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Exciton-polaritons are bosoniclike elementary excitations in semiconductors, which have been recently shown
to display large occupancy of topologically protected polariton bound states in the continuum in suitably
engineered photonic lattices [V. Ardizzone er al., Nature (London) 605, 447 (2022)], compatible with the
definition of polariton condensation. However, a full theoretical description of such condensation mechanism
that is based on a driven-dissipative framework like the nonequilibrium Gross-Pitaevskii equation (NEGPE) is
still missing. Here, we report on a general multimode theory inspired to the standard NEGPE, showing that
it allows to fully interpret the recent experimental findings in patterned photonic lattices, including emission
characteristics and condensation thresholds. Beyond that, it is shown that the polariton condensation in these
systems is actually the result of an interplay between negative mass confinement of polariton eigenstates (e.g.,
due to the photonic gap originated from the periodic pattern in plane) and polariton losses. We are then able to
show that polariton condensation can also occur in gap-confined bright modes, i.e., coupling of quantum well
excitons to a dark photonic mode is not necessarily required to achieve a macroscopic occupation with low

population threshold.

DOI: 10.1103/PhysRevB.108.085305

I. INTRODUCTION

Exciton-polaritons arising in low-dimensional nanostruc-
tures, such as coupled quantum well (QW) excitons and
confined photonic modes, have been shown to behave as a
weakly interacting Bose gas [1]. Condensation phenomena in
these systems have to be inevitably described in terms of a
balance between driving and losses, due to photon leakage or
exciton recombination. In this respect, a suitable generaliza-
tion of the standard nonlinear Schrédinger equation, known
as the nonequilibrium Gross-Pitaevskii equation (NEGPE),
is able to largely account for the observed phenomenology
including external driving and intrinsic losses, either under
resonant or nonresonant pumping of the exciton-polariton
field [2]. In particular, spectacular phenomena such as Bose-
Einstein condensation [3,4], superfluidity [5], formation of
quantized vortices [6] have been observed in planar semicon-
ductor microcavities, in which the photon field is confined in
the QW plane between two high-reflectivity Bragg mirrors
[7]. Aside from showing interest for fundamental physics
studies, exciton-polaritons have also been shown to poten-
tially allow for useful applications due to their superior
nonlinear properties, such as low-threshold lasers [8], all-
optical switching [9], sensing [10], etc.

Recently, polariton condensation has been observed also
in multilayered QW heterostructures with periodic surface
patterning, such as the one sketched in Fig. 1. In fact, it has
been shown that top and bottom mirrors are not necessary
to achieve the polariton condensation threshold since out-of
plane radiation losses associated to the photonic component
of the polariton field can be fully engineered by the photonic
lattice [11], even a one-dimensional one [12]. In particular,
radiative losses of the photonic component can be fully sup-
pressed by symmetry along certain directions, leading to the
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currently widespread concept of photonic bound states in the
continuum (BIC) [13,14]. When coupled to QW excitons,
these modes lead to the formation of polariton eigenmodes
that are dark for emission along specific spatial directions
and at fixed energy [15], inheriting the topologically pro-
tected nature of the purely photonic BIC [16-18]. Polariton
condensation has been observed in these systems by efficient
relaxation into modes arising from the saddlelike dispersion
of the lower polariton branch, i.e., not an absolute minimum
of the dispersion relation [19,20]. In these works, the conden-
sation mechanism has been qualitatively interpreted as due to
the creation of an effective potential well for negative mass
polaritons, induced by the exciting laser spot over a finite
width along the periodicity lattice (see also, e.g., [21-24]), as
well as to the fact that such confined states acquire a longer
lifetime than other modes due to coupling to purely photonic
BICs. However, no quantitative theory has been provided
to account for the condensation in such BIC-like modes, to
date. In particular, a rigorous discussion about the role of the
negative mass branch in connection with the photonic-induced
gap obtained as a consequence of the periodic refractive index
modulation is still missing. This paper aims at filling this
theoretical gap, by developing a model of out-of-equilibrium
condensation in a multiband exciton-photon coupled system
with symmetry-dependent losses. In particular, we hereby
unravel the critical role played by the negative mass and the
energy gap between dark and bright modes in reaching the
condensation onset. Evidence for such a behavior has been
experimentally reported in a recent work (see, e.g., [25]).
Here is a short outline of the results presented in the paper.
In Sec. II we describe the dynamical equations used to picture
the onset of polariton condensation in the continuous-wave
(cw) regime of a model Hamiltonian with a given number
of photonic branches coupled to QW exciton modes. Then,
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FIG. 1. Schematic representation of the multi-QW heterostruc-
ture with surface periodic patterning that creates a photonic gap for
in-plane propagating modes. Elementary excitations can be created
by alaser spot P(x), which locally changes the refractive index in the
layers underneath (n; and n,), thus inducing an effective confining
potential for the negative mass polaritons.

in Sec. Il we address in detail the behavior of our effec-
tive theory in a specific case, where the relevant physics can
be traced back to the presence of two counterpropagating
photonic modes. In order to understand the polariton con-
densation in this theoretical framework, we first characterize
the polariton dispersion arising from the Hamiltonian diago-
nalization, by deriving polariton bands in Sec. III A, and the
effects of an external space-dependent potential V (x) coupled
to the particle density in Sec. III B. In Sec. IV we show the re-
sults concerning the polariton condensation in discrete energy
eigenvalues lying within the energy gap, which is ultimately
due to the periodic photonic modulation. These eigenvalues
correspond to spatially confined eigenmodes below the po-
tential V(x). In particular, after showing the results of our
numerical simulations describing the behavior of the conden-
sate population in the steady state, we provide an analysis of
the condensate loss rate (Sec. IV A), as well as the spectral
density describing the energy-momentum behavior of the light
emitted by the condensate (Sec. IV B). The behavior of such
quantities in all the cases considered in this work evidently
supports the conjecture that polaritons are condensing into the
discrete gap-confined eigenmodes previously characterized in
Sec. IIIB. Depending on the dark or bright nature of the
negative mass branch out of which they originate, these modes
display very different direct and reciprocal space profiles. In
light of these results, in Sec. V we finally discuss the relevance
of our findings and future perspectives.

II. THEORETICAL MODEL

In this section we introduce a general dynamical model that
can be used to describe and characterize the onset of polariton
condensation and its relation to the eigenstate properties in
heterostructures like the one sketched in Fig. 1. We will as-
sume cw pumping in this work, although the model is general.
The system is assumed to be uniform in the direction trans-
verse to x, consisting of several layers with different refractive
indices, in the figure denoted as n; and n,. For instance
[19,20], such a stack of different index material might cor-

respond to a set of GaAs/Al Ga;_,As layers, which give rise
to the formation of quantum well (QW) excitons in the lower
band-gap material [26,27]. Due to the top surface patterning
with spatial periodicity a, the free-propagating electromag-
netic modes get folded, leading to the formation of gapped
Bloch resonances [11,12]. When coupled to QW excitons,
these photonic modes are shown to give rise to the concept of
photonic crystal polaritons [28], which have been evidenced
in different systems and material platforms [29-32], all of
them falling within the same theoretical treatment [16]. In
particular, it has been evidenced that a surface patterning is
sufficient to induce gapped polariton branches with positive
and negative effective masses around normal incidence and
energies below the bare exciton resonance [19,20]. It has
been observed that polariton condensation occurs within a set
of discretized quantum states appearing within such energy
gaps. Their emission properties are shown to depend both on
the spatial profile of the input light source [19,33], P(x) in
Fig. 1, and on the intrinsic emission features of the lower-lying
polariton branch delimiting the band gap. Similarly to the de-
scription of polariton condensation in the planar microcavity
case, here it is reasonable to assume that particle scattering
towards the condensed eigenstate can be described by means
of an exciton reservoir nonlinearly coupled to polariton states
[24,34-36]. However, in the present case it is also crucial to
account for the mechanism leading to the formation of such
discrete states within the polariton gap, as well as the peculiar
emission properties shown by either the bare polariton bands
or the polariton condensate modes. Moreover, the presence
of different photonic modes may lead to some of them be-
ing in weak coupling with the exciton, but still participating
in the relaxation dynamics and thus worth being taken into
account. In this respect, as it is shown in the following, our ap-
proach seems to provide a quite complete picture allowing to
account for the observed phenomenology, as well as predict-
ing possible new outcomes, when including all these crucial
aspects.

