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Excitons and trions in monolayer semiconductors with correlated electrons
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We revisit low-temperature optical spectra of transition-metal dichalcogenide monolayers and point to a
possible crystallization of electrons (or holes) at low to moderate charge densities. To calculate the excitonic
spectra under such conditions, we introduce the recursion method and compute how the charge density affects
the energies, linewidths, and oscillator strengths of exciton and trion complexes. Equally important, we study
how excitons and trions in the monolayer evolve when the charge particles gradually transition to a periodic
Wigner lattice. The results provide valuable information on the ability to detect whether the particles are ordered
through the exciton spectrum. Finally, we calculate the change in exciton energy in cases where the added charge
particles have similar and dissimilar quantum numbers (spin and valley) to those of the electron or hole in the
exciton. The results of this work shed new light on the important optical properties of monolayer semiconductors.
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I. INTRODUCTION

Charge-neutral excitons in semiconductors comprise an
electron in the conduction band that is bound to a hole in
the valence band [1–5]. The exciton typically manifests as a
discrete resonance in the optical spectrum below the band-
gap energy of the semiconductor. A charged exciton emerges
as an additional resonance, further below the energy of the
neutral exciton, when electrons or holes are added to the
semiconductor [6–12]. The charged exciton can be viewed
as a three-body bound complex consisting of two electrons
and one hole (negative trion) or one electron and two holes
(positive trion).

There is a plethora of evidence to support the idea that the
three particles of a trion are bound and “touch” each other in
transition-metal dichalcogenides (TMDs) monolayers at low
charge densities. For example, the valleys and spins of the
bound three particles explain the relation between the trion
type and g-factor amplitude of its optical transition [13–15].
Similarly, one can explain whether the circular polarization
of the emitted light from optical transitions of each of the
trions should be copolarized, crosspolarized, or unpolarized
with respect to the polarized laser [13]. The fine structure
of a bright negative trion can be explained through exchange
interactions of the three particles when they touch each other
[16,17]. In addition, the energy position, sign and amplitude
of the g factor, and whether the emitted light should be cross-
or copolarized can be explained for a multitude of phonon-
assisted optical transitions of dark trion species [13,14,18].

As the charge density in the monolayer continues to in-
crease, the exciton and trion resonances start to broaden, shift
in energy, and their oscillator strengths change [19–25]. In
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an effort to explain these observations, two main theoretical
concepts have been suggested as alternatives to the one with
excitons and trions. The first theory suggests that the trion
develops into a four-particle complex (Bronold-Suris tetron),
wherein the trion moves together and is correlated with the
Coulomb hole in the Fermi sea that is created when the trion
forms [26–29]. Recently, we have further generalized this
idea to composite excitonic states, such as six- and eight-
particle complexes (hexcitons and oxcitons), that emerge at
large charge densities if the valley-spin configuration is rich
enough [30,31]. The second concept is the Fermi-polaron the-
ory, in which the exciton and trion resonances are regarded as
repulsive and attractive branches, respectively, of the collec-
tive Fermi-sea response to a photoexcited electron-hole pair
[32–35]. Relationships between the exciton-trion and Fermi-
polaron pictures, or between the latter and Bronold-Suris
tetrons have been discussed in recent literature [36–39].

Common to all of these theories is the assumption of
continuous translation invariance symmetry, where the wave
vector k of a charge particle is a good quantum number. The
problem with this assumption is that the translation symmetry
could be broken at low temperature and small charge densi-
ties, wherein the Coulomb energy of the system exceeds its
kinetic energy [40–46]. For example, diffusion Monte Carlo
methods show a transition between a two-dimensional sys-
tem of itinerant particles to a system of strongly localized
particles in a periodic arrangement (Wigner crystal) when
rs = 1/

√
πa2

Bn � 36 [42]. n is the charge density and aB =
a0ε/m∗ is the effective Bohr radius, where a0 = 0.53 Å, ε is
the relative permittivity of the encapsulating layers, and m∗
is the ratio between the masses of a charge particle in the
monolayer and free electron in vacuum. Furthermore, recent
Fermionic neural network calculations have shown that the
order parameter of charge particles rises sharply from zero at
rs = 1 to a finite value already at rs = 2, and the crystalline
order continues to grow as rs increases further [46]. A weak
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FIG. 1. [(a) and (b)] Photoluminescence and differential reflectance spectra of a charge tunable MoSe2 monolayer at 15 K [24]. The
resonances are of the ground state neutral exciton (X 0), positive trion (X +), and negative trion (X −). Their state compositions are shown in
(c) following photoexcitation of the valley at K (highlighted by the yellow ovals).

photoexcitation of the semiconductor should neither perturb
nor polarize the order of the charge particles. The order is
established by long-range Coulomb correlations between the
particles. On the other hand, a strong binding between the
electron and hole of the exciton (i.e., small-radius exciton)
means that the interaction between a charge-neutral exciton
and a charge particle has a much shorter range than the lattice
constant of the Wigner crystal.

All in all, it is inherently problematic to assume that
when the charge density starts to grow in a low-temperature
monolayer semiconductor, the picture of excitons and trions
evolves directly to a system wherein the photoexcited pair
interacts with itinerant and weakly correlated charge parti-
cles. A suitable framework to study this problem is that the
photoexcited electron-hole pair interacts with charge particles
that are localized or quasilocalized in some fashion, where the
localization is introduced by Coulomb correlations rather than
disorder. The goal of this work is to address this problem and
show how the exciton and trion picture at vanishing charge
densities evolves when charge particles are gradually added
to the monolayer. The theory we present provides important
metrics that help us understand how to identify the order of
charge particles from the optical spectrum. Furthermore, the
theory elucidates what happens to the optical spectrum when
the charge particles gradually lose their ordered state (e.g.,
by raising temperature). The results we present successfully
reproduce experimental findings regarding the broadening of
the optical resonances, their energy shifts, and the evolution of
their oscillator strengths when the charge density increases. In
addition, we explain how the energy blueshift of the exciton is
affected by the distinguishability of its electron and hole com-
ponents with respect to the charge particles in the monolayer.

This paper is organized as follows. Section II includes a
brief experimental review of excitonic complexes in MoSe2

and WSe2 monolayers. We revisit their low-temperature opti-
cal spectra and point to indications of possible crystallization
of electrons (or holes) at low to moderate charge densities.
By highlighting relevant experimental findings, we explain the
motivation and importance of our study. The theory behind
the recursion method is presented in Sec. III. We explain
how to apply this method in the study excitons and trions
in monolayer semiconductors. Simulation results and their
analyses are presented in Sec. IV. A summary and outlook

are given in Sec. V. The appendices include technical details
on the recursion method and computation procedure.

