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Modeling of charge transport in polymers with embedded crystallites
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Modern organic semiconductors frequently adopt a semicrystalline morphology which makes the analysis
of charge transport challenging. In this paper, we employ Monte Carlo (MC) simulation to study the charge-
carrier mobility in an amorphous layer—typically 100 nm thick—that contains well-ordered nanosized domains
(crystallites). The case of a low carrier concentration, typical for applications in photovoltaics and LEDs, is
considered. We study the dependence of mobility on temperature, on the amount (V) of the crystallites, on the
energy offset between crystalline and amorphous regions (Et ), and we compare the results with those for a system
with solitary traps. We find that, in a system with solitary traps, the mobility can exceed that of the neat phase
if the trap depth is comparable with the standard deviation of the density of states (DOS) of the amorphous
phase. Controlled by the electronic overlap in the amorphous phase and the crystallites, the mobility in a system
with crystallites can increase by up to two orders of magnitude upon increasing V. It features a pronounced
maximum when Et is close to the standard deviation of the DOS of the amorphous phase, while for large values
of Et , the mobility is practically independent of Et . The results can be rationalized in terms of an interplay
between percolation at large Et and hopping transport within the cumulative densities near the transport of the
system. We developed a generalized analytic multiple-trapping-release model to rationalize the results of the MC
simulations.
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I. INTRODUCTION

The current development of electronic devices such as
LEDs, solar cells, and field-effect transistors with organic
semiconductors as active elements has an important impact
on basic research. Charge transport, characterized by the
charge-carrier mobility, is one of the key physical processes
behind the operation of such devices. It is controlled by
the semiconductor film morphology and its inherent disor-
der. Depending on the material and the processing conditions
chosen, the active layer, typically a 100-nm-thin film, may
contain amorphous, polycrystalline, or crystalline domains.
Despite the technological relevance of such systems and a
number of experimental and theoretical studies [1–8], there
is no comprehensive theoretical description available for the
complex morphology-mobility relationship, and an analytical
formalism is missing.

The current information on the mechanism by which or-
ganic semiconductor morphology affects the charge-carrier
mobility is controversial. It is known that, in semicrystalline
semiconducting polymers such as poly(3-hexylthiophene)
(P3HT), the formation of crystallites increases the hole mo-
bility. The reason is improved structural ordering and an
increased wave function overlap due to more dense packing
of molecules in a crystalline (aggregated) phase than those in
an amorphous phase. This has been concluded from organic
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field-effect transistor measurements when using P3HTs with
increasing molecular weights, which increases the tendency of
the P3HT to aggregate [1–3]. On the other hand, grain bound-
aries in polycrystalline materials inhibit charge transport [4,5].
They can act either as traps or barriers, depending on the
position of their mean energy relative to that of the crystalline
domains [6,7]. For π -conjugated low-molecular-weight com-
pounds such as perylenebisimides, increased crystallinity in a
film has been reported to reduce charge-carrier mobility com-
pared with the amorphous film, whereas a liquid crystalline
structure improves it [8].

This paper is a theoretical study of the charge mobility
in amorphous films that contain crystallites embedded in an
amorphous matrix. It is based upon a combination of Monte
Carlo (MC) simulation and analytical theory. In related work,
charge transport in organic field-effect transistors has been
treated in which the semiconductor is an array of crystallites
separated by relatively thin grain boundaries and charge trans-
port is confined to a thin layer. In that case, the concentration
of charge carriers is controlled by the gate voltage, and the
density of states (DOS) distribution is therefore partially filled
[6,9]. In this paper, we consider the alternative case of trans-
port in a thin layer of a semiconductor in which conductive
crystallites are embedded in an amorphous phase, but the DOS
distribution is only weakly filled. We find that the inclusion of
crystallites can enhance charge transport substantially. Under
certain conditions, this is even the case when crystallites are
replaced by isolated trap sites. Conceptually, for such isolated
trap states, charge transport can be described by a multiple
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(a) (b)

FIG. 1. Schematic view of (a) a polymer layer with amorphous
and aggregated regions and (b) the energetic distribution of electronic
states in this polymer.

trapping and release (MTR) model in which the effective
transport energy EC is considered a variable. At large en-
ergy offset between the amorphous phase and the crystallites,
charge transport becomes percolative.

II. THE THEORETICAL MODEL

In a disordered polymer, macromolecules can be arranged
in a rather chaotic manner (these regions will be referred to
as the amorphous phase), or they can be oriented in a parallel
fashion and form aggregated nanoscale regions with reduced
disorder. They will be referred to below as the crystallites, see
Fig. 1(a).

