logical phase with m = −3.5 (m = −1.5) characterized by
nonzero second Chern number C2 = 1 (C2 = −3) [Figs. 4(b)
and 4(c)]. For the trivial case with m = −4.5 and C2 = 0,
there is no boundary state [Fig. 4(a)].

In 2D topological phases, the value of the Chern number
determines the number of edge states. Similar phenomena
are also observed in the 4D system. Figures 4(d) and 4(e)
show the value of the energy gap of the quasi-1D system in
the (kx, ky, kz) space. For m = −3.5 with C2 = 1, the gapless
boundary states cross at the � point of the Brillouin zone
center [Fig. 4(d)]. For m = −1.5 with C2 = −3, the gapless
boundary states cross at the three M points of the Brillouin
zone boundary [Fig. 4(e)]. The above results are in accordance
with previous studies [35].

APPENDIX B: DISORDER EFFECTS IN 2D
TOPOLOGICAL INSULATOR

1. Model

Here, we study the disorder effects in a 2D topological
insulator [35]:

H = [m + c(cos kx + cos ky)]σz + sin kxσx + sin kyσy, (B1)

where σi(i = x, y, z) are Pauli matrices describing the spin. In
the following calculations, we fix the parameter as c = 1. The
topological properties of the 2D system are characterized by
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FIG. 4. Energy spectra as a function of kx at ky = kz = 0 with
Dirac mass (a) m = −4.5, (b) m = −3.5, and (c) m = −1.5. Blue
and gray correspond to the boundary and bulk states, respectively.
(d)–(e) Energy gap in the (kx, ky, kz) space. In (a)–(e), we take open
boundary conditions along the w direction and periodic boundary
conditions along the x, y, and z directions.

the Chern number, which is given by [36]

C1 = 1

2π i

∫
FBZ

dk Tr Fxy. (B2)

Figure 5(a) shows the Chern number C1 as a function of the
Dirac mass m. The system is topologically trivial with C1 = 0
when |m/c| > 2 and topologically nontrivial with C1 = ±1
when |m/c| < 2.

In the numerical calculations, we discretize the effective
Hamiltonian on a 2D square lattice and set the lattice constants
as a = 1. The area of the supercell is V = L2, and L = na is
the side length. In the numerical calculations, the k points used
in the integrals in Eq. (B2) are 202 in the 2D Brillouin zone.
We adopt the Anderson-type disorder by considering random
on-site energies fluctuating in the energy interval [−W,W ],
where W is the disorder strength.

2. Bott index

The topological property of the disordered 2D system can
be characterized by the Bott index [73]. The Bott index is
equivalent to the real-space Chern number, which determines
the Hall conductivity of the system [92]. Considering two
diagonal matrices Xi,i = xi and Yi,i = yi, where (xi, yi ) are
coordinates of the ith lattice, one can obtain the two unitary
matrices UX = exp(i2πX/L) and UY = exp(i2πY/L). Using
the eigenstates of the bands below the resonant gap, one
obtains the projector P and the projected unitary matrices with
ŨX,Y = PUX,Y P. For every random disorder configuration, the
Bott index B = (1/2π )Im[Tr(lnŨY ŨXŨ †

Y Ũ †
X )] is an integer,

FIG. 5. (a) The Chern number C1 as a function of m/c
for the two-dimensional (2D) topological insulator with W = 0.
(b) Disorder-averaged Bott index B as a function of the disorder
strength W and m/c with side length L = 20. Disorder-averaged
Chern number C1 as a function of W and m/c with different side
lengths (c) L = 2, (d) L = 4, (e) L = 6, and (f) L = 8. In (c)–(f),
the k points used in the calculations are 202 in the 2D Brillouin
zone. In (b)–(f), the black dashed lines are obtained by the Born
approximation in Eq. (3).

FIG. 6. Disorder-averaged second Chern number C2 as a function
of disorder strength W for different supercell sizes with (a) m/c =
−1.5, (b) m/c = −2.2, (c) m/c = −3.5, and (d) m/c = −4.2. Here,
each point is obtained after averaged on 200 (10) disorder configura-
tions for Lx,y,z,w = 2, 3 (Lx,y,z,w = 4).
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and the averaged Bott index is computed by averaging various
disorder configurations until it converges.

We find that the real-space Bott index obtained in the
clean limit is in accordance with the k-space Chern number
obtained by using Eq. (B2). Moreover, Fig. 5(b) shows the
disorder-averaged Bott index B as a function of m and W . The
numerical results are further confirmed by the Born approxi-
mation.

3. Supercell approximation

Figures 5(c)–5(f) show the disorder-averaged Chern num-
ber C1 as a function of W and m with different L. The result
obtained when L = 2 provides a qualitative description of
the disorder effects on the 2D system. Upon increasing the
system size to L = 4, the results are in quantitative agreement

with that obtained by calculating the Bott index. As the sys-
tem size continues to increase, the conclusions drawn from
the supercell approximation approach increasingly align with
those obtained from the Bott index method. Consequently, we
believe the supercell approximation method can characterize
disorder effects on topological insulators.

APPENDIX C: FINITE-SIZED EFFECT

Figure 6 shows the disorder-averaged second Chern num-
ber C2 as a function of disorder strength W for different
supercell sizes. The finite-sized effect is significant for
Lx,y,z,w = 2 but much weaker for Lx,y,z,w = 3 and Lx,y,z,w = 4.
The results show that a system size of Lx,y,z,w = 3 is enough
to capture the essential features of the disorder-induced phase
transitions in the 4D system.
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