II. BACKGROUND AND MOTIVATION

We analyze the absorption and emission spectra of
high-quality MoSe2 and WSe2 monolayers. By pointing to
interesting observations, the need for the theory we intro-
duce later in this work becomes apparent. The experimental
data we present was provided by courtesy of Chun Hung
Lui. Details on device fabrication and optical measurements
are found in the published works of Erfu Liu et al. in
Refs. [23,24]. Figures 1(a) and 1(b) show the photolumines-
cence and differential reflectance spectra of a charge tunable
MoSe2 monolayer at 15 K, respectively. Changing the gate
voltage by 1 V in this device amounts to a change of ∼6.6 ×
1011 cm−2 in charge density [24]. The emission and absorp-
tion spectra include the bright exciton resonance at small gate
voltages (X 0), the positive trion resonance when holes are
added to the monolayer (X +), and the negative trion resonance
when electrons are added (X −). Their state compositions are
shown in Fig. 1(c). The emission of the bright exciton in PL
disappears as soon as electrons or holes are added, signifying
the efficient generation of trions before hot excitons can reach
the light cone [47].

The interesting point we wish to emphasize is that the trion
resonances in Figs. 1(a) and 1(b) behave similarly in emission
and absorption when |Vg| � 3 V, or equivalently, when the
charge density is below nc ∼ 2 × 1012 cm−2. At larger densi-
ties, the trion resonances show enhanced broadening and their
energies redshift in the emission spectrum versus blueshift in
the absorption spectrum. In addition, the observed value of
nc is roughly similar when the monolayer is electrostatically
doped with electrons or holes. This observation can be ex-
plained by the similar effective masses of electrons and holes
in these monolayers. Interestingly, the change in behavior
starts at a relatively large charge density rather than gradually
developing from the outset (i.e., from Vg ∼ 0 V)

The behavior of low-temperature WSe2 monolayers is
more subtle, but yet, there is some commonality with MoSe2

monolayers. Figure 2 shows the low-temperature absorption
spectrum of a charge tunable WSe2 monolayer, where chang-
ing the gate voltage by 1 V in this device amounts to a
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FIG. 2. Differential reflectance spectrum of a charge tunable
WSe2 monolayer at 15 K [24]. Also shown are the state compositions
of bright exciton and trion complexes at relatively small charge
densities following photoexcitation of the valley at K . The negative
trion species are the singlet and triplet (X −

S and X −
T ), depending on

whether the two electrons have dissimilar spins or valleys.

change of ∼4 × 1011 cm−2 in charge density [24]. Again, we
notice a different behavior between |Vg| � 5 V and |Vg| � 5 V,
or equivalently, when the charge density is below or above
nc ∼ 2 × 1012 cm−2. At larger densities, the positive trion
resonance starts to significantly broaden and its energy starts
to blueshift, whereas the negative trion resonances disappear
and a new resonance emerges at lower energies (marked by
H). As shown in Fig. 2, the valleys of a WSe2 monolayer
are such that the photoexcited electron belongs to the top
spin-split conduction-band valleys, whereas electrostatically
doped electrons populate the bottom spin-split valleys at ±K .
As such, the photoexcited pair can be created next to a pair
of distinguishable electrons from K and −K without violat-
ing the Pauli exclusion principle. The result is a hexciton; a
composite excitonic complex with a trion at its center and
a satellite electron that is glued to the complex by the two
Coulomb holes around the electrons of the trion. Interested
readers can find more details in Refs. [30,31].

Here, the point we wish to emphasize is that the switch
from trions to hexcitons happens at the same conspicuous
density (∼nc) at which the positive trion in this compound
or positive/negative trions in MoSe2 monolayers change their
behavior. Interestingly, and possibly not accidentally, the ex-
citon resonances in the absorption spectra of Figs. 1(b) and 2
are completely quenched when n � nc.

A. Large charge densities (n > nc)

At large charge densities, we can assume a translation-
invariant system of weakly correlated itinerant electrons,
wherein the wave functions of spin-down electrons can over-
lap with those of spin-up electrons. It is unlikely that screening
of the Coulomb interactions between the three particles of
the trion is causing the onsets of its enhanced broadening
and energy redshift in PL vs blueshift in reflectance when
n ∼ nc ∼ 2 × 1012 cm−2. The simple fact that the hexciton
peak (H) does not show any signs of broadening, decay or
blueshift when n > nc demonstrates that screening is largely
irrelevant. Furthermore, the trions radii in these monolayer
semiconductors are ∼2–3 nm [48–53]. A similar average dis-
tance between particles is reached when the charge density
exceeds 1013 cm−2. Unless the density is that large, the charge

ω

≈
ω| |

FIG. 3. (a) Generation of a trion in electron-doped MoSe2 mono-
layer following photoexcitation of a spin-up electron in the valley
at −K . Creation of the trion involves binding of the photoexcited
electron-hole pair in the valley at −K to a particle-hole excitation
of spin-down electron in the valley at K (blue sphere). (b) The
absorption process starts by photoexcitation of a monolayer with
homogeneous charge distribution. The photoexcitation introduces a
local surplus of spin-up electrons, whose density is represented by
the redness of the plane. (c) The emission process of a trion results
in a local depletion of spin-up electrons. The spatial distribution of
spin-down electrons remains largely homogenous before and after
formation (recombination) of the trion in absorption (emission).

particles cannot track and screen the Coulomb interactions
between the three particles of the small trion [54].

We explain the enhanced broadening of trions and their
energy shifts in an electron rich monolayer. Readers can draw
similar conclusions for a hole rich monolayer. Figure 3(a)
shows a k-space representation of the absorption process in
electron-rich MoSe2 monolayer. The photoexcited electron-
hole pair in the valley at −K binds to a spin-down electron
following particle-hole excitation in the valley at K . The spa-
tial distribution of other spin-down electrons in the valley at
K is largely unperturbed. These electrons do not have to get
farther away nor come closer to the created trion since they
see the same effective charge and subjected to the same Pauli
exclusion restriction before and after the trion is created.

Contrary to the largely unperturbed spin-down electrons,
the spatial distribution of spin-up electrons is perturbed by
photoexcitation of the valley at −K . Figure 3(b) shows a
real-space scheme of the absorption process, wherein spin-up
electrons are uniformly distributed in the monolayer prior to
photoexcitation. Their density is illustrated by the redness of
the plane. The energy blueshift in absorption is a result of the
need to use a photon with higher energy in order to create
a trion near electrons with the same spin and valley as that
of the photoexcited electron. The broadening effect signifies
that the lifetime of the final state is ultrafast: To even out
their distribution, spin-up electrons have to scatter out of the
congested region, illustrated by the darker red area near the
trion in Fig. 3(b).

Switching to light emission, the recombination process
takes place when the immediate vicinity of the trion is already
depleted of spin-up electrons, as illustrated in the left part of
Fig. 3(c). Following photon emission, the charge density of
spin-up electrons in the monolayer is inhomogeneous. The
emitted photon is bestowed with smaller energy (redshift)
because the electron system is left at a higher energy state
compared with that of an homogenous gas. The broadening
signifies that the lifetime of the post-recombination state is
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ultrafast, caused by scattering of spin-up electrons into the
depleted region.

B. Small charge densities (n < nc)

The different behavior when the charge density is below or
above nc in Figs. 1 and 2 suggests that the physics changes
at this critical density. Otherwise, we would have seen a
consistent behavior that develops continuously from vanish-
ing densities. For example, the emergence of the hexciton or
enhanced broadening of the trions resonances would start at
smaller densities.