The energy distribution of localized states in a two-phase
material is illustrated in Fig. 1(b). The upper and lower Gaus-
sians of the DOS distribution with the standard deviations
σ1 and σ2 < σ1 are related to states from amorphous (G1)
and crystallite (G2) phases, respectively. The finite standard
deviation σ2 is due to the imperfect structure of the crystal-
lites, the interaction of an electron inside the crystallite with a
disordered (amorphous) neighborhood, and variations of the
neighborhood across the sample. The energetic shift of the
lower Gaussian Et is caused by a more compact structure
of crystallites and, hence, an increased polarization energy,
relative to the amorphous phase. In this paper, we focus on
the case that σ2 = σ1/3 and |Et | ranging from 1σ1 to 8σ1. The
model of the amorphous film with embedded crystallites will
be referred to as the M1 model. The term M0 model will be
used for our reference case, where the extended crystallites
are replaced by singular trapping sites. The latter may be a
polymer or monomer, depending on whether the amorphous
film consists of polymers or monomers. This M1/M0 termi-
nology relates to the methodology used in the MC simulations
to generate the film morphology.

A. An analytic model based on the MTR concept

In our endeavor to develop a description of charge transport
in a M1 model, we start from the situation where the amor-
phous film contains merely trapping sites, i.e., the M0 model.

An analytic model for this case has already been developed
in Ref. [10]. It rests on both the Gaussian disorder model
[11] and the effective transport level concept [12] and leads
to a relatively simple formalism of the MTR model [13] to
describe hopping transport. The effective transport level EC is
a formal analog of the mobility edge of MTR. One can express
the mean release rate from a rather deep state ω(E ) in the same
form as in the MTR formalism [12,14]:

ω(E ) = ω0 exp

(
−EC − E

kT

)
, E < EC . (1)

In Ref. [10], the transport-level-based MTR formalism was
applied to analyze the dependence of mobility on temperature
and concentration of G2 states. Note that the case of small
concentrations (volume fraction V � 1%) was considered. As
detailed in the Results section below, the comparison between
analytic and MC results in this paper shows that this simple
transport-level concept is not sufficiently accurate for the case
of rather large values of V . For this reason, we apply here the
recently developed generalized version of the hopping MTR
formalism [15,16]. One can use the MTR formalism if one
knows which charge carriers are mobile, i.e., occupy conduct-
ing states, and which are immobile, i.e., trapped, irrespective
to the form of the ω(E ) dependence. We identify a conductive
state by the condition that the escape time from this state does
not exceed a certain time t0 [17]. Further, according to the
MTR formalism, we define the mobility as

μ = μ f
p f

p
= μ f

∫ ∞
−∞ dEgocc(E )ϕ(E )∫ ∞

−∞ dEgocc(E )
, (2)

where μ f ≈ (e/kT )(a2/t0) is the mobility of charge carriers
in conductive states, a is the lattice constant, p f and p are
the concentrations of mobile carriers and the total concentra-
tion, respectively, ϕ(E ) is the probability that a given state
is conductive, and gocc(E ) is the distribution of occupied
states (also known as ODOS), which is proportional to the
product g(E ) exp(−E/kT ), provided quasiequilibrium is es-
tablished and the concentration of charge carriers is small.
Using the Poisson distribution, ϕ(E ) = 1− exp[−ω(E )t0] ≈
ω(E )t0, provided that the critical time t0 is rather small relative
to a typical hopping time in the relevant energy range. Thus,
the parameter t0 cancels in Eq. (2), and the mobility becomes
proportional to the mean release rate ω(E ) averaged over
the distribution of occupied states. The mean release rate is
calculated in a more general way than from the transport level
concept. Formally, it implies that, in Eq. (1), EC is not a con-
stant but a function of energy, see Sec. IV about calculations
of the function EC (E ). From Eqs. (1) and (2), one obtains

μ ≈ eω0a2

kT

∫ ∞
−∞ dEg(E ) exp

[−EC (E )
kT

]
∫ ∞
−∞ dEg(E ) exp

(− E
kT

) . (3)

B. Developing a grid model for the morphology of the material

To allow for MC simulations of the charge transport,
a grid model for the film morphology is required. Opera-
tionally, the modeled material is constructed from pointlike
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FIG. 2. Illustration of how a two-phase structure is generated. (a) Generating of the points where the crystallites grow. (b) Defining the
orientations of chains in the crystallites. (c) The structure after 5 cycles of growth. (d) The final structure.

localized states (hopping sites), representing either small or-
ganic molecules or segments of a polymer chain. These sites
form a simple cubic lattice, and they are randomly distributed
in energy. Some fraction of the sites V belongs to a set of
rectangular boxes, i.e., the crystallites, which are randomly
centered and randomly distributed in their volumes. The ener-
gies of this fraction of sites are randomly distributed according
to the lower Gaussian distribution, see Fig. 1(b). This set of
boxes forms a crystalline phase. Each box is surrounded by the
pointlike localized states, which form an amorphous phase,
see Fig. 2(d).

With the developed algorithm of the generation of this
random two-phase structure, we are trying to mimic growth
of the crystallites in the amorphous phase. Figure 2 is a two-
dimensional illustration of this procedure. In the first step,
the randomly distributed nucleation centers for subsequent
crystallite growth are chosen as illustrated in Fig. 2(a). Their
relative concentration is n. In the second step, at every crystal-
lite, another site is attached in a randomly given direction, see
Fig. 2(b). Subsequently, every crystallite grows by attachment
of either a site in a given direction or a parallel neighbor
chain of an achieved length, see Fig. 2(c). The growth of a
given crystallite is stopped if the next step necessarily leads to
the contact with another crystallite or after having executed a
maximal number of steps M. An example of a final structure
is shown in Fig. 2(d).