In our model, similarly to the standard approach adopted
to describe condensation in microcavity systems [34,37,38],
we assume P(x) to be incoherently coupled to a reservoir
population n(x, ¢) describing high-energy exciton states. By
stimulated scattering, such a reservoir feeds lower-energy
eigenmodes, thus replenishing the exciton-polariton popula-
tion in these states. However, in order to capture the complex
band-gap physics, emission properties as well as the formation
of discrete levels, instead of using a single-component wave
function v (x, t) (usually describing the lower branch polari-
ton field), here we assume that the reservoir density couples
to a set of relevant bare photonic and excitonic modes of
the structure. In other words, the system dynamics is hereby

described by means of a multicomponent vector @) (x, 1) for-
mally reading as

e T
Yx, t)=(A1,A, ..., ALX, X0, ..., X)), ()

in which A; = A;(x, t) and X; = X;(x,t) ({ €[1,2, ..., L))
denote the wave function of the /th photonic and /th exci-
tonic mode, respectively. In particular, 2L is the total number
of polariton branches participating in the system dynamical
evolution.
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By setting n = n(x, t), 1,_0) = Tb)(x, t), we assume the
reservoir-polariton dynamics to be described by the following
set of coupled differential equations:

d 1 - -
d—n=P(x)——n—gn(W,G1/f)7 (2a)
t TR
47 AT + 46T (2b)
dtl/f =Hx)y +2n ¥

in which (W, Z) =) i wjz ; denotes the Hermitian scalar
product between the two vectors @ and Z, with w} denoting
the complex conjugate of the component w.

The different terms in Eq. (2a) account for three main phys-
ical contributions: (i) the injection of population due to the
cw driving through P(x); (ii) the presence of a loss term con-
trolled by the intrinsic finite lifetime 7z of the reservoir; (iii)
a nonlinear decay term proportional to the effective coupling
g > 0, that describes the stimulated population scattering from
the reservoir to photon and exciton states. The 2L x 2L matrix
G represents an operator satisfying the following constraints:

G' = G (Hermiticity), (3a)
G > 0 (positive semidefinite), (3b)
ZG/ j =1 (unit trace). 3o)

J

Equations (3a) and (3b) ensure that the reservoir density
evolves as a real quantity, with the last term acting as an
effective loss [i.e., gain on the 1/7 field, as clear from Eq. (2b)].
The normalization constraint in Eq. (3c) guarantees for a
particle-conserving dynamics. Indeed, if on the one hand g
controls the global scattering rate from the reservoir, on the
other hand the model accounts for several decay channels,
each controlled by an element of the matrix G. More precisely,
in our framework the element G;; of such operator accounts
for scattering processes from the particle reservoir to the mode
Y¥;, which are stimulated by the presence of a particle in
the mode /;, with v; and ; denoting two components of

—
¥ (x, t).

The coupled exciton-photon dynamics is encoded into
Eq. (2b). The term proportional to the (non-Hermitian) 2L x
2L matrix operator H (x), given by

E(x)

A = —i W)

—I'(x)—i PR 4)

accounts for the peculiar complex energy-momentum disper-
sion laws of the relevant bare modes and their mutual linear
interaction, i.e., —iE (x)/h — I'(x), as well as the presence of
an external space-dependent potential W (x), such that W (x) =
W (x). In particular, for the same reason leading to Eq. (3), in
order to interpret I'(x) as a proper decay operator, one must
require I'(x) to satisfy the following constraints:

I'(x) = ['(x) (Hermiticity), (5a)

I'(x) > 0 (positive semidefinite). (5b)

Finally, the last term in Eq. (2b) accounts for the par-
ticle transfer from the reservoir to photonic and excitonic
modes. In particular, the structure of the nonlinear terms

proportional to g in Eq. (2), and the constraints imposed on
G, lead to the expected g-independent behavior of the time

derivative of the total particle density N(x, ) =n(x, t) +

(?(x, 1), E)(x, t)). By combining the two expressions in
Eqg. (2), the following rate equation for N(x, t) is obtained:

dN _ d d — —
E (‘xv t) - En(x’ t)+ E(I/I('xﬂ t)? Iﬂ(x, t))
1 U S — - . =
=P(x)—an—(H(X)1ﬁ, ) +{(vy, Hx) ¢ ).
(6)

In the long-time limit, since the cw source does not depend on
time (i.e., the only driven Fourier component of the reservoir
density is the @ = 0 one), it is reasonable to assume that
the dynamical system does not produce oscillating solutions
(limit cycles). As a consequence, the steady-state (ss) config-
uration, i.e., the solutions satisfying %n(x, 1) = (%Tb)(x, 1) =
0, correspond to a fixed point of the dynamical system in
Eq. (2). In other words, by recalling that due to Eq. (3b)
(J, G1/7) >0V 1/7, we have the steady-state relations

B P(x)
ngs(x) = 1 — 4 ’ (72)
a -’-g(‘lﬂss(x), Gw ss(-x))
%
. — g P(X)G llfss(x)
H@x) ¢y o(x) = —= (76)
X w * 2 1 + g(E)SS(.x), G@)ss(x»

®

in which ng and @)SS denote the steady-state reservoir density
and exciton-photon configuration, respectively. As it is easy
to verify by direct inspection, the system of coupled equa-
tions (7) always admits the trivial configuration corresponding
to an empty exciton-photon subsystem and a reservoir density
proportional to the cw profile as a fixed-point solution, i.e.,

—
V=0, ngkx)=1RPX). (8)

Depending on the pump strength Py (see Fig. 1), we notice
that such a solution might become linearly unstable, i.e., a

small perturbation § ¥ (x) placed on top of 1 ;; = 0 gives rise
to a macroscopic increasing of the condensate density, i.e.,

(8 @_0) x), 8? (x)), pushing the system away from the trivial
configuration in Eq. (8). By linearizing the dynamical system
in Eq. (2), we obtain the following expression for the exciton-
photon density evolution:

d — — — —
E((? Y (x), 8¢ (X)) = =2(8 ¢ (x), T(x)d ¢ (x))
— — ©)
+ gRP(X)(8 ¥ (x), GS ¢ (x)),

which implies that the empty solution becomes locally unsta-
ble whenever

%P(x)c > I(x), (10)

that is when the particle gain induced by the cw source over-
comes particle losses.