To explain the change in behavior, we conjecture that
electrons (or holes) spontaneously break the continuous trans-
lation symmetry and start to crystallize when the charge
density drops below nc. If Coulomb correlations are rela-
tively strong at low temperatures then the many-particle wave
function, when viewed as the function of a single coordinate,
vanishes at the location of other particles. The number of zeros
in the wave function increases when electrons (or holes) are
added. With that, the number of crests and troughs of the
many-body wave function increases. Since the kinetic energy
is commensurate with the curvature of the wave function, the
crystallization breaks at large enough densities. The parti-
cles become itinerant and weakly correlated, the translation
symmetry of the system is restored, and the wave functions
of two particles can now overlap if they have different spin
and/or valley degrees of freedom. This regime facilitates the
behavior we observe in the optical spectra when n > nc: the
trion resonances broaden and behave as discussed in Fig. 3,
the hexciton composite has the right conditions to emerge,
and excitons cease to exist because particles with which the
exciton can form a trion or hexciton are ‘everywhere’ in the
sample.

As mentioned in the introduction of this paper, diffu-
sion Monte Carlo and Fermionic neural network simulations
support the crystallization of charge particles. Using typical
ballpark values for MoSe2 monolayer that is encapsulated in
hexagonal boron nitride, we find that rs ∼ 12 at nc ∼ 2 ×
1012 cm−2 (assuming an effective mass that is half that of a
free electron and ε ∼ 3.1 for the dielectric constant). While
diffusion Monte Carlo simulations predict that a Wigner crys-
tal exists when rs � 36 (or equivalently, n � 0.1nc) [42],
Fermionic neural network simulations show evident crys-
talline order already at rs = 10 [46]. Finally, extrinsic disorder
sources can further help to sustain the localization of charge
particles. In this view, nc in Figs. 1 and 2 may not necessarily
be an intrinsic parameter of these monolayers.

C. The importance of this work

The possibility that charge particles start to crystalize in
the monolayer when n � nc suggests that the excitonic spectra
should be calculated accordingly. We employ the recursion
method [55], and investigate the behavior of exciton and trion
states in three sample types, as shown in Fig. 4. The first con-
figuration is a Wigner crystal of charge particles, describing
a zero-temperature monolayer with small charge density. For
simplicity, we study the square lattice case, shown in Fig. 4(a),
using both the recursion method and exciton band theory. The

R0

R0 = a /3

a

FIG. 4. Localized electron configurations, wherein the order is
progressively lost from left to right. (a) Square lattice. (b) A
“quasiordered” configuration in which the electron is randomly dis-
tributed within a circle of radius R0 = a�/3 around the square lattice
site. (c) Random distribution.

results and conclusions of the analysis are qualitatively similar
for triangular lattices [56]. Thermal fluctuations at nonzero
temperatures are mimicked by departure of charge particles
from the sites of an ideal square lattice. To do so, the position
of each charge particle is randomly distributed within a circle
of radius R0 around the square-lattice site. Figure 4(b) shows
an example of such a “quasiordered” distribution when R0 =
a�/3, where a� is the lattice constant of the square lattice.
The effect of thermal fluctuations for a given R0 is stud-
ied by averaging the results over samples with independent
quasiordered distributions (until convergence is reached). By
repeating this procedure for samples with gradually increasing
R0, we can qualitatively emulate the evolution of the optical
spectrum when the temperature increases, until the electronic
system becomes completely random as shown in Fig. 4(c).

This work demonstrates how the energies and broadening
of the trion and exciton states depend on charge density,
and this dependence is shown for samples with ordered,
quasiordered or random distributions of charge particles. An
important result of this work is to explain how the oscillator
strength of trions increases when the charge density increases.
The enhanced oscillator strength of trions is demonstrated
using two independent approaches. The first one is by calcu-
lating the local density of states around an electron (hole) site,
showing how the trions borrow the oscillator strength from
the crystal around them. The second approach relies on the
concept of the giant oscillator strength, originally conceived
by Rashba in the late 1950s to explain the very large oscilla-
tor strength of excitons that are weakly bound to impurities
[57,58]. We repeat this derivation for electrostatically doped
monolayers, wherein the role of shallow impurities is assumed
by localized charge particles and that of impurity-exciton
complexes by trions.

D. Particle distinguishability

Another important aspect that we address in this work is to
explain the dependence of exciton energy on the type of elec-
trostatically doped charge particles in the monolayer. Namely,
how the energy blueshift of the exciton depends on whether
its electron (hole) has similar or dissimilar spin and valley
quantum numbers compared with those of electrons (holes)
in the monolayer. To exemplify the importance of particle
distinguishability, we use the magneto-absorption spectra of
the neutral exciton in WSe2 monolayer, as shown in Fig. 5(a).
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FIG. 5. Helicity resolved magneto-optical reflectance spectra of
the neutral exciton in a charge tunable WSe2 monolayer at 4 K
[23]. The out-of-plane magnetic field is 17.5 T. As a guide to the
eye, the faint dashed lines trace the energy blueshift of the exciton.
(b) Helicity resolved optical transitions when the electrons in the
monolayer are fully spin and valley polarized. (c) Helicity resolved
optical transitions when the holes are fully spin and valley polarized.

These helicity (valley) and density dependent maps were
taken at B = 17.5 T [23]. Given the large magnetic field, the
electrons are fully polarized in the bottom conduction-band
valley at −K when applying a small positive gate voltage, as
shown in Fig. 5(b). Similarly, the holes are fully polarized
in the top valence-band valley at K when applying a small
negative gate voltage, as shown in Fig. 5(c). The gate-voltage
window of complete valley and spin polarization is larger for
holes because of the larger g-factor at the top of the valence
band [15].

Comparing the spectra of Figs. 2 and 5 (without and with
a magnetic field), we see that the energy blueshift of the
exciton in all cases is more than 20 meV when the gate
voltage increases from 0 to ∼4 V. Namely, the blueshift rate
is independent of whether the electrons are distributed evenly
between the bottom valleys at ±K (B = 0) or fully polarized
in one valley (B = 17.5 T). This independence stems from
particle distinguishability: the photoexcited electron belongs
to the top valley whereas electrostatically doped electrons
populate the bottom valleys. As a result, photoexcitation of the
conduction-band top valley at K creates triplet (singlet) trions
with electrons from the bottom conduction-band valley at −K
(K), and vice versa for photoexcitation of the valley at −K .
The effect of a strong magnetic field in this case is to control
which of the two trion species is formed for valley-specific
photoexcitation.

The situation is different in WSe2 monolayer that is elec-
trostatically doped with fully spin-polarized holes. Positive

trions cannot be formed if the photoexcited hole has the same
spin and valley as those of the holes in the monolayer. In the
example shown in Fig. 5(c), the result is that photoexcitation
of the valley at K (−K) creates neutral excitons (positive
trions). Examining the behavior in Fig. 5(a) when Vg < 0, the
energy blueshift of the exciton from K is affected by band
filling. This effect is evident from the staircase shape of the
signal, wherein the optical transition is progressively blocked
by continuous filling of hole Landau levels in the valley at K .
On the other hand, the exciton from −K is not subjected to
any band filling effects [Fig. 5(c)], and yet, the same blueshift
is reached at half the hole density. Figure 5(a) shows that the
energy blueshift of the exciton from −K is more than 20 meV
when the voltage changes from 0 to nearly −4 V whereas
the exciton from K experiences a similar blueshift when the
voltage changes from 0 to −8 V. That the energy blueshift of
the exciton is governed by particle distinguishability whereas
the band filling effect plays a secondary role is seemingly a
counterintuitive result. We will explain this behavior in this
work.