The model has only two intrinsic parameters, i.e., the rela-
tive concentration of grow points n and the maximal number
of the grow steps M. However, it is more convenient to work
with other physically more objective parameters, namely, the
relative volume of a crystallite phase V and the mean size of
crystallites 〈l〉. Table S1 in the Supplemental Material [18]
shows how the intrinsic and objective parameters are related.

As illustrated in Fig. 1(b), the energy distribution of states
(i.e., the sites of cubic lattice) is defined as

g(E ) = a−3

⎧⎪⎨
⎪⎩

(1 − V )√
2πσ 2

1

exp

(
− E2

2σ 2
1

)

+ V√
2πσ 2

2

exp

[
− (E − Et )2

2σ 2
2

]⎫⎪⎬
⎪⎭. (4)

The states belonging to the upper and lower Gaussians are
referred to below as the G1 and G2 states, respectively.

C. MC modeling of the charge transport

An electron generated in the middle of the left boundary
plain of the layer performs a field-assisted random hopping
motion until the right boundary plain is reached. The elec-
tric field is applied perpendicular to the boundaries. Hopping
rates between localized states are described by the Miller-
Abrahams model:

ν(E , E
′
, r) = ν0 exp

[
−2γ r − (E ′ − E ) + |E ′ − E |

2kT

]
, (5)

where r is the hopping distance, E and E ′ are the energies
of initial and final states, γ is the inverse localization radius
of the wave function of the electron, ν0 is the frequency
factor, T is the temperature, and k is the Boltzmann constant,
respectively.

For the M1 model, we consider that the crystallites are
formed by localized states, but the transitions of the car-
rier involving G2 states occur faster than the G1 → G1
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(a) (b)

(c) (d)

FIG. 3. Illustration of the contribution of diffusion to the mobility as defined from Eq. (7) in an amorphous material with (a) V = 0 and
(b) V = 0.25; in a two-phase material with (c) V = 0.25 and (d) V = 0.39. T = 298 K, σ1 = 50 meV, σ2 = σ1/3, Et = −2σ1, 2γ2a = 5, and
2γ1a = 10; μC = (e/kT )ν0a2exp(−2γ a), μ0 is the mobility value at V = 0.

transitions because of the reduced disorder in crystallites
and the reduced localization parameter of the G2 states.
To reflect the faster transition rate within, from, and to the
crystallites, we assume 2γ2a = 5 for G2 → G2, G2 → G1,
and G1 → G2 transitions, while 2γ1a = 10 for G1 → G1
transitions. We also consider a maximum hopping distance
rmax = 2.5a.

For the sake of comparison, calculations were also per-
formed for the M0 model, i.e., for the case of an amorphous
material with singular traps. Both G1 and G2 states are
associated with a common coupling parameter of 2γ a =
10 with γ = γ1 = γ2. The G2 states are randomly distributed
in the nodes of the cubic lattice. The case of a trap-free system
(V = 0, i.e., only a single Gaussian instead of two) has also
been considered. In the calculations described below, a = 1
nm has been assumed.

The residence time of a carrier in a state i is defined using
an exponential probability distribution [19]:

ti = − ln x∑
l �=i νil

, (6)

where x is a random number within the interval (0;1). The
final state j is chosen using another random number according
to the probability pi j = νi j/

∑
l �=i νil . Summarizing all the

residence times, one obtains the transit time ttr across the

layer of the thickness L = Na for this trial (i.e., for this run
of a carrier across the sample). The morphology of a layer is
changed before every trial to ensure statistical variation.

The MC simulations can serve as a reference for the MTR
approach. The MTR model describes transport in thermal
quasiequilibrium, and hence, the MC simulations need to re-
flect this. If charges are placed randomly in the DOS, an initial
energetic relaxation process takes place, and quasiequilibrium
conditions are established only at longer times. We take a
shortcut to avoid the lengthy initial relaxation process and
start by choosing the initial energy of a carrier directly from
the distribution according to the quasiequilibrium function
gocc(E ) ∝ g(E )exp(− E

kT ) [15].
After having performed a rather large number of trials for

a given set of parameters, the common way to calculate the
drift mobility, which is proportional to the mean drift velocity
of charge carriers, is as follows:

μ = L

F

〈
1

ttr

〉
. (7)

However, as shown in Fig. 3 for the case of a trap-free
amorphous material and as detailed further for the M0 and
M1 models in the Supplemental Material [18], we find that
the drift mobility determined with Eq. (7) decreases consid-
erably with the thickness of the layer increasing at least up
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(a) (b)

FIG. 4. The drift mobility, parametric in the mean energy depth of the lower Gaussian Et . The other parameters: T = 298 K, 〈l〉 = 8 nm,
eFa = kT , σ1 = 50 meV, σ2 = σ1/3; 2γ2a = 5, and 2γ1a = 10 for the hops involving and not involving crystallites, respectively. (a) Sample
with crystallites, i.e., the M1 model; (b) sample with traps, i.e., the M0 model.

to L = 100 nm. This is unlikely to be the result of nonequilib-
rium transport because the initial energy distribution of charge
carriers is premised to obey quasiequilibrium. The obvious
reason is the neglect of charge-carrier diffusion in Eq. (7). If
the field strength tends to zero, one obtains an apparent in-
finitely large mobility from Eq. (7) because the mean velocity
〈L/ttr〉 remains finite due to diffusion. This effect is important
if a layer is rather thin and the electric field is not very strong,
see Fig. 3(a).