We conclude this section with some final remarks. Even
though we have reported a general formalism to account for L
photonic modes coupled to L exciton states, in what follows
we will restrict our attention to the L = 2 case. Indeed, if on
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the one hand all the expressions previously reported hold true
in the general case, on the other hand such case study is of par-
ticular interest in light of the recent experiments [19,20,33],
where it has been observed that the relevant dynamics leading
to the onset of condensation only involves a pair of polariton
bands below the exciton energy.

In addition, we notice that we deliberately neglected any
possible direct effect induced by exciton-exciton nonlineari-
ties on the polariton equation of motion. From a theoretical
perspective, it is always legitimate to pursue this road. On the
other hand, it is reasonable to assume such approximation to
be physically valid whenever the relevant polariton states have
a small enough exciton fraction. If this is the case, then the
polariton-polariton nonlinearity is strongly suppressed if com-
pared to bare exciton-exciton interactions, and the relevant
polariton evolution is well captured by a linear equation of
motion coupled to a particle reservoir (as in our theoreti-
cal framework). Of course, if this is not the case, including
exciton-exciton interaction terms in Eq. (2b) is not a hard task.
Nevertheless, characterizing the deviations possibly induced
by exciton interactions on the dynamics leading to polariton
condensation goes beyond the target of the present analysis,
and we leave it for future studies.

As a final comment, we notice that whenever exciton-
exciton interactions are relevant and included into the
driven-dissipative dynamics, our theory corresponds to a
multiband generalization of the standard nonequilibrium
Gross-Pitaevskii equation.

III. TWO PHOTONIC MODES: SPECTRAL ANALYSIS

As discussed in Sec. II, in order to describe the onset
of condensation we first address the spectral properties of
the system. In particular, since we can safely assume the
QW exciton energy-momentum dispersion to be flat, the only
nontrivial part concerns the representation of the counterprop-
agating gapped Bloch resonances, in which the gap is induced
by the periodic dielectric modulation, e.g., as sketched of
Fig. 1. Even though a complete characterization of such
modes in a one-dimensional (1D) periodic dielectric structure
can be performed through a Maxwell solver based, e.g., on
a guided-mode expansion [11,12], here we rather follow the
simplified approach discussed in [39], where it was shown that
close to normal incidence (i.e., around k = 0), the dispersion
of gapped photonic branches can be reproduced and approxi-
mated by means of two counterpropagating modes with linear
dispersion that are diffractively coupled by an off-diagonal
term U. The latter can be either positive or negative, which
is actually related to the composition of the unit cell of the
periodic 1D lattice (see, e.g., Ref. [19]). In fact, we assume
it as an effective model parameter, but we keep in mind that
it can be fully engineered through the characteristics of the
periodic pattern. We then consider the following matrices to
build Eq. (4):

wp — ivgax U QR 0

_ U wy + ivgax 0 QR
E(x)=h % 0 ox 0] D

0 QR 0 wy

va 7 0 0
|7 va 0O O _
r@o=1% % w0 = I, (12)
0 0 0
and
W(x) =Vx)ly, (13)

with 14 being the 4 x 4 identity operator. Notice that we
hereby assume that the potential V is the same for either
photonic or excitonic components, for simplicity of computa-
tions and without loss of generality. In fact, while in practical
cases one might differentiate between photonic and excitonic
contributions, the qualitative behavior of results we are going
to discuss does not depend from the choice made here. In this

scenario, the wave function ¥ (x, ) reduces to the following
four-component vector:

—
U, 1) = (A1), A_(x, 1), X (e, 1), X_(x, ). (14)

This model describes two photonic modes separately coupled
to two degenerate excitonic states, in the presence of an ex-
ternal potential V (x) that is directly related to the presence of
the cw source; A4 and A_ describe counterpropagating bands
with linear dispersion whose slope is directly defined by their
group velocity v,. These modes cross at k = 0 with energy
hwy, and they have an intrinsic loss rate given by y4. The two
modes X, and X_ are then associated to a flat QW exciton
resonance at energy fiwy, whose bare loss rate is yx. The
photonic modes are assumed to be linearly coupled via a term
proportional to AU — iy, which converts right (+) propa-
gating photons into left (—) propagating ones, and vice versa.
In particular, in order to ensure that I'y describes a proper
decay term, one must require that y4 > |y4| [see Eq. (5)].
Each photonic component is assumed to be independently
coupled to an exciton mode, with a coupling rate set by the
Rabi frequency Qg/(27).

As it is shown in the following, such a minimal model is
already able to account for the onset of polariton condensation
into discrete levels appearing inside the energy gap between
polariton bands with opposite effective mass. In close agree-
ment with experimental results reported in the literature, the
properties of such levels are shown to depend on both the bare
polariton dispersion and the pump characteristics. We first
pay attention to the spectral properties of the non-Hermitian
operator H (x). For the sake of clarity, we proceed in two steps.
In Sec. IIT A, we first characterize the polariton dispersion in
the absence of the external potential V (x). The role of such
space-dependent term in the appearance of a set of discrete
levels is addressed in Sec. III B.

A. Eigenmodes: Complex polariton dispersion for W(x) = 0

The complex eigenmodes of the exciton-photon coupled
system can be obtained as real and imaginary polariton bands
by diagonalization of the operator

Aoy = —iZ®)

— T, (15)

where E(x) and Iy are given in Eqs. (11) and (12),
respectively. To this purpose, let us consider a generic four-
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component wave function E)(x,t), as the one in Eq. (14),
and rewrite it in terms of its Fourier components with respect
to the real-space coordinate x. By applying the operator (15)
formally gives

- dk .. .
Ay ¥ (x, 1) = / Ee”“Ho(kﬁ(k, n, (16

with Ho(k) = —i2® — 'y, where

wp + vgk U Qr 0

_ U wp — vgk 0 QR
Ek)=h| o 0 o 0 A7)

0 QR 0 wyx

Since Hy(k) satisfies the conditions H(')"(k)I:Io(k) =
I:IO(k)H(;r (k), by spectral theorem it can be diagonalized
by means of a unitary operator Uy. In the present case the
diagonalization can be performed analytically. The resulting
polariton eigenmodes (complex eigenvalues) are explicitly
reported in Appendix A.

Numerical diagonalization leads to the results shown in
Fig. 2, where perfect matching is obtained for the eigenvalues
of iliHy(k) obtained numerically and the analytical expres-
sions Ay, g(k) given in Egs. (A2) and (A3). In particular, the
parameters used in the present case are compatible with typi-
cal values reported for inorganic semiconductor samples [20].
As expected, at large |k| the polariton eigenvalues asymptot-
ically approach the bare photonic and excitonic ones, both
in terms of real and imaginary parts. Also, and at difference
with microcavity polariton dispersions [1], this polariton band
structure displays a number of very peculiar features close to
exciton-photon resonance. Independently of the sign of U,
the bands Ay _ and A, ; are characterized by an effective
negative mass m* [where we define m* = Bfk(k)lkzo < 0],
while A_ ; and A_ _ are both characterized by a positive
one, as evident from Figs. 2(a) and 2(b). In both cases, bands
having opposite effective mass are separated by an energy gap.
In addition, in the vicinity of k = O the bands are characterized
by a k-dependent imaginary part (i.e., loss rate). As shown
in Fig. 2(c), for U > O intrinsic losses of negative mass po-
laritons are smaller than the exciton one, while positive mass
polariton loss rates are clearly larger than 7Ziyy. As shown in
Fig. 2(d), the scenario is reversed for negative values of U,
where we see that positive mass polaritons are characterized
by small losses, when compared to the exciton states. Such
a behavior is compatible with the one reported in Ref. [39],
where a band inversion between a bright and a dark mode is
observed upon inverting the sign of the diffractive coupling
rate U.