III. THEORY

Our goal is to investigate the excitonic spectrum for various
charge densities in the regime n � nc with various order con-
figurations (Fig. 4). To explain how we tackle this problem,
we first write the envelope wave function of the exciton under
the effective mass approximation,

�x(re, rh) = ψ (r)φ(ρ). (1)

ρ = re − rh is the relative motion coordinate between the
electron and hole, and r = (mere + mhrh)/Mx is the transla-
tion coordinate (center of mass). me and mh are the electron
and hole effective masses, respectively, and Mx = me + mh

is the translational mass. Given that the exciton radius, 〈ρ〉,
is much smaller than the average distance between charge
particles in the monolayer, we can neglect the part that comes
from the internal relative motion of the electron and hole
components in the exciton, and treat the small exciton com-
plex as one body with translational mass Mx. In the intrinsic
limit (n → 0), the translation part of the wave function is a
plane wave ψ (r) = exp(ikr). The exciton is free to move in
the two-dimensional monolayer, and the resulting density of
states (DOS) is a step function D(E > 0) = Mx/π h̄2, where
the zero energy level is the exciton resonance at the light cone,
Ek→0 = 0+.

The presence of charge particles changes the simple plane
wave picture. The aim of this work is to calculate the resulting
DOS function, through which we can understand how trions
emerge at E < 0, how their oscillator strength depends on
charge density, how the energy shift of the exciton depends on
charge density, and how quasiorder and random distributions
of the charge particles affect the energy shifts and lead to
broadening.

To study the DOS function, we invoke the recursion
method [55]. This method has been successfully employed to
study strongly correlated systems [59,60], high-temperature
superconducting states [61], quantum-spin and Hubbard mod-
els [61–63], dynamical effects in the context of density func-
tional theory [62,64], and transport properties of disordered
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graphene systems [65–69]. In case that the charge particles
are ordered in a periodic lattice, the DOS functions can be
obtained by either band theory or the recursion method. Ver-
ifying that these two independent methods yield identical
DOS functions provides reassurance of the results. Below,
we first introduce how the DOS functions are calculated by
each method for a general problem, and then we apply the
recursion method to study excitons in electrostatically doped
semiconductors.

A. DOS function from band theory

The first method employs the energy dispersion En(k) of
the nth band in the exciton band structure obtained from band
theory [56]. The DOS function is extracted from

D(E ) = 1

A

∑
n,k

δ(E − En(k))

= − 1

4π3

∑
n

∫
�m

(
1

ε − En(k)

)
dk , (2)

where ε = E + iγ . The broadening parameter γ is introduced
to regularize the delta function, and it represents effects due
to finite lifetime, interaction with phonons, crystal imperfec-
tions, and other sources of disorder.

The band theory is applicable when studying periodic sys-
tems with well-defined unit cells in which the wave vector k is
a good quantum number (here, the wave vector of the exciton
due to the presence of a Wigner crystal). For disordered sys-
tems or if the unit cell includes large number of particles (e.g.,
>106), the recursion method is a useful approach to calculate
the DOS function.

B. DOS function from the recursion method

Let HTB be a sparse and very large matrix that denotes the
tight-binding Hamiltonian of the problem in hand. Deriving
HTB from the exciton’s continuum Hamiltonian is explained
in Sec. III C and Appendix A. Using the stochastic method
of traces [70–72], the DOS function can be calculated from
expectation value of the DOS operator, δ(E − HTB), between
any vector of the form [73]

|ϕRP〉 = 1√
M

M∑
J=1

ei2πθJ |ϕJ〉. (3)

M is the dimension of HTB and θJ ∈ [0, 1] is a random phase at
site J . The DOS function can be improved by averaging over
NRP random-phase states [71,72],

D(E ) = M

NRP

NRP∑
s=1

〈
ϕs

RP

∣∣δ(E − HTB)
∣∣ϕs

RP

〉
, (4)

where the statistical error is of the order 1/
√

MNRP.
To avoid diagonalizing the Hamiltonian of large systems

with millions of sites, the Lanczos method is used to transform
HTB to a tridiagonal matrix. The Lanczos orthonormal basis is
built from the recursive step,

an = 〈χn|HTB|χn〉,
|χ̃n+1〉 = HTB|χn〉 − an|χn〉 − bn−1|χn−1〉,

bn =
√

〈χ̃n+1|χ̃n+1〉,

|χn+1〉 = 1

bn
|χ̃n+1〉, (5)

for n � 1, where the base case (n = 0) is |χ1〉 = |ϕRP〉 and
b0 = 0. The recursion coefficients an and bn are, respectively,
diagonal and off-diagonal elements of the Lanczos matrix,

HL =

⎛
⎜⎜⎜⎜⎜⎝

a1 b1

b1 a2 b2

b2
. . .

. . .
. . .

. . . bN

bN aN

⎞
⎟⎟⎟⎟⎟⎠

. (6)

The advantage of the Lanczos method is that it transforms
an M × M sparse matrix to a much smaller N × N tridiag-
onal matrix (HTB → HL). The computational cost for such
transformation scales linearly with M instead of M3 of the
diagonalization method, rendering the method suitable for
studying large systems with various configurations [74,75].
Calculation of the DOS function in the Lanczos basis is
straightforward

〈ϕRP|δ(E − HTB)|ϕRP〉 = 〈χ1|δ(E − HTB)|χ1〉
= lim

γ 
→0
− 1

π
�m(G1(E , γ )), (7)

where G1(E , γ ) is written in form of a continued fraction

G1(E , γ ) = 〈χ1| 1

E + iγ − HL
|χ1〉

= 1

ε − a1 − b2
1

ε − a2 − b2
2

ε − a3 − b2
3

. . .

. (8)

To compute Eq.(8), we need to terminate the continued frac-
tion after N recursion steps. Appendix B includes details of
the termination process, as well as technical details on how to
get rid of the noise signal from the continued fraction.

C. Application to the exciton problem

We use band theory (when applicable) and the recursion
method to study the excitonic DOS. Without loss of generality,
we consider a Gaussian function to describe the short-range
potential exerted on the charge-neutral exciton by a charge
particle. The potential produced by a landscape of charge
particles reads

V (r) =
∑

�

V0e−|r−r�|2/ω2
. (9)

w is the potential range and V0 is the potential amplitude [76].
We will study how various distributions of potential centers
r�, as shown in Fig. 4, affect the exciton spectrum.