To separate the effect of diffusion of charge carriers from
the mobility, we apply the following correction. In addition to
the averaged inverse transit times, driven by the electric field
F, a diffusion-controlled value 〈1/t0

tr〉 is calculated for the case
of the zero electric field (F = 0). Replacing the value 〈1/ttr〉
by the corrected value 〈1/ttr〉−〈1/t0

tr〉 in Eq. (7), one obtains
the corrected drift mobility, see Fig. 3. The corrected mobility
is practically thickness independent and can be considered a
characteristic parameter of a material if the disorder is rather
small, see Figs. 3(a) and 3(b). The value of field strength F =
2.57 × 107 V/m (eFa/kT = 1) chosen for basic calculations
is a compromise. It is strong enough to provide an acceptable
MC simulation time and reduce the effect of diffusion. On the
other hand, the field is weak enough that the mobility does
not significantly exceed the weak-field limit, as confirmed by
calculations at a weaker field eFa/kT = 0.4.

A more general and computer time-saving way to ob-
tain the bulk mobility (characteristic of the material, not the
layer) is to extrapolate the thickness dependence of the ap-
parent (i.e., not diffusion corrected) mobility, as outlined in
Eq. (S1) and Fig. S3 in the Supplemental Material [18]. The
previously obtained power-law thickness dependence for the
apparent mobility [19] is reproduced. From test calculations
using the example of a one-phase system (M0 model) with
V = 0, we show that both procedures correctly reproduce
the well-known dependence of the mobility on tempera-
ture ln μ = const. − C(σ1/kT )2, C ≈ 0.44, see Table S2 in
the Supplemental Material [18]. In passing, we note that the
method of MC calculations in this paper allows obtaining
both the drift mobility in thin (<100 nm) layers and the
actual drift mobility in the bulk based on calculations for only
thin layers.

III. RESULTS

A key result of this paper is presented in Fig. 4. It shows
plots of the bulk mobility as a function of the fraction of sites
V that form the lower, narrower Gaussian DOS (G2). The bulk
mobility was obtained by extrapolating the apparent mobil-
ity to large sample thickness as described in Supplemental
Material [18]. The value of V denotes the fraction of G2 states,
i.e., the fraction of states forming crystallites [for the case of
the M1 model, filled symbols, Fig. 4(a)], or the fraction of
localized states from the lower Gaussian (for the case of the
M0 model, open symbols, Fig. 4(b). The mobility is normal-
ized to its value at V = 0, i.e., the value for an amorphous
material with a single-Gaussian DOS μ0. The variable is the
mean energy of the lower Gaussian Et .

Figure 4(a) indicates that the mobility in the sample with
crystallites typically exceeds the reference level μ0 and in-
creases with V almost exponentially. A shallow minimum near
V∗ ∼= 10% is observed for large |Et |. In contrast, in an amor-
phous material with localized trap sites with a trap energy
of |Et | � 2σ1, the mobility first decreases with increasing V ,
passes through a deep minimum near V∗ ∼= 10%, and then
increases with V because charge carriers begin percolating
among the traps. This is consistent with the literature. What
is remarkable, however, is that the minimum of μ near V∗
vanishes when the trap energy becomes comparable with the
width of the DOS distribution of the G1 states. In this case,
the mobility increases steadily with V and even exceeds the
mobility of a trap-free system [Fig. 4(b)].

This observed increase in bulk mobility when shallow trap
sites are introduced in an amorphous film is remarkable and
deserves further analysis. To this end, we show in Fig. 5
how the mobility, normalized to the mobility of a trap-free
system, changes as a function of the normalized trap depth
|Et |/σ1, parametric in the trap concentration V . Figures 5(a)
and 5(b) refer to simulations for 298 and 200 K, respec-
tively. We observe that the maximum of μ/μ0 increases with
increasing trap concentration and shifts from slightly below
V∗ ∼= 10% to slightly above V∗ ∼= 10% upon sample cooling
from 298 to 200 K. The ratio of absolute mobilities at 200
and 298 K is μ0(200)/μ0(298) ≈ 0.5. Considering that, in a

085301-5



YA. V. BURDAKOV et al. PHYSICAL REVIEW B 108, 085301 (2023)

(a) (b)

FIG. 5. Dependence of the bulk mobility in an amorphous material with trap sites (M0 model) for two values of temperature on the average
energy of the G2 states Et and for various trap fractions V. The other parameters are the same as in Fig. 4. The horizontal black line shows the
mobility value at V = 0. (a) Data for 298 K. The horizontal red line shows the analytic estimate for Et → −∞, V = 0.39, according to Eq. (9)
below. (b) Data for 200 K.