B. Gap-confined polariton states: W (x) # 0, P(x) =0

In this section we show numerical results obtained when an
external potential is added to the model addressed in the previ-
ous section. In particular, here we focus on the energy region
below the exciton resonance. Indeed, even though our model
prescribes the existence of polariton bands above the exciton
energy (upper polariton branches), we focus on experiments
performed by analyzing dynamics of states below /iwy, which

— A -0
Ao _ (k)

— de 4 ()
— a ()

x num. diag.
num. diag.

v num. diag.
e num. diag.

0.0

—-0.25 0.00 0.25
k (pm")

—~0.25 0.00 0.5
k (um=")

FIG. 2. Energy-momentum dispersion of the four polariton com-
plex eigenmodes obtained from the model in Eq. (15). First, the
real part of the polariton dispersion (Re[A]) is shown for (a) AU =
4.45meV and (b) iU = —4.45meV, respectively. The negative of
the corresponding imaginary part (—Im[A]) is shown for (c) the
positive and (d) negative U cases of (a) and (b), respectively. In
all the panels, solid lines correspond to the analytical expressions
reported in Eqs. (A2) and (A3). Points labeled with “num. diag.”
correspond to the results of the numerical diagonalization. Dashed
lines in (a)—(d) describe the properties of the bare photonic disper-
sions, i.e., modes A (k) and A_ (k). Dotted-dashed lines describe the
two degenerate exciton bands. The other relevant parameters are set
as follows: fiwy = 1527.5 meV; hiyxy = 0.2 meV; hiwy, = 1530 meV;
hys = hyy = 0.6 meV; v, = 110 um/ps; and i = 0.66 meV ps.

are the lowest-energy excitations and the ones towards which
relaxation naturally occurs.

The external potential we used is given by a standard Gaus-
sian function centered at x = 0,

V(x) = Voexp{—x*/(207)}, (18)

where Vy > 0 and o denote the height and the standard devi-
ation of the potential. The presence of such type of repulsive
barrier can be interpreted as an extra term accounting for local
changes in the refractive index for the photonic component, as
well as the effects of a local blueshift of the excitonic states.
In experiments, both such effects are related to the presence of
the external input source P(x). Here, we consider the effects
of such a barrier in order to provide a clearer interpretation of
the results shown in the next section, with the aim of charac-
terizing the structure and physical properties of eigenmodes.
Due to the local nature of V(x), states with different k&
get mixed and the band structure gets modified. In particu-
lar, our analysis shows that discrete levels appear within the
energy gap between A, _(0) and A_ _(0). The properties of
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[— ¢=Ao, + ¢p=Ao - — Pp=Xo.+ - Pp=Xo- * theory]
= 005 ® S {U<0)
£ -0.05/ ~0.051
— : 0.1
X 0.05] -
=

0.001
E 0.0

—0.051

-100 0 100
x [um]

-100 0 100
x [pm]

FIG. 3. Spatial behavior of real (Re[¢]) and imaginary (Im[¢])
parts of the four components of ﬁo(x), for a Gaussian potential with
Vo =5meV and o = 10 um. Panels (a) and (c) describe data for
hU = 4.45meV, while (b) and (d) correspond to AU = —4.45 meV.
The star points labeled as “theory” are a plot of Eq. (20) obtained
from the numerical solution for A, ,(x) (a similar agreement is
observed for the other component, not shown). Numerical results
are obtained for hy, = hyy = hyx = 0.1 meV. The other relevant
parameters are set as in Fig. 2.

such states have been determined by solving numerically the
following eigenvalue problem:

AW = 0,00, hy = By —ihy,, (19

where E, = Re[)\,] and iy, = —Im[A,] denote the real and
imaginary parts of energy eigenvalues corresponding to the
eigenvectors xﬁn (x), respectively.

As an example, we report in Figs. 3 and 4 the numerical
results of Eq. (19) for the first two eigenmode components of

[— d=ALs b=Ai_ — ¢p=Xi. — ¢p=Xi.- * theory]
— "%y 005 e U0
e e
= 0.004 0.00 e )

e

—0.051
= 0.05] 0.05
=
5 0.001 0.00
[ |

—-0.051 . —0.051 ]

-200 0 200 -200 0 200
x [pm] X [um]

FIG. 4. Spatial behavior of real (Re[¢]) and imaginary (Im[¢])
parts of the four components of Jl(x), calculated for the very same
parameters assumed for the results of Fig. 3. Again, (a) and (c) de-
scribe data for AU = 4.45meV, while (b) and (d) correspond to
hU = —4.45meV. The star points labeled as “theory” are a plot of
Eq. (20) obtained from the numerical solution for A; , (x), with a
similar agreement obtained for the other component (not shown).

v 6=100pm ®m o=150um

1523

15221

(meV)

L51521‘

152014 .

01234567 01234567
Vo (meV) Vo (meV)

FIG. 5. Real part of the discrete level eigenenergies E, (in meV)
created by the repulsive potential within the polariton gap below
the exciton resonance, as a function of the potential height V|, and
for o =5, 10, 15 um (see legend), respectively. Results are shown
for (a) U > 0 and (b) U < 0, respectively. The relevant model pa-
rameters are set as in Fig. 2. In both panels, the dotted-dashed
horizontal line below 1520 meV and the dashed horizontal line
above 1523 meV correspond to the band extrema of the eigenmodes
Ay, (k) (maximum at k = 0) and A_ _(k) (minimum), respectively
[see also Fig. 2(a)].

@,, (x) (i.e., forn = 0 and 1, respectively). As a benchmark for
the numerical solution, we notice that

—iQr A, +(x)
—i% + i(a)X +iyx + %) '

X, +(x) = (20)

as it is derived by direct inspection of the eigenvalue problem
in Eq. (19). Hence, we also plot in Figs. 3 and 4 the behavior
of the X, ;(x) component obtained by plugging the numeri-
cal solution corresponding to A, ;(x) into Eq. (20) (markers
labeled as “theory”), which perfectly match the numerically
computed solutions for the same component.

In addition, our numerical analysis also suggests that the
photonic components A, ;(x) and A, _(x) are connected by
the inversion operation, that is, x — —x (see Appendix B for
details). In particular, a different symmetry is obtained for
positive and negative values of U. For U > 0 data obtained

—_ .
for v, suggest that the photonic components are related by
the expressions

A+ () = (=114, (=), 1)
while for U < 0 the relation becomes
Ap +(x) = (=1)"A; _(—x). (22)
Interestingly, given the expression reported in Egs. (20)—(22),
it is easy to verify that

— —
fdx( Y u(X), Vi) =0 (23)

for n and [ integers, i.e., any two eigenstates x_f,, and x—h)m are
orthogonal whenever n and m have an opposite parity.

We proceed by showing the behavior of the eigenenergies
corresponding to ¥, (x) within the lower polariton gap as a
function of the parameter V;, and for different values of o.
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The numerical results are shown in Fig. 5. Numerical data re-
ported in Fig. 5(a) describe the behavior for AU = 4.45 meV,
while in Fig. 5(b) are reported data corresponing to AU =
—4.45 meV.