The recursion method requires to convert the continuum
Hamiltonian of the point-dipole exciton

H (r) = h̄2∇2

2Mx
+ V (r) (10)
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FIG. 6. (a) Illustration of the short-range potential profile experienced by an exciton in a square electron lattice. The unit cell and basis
vectors �1,2 are highlighted, where the lattice constant is a� = |�1,2|. (b) Exciton band structure along axes between high-symmetry points
when the charge density is n0 = 5 × 1011 cm−2. The energy bands are labeled by the �-point irreducible representations of the square lattice
[56]. (c) Excitonic DOS functions obtained from the recursion method (solid lines) and band theory (dashed lines). The square lattice constants
are 14 and 7 nm when the charge densities are n0 and 4n0, respectively (a� = 1/

√
n).

to the tight-binding Hamiltonian HTB. To do so, the 2D
sample is discretized to a square grid. The exciton wave
function is now represented by a set of discrete values {ϕi, j}
at the grid points (i, j) along the x and y axes, respectively.
By using the nine-point stencil finite-difference formula for
the Laplacian ∇2, the continuum Hamiltonian is recast to
(Appendix A)

HTB =
∑

i j

εi jc
†
i, jci, j + t (c†

i+1, jci, j + c†
i−1, jci, j

+ c†
i, j+1ci, j + c†

i, j−1ci, j ) + t ′(c†
i+1, j+1ci, j + c†

i−1, j−1ci, j

+ c†
i+1, j−1ci, j + c†

i−1, j+1ci, j ). (11)

The onsite energy is εi j = V (ri, j ) + 3ε0, where ε0 =
h̄2/(2Mxd2) and d is the grid spacing. The nearest-neighbor
and next nearest-neighbor hopping parameters are t = −ε0/2
and t ′ = t/2, respectively.

D. Parameters

Unless stated otherwise, we use the following parameters.
The exciton translational mass is Mx = 0.65me (me is the
free electron mass), and the potential parameters are V0 =
−170 meV and ω = 1 nm. These are the only three material-
specific parameters, and here we choose them to mimic the
behavior in TMD monolayers [18], where w is comparable to
the exciton radius and V0 is chosen to yield a trionlike band
(explained below). The broadening parameter of ε = E + iγ
in Eqs. (2) and (8) is γ = 1 meV.

The grid (sample) area is 240 nm × 240 nm with spacing
d = 1 Å. Out of the resulting M = 5.76 × 106 grid points,
between ∼72 and ∼1440 are occupied with particles. The
corresponding charge densities are between 1.25 × 1011 and
2.5 × 1012 cm−2. The grid points with particles are centers
of the short-range Gaussian potential [r� in Eq. (9)]. The M
grid points are used to construct the tight-binding Hamilto-
nian (HTB), which in turn is used to construct the tridiagonal
Lanczos matrix HL in Eq. (6) through the recursive relations
in Eq. (5). The rank of HL is typically between N = 1000 and
2000. In cases that the charge particles do not form a perfect
Wigner crystal [e.g., Figs. 4(b) and 4(c)], the presented results

are calculated by averaging over 100 DOS functions, each
with a different charge distribution while keeping all other
parameters the same.

E. Comparing results from band theory
and the recursion method

To test the recursion method, we compare its calculated
DOS with the one extracted from exciton band theory by
assuming a periodic electron configuration. Figure 6(a) shows
the crystal potential of a square Wigner lattice, along with
the unit cell and basis vectors, �1,2. The relation between the
lattice constant, basis vectors, and charge density is a� =
|�1,2| = 1/

√
n. Using the pseudopotential method [56], the

exciton band structure is shown in Fig. 6(b) for a� = 14 nm.
The zero energy reference level is the exciton resonance at
n = 0. The result of having one site per unit cell [Fig. 6(a)]
is that only one band has negative energies, as shown in
Fig. 6(b). The negative-energy band mimics the trion state,
corresponding to an exciton that is tightly bound to a lattice
site (electron or hole). The energy of the trionlike band (about
−32 meV in this example) is mostly governed by the trapping
amplitude of the potential, V0, while being weakly dependent
on the lattice constant (charge density). This behavior persists
as long as w  a�, leading to strong localization of trionlike
states at lattice sites. The nearly flat nature of this energy band
implies very large effective mass, or equivalently, suppressed
hopping between neighboring lattice sites (the exciton stays
with the same charge particle).

The positive energy bands in Fig. 6(b) describe states in
which the exciton tends to stay away from lattice sites (i.e.,
not bound to the Wigner crystal). To check which of the wave
functions can strongly couple to light, we focus on states
near the � point (light cone). The reason is that the exciton
momentum following light excitation is much smaller than
the width of the Brillouin zone, 1/λx  1/a�, where λx is
the photon wavelength needed to create the bright exciton
of the semiconductor. Among the �-point energy states in
Fig. 6(b), only the lowest two transform as the identity irre-
ducible representation (IR) A1. The transformation properties
of A1 describe the 1s-like envelope functions of the trion
(ground-state) and lowest exciton state. We are interested in
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FIG. 7. (a) Excitonic DOS functions of various charge densities when the charge particles are randomly distributed. (b) The resulting
energy blueshift of the exciton state as a function of charge density. For comparison, the dashed line shows the energy blueshift when the
charge particles form a square lattice. (c) In quasiordered configurations, the position of charge particles is randomly distributed within circles
of radii R0 around the square lattice sites. (d) and (e) Excitonic DOS functions of quasiordered configurations when the charge density is
2 × 1012 and 5 × 1011 cm−2, respectively.

these s-type states because the dipole matrix element of their
optical transitions does not vanish [56,77].

The blue dashed line in Fig. 6(c) shows the extracted DOS
function when a� = 14 nm, using band theory and Eq. (2).
The red dashed line shows the corresponding DOS function
at a� = 7 nm. The respective calculations with the recursion
method are shown by the solid green and black lines. The per-
fect agreements between the independent DOS calculations,
one with band theory and the other with the recursion method,
provides reassurance for both techniques.

If we ignore for the moment the resonances in Fig. 6(c),
the DOS is a step function around zero energy. This result
is expected for a free particle in two-dimensions (here the
exciton). The resonances that are superimposed on the step
function in Fig. 6(c) come from the (Wigner) crystal potential.
The trion energy band contributes to the resonance around
−32 meV and exciton bands to resonance features in the con-
tinuum (positive energies).

Optically active (bright) excitons contribute to the DOS
function near the step region (small positive energies). This
result is understood because the optically active exciton be-
longs to the first energy band in the continuum, as shown in
Fig. 6(b). The flat nature of this energy band means that the �

point coincides with the zero-energy region of the DOS func-
tion. Furthermore, regardless of whether the charge particles
are ordered or not, the exciton envelop function should be
s-type in order to enable coupling with light [77]. Since the

1s state has the lowest energy, we can associate the optically
active excitons with states around zero energy (step region in
the DOS) in both ordered and random systems. We will use
this property when analyzing simulation results in the next
section.

IV. RESULTS AND DISCUSSIONS

We first analyze the effect of charge density and how
the exciton and trion resonances can be used to identify the
ordered state of the charge particles. Figure 7(a) shows the
converged excitonic DOS function, calculated by the recur-
sion method after averaging over 100 different random charge
distributions. The three DOS functions show that increasing
the charge density leads to an increase of the trion’s DOS
and energy blueshift of exciton states in the continuum (E >

0). The noticeable difference between the excitonic DOS
functions of the square lattice in Fig. 6(c) and the random
distributions in Fig. 7(a) is that resonance features in the
continuum are wiped out in the random case. On the other
hand, the energy of the trion resonance is kept at ∼ − 32 meV
regardless of whether the particles are ordered or randomly
distributed. The reason is the strong localization of the trion
state around lattice sites, rendering the trion energy less sus-
ceptible to a change in the density or distribution of charge
particles. The trion energy is kept roughly the same as long
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as the trion radius is much smaller than the average distance
between two charge particles.