Gaussian-type DOS-distribution, on average, charge transport
does not proceed among states close to the center of the DOS
distribution but near a transport energy that is lower, we will
further elaborate on this in the discussion section.

Similar regularities were also found for systems with crys-
tallites, see Fig. 6, with the significant difference that μ/μ0 >

1 in almost the entire considered range of parameters. Notably,
the maximum of mobility can be two orders of magnitude
higher than the mobility for the case of an amorphous material
with a single-Gaussian DOS at room temperature. It is obvi-
ous that this must be due to the high hopping rate inside the
crystallites and between crystallites due to presumed stronger
delocalization of wave functions of G2 states and hence higher
transfer rates.

FIG. 6. Dependence of the mobility in a material with crystallites
(M1 model) on the mean energy of states in crystallites Et . Here,
μ(100) is the mobility calculated for the sample thickness 100 nm, and
μbulk is the mobility for the infinite sample. The data are shown for
different values of the fraction of crystallites V for room temperature.
The other parameters are the same as in Fig. 4.

The data in Fig. 6 pertain to drift mobility in a bulk system
as well in a 100-nm film. The bulk mobility data are associated
with considerable scatter, as we can see from Fig. 6, due to the
extrapolation procedure. Figure 6 demonstrates that the quali-
tative dependence of the mobility on |Et |/σ1 is independent of
the fraction of crystallites present V. The dependences of the
drift mobility in the 100-nm film μ(100)(Et ) can be well fitted
by a combination of a Gaussian function and a constant, see
the solid lines in Fig. 6. Data at 200 and 130 K, shown in the
Supplemental Material [18], suggest that, analogous to the M0

model shown in Fig. 5, the absolute value of the mean energy
of G2 states at which mobility has a maximum Emax

t decreases
with temperature.

The temperature dependence of the mobility is further
studied in Fig. 7. It shows the temperature dependences of
the drift mobility both at layer thickness L = 100 nm (small
symbols, dashed lines) and for a bulk film (i.e., L → ∞, large
symbols, solid lines) in the material with crystallites (the M1

model) for the fixed and rather large fraction of crystallites
V = 39%. The variable is the mean energy of states in crys-
talline phase Et . For both the 100-nm film [Fig. 7(a)] and the
bulk [Fig. 7(b)], the mobility decreases with temperature al-
most according to an Arrhenius law μ ∝ exp[−Ea/kT ], with
an activation energy corresponding to the σ2 value of the G2
DOS distribution at |Et |/σ1 > 3, i.e., Ea ≈ 17 meV, see Table
S3 in the Supplemental Material [18] for details. An exception
to this is the case of low trap depths (|Et |/σ1 � 2) in the bulk
film. There, a faster decrease is observed, like the temperature-
dependent decrease usually found in an amorphous material
(V = 0), which has the form of μ ∝ exp{−C(σ/kT )2} in
Ref. [11], see curve 1 in Fig. 7.

IV. DISCUSSION AND COMPARISON
WITH A MTR MODEL

The observations made for an amorphous system with
singular traps [Figs. 4(b) and 5] can easily be understood at
the qualitative level. First, for trap depths well exceeding σ1,
we see the classical signatures of percolative transport in trap
systems that were studied extensively for molecularly doped
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(a) (b)

FIG. 7. Temperature dependences of the mobility in material of the M1 model at various values of the mean energies of states in crystalline
phase Et ; V = 39%, for (a) a 100-nm film and (b) a bulk film. The solid black curves show analytic estimates from (1) the Gaussian disorder
model (GDM) model (V = 0, 2γ a = 5), (2) Eq. (16), and (3) Eq. (17), further below. The other parameters are the same as in Fig. 3. The
mobility at V = 0 and T = 298 K, 2γ a = 10 is denoted as μ0.

polymers [20–24]. In brief, a small percentage of trap sites
reduces mobility due to charge-carrier trapping and delayed
thermal release. Once the percentage exceeds the amount
needed for trap-to-trap transport (the percolation threshold V∗,
typically ∼10%) the mobility increases again. Second, the
interesting and perhaps less studied case is that of trap depth
near σ1, where we observe a mobility that exceeds that of
the trap-free system. This mobility increase upon trapping is,
at first sight, counterintuitive. It can, however, be understood
when recalling that, in a Gaussian DOS, charge carriers are
transported not in the center but at the transport energy EC that
is below the center, namely, |Ec|/σ1 = 0.87 at room temper-
ature [14]. Inserting trap sites at a depth of |Et |/σ1 ≈ 1 thus
increases the DOS that are very close to the transport level.
In this way, transport is facilitated. We stress that transport
occurs well within G1, as evident from Fig 5, in contrast to
the percolative transport via deeper traps.