Similarly to what observed for Re[A], the energy of such
discrete levels does not depend on the sign of U. So for the
sake of simplicity, let us pay attention to Fig. 5(a). In anal-
ogy to the behavior expected when considering a confining

potential V (x) = —V (x) perturbing the motion of a positive-
effective mass (/™) quantum particle, that is,
wod?

$u(¥) + V(0)pu(x) = Enu(x), m* >0 (24)

2m* dx?
the number of bound states as well as the distance with respect
to the minimum of the parabolic band E (k) = h*k?/(2m*)
only depend on the properties of the potential well V (x),
namely, its width and depth. Obviously, the wider the well,
the larger the number of bound states supported by the well.
A similar behavior is observed in the present case, where neg-
ative effective mass excitations are trapped within a potential
barrier. For 0 = 5 um, the potential supports a single discrete
state (i.e., with n = 0). For ¢ = 10 um, in the range of V}
values considered, the system supports two discrete levels,
the second entering in the gap in the vicinity of V & 4 meV.
When the width of the repulsive barrier is increased further,
also the number of discrete states increases. This behavior is
confirmed by the results for ¢ = 15 um, where the second
and third discrete levels supported by the repulsive potential
appear in the vicinity of V) ~ 2meV and V) =~ 5.5 meV.

The first main difference with respect to the solutions of
Eq. (24) concerns the range of energies spanned by such
bound states while sweeping Vj. In the standard positive mass
case, the deeper the potential, the smaller the quantization
energy. In the present case, as it is obtained in Fig. 5, the
eigenenergies of such states are always bounded between a
lower and an upper value. Such limits correspond to the max-
imum of the negative mass band A, _ and to the minimum
of the positive -mass band A_ _, respectively. In particular,
when a state reaches and crosses the minimum of the upper
band at A_ _, it can no longer be normalized and it represents
an extended solution across the whole real-space domain.

While the resonant energy (real part of the eigenvalues)
within the energy gap is not affected by the sign of U, the
losses (i.e., the imaginary part of the eigenvalues) of such
discrete levels strongly depend on the nature of the negative
mass branch giving out of which they arise on increasing
Vo. In fact, numerical results for either U > 0 or U < 0 are
reported in Fig. 6, and for different values of 7y, . In particular,
results are seen to be quite different depending on the sign
of U, displaying low qualitative dependence on the value of
y4. We thus focus on commenting the differences between
Figs. 6(a) and 6(b). When Vj is slightly larger than zero, the
first mode entering in the gap (n = 0) is characterized by
an imaginary part /iy, that is close to the one corresponding
to the polariton band A, _(k = 0) (dotted-dashed horizontal
line in both panels). On the increasing of V;, deviations from
this value are observed. The latter depends on the sign of
U (see also Fig. 2). Hence, when U > 0 an increasing of
the repulsive barrier height yields an increased y,, as seen in
Fig. 6(a). Conversely, when the system is characterized by a

V() (meV)

V() (meV)

FIG. 6. Imaginary parts of discrete eigenmodes within the energy
gap hy, (in meV) plotted as a function of V; for 0 = 10 um. Re-
sults for AU = 4.45 meV are shown for (a) /iy, = liyy = 0.1 meV,
(c) 0.15 meV, and (e) 0.3 meV, respectively. Results for AU =
—4.45 meV are shown for (b) iyy = hiyy = 0.1 meV, (d) 0.15 meV,
and (f) 0.3 meV, respectively. In these simulations we have assumed
hiyx = 0.1meV for the exciton modes. All the other parameters
are set as in Fig. 2. In all the panels: the dotted-dashed horizontal
line corresponds to the imaginary part of the A, _ (k = 0) eigenmode,
the dashed horizontal line corresponds to the one of A_ _(k = 0), the
solid horizontal line is placed at the value 7iy,.

negative diffractive coupling U, y, decreases on increasing
Vo, as shown in Fig. 6(b). In particular, similarly to what
already shown for the real part of the eigenvalues, also the
imaginary parts of the discrete gap-confined levels are bound
to vary between those of the negative and positive mass bands
atk =0,1e., Ay _(k=0)and A_ _(k = 0), respectively.

In summary: The discrete levels created by the repulsive
potential V (x) are confined within the polariton energy gap,
and their complex eigenvalues are such that real and imag-
inary parts vary continuously between those of A _(k = 0)
and A_ _(k =0).

IV. TWO-MODE CASE: POLARITON CONDENSATION
IN THE CW REGIME

As it is known from previous studies, polariton conden-
sation is identified from accumulation of excitations in one
specific state, usually the lowest-energy one in planar mi-
crocavities, and this phenomenology is well captured by a
one-dimensional single-mode GPE formulation. In this sec-
tion we show numerical results concerning the onset of
polariton condensation in the steady-state regime, when the
coupled multiband exciton-photon system is connected to a
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particle reservoir driven by a spatially dependent cw input
source. The expression of such driving term is given as

P(x) = Pyexp{—x"/(257)}, (25)

in which P, is a time-independent pump rate per um, i.e.,
[Py] = (um ps)~'. In particular, following the discussion from
the previous section, it is hereby assumed that the pumping
rate is linearly related to the barrier height Vj by the following
relation:

_
=
in which 7 is a parameter having the dimension [5] = um™".
Concerning the reservoir-polariton interactions, we assume
the two excitonic modes to be similarly coupled to the reser-
voir density, and we made the same assumption for the
photonic components for simplicity of computation and with-
out loss of generality. In this scenario, the operator G is
diagonal and, due to the constraints reported in Eqs. (3b) and
(3c), it has the following structure:

Py (26)

(1 —-a)/2 0 0 0

B 0 l-a)2 0 0
G= 0 0 a/2 0 27)

0 0 0 a2

with « being an effective parameter such that 0 < o < 1.

Since we are interested in the stationary solutions of Eq. (2)
at large time ¢, and since the model always admits as a possible
solution 1/7(x) = 0, we consider an initial configuration char-
acterized by a small population. By doing so, we are able to
understand whether a tiny perturbation added to the “empty”
solution actually leads to the appearance of a stable, macro-
scopically populated condensate. Details about the system
initialization are given in Appendix C. Such initial configura-
tion is then evolved in time by means of a standard numerical
integration algorithm [i.e., explicit Runge-Kutta 4(5) method],
and the convergence towards a possibly nonempty condensate
configuration is monitored by looking at the time behavior of
the total population, that is,

Nﬂn=/QﬂﬁuJ»&@J»
28)
::/}unA+F+4A7P+wX4F4—M;FL

where A, = A, (x, t) and X, = X, (x, t).

An example of time evolution is reported in Fig. 7, where
the behavior of Ny (¢) as a function of time is again compared
for the cases U > 0 and U < 0, assuming the same cw driv-
ing protocol and the same values for V. Even if the initial
population injected in the light-matter subsystem is small (see
Appendix C), independently of the sign of U, for sufficiently
large values of Vj the system dynamics tends towards a stable
steady-state configuration displaying a macroscopic occupa-
tion, i.e.,

lim Ny (1) = Ny, > 0. (29)
— 00

Interestingly, according to the results shown in Fig. 7, the
convergence towards a nonempty condensate seems to depend
on the sign of U. Indeed, if on the one hand for V) > 1 meV
in both cases the system approaches a configuration with

—>¢— Vy=0.5meV
Vo=1.0meV

—A&— Vy=2.0meV
—— Vy=3.0meV

—d— Vy=4.0meV
—@®— Vp=5.0meV

15001 (@)
1000

15001 (b)

0 100 200
! [ps]

FIG. 7. Behavior of the condensate occupation Ny, (¢) [Eq. (28)]
as a function of time (in ps) for different values of V, (top leg-
end), for (a) AU = 4.45meV and (b) AU = —4.45meV. Results
are reported for 7iyy = hyy = 0.1meV, fiyy = 0.1meV, « = 0.01
[Eq. 27)], n =2 um~!, and g = 0.1 um/ps. All the other relevant
parameters are set as in Fig. 2.