An important difference between ordered and random
charge systems is an enhanced energy blueshift and broaden-
ing of the exciton in the ordered case. The broadening can be
seen from the smeared step around zero energy. The blueshift
effect can be estimated by looking at the energy at which the
DOS function reaches D0/2 at positive energies, where D0 =
Mx/π h̄2 is the exciton’s DOS in an intrinsic two-dimensional
semiconductor. Figures 7(b) shows the energy blueshift and
how it increases with charge density. For comparison, the
dashed line shows the exciton blueshift when the charge par-
ticles form a square lattice. The exciton blueshift is evidently
weaker when the charge particles lose order. The reason is that
a change in charge density has a stronger effect on the packing
of particles when they are orderer. This effect is similar when
studying Wigner crystals with various symmetries, where a
certain change in charge density leads to a larger change in
the lattice constant of a Wigner crystal with higher symmetry
[56].

To further understand the role of charge order, we study
how the excitonic states are affected by a gradual change
in the positions of charge particles. Starting with a square
Wigner crystal, the loss of order is introduced by distributing
the particles randomly within a circle of radius R0 around the
lattice site of the Wigner crystal, as shown by Fig. 7(c). The
higher the value of R0, the less ordered the charge particles
are. Figures 7(d) and 7(e) shows the excitonic DOS functions
for various values of R0 when the charge density is 2 × 1012

and 5 × 1011 cm−2, respectively.
The results of Fig. 7 offer three metrics by which the

excitonic spectrum can be used to identify when the charge
particles become ordered. The first metric is through the en-
hanced DOS of the trion, which is commensurate with its
oscillator strength. The second and third metrics are through
the enhanced energy blueshift and narrowing of the exciton
resonance. Comparing the results in Figs. 7(d) and 7(e), the
three effects are noticeable close to nc (i.e., when the charge
particles are at the verge of becoming itinerant). These metrics
can be tested in experiment by tuning the temperature. For
example, consider a monolayer of MoSe2 or WSe2 with a
certain charge density. The following test can be used to iden-
tify the signature of charge order while ruling out the effect
of phonons when the temperature is lowered gradually (say
from few tens toward 0 K). If suppressed lattice vibrations
are evident when the temperature decreases, then changes in
the oscillator strengths, energy positions and linewidths of
the trion and exciton should be somewhat common to both
resonances. On the other hand, if charge order is more rele-
vant, then the narrowing and energy blueshift of the exciton
resonance are more evident than those of the trion resonance.

A. Oscillator strength of trion

Figures 6 and 7 show that the trion DOS is significantly
increasing when the charge density increases and moderately
increasing when the order of the charge particles increases.
Below, we provide two independent methods to analyze the
oscillator of the trion resonance. One of the methods will be
presented in Sec. IV B, and it relies on the local DOS next

α

FIG. 8. (a) Trion amplification factor, α = fT / fX , as a function
of charge density, when the charge particles form a triangular lattice.
(b) The normalized oscillator strengths, obtained from the relative
intensities of the trion and exciton.

to charge particles. The other method, which we present first,
relies on the giant oscillator strength concept. This method
was originally developed to explain the amplified oscillator
strength of excitons that are bound to shallow impurities.
Rashba pointed out that shallow impurity-exciton states are
working as antennas borrowing their giant oscillator strength
from vast areas of the crystal around them [57,58].

Here, the role of a shallow impurity is assumed by a charge
particle. The equivalence is reasoned because the gained en-
ergy from binding the electron and hole of the exciton is
hundreds of meV in TMD monolayers, whereas the gained
energy when the charge particle captures the exciton to form
a trion is about 30 meV. Starting with an exciton in the intrin-
sic semiconductor limit, we let fX be the oscillator strength
contribution to the exciton resonance by each unit cell of
the semiconductor (the atomic unit cell rather than that of
the Wigner crystal). When adding charge particles, the ratio
between the oscillator strength of the trion and fX is given by
[58]

α ≡ fT

fX
= 1

Ac

(∫
Au

dr ψT (r)

)2

, (12)

where α is the amplification factor, Ac(u) is the unit cell of the
semiconductor (Wigner) crystal. ψT (r) is the envelop wave
function of the pointlike exciton when it is bound to a lattice
site (i.e., a trion state). Since the light cone resides near k = 0,
the envelop wave function is taken at the � point of the Wigner
crystal. Using band theory, we can write

ψT (r) = 1√
Au

∑
G

uT (G) eiG.r, (13)

where the sum is carried over reciprocal lattice vectors of the
Wigner crystal, and the wave function has been normalized to
its unit cell. Substituting Eq. (13) into (12), we get

α = Au

Ac
u2

T (G = 0). (14)

Au/Ac is the number of unit cells of the semiconductor crystal
in one unit cell of the Wigner crystal. uT (G = 0) does not van-
ish for the 1s state at which the light absorption or emission
is strongest. Figure 8(a) shows the trion amplification factor
α as a function of charge density in a triangular lattice [56].
The amplification indicates that the trion draws its oscillator
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FIG. 9. (a) The sample used in calculation of the local DOS function. The sample area is 48 nm × 48 nm and the charge density is n =
7 × 1011 cm−2. The black dots mark the random positions of charge particles. (b) The average local DOS function at various distances R1 from
the charge particles, as shown by the circles with radii R1 in (a) for one of the particles. (Inset) Decay of the potential and relative trion intensity
as a function of the distance from a charge particle. (c) Local DOS function calculations at the positions of the triangle and star marks in (a).

strength from about 300 unit cells of the semiconductor crystal
in its vicinity.

The amplification factor can be used to estimate how the
relative oscillator strengths of the trion and exciton resonances
scale with charge density in absorption experiments. The in-
tensity of the trion scales as IT ∼ nAL fT = nALα fX , where
nAL in the number of charge particles at the spot area of
the light. The corresponding exciton intensity is IX ∼ Nc fX ,
where Nc = AL/Ac is the number of unit cells of the semicon-
ductor crystal under the spot light. Since we have one charge
particle in each unit cell of the Wigner crystal (nAu = 1), the
relative oscillator strength of the trion is

rT = IT

IX + IT
= u2

0(0)

1 + u2
0(0)

. (15)

The corresponding relative oscillator strength of the exciton
is 1 − rT. Figure 8(b) shows the relative oscillator strengths
of the trion and exciton as a function of charge density. The
absorption spectra in Figs. 1 and 2 show that the exciton reso-
nance is largely gone when n = nc ∼ 2 × 1012 cm−2, whereas
the calculated result in Fig. 8(b) shows that the oscillator
strengths of trion and exciton resonances are comparable
when n ≈ nc. This apparent discrepancy is settled by the
broadening of the exciton resonance. That is, the integrated
intensity of the broad exciton resonance in experiment may
indeed be comparable to that of the trion when n ≈ nc.