The level of complexity increases when the trap sites are
not isolated but rather connected, as in the M1 model, which
considers oligomeric crystallites with increased coupling be-
tween each monomeric unit [Figs. 4(a), 6, and 7]. Like for
isolated traps, we distinguish two cases, depending on trap
depths. First, for very deep traps, e.g., |Et |/σ1 ≈ 8, the trans-
port shows the signature of percolative transport between the
crystallites, with a percolation threshold of ∼10%. Below
∼10%, the mobility is reduced, albeit only marginally and
only found for such very high trap depth, and the increase
of mobility at high trap fractions such as 40% is about one
order of magnitude [Fig. 4(a)]. Second, for moderate trap
depth |Et |/σ1 < 3, a different transport regime prevails. The
mobilities are higher than either the trap-free material or the
materials with very deep traps and concomitant percolative
transport in those traps (Fig. 6). This enhancement prevails
even at low-crystallite concentrations and further increases
with concentration. The fact that the mobility is not reduced
even at, say, 5% of sites with a trap depth of 3σ1 is unexpected.
The observation that the maximum of the mobility is reached
for |Et |/σ1 ≈ 1.5 provides a clue to the interpretation of this
transport regime. We consider that transport is serial and oc-
curs partially on the crystallites, with fast transport along the
crystallites, and partially via the sites in G1 that are character-

ized by a weaker intersite coupling. Whether a particular jump
occurs from a crystallite to another crystallite (G2 → G2)
or to the amorphous sites (G2 → G1) will depend on the
distance between crystallites and the energy of the adjacent
amorphous sites and thus on whichever rate is faster. For these
moderate trap depths |Et |/σ1 < 3, the transition from crystal-
lite sites (G2) to amorphous sites (G1) is roughly isoenergetic,
and transport occurs largely within the narrow distribution of
the crystallite site energies. This results in an activation energy
for transport approximately equal to σ2 because percolative
transport in G2 states prevails for |Et |/σ1 > 3 (Fig. 7).

For a quantitative description of transport in an amorphous
material with localized trap sites (M0 model), the MTR model
provides a good starting point. This is illustrated in Fig. 8,
which compares the data of Fig. 4(b) with the MTR model
in its simple form, see Eq. (9) [10,12,14], and in the form

FIG. 8. Comparison of Monte Carlo (MC) results with analytic
results of multiple trapping and release (MTR), see Eq. (9), and
revised MTR, see Eq. (3), normalized to the mobility μ0 of a trap-free
amorphous material (V = 0).
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advanced in this paper, see Eq. (3). In the simple form, the
MTR model suggests that thermally activated jumps from
very deep tail states to a transport level EC control the mo-
bility. The release rate is defined by Eq. (1) for this case. This
means that, in Eq. (3), EC is not a function but a constant (an
effective transport level), and E < EC; this is detailed further
below. For a constant EC , Eq. (3) reduces to

μ ≈ eω0a2

kT
exp

(
− EC

kT

) ∫ EC

−∞ dEg(E )∫ EC

−∞ dEg(E ) exp
(− E

kT

) . (8)

Using the DOS g(E ) from Eq. (4) in Eq. (8), one obtains

μ = μc

erfc
(
εc + 1

2α1

) + perfc
[

σ1
σ2

(εc − εt ) + 1
2α2

]
2(1 + p)

, (9)

where μc = (e/kT )ν0a2exp(−2γ a), α1 = kT /
√

2σ1, α2 =
kT /

√
2σ2, εc = EC/

√
2σ1, εt = Et/

√
2σ1, erfc is a comple-

mentary error function, and

p =
(

V

1 − V

)
exp

[
−σ 2

1 − σ 2
2

2(kT )2 − Et

kT

]
. (10)

Equation (9) gives the mobility that depends on the volume
percentage of trap sites V through the parameter p. If the trap
energy is near the transport energy, for example, for |Et |/σ1 ≈
1, then this simple variant of the MTR model agrees quantita-
tively with MC simulations for all volume fractions which is
possible of trap sites, as evident from Fig. 8. For significantly
lower trap energies, however, the simple MTR model [Eq. (9)]
only reproduces the MC simulations for trap fractions well
below the percolation threshold V∗. For a realistic case p  1
(yet V � 1), which is possible if Et � −σ 2

1 /kT , Eq. (9)

gives μ/μ0 ≈ p−1 ≈ (1/V )exp[−|Et |
kT + σ 2

1 −σ 2
2

2(kT )2 ], where μ0 ≡
μ(V = 0), i.e., G2 states act as traps. If V > V∗, the concept of
the transport level no longer works because thermal activation
from the trap states (G2) to the states of the amorphous host
(G1) becomes less likely than jumps between G2 states. In
addition, jumps downward in energy (from G1 to G2 states)
become more likely than thermal activation for some energy
interval in the tail of G1 states, if the fraction V is rather large.

Thus, a generalized version of MTR formalism [15,17]
is required, based upon Eq. (3). It accounts for the jumps
downward in energy. The difficulty in deriving an analyt-
ical expression for the bulk mobility lies in the fact that
EC (E ) is a function of E, i.e., not a constant. To de-
rive an expression for EC (E ), we follow the approach of
Refs. [14–16]. One can calculate the mean release rate
of a carrier from a state with energy E from the con-
dition n(ω, E ) = B with the percolation factor B ≈ 2.77
[25]; n(ω, E ) is the mean number of target neighbor sites
whose hopping rates are not smaller than a given value of
ω, i.e., ν(E , E ′, r) � ω ≡ ν0 exp(−u). The latter condition
means that r � r∗(E , E ′, u) = (2γ )−1[u−E ′−E

kT η(E ′ − E )],
see Eq. (5); η(E ′ − E ) is a step function. One obtains the
equation for the release rate ω ≡ ν0 exp(−u) by integrating
the DOS function in (r, E ′) space:

n[u(ω), E ] = В = 4π

3

∫ E+kTu

−∞
dE ′g(E ′)r3

∗ (E , E ′, u). (11)