Ny, ss > 0, on the other hand at exactly Vo = 1 meV polariton
condensation is only triggered for U > 0.

In particular, since Vj is in one-to-one correspondence with
Py [Eq. (26)], such behavior suggests that in systems with U >
0 condensation would occur for lower values of Py, i.e., they
would display a lower condensation threshold, an interesting
prediction to be verified experimentally.

In order to understand whether this is indeed the case, we
performed a characterization of the dependence of the steady-
state occupation Ny s on Vj. Results obtained for different
values of the photonic losses are shown in Fig. 8. As in
the previous cases, we compare the trend in data obtained

—&— hya=0.1meV
Aya=0.1meV

2250
2000
17501
15001
12501
= 10001
750
500
250

0_

-—#&-- hya=0.15meV
--#-- fiyy=0.15meV

—A— hya=03meV
—-m— fiyy,=0.3meV

, SS

FIG. 8. Steady-state occupation of the exciton-photon coupled
system Ny as a function of V; (in meV), for different values of
hiya (top legend). Triangle markers correspond to data obtained for
hU = 4.45meV, while square points are for h/U = —4.45meV. All
the other relevant parameters are set as in Fig. 7.
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for U > 0 (triangles) and U < 0 (squares), respectively. For
what concerns the condensation threshold, data correspond-
ing to U > 0 do not display a significant dependence on
hiya. In particular, for all the cases considered the critical
value of V) leading to condensation is slightly below 1 meV.
On the contrary, at first glance, numerical results for U < 0
display a considerably different behavior. In particular, the
condensation threshold in this case shows more pronounced
dependence on the photonic losses, going from Vy >~ 1 meV
to ~3 meV while increasing /iy from 0.1 to 0.3 meV.

In addition, data obtained for values of U having a different
sign show a quantitatively different dependence on V. If on
the one hand they clearly show that condensation is occurring
in both cases, on the other hand the value of U does not only
affect the condensation threshold. In the next two sections we
show that all these peculiar features of the model can be
interpreted by looking at the properties of the states previously
characterized in Sec. III B. In particular, we first address the
behavior of the losses of the condensed states. Then, we
analyze the spectral properties of the radiation emitted from
the condensate, and we show that it is peaked at energies
corresponding to the discrete levels considered in the previous
section.

A. Analysis of the condensate losses

In this section, by analyzing the condensate losses, we
show that the steady-state configuration is given by one or
few of the discrete eigenmodes characterized in the previous
section. However, in order to keep the discussion as clear
as possible and to show the main idea, we first assume that
the configuration approached by the system during relaxation
towards its lower-energy eigenstates corresponds to a single
normalized eigenfunction 1/;n(x) of a gap-confined state, as
obtained from the operator H(x) characterized in Sec. III B.
In this case, the steady state of the system is given by

t—leoo 1/7(35, 1) =y Nx/f.sslzn(x)- (30)

Then, let us consider the spatial integral of Eq. (6), with
the steady-state condition imposing that the derivative of the
total particle density should become zero. Equation (6) then
reduces to

1
0= /P(x) dx — - / Nss(X) dx — 2y, Ny s
N (31)

1
= /P(x) dx — 'L'_NR ss 2)/an//,58’
R

in which Ng ¢ denotes the total number of particles accumu-
lated in the reservoir. Since Ny, s > 0, we can rearrange the
terms in Eq. (31) and get an expression for the imaginary part
of the nth mode steady state y,,, which is

_ fP(x)dx - VRNR,SS
B 2Ny s
in which yg = 1/7¢. By plugging the expressions reported in

Egs. (25) and (26) into Eq. (32), we finally obtain an analytic
expression for the condensate losses as

, (32)

n

_ Vo 2o — hVR NR, ss

hyn = (33)
2Ny s

hy, (meV)

hy, (meV)

hy, (meV)

Vp (meV)

Vo (meV)

FIG. 9. Comparison between the imaginary parts of the discrete
eigenmodes induced by the potential V (x) (Zy,) and the expected
condensate losses obtained from Eq. (35) (star-shaped markers),
plotted as a function of V;. Results are shown for U > 0 and (a)
hiys = iy = 0.1meV, (c) 0.15 meV, and (e) 0.3 meV, respectively
(solid horizontal line). Similarly, results are shown for U < 0 and (b)
hys = hiya = 0.1meV, (d) 0.15 meV, and (f) 0.3 meV, respectively
(solid horizontal line). The other parameters are set as in Fig. 6.
The dashed and dotted-dashed horizontal lines correspond to the
imaginary parts of the two gap-delimiting eigenmodes, A_ _(k = 0)
and A, _(k =0).

In general, depending on the values of Vj and o in the expres-
sion for the repulsive potential, the stationary configuration
might correspond to a superposition of more than one gap-
confined eigenstate. For instance, as shown in Fig. 5, when
o =10 um and V; € [0, 7]meV, two discrete levels appear
within the polariton gap, whose eigenfunctions are 1y(x) and
¥1(x). Then, let us suppose that

Vs () = aoPo(x) + oy (x). (34)

Since the two eigenstates are orthogonal by symmetry con-
straints [see Eq. (23)], by following the same steps leading to
Eq. (33) we can write the overall steady-state condensate loss
in terms of the weighted imaginary parts of the two discrete
modes that are present in the gap as

hyolaol® + hyila > nVov/2wo — Tiyg Ni. s
N‘l/l,SS 2N1/I,SS

hy =

3

(35)

in which Ny, ¢ = loto]? + oy |2
A direct comparison between Eq. (35) and the numerical
results previously reported in Fig. 6 is given in Fig. 9. For
U < 0, as shown in Figs. 9(b), 9(d), and 9(f) for different
values of y4 = 74, the steady-state condensate loss obtained
from of Eq. (35) (star-shaped markers) nicely follows the
numerical solutions for the imaginary parts of the first discrete
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level appearing within the polariton band gap on increasing
Vo, for all the values of V; such that Ny ¢ > 0 (see, e.g.,
Fig. 8). In particular, in this case the imaginary part of eigen-
modes decreases when increasing Vj, and we clearly notice
that our protocol leads to the stabilization of a configuration
compatible with the macroscopic occupation of the first mode
confined in the gap.

A similar behavior is displayed for U > O [results shown in
Figs. 9(a), 9(c), and 9(e). However, by further increasing the
pumping rate (i.e., V; in our model) the star-shaped markers
move along a path going smoothly from the branch corre-
sponding to the first gap-confined eigenmode imaginary part
to the one corresponding to the second discrete eigenmode.
Such behavior is somehow compatible with the fact that the
first discrete state of the potential is moving towards the upper
polariton branch, A_ _(k), and it is getting out from the energy
gap (see also Fig. 5), such that also the second mode within the
gap becomes populated, as it will be detailed in the following
section.