B. Local density of states

The fact that trions gain their oscillator strength from areas
of the crystal around them is a hallmark of quantum non-
locality [78–82]. Figure 8 quantified the oscillator strengths
when the charge particles form a Wigner crystal. To calculate
the enhanced oscillator strength of trions in case of a random
charge distribution, we perform local DOS simulations at var-
ious distances from charge particles. As shown in Fig. 9(a),
the sample area in these simulations is 48 nm × 48 nm and
the charge density is n = 7 × 1011 cm−2. Figure 9(b) shows

the average local DOS function at a distance R1 from a charge
particle (see circles with radii R1 in Fig. 9(a)). Regardless of
the distance from charge particles, the resonance in the local
DOS function emerges at a constant energy. This quantum
nonlocality is counterintuitive from the perspective of clas-
sical mechanics. Figure 9(b) shows that the trion resonance
decays when going farther away from charge particles (in-
creasing R1). To further confirm this point, we have calculated
the local DOS function in two positions that are relatively far
from the charge particles, as shown by the star and triangle
marks in Fig. 9(a). The obtained results in Fig. 9(c) show no
signature of the trion state in both spectra.

To quantify the change in the relative intensity of the trion,
we evaluate the following ratio from the local DOS function
DL(E):

RLD =
∫

T DL(E)dE∫
T X DL(E)dE

. (16)

The integration in the numerator is over the trion spectral
region, and that in the denominator is over the spectral regions
of the trion and exciton. The inset of Fig. 9(b) shows the
average value of RLD as a function of the distance from a
charge particle. The integration limits are [−50, 0] meV in the
numerator of Eq. (16) and [−50, 50] meV in its denomina-
tor. In addition, the inset shows the decay of the short-range
potential away from a charge center. Clearly, the local DOS
of the trion has longer range. For example, 4 nm from a
charge particle, the potential decay is more than five orders
of magnitude stronger than that of the local DOS. That is,
the trion collects oscillator strength from regions in which the
potential is long suppressed.

C. Particle distinguishability

So far, the DOS functions were calculated in the presence
of distinguishable charge particles in the monolayer. The spin
and valley quantum numbers of a distinguishable particle are
different than those of the electron and hole in the exciton. The
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FIG. 10. Calculated density dependence of the energy blueshift
of excitons when the charge particles are distinguishable and form a
square Wigner lattice (black solid line), indistinguishable and form
a square Wigner lattice (red solid line), or indistinguishable and
randomly distributed (red dashed line). (Inset) Exciton DOS func-
tions when of the charge particles are indistinguishable and randomly
distributed (n0 = 5 × 1011cm−2).

experimental results we have analyzed in Sec. II D have shown
that the energy blueshift of the exciton is stronger (weaker)
when the charge particles in the monolayer are distinguish-
able (indistinguishable). To account for the nature of charge
particles in the model, the repulsive interaction between an ex-
citon and indistinguishable particle is simulated by reversing
the sign of the short-range potential (V0 = +170 meV instead
of −170 meV that has been used so far for distinguishable
particles). The repulsive interaction mimics the effect of Pauli
exclusion, wherein antisymmetrization of the wave function
prevents formation of a trion from an exciton and indistin-
guishable particle.

Figure 10 shows the energy blueshift of the exciton as
a function of the charge density of distinguishable particles
(V0 = −170 meV; black line) and indistinguishable particles
(V0 = +170 meV; red line). The results are obtained from
band theory calculations of a square Wigner lattice, and they
support the experimental observation. Namely, the energy
blueshift is indeed weaker with indistinguishable particles.
Using the recursion method, the dashed line in Fig. 10 shows
the energy blueshift as a function of the charge density of
indistinguishable particles that are randomly distributed in the
sample. Consistent with previous findings of this work, the
energy blueshift of the exciton is enhanced when the charge
particles are ordered. The procedure to extract the energy
blueshift from the DOS function is the same as the one used
in Fig. 7(b), where the exciton energy follows the blueshift of
the step region when the charge density increases. The inset of
Fig. 10 shows this behavior through DOS functions of various
charge densities. The trion resonance is absent due to particle
indistinguishability.

We explain the difference in energy blueshift of the exciton
as follows. The ground state of a system with distinguishable

particles is the trion whereas the exciton is the excited state.
On the other hand, the ground state of a system with indis-
tinguishable particles is the exciton because trions cannot be
formed. The implication of this subtle difference is that in a
system with distinguishable particles, the orthogonality be-
tween the exciton and trion states does not permit the exciton
to freely choose positions near charge particles wherein the
trion state is maximal. In contrast, the exciton in a system
with indistinguishable particles has more freedom to mini-
mize its energy by “finding” the best regions in the sample
without having to maintain orthogonality with a lower-energy
state. All in all, the energy minimization of the ground state
is optimal compared with that of the excited state, leading
to slower energy blueshift of the exciton in the presence of
indistinguishable charge particles.

V. SUMMARY

We have presented an original model to calculate the
excitonic behavior in a low-temperature semiconductor. By
employing the recursion method, the evolution of exciton
states and emergence of trion states is calculated through their
density of states when charge particles are gradually added
to the semiconductor. Assuming a two-dimensional semicon-
ductor, the density of states of the exciton is a step function
if no charge particles are present and the exciton is free to
move in the semiconductor. When charge particles are added,
the excitons sees them as attractive potential centers if their
spin and/or valley quantum numbers are distinguishable than
those of the electron or hole in the exciton. The binding of
a distinguishable charge particle to the exciton results in the
emergence of the trion state at negative energies (the exciton
resonance energy in the intrinsic limit is the reference zero-
energy level). The theory connects the oscillator strength of
the trion to its density of states, which in turn is commensurate
with the charge density of distinguishable particles.

Several important effects were demonstrated by the theory
and corroborated by experimental results. The first effect is
enhanced energy blueshift of the exciton state versus a signif-
icantly smaller energy shift of the trion state when the charge
density of distinguishable particles increases. This behavior
cannot be attributed to anticrossing phenomena of the exciton
and trion resonances in which case the energy shifts of the
trion and exciton should be similar in magnitude and opposite
in sign. The energy of the trion is mostly governed by the
amplitude of the short-range potential between an exciton and
distinguishable charge particle, while being weakly dependent
on charge density if the average distance between nearby
particles is larger than the trion radius. In particular, a weak
energy shift of the trion resonance is expected when Coulomb
correlations cause the charge particles to avoid each other and
become localized or quasi localized.

Compared with the weak energy shift of the trion, the
exciton shows a significant energy blueshift in the presence of
distinguishable charge particles. Whereas energy minimiza-
tion of the ground state (trion) is optimal, the excited state
(exciton) has to be both extended and orthogonal with respect
to the ground state. As the charge density of distinguishable
particles increases, it becomes harder to satisfy both con-
straints in conjunction, leading to enhanced energy shift of the
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exciton. Following the same reasoning, the energy blueshift of
the exciton state is relatively smaller when the charge den-
sity of indistinguishable particles increases. These particles
behave as repulsive potential centers with which the exciton
cannot bind and form a trion. The energy blueshift is weaker
because the requirement for orthogonality is alleviated (i.e.,
the exciton is the ground state).