The upper limit of integration is defined from
the equation r∗ = 0. Introducing the parameter Etr ≡
E + kTu, i.e., expressing the mean release rate as
ω = ν0 exp[−(Etr − E )/kT ] ≡ ω0 exp[−(EC−E )/kT ], ω0 ≡
ν0 exp(−2γ a), one obtains from Eq. (11)

π

6(γ kT )3

[
(Etr − E )3

∫ E

−∞
g(E ′)dE ′

+
∫ Etr

E
g(E ′)(Etr − E ′)3dE ′

]
=B, Etr =EC + 2γ akT .

(12)

Equation (12) defines implicitly the function EC (E ), i.e.,
not a constant. In this way, Eq. (3) with EC (E ) as defined
through Eq. (12) represents the generalized version of the
MTR formalism presented in this paper. The mobility is a
function of the trap fraction V via the function g(E ), see
Eq. (4). As is evident from Fig. 8, Eq. (3) with EC (E ) from
Eq. (12) gives a satisfying agreement with the MC simulations
for all trap fractions and all trap depths considered, although
for very deep traps, the minimum of the mobility is found at
lower G2 site content V than in the MC simulations.

In the case of E → −∞, the dependence on the energy
in the expression in Eq. (12) vanishes because the first term,
describing jumps downward in energy, is negligible. Hence,
the function EC (E ) approaches a constant value, i.e., to an
effective transport level EC [14], which results from the equa-
tions:

π

6(γ kT )3

∫ Etr

−∞
g(E ′)(Etr − E ′)3dE ′ =B, Etr ≡EC + 2γ akT .

(13)

This is what is used for the simple MTR model [Eq. (9)].
In case of very deep G2 states, Et → −∞, and V > V∗

jumps occur only between G2 states. Since these states are
located randomly in space and σ2 < kT at room temperature,
one can estimate the mobility from the r-percolation result
[20]. Assuming isoenergetic trap states, one obtains

μ(Et → −∞) ≈ eν0

kT
(0.87a)2 V −2/3exp(−1.74γ aV −1/3),

(14)

where aV −1/3 is the mean distance between trap states. The
result of Eq. (14) for V = 0.39 and T = 298 K is shown by
the horizontal red line in Fig. 5(a). The agreement with the
MC simulation is satisfying.

When the trap sites form extended crystallites (M1 model)
and have a high fraction V, transport cannot be meaningful
described by a particular transport energy EC for the matrix
material G1. Instead, it is useful to analyze the dependence
of the average energy of occupied states Eav as a function
of Et . At thermal quasiequilibrium, we can use gocc(E ) =
g(E ) exp(E/kT ) with g(E ) from Eq. (4) and obtain

Eav =
∫ ∞
−∞ dEEgocc(E )∫ ∞
−∞ dEgocc(E )

= − σ 2
1

kT + p
(
Et − σ 2

2
kT

)
1 + p

, (15)

with p defined by Eq. (10). The relation between Eav and Et is
shown in Fig. 9.
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(a) (b)

FIG. 9. Dependences of the average energy, as calculated from Eq. (15), on the fraction of G2-states, V (a) and temperature (b). Solid and
dashed vertical arrows show the values of Et at which the maximum mobility is achieved in material with crystallites (M1 model, value taken
from Fig. 6) or with singular traps (M0 model, value taken from Fig. 5), respectively. The dashed-dotted diagonal line indicates the values for
Eav = Et . Here, σ1 is 50 meV. The horizontal dashed lines denote to the average equilibrium energies of occupied G1 states −σ 2

1 /kT .

When G2 is well below or above the center of G1 dis-
tribution describing the amorphous matrix, then the average
energy of occupied states corresponds simply to the equilib-
rium energy of the lowest-energy distribution, i.e., Eav(Et ) =
Et−σ 2

2 /kT if G2 distribution is well below the center of G1
states and Eav(Et ) = −σ 2

1 /kT otherwise. In the former case,
the energy Eav increases with increasing of Et . When Et is
above the average equilibrium energy of G1 states −σ 2

1 /kT ,
then the occupied G2 states raise the average energy of the
entire ensemble above the value of −σ 2

1 /kT . This is even
more the case for large volume fractions of G2, as illustrated
in Fig. 9(a). The occupation probability of G2 states decreases
with increasing their energy; hence, the energy Eav decreases
with increasing of Et . In this way, the maximum in the depen-
dences Eav(Et ) in Fig. 9 is formed.

Like in the case of singular traps (M0), for extended
crystalline traps (M1), the mobility also goes through the
maximum as a function of the trap depths, see Fig. 6. This
maximum of the mobility occurs near the maximum of the
average energy Emax

av , as indicated in Fig. 9 by the vertical
arrows.