B. Emission spectrum of the polariton subsystem

In this section we show numerical results describing the
energy-momentum spectral density of the emitted radiation
from the polariton system. In the hypothesis that the field
emitted by the structure is proportional to the field inside
the system (as it is done in a standard input-output scenario),
the emitted radiation has an overall space-time profile A(x, t)
given by

Ax, 1) X AL(x, 1) +A_(x, 1). (36)

Then the energy-momentum characteristics of the emitted
radiation are essentially encoded into the Fourier transform
of A(x, t):

dk dE . .
Ak, Ey= | — | —e ™eE/A(x, 1). 37
( )/anznhee (x, 1) (37
The corresponding spectral density is given as

I(k, E) = |A(k, E)[*. (38)

In order to display results related to the dependence of the
spectral density on Vp, we plot in Fig. 10 the normalized
quantity defined as

I(k, E) = I(k, E)/max[I(k, E)]. (39)

We report results for the spectral density corresponding
to positive U and different values of the pumping strength,
quantified as Vy = 0in Fig. 10(b), V) = 3.0meV in Fig. 10(e),
and Vp = 6.25meV in Fig. 10(h). The same quantity is also
reported for the corresponding values of V), but assuming
U < 0 in Figs 10(c), 10(f), and 10(i). From these results,
the close connection between the discrete gap-confined eigen-
states characterized in the previous sections to the position of
the peaks of the spectral density should be quite evident.

In all the cases considered, the system was initially pre-
pared by injecting a small population within in the field v,
below the exciton states [see Eq. (C1)]. Then, for each value
of the parameter V; and for the two values iU = +4.45 meV,
time evolution is solved until # = 100 ps. Finally, the spectral

IKE)

20150 0.15 -0.150 0.15
k(um=') k(pm™!)

02 46
VO (meV)

FIG. 10. Direct comparison between the energy of the discrete
levels created by the potential V (x) within the polariton gap [real part
of eigenvalue, coinciding for either positive or negative U, as shown
in (a), (d), and (g)] calculated for o = 10 wm and hy, = hijy =
0.3 meV. The corresponding (normalized) spectral density obtained
from Eq. (10) is shown for AU = 4.45meV and corresponding to
the three values of V; highlighted with the vertical red lines in (a),
(d), and (g), respectively, in (b) V; =0, (e) Vo = 3.0meV, and (h)
Vo = 6.25meV. Similarly, results are shown for AU = —4.45 meV
in (c), (f), and (i) in correspondence of the same values of V;. All the
other relevant parameters are set as in Fig. 7.

density distribution is obtained by taking the Fourier trans-
form along the entire space-time evolution by following the
prescription reported in Egs. (36), (37), and (38).

For Py =V = 0, the system evolves under the action of
Hy(x) [Eq. (15)]. Since no driving source as well as repulsive
barrier are included into the dynamics, the spectral density
displays a behavior compatible with the band structure char-
acterized in Sec. IIT A for both U > 0 [Fig. 10(b)]and U < 0
[Fig. 10(c)]. In particular, we notice the absence of emission
at k >~ 0 in the lower polariton branch evidenced in Fig. 10(b)
as well as in the upper polariton branch in Fig. 10(c), which
marks the behavior of a dark mode and it is compatible with
recent experimental results for the emission below threshold
[19,20,33].

For Vj = 3meV, the system is expected to have a single
discrete level within the gap. For the model employed so
far, this gap-confined eigenmode occurs at a resonant en-
ergy E,—o >~ 1521 meV, both for U > 0 and U < 0, as shown
in Figs. 10(d)-10(f). In fact, in this case the spectral den-
sity is essentially nonzero only in the neighborhood of this
eigenmode energy, and the spectral density distribution dis-
plays a behavior as a function of the wave vector that is, again,
fully compatible with experimental results [19,20,33].

Finally, by further increasing the pump rate, a new state
enters in the gap, as shown in Fig. 10(g) in which the vertical
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FIG. 11. Behavior of the spectral density I, (k) as a function of k
(in um~"), computed from the numerical solution for 1;0 (x) and (a)
hU = 4.45meV and (b) iU = —4.45meV, as well as from IZ] (x)
for (¢) AU =4.45meV and (d) iU = —4.45meV. Data reported
in all panels have been obtained for a repulsive barrier V(x) with
Vo = 6.25meV and ¢ = 10 um. All the other parameters are set as
in Fig. 10.

line at V) = 6.25meV crosses both branches describing the
energy dependence of the first and the second gap-confined
modes supported by the structure. In agreement with the inter-
pretation provided in the previous section for U > 0, when iy
assumes an intermediate value between the first and second
modes within the gap [Fig. 9(e)], the spectral density is peaked
in correspondence of the energy of both states, as shown
in Fig. 10(h). This behavior is observed also in experiments
(see, e.g., Fig. 2 of “Extended data figures and table” in
Ref. [19]). On the other hand, for U < 0 we do see that the
emission profile is peaked at the energy of the first discrete
state within the gap, while very little population is coming
from the second-order mode. This result is compatible with
the data displayed in Fig. 9(f).

For completeness and clarity, we hereby report also the
normalized spectral density associated to the bound-state so-
lutions of the effective model H(x) for the same repulsive
barrier used to obtain the out-of-equilibrium results reported
in Figs. 10(h) and 10(i), which is shown in Fig. 11. In partic-
ular, in each panel of Fig. 11 we report the behavior of

1 (k)

PNETTITENY = 2
L@y = M+ AR, @40)

Lk =

as a function of k. By direct comparison of Figs. 11(a) and
11(c) to the numerical results shown in Fig. 10(h), we notice
that there is a very good agreement between the spectral
properties displayed by the output field for the two bound
states 150()() and 151 (x) and those displayed by the radiation
emitted from the condensate. These results are also in remark-
able good agreement with experimental outcomes obtained
on similar devices [19,20,33]. A similarly good agreement is
displayed by the data obtained for iU = —4.45 meV, and the
corresponding ones in Fig. 10(i). We notice that the plot in
Fig. 11(d) corresponds to the second mode (n = 1) supported
by the potential, which is not displaying macroscopic occupa-
tion in this case.

V. SUMMARY AND CONCLUSION

We have reported an extensive theoretical analysis of the
polariton condensation mechanism occurring in periodically
patterned QW multilayers under incoherent driving. From a
theoretical point of view, this work has required the gener-
alization of the nonequilibrium Gross-Pitaevskii formulation
under incoherent reservoir driving, originally proposed in
Ref. [34], in order to account for multiple photonic bands in-
teracting with the same QW exciton degenerate modes, which
is an original contribution of this work.

After analyzing the complex eigenmodes of the non-
Hermitian Hamiltonian model including exciton-photon cou-
pling and losses, we have numerically solved the driven-
dissipative dynamics in the presence of a continuous wave
Gaussian pump spot. We have modeled the effects of such a
driving field as an effective potential barrier for the exciton-
photon field, showing that it naturally induces the confinement
of negative mass polaritons arising from the lower branch
and becoming trapped due to the energy gap between the two
polariton bands at energies below the exciton resonance.