The theory predicts that a change in charge density affects
exciton and trion states the most when the charge particles are
optimally packed in the monolayer. For example, the lattice
constant of a triangular lattice is modified the most by a
change in charge density, that of a square lattice slightly less,
and the trend continues when the symmetry and order are
gradually degraded [56]. By using the recursion technique, we
have quantified the changes that excitons and trions experi-
ence when the charge particles gradually lose their crystalline
phase. Reduced oscillator strength of the trion as well as
broadening and slower energy blueshift of the exciton are
metrics that can be used to detect the meltdown of the Wigner
crystal, especially when the charge density is just below the
critical density at which the particles become itinerant.

A. Outlook

Studying excitons in Wigner crystals through band theory,
as we have done in parts of this work and in Ref. [56], is
analogous to the theory of Moiré excitons in van der Waals
heterostructures [83–85]. The potential landscape that point-
like Moiré excitons experience is determined by the twist
angle between adjacent monolayers. Excitonic resonances in
these heterostructures allow us to identify correlated states in
which the Moiré valleys are populated with charge particles at
fractional or integer filling factors [86–88]. The idea to control
the translation motion of excitons through a periodic potential
can be extended to systems in which superimposed lattices
are patterned by nanofabrication techniques. This concept can
be applied to design THz and (very) far-infrared detectors in
which excitons at the ground state are excited to higher-energy
states. The superimposed lattice constant controls the magni-
tude of energy gaps in the exciton band structure across which
optical transitions are allowed by symmetry [56]. As such, the
spectral window of the detector can be controlled by tuning
the periodicity of the fabricated lattice in different regions of
the system.

The theory in this work can be applied to study funda-
mental properties of various electrostatically doped materials
provided the following two restrictions. First, the exciton
radius has to be evidently smaller than the average distance
between nearby charge particles. As a result, the relatively fast
motion between the electron and hole of the exciton can be ig-
nored, and one is left to deal with the translation coordinate of
the pointlike exciton (its center of mass motion). The second
restriction is that the charge particles have to be localized or
quasilocalized. At low temperatures, the localization can be
induced by Coulomb correlations causing the charge particles
to crystalize when their density is below a critical density.
Above the critical density, the charge particles become itin-
erant and weakly correlated. Rather than the method used in
this work, it is better suited to study excitonic states in this
regime by a theory that accounts for the translation symmetry

of the system, wherein the wave vector k of a charge particle
is a good quantum number.

Our current understanding is that in semiconductors with
tightly bound excitons, the charge particles become itinerant
at densities that are still too small to enable dissociation of
the trion by screening. Namely, the charge particles become
itinerant, but yet, not fast enough to track the internal relative
motion of the three particles in the trion. In transition-metal
dichalcogenide monolayers, the trion resonance starts to ex-
perience significant broadening when the charge density of
itinerant particles continues to increase. The enhanced broad-
ening is introduced because indistinguishable charge particles
scatter out of the region in which the trion is created (or into
this region in recombination). This effect can be avoided if we
only continue to introduce distinguishable charge particles in
the monolayer. It will be interesting to experimentally study
the density regime at which the distinguishable trion is disso-
ciated by dynamical screening effects.
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APPENDIX A: REAL-SPACE DISCRETIZATION AND
TIGHT-BINDING HAMILTONIAN

The exciton wave function |ϕ〉 is discretized at the points
(i, j) of a square grid with spacing d . The Hamiltonian action
on the exciton wave function is

H (r)|ϕ〉 =
(

− h̄2∇2

2Mx
+ V (r)

)
|ϕ〉

= Vi jϕi, j − ε0(ϕi+1, j + ϕi−1, j − 2ϕi, j

+ ϕi, j+1 + ϕi, j−1 − 2ϕi, j ), (A1)

where ε0 = h̄2/(2Mxd2) and Vi j = V (ri, j ). The TB Hamilto-
nian becomes

HTB =
∑

i j

εi jc
†
i, jci, j + t (c†

i+1, jci, j + c†
i−1, jci, j

+ c†
i, j+1ci, j + c†

i, j−1ci, j ). (A2)

The onsite energy at grid point (i, j) is εi j = Vi j + 4ε0 and the
nearest-neighbor hopping parameter is t = −ε0. The discrete
Laplacian ∇2 in this derivation is given by convolution with
the kernel

D2
xy =

⎛
⎝0 1 0

1 −4 1
0 1 0

⎞
⎠. (A3)

The operator is called the Five-point stencil finite-difference
formula and is stable for smoothly varying wave functions.
However, the formula is not isotropic. To better capture
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rapidly varying solutions, the nine-point stencil is a preferred
option,

D2
xy =

⎛
⎜⎜⎜⎜⎝

1
4

1
2

1
4

1
2 −3 1

2

1
4

1
2

1
4

⎞
⎟⎟⎟⎟⎠. (A4)

Using this operator, one can derive the TB Hamiltonian of
Eq. (11).

APPENDIX B: TERMINATION OF THE CONTINUED
FRACTION

To terminate the continued fraction G1 in Eq. (8), we define
the nth fraction as

Gn = 1

ε − an − b2
n

ε − an+1 − b2
n+1

ε − an+2 − b2
n+2

. . .

, (B1)

from which we find the recursive step

Gn = 1

ε − an − b2
nGn+1

. (B2)

The recursive steps can be applied up to a large value of
n = N , above which we need to use an approximation to ter-
minate the process. To do so, we make use of the facts that the
recursion coefficients {an, bn} oscillate around their average
values a and b, and that the damping of these oscillations is
usually fast after a few hundreds recursion steps [74,75]. The
approximation we use here is obtained by assigning Gn = GN

for n > N and solve the equation

GN = 1

ε − a − b2GN
, (B3)

whose solution is

GN = (ε − a) − i
√

(2b)2 − (ε − a)2

2b2
. (B4)

Using this approximated solution for GN , we can trace up back
and obtain G1 from the recursive steps in Eq. (B2). The DOS
functions obtained from the procedure usually contain small
noise, which comes from poles of the continued fraction. The
noise can be eliminated by employing broadening parameter
of a few meV (γ ). However, the use of large γ can erase real
resonances of an ordered charge system. To deal with this
problem, we not only use a large number of recursion steps
N , but also average over DOS functions of different N . The
results in this paper are the average of 100 DOS simulations
for N values in the range 1000 � N � 2000.

APPENDIX C: COMPUTATIONAL PROCEDURE FOR THE
RECURSION METHOD AND PARAMETERS

The steps needed to calculate the DOS with recursion
method are the following.

(1) Initializing the first vector of the Lanczos basis with
|χ1〉 = |ϕRP〉, which is the random phase state on each point
of the square grid [Eq. (3)].

(2) Using the recursive steps in Eq. (5) to calculate the co-
efficients {an, bn}. The number of recursion steps N continues
until {an, bn} converge to constant values {a, b}.

(3) Using Eq. (B4) to calculate GN and Eq. (B2) to trace
back to G1.

The DOS is obtain by substituting Eq. (7) into (4), and
averaging over NRP random phase states. Practically, for big
samples wherein M is larger than a few ten millions (the
dimension of HTB), NRP = 1 is good enough. Larger values
of NRP hardly change the DOS. This result is understandable
because a big sample is composed of many small samples on
which the wave functions are random phase states. Finally, we
can use multiple configurations to further average the DOS
functions in case of dealing with random or quasiordered
distributions.
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