In addition, we have studied the emission characteristics
of these polaritonic branches, which are associated to the
sign of the diffractive coupling term introduced to mimic
the effect of the periodic pattern on photonic eigenmodes.
In particular, the positive sign of such diffractive coupling
term is associated with the lower, negative mass branch be-
ing dark at normal incidence (BIC condition) with minimal
losses, while if it is negative this same branch becomes bright
at normal incidence and its imaginary part is much larger.
Analyzing the behavior of the model as a function of the pump
intensity (effectively described by the height of this potential
barrier), we have found that condensation actually occurs in
such gap-confined eigenmodes, which become spatially quan-
tized as a function of the depth of the confining potential.
We then make the relevant conclusion that condensation in
these systems is indeed the result of such gap confinement of
negative mass polaritons, irrespective of their dark or bright
emission at normal incidence. In particular, these results are
in remarkable agreement with recent experimental findings
corresponding to samples in which the diffractive coupling
term is positive [19,20]. Hence, we predict that a similar
phenomenology is going to occur even in the opposite case
of a negative diffractive coupling term, which motivates new
experiments.

As a continuation of this work, we envision applications of
this theoretical framework to more complex pumping config-
urations, such as, e.g., periodic repetitions of a finite number
of pumping spots, as recently reported in experiments [33]. In
addition, a careful benchmarking of this effective model with
experimental data might be a further test of the usefulness of
the proposed approach. In particular, since experiments are
often performed under pulsed excitations, an analysis of the
solutions of the present model for pulsed driving, which is
beyond the scope of this paper, might be one of the possible
next steps to undertake as a future project. We also notice
that the model employed is a one-dimensional one, which
essentially captures the relaxation mechanism in an effective
way. On the other hand, the detailed dynamics along the
transverse direction is completely neglected, which might still
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FIG. 12. Spatially dependent real part of the first four eigen-
functions obtained from the model H(x) for Vy = 2.5meV and
o = 35.0 um, assuming iU = +4.45meV and all the other relevant
model parameters set as in Fig. 3.

play a role in experiments. Hence, a possible further exten-

J

Ex + Ey — /(RO 2 + (hvgk)? =
Ay x(k) = 5 + E\/ (Ex — Ea + +/ (RU )2 + (hvgk)?)? + 4(hS2)?

and

Ex + Ex + /(RO + (hvgk)? -
Ao x(k) = > + 5\/(Ex — Ex — /(AU )? + (hvgk)?)? + 4(h2k)?,

respectively, corresponding to a total of four complex
branches. In Eqs. (A2) and (A3), given the solution
Aq, g(k), the subscript a controls the sign in front of the
V(AU )? 4 (hvgk)? term, while the subscript 8 controls the
sign in front of the square root containing the Rabi term
4(hQ2R)%.

APPENDIX B: SYMMETRIES AND ORTHOGONALITY
OF GAP-CONFINED STATES

We hereby report additional results concerning the in-
version symmetry of the left- and right-moving photonic
components, i.e., Egs. (21) and (22) reported in the main
text. In particular, here we report the real part of the pho-
tonic components of the first four eigenstates supported by
a repulsive potential with Vj =2.5meV and ¢ =35 um,

sion of the model might include the description of the modes
dispersion along the transverse spatial direction as well.
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APPENDIX A: ANALYTIC EXPRESSION OF COMPLEX
POLARITON DISPEERSION

As mentioned in Sec. III A, the bands associated to the
Hamiltonian model iiH,(k) [Eq. (15)] can be determined
analytically by looking for the four complex roots of the
characteristic polynomial equation P(A) = det[Ey(k) — il —
A14], in which “det” denotes the matrix determinant. In what
follows, we assume that ,/z gives the square root a com-
plex number z with non-negative imaginary part, and we
define

Ex = li(wx — iyx), Ex = li(wa —iya), U = U — i{a.
(A1)

Hence, the four eigenvalues of i/iH, (k) at each wave vector k,
i.e., the polariton bands, are given by the following analytic
expressions:

(A2)

(A3)

(

i.e., {1/70, 1/71, 1/72, 1/73}. We first show the numerical results
obtained for AU = +4.45meV in Fig. 12, while results ob-
tained for AU = —4.45 meV are reported in Fig. 13. Similar
behaviors are obtained by considering the imaginary parts
of the same components (not shown). As it is possible to
see by direct comparison between the star-shaped mark-
ers and the dashed lines, for both positive and negative
values of U the numerical solutions are fully consistent
with the two equations reported in Sec. III B. In addition,
due to the connection between the excitonic and pho-
tonic components reported in Eq. (20), since V(x) = V(—x),
the exact same symmetry relations hold true also for
Xi,n(x)~

This is particularly relevant when considering the overlap
integral between different eigenfunctions, i.e., formally de-
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FIG. 13. Spatially dependent real part of the first four eigen-
functions obtained from the model H(x) for V, = 2.5meV and
o = 35.0 um, assuming AU = —4.45meV and all the other relevant
model parameters set as in Fig. 3.

fined as
My = / (Fa)s T dx. (B1)

Indeed, under the action of the inversion operation x — —x,
one obtains that the overlap integral transforms as

Mn,m — (_1)m+nMn,my (BZ)

which implies that M, ,, is identically zero whenever n and
m have opposite parity. It would be tempting to conclude
that, as in the Hermitian case, M, ,, = §,.,, Which means
that eigenfunctions corresponding to different eigenvalues are
orthogonal. However, this does not seem be the case, as we
have verified numerically. These results are summarized in
Fig. 14, where we show the overlap integral (B1) between
the pairs of four eigenmodes shown in Fig. 12 reported in
logarithm scale (see color bar). While M,, ,, is essentially
zero, up to numerical deviations, when n and m have opposite
parity (in agreement with the discussion above), when n and
m are different but have the same parity the overlap integral
M, .m # 0. So in general we cannot conclude that eigen-
functions corresponding to different eigenvalues are always
orthogonal.

APPENDIX C: SYSTEM INITIALIZATION

In this Appendix we provide some details concerning the
system initialization used to derive all the results shown in
Sec. IV. In fact, in the time-evolution simulations the reser-
voir has been considered as initially empty, i.e., n(x,t =

l()g10 (an, ml)

0
0 -3
1 -6
<
o) -9
-12
3
-15
0o 1 2 3

m

FIG. 14. Absolute value of the overlap integral, M, ,,, calcu-
lated for the first four eigenfunctions supported by H(x) when Vj, =
2.5meV and o = 35.0 um, plotted in logarithm scale (color bar on
the side). Data have been obtained for AU = 4.45 meV. The other
relevant parameters are set as in Fig. 3.

0) = 0. For what concerns the exciton-photon subsystem, we
consider as initial configuration a state where a tiny popu-
lation is injected into the two bands Ay _(k) and A_ _(k).
To do this, we took advantage of the explicit expression
of polariton eigenstates in momentum space derived for
W (x) = 0. By denoting the eigenvector associated to A, g(k)
as Wq, g(k), a generic system configuration where only the
bands below the exciton resonance are populated can be
expressed as

R dk .
V(o) = f e () + - (- (K],
1

where ¢, g(k) are complex coefficients. In the present anal-
ysis, we used a set of {cq g(k)} following a Gaussian
distribution in k space, namely,

ca, p(k) o exp[—(k — ko) /(2AK)], (C2)

with average ko and standard deviation Ak drawn from two
different uniform random distributions. Such sets of co-
efficients are then normalized in order to have an initial
occupation corresponding to one particle, that is,

Ny(t =0) = f dx(¥(x), ¥(x))

dk
=f2—[|5+._<k>|2+|6_,_(k)|21 =1. (C3)
T

As already mentioned in the main text, the latter configuration
is then evolved forward in time, and polariton condensation is
monitored by looking at the time behavior of the condensate
occupation Ny (¢) for t > 0.
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