If the G2 states are very deep and their fraction V is not
small, only these states participate in transport. We recall that
hops within a crystallite of G2 states are much faster than
any other hops; hence, the rate-limiting step is (practically)
nonactivated but long-distance hops between crystallites. As
the G2 states become shallower, hops from G2 to G1 states be-
come faster because the activation energies of jumps decrease;
hence, these hops begin to make a significant contribution
to transport, thus leading to an increase in mobility. Once
Et  Emax

av , thermal activation from G1 to G2 states slows
down transport; hence, the mobility decreases with an increase
of Et . Eventually, G2 states become empty, and transport is
completely controlled by G1 states (amorphous phase). Thus,
mobility has a maximum if Et ≈ Emax

av since G1 states can
effectively act as bridges between crystallites.

The mobility increases with V, see Fig. 4, and has a weak
temperature dependence at Et � −σ1 due to small energy
disorder of G2 states (σ2 < kT ). Due to this circumstance and
due to the increased jump frequency of G2-G2 jumps relative

to G1-G1 jumps, the mobility at V = 0.39 exceeds the mobil-
ity at V = 0 and room temperature, i.e., μ/μ0 > 1, even at the
lowest considered temperature, see Fig. 7. One may estimate
a lower limit for the temperature-dependent carrier mobility
at V = 0.39 by considering very deep traps, where the rate-
limiting long-distance jumps between crystallites dominate.
In this case,

μ(Et → −∞) ≈ eν0

kT
a2

∗exp

[
−2γ2ra − 0.44

( σ2

kT

)2
]
, (16)

in which the mean distance between centers of crystallites
a∗ = 〈l〉V −1/3. Equation (16) yields curve 2 in Fig. 7, using
r = 2 + 0.87 = 2.87, where 2a is the minimal hopping dis-
tance between crystallites in the numerical model and 0.87
arises from the r-percolation theory [25]. At lower temper-
atures, σ2 controls the temperature dependence as expected,
whereas at higher temperatures, the assumption of an in-
finitely low Et causes the 1/kT prefactor to dominate. A higher
limit for the temperature-dependent carrier mobility is given if
transport occurs only over crystallite sites, i.e., if V = 1, with

μmax =
(

eν0a2

kT

)
exp

[
−2γ2a − 0.44

( σ2

kT

)2
]
. (17)

Finally, we comment on the observed difference in
temperature-dependent mobility between thin (L = 100 nm)
films and thick films with L → ∞. Figure 7(b) shows that
the MC simulations indicate a steeper temperature depen-
dence for shallow traps (Et > −3σ1) in the thick film than
the thin film. We consider that, for larger layer thicknesses,
less probable jumps from G2 to states deep in the tail of G1,
followed by slow thermally activated release, can be realized,
and this reduces the bulk mobility rapidly with decreasing
temperature, in contrast to the case of thin films.

V. CONCLUSIONS

This paper is a theoretical study on the mobility of charge
carriers in a thin layer of a two-phase disordered organic
material employing kinetic MC simulation and analytic the-
ory. The model is designed to mimic a system in which
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crystallites, characterized by low static disorder (σ2 < kT )
and enhanced electronic coupling, are embedded in a more
disordered (amorphous) phase with a standard deviation of the
DOS distribution σ1 = 3σ2. The mobility of charge carriers
has been studied as a function of the volume fraction V of the
crystalline phase, the energetic offset between the centers of
the distributions of the amorphous phase and the crystallites
(Et ), and on temperature. For comparison, also the mobility
in a layer of an amorphous material containing localized trap-
ping sites with a double Gaussian energy distribution has been
considered.

We find that, in a system with isolated traps, the mobility
features a minimum near V = 10% and increases afterwards
because then charge carriers begin percolating among the
traps. This is a well-documented phenomenon, tractable by
the MTR formalism [15]. The unexpected observation is
that this mobility minimum is absent, and μ increases con-
tinuously with increasing V if the trap depth is close to
the standard deviation σ1 of the DOS distribution of the
amorphous phase. The reason is that then the narrow trap
distribution of G2 states overlaps with the transport energy
EC, and concomitantly, the number of sites that control charge
transport is increased. When the traps are replaced by crys-
tallites, the mobility features a very shallow minimum near
V = 10% yet only if the energetic offset between both phase is
high (e.g., |Et |/σ1 = 8). Otherwise, μ increases continuously
with increasing V by up to two orders of magnitude relative
to the mobility of the neat amorphous phase and features
a pronounced maximum at |Et |/σ1 ≈ 1.5, independent of V.
For |Et |/σ1 � 3, the temperature dependence of μ becomes
independent of Et . The temperature dependence is Arrhenius-
like with activation energies of 20–30 meV. These results can
be rationalized in terms of a superposition of two different
transport modes, namely, (i) percolative transport among the
crystallites when the energetic offset between parent phase
and the crystallites is large (|Et |/σ1 > 3) and (ii) hopping
transport at a transport level that is formed by the overlap
between the crystallite sites and sites of the parent phase
(|Et |/σ1 < 3). The great increase of the mobility upon blend-
ing the amorphous phase by crystallites is due the fact that the
crystallites are conductive elements.

In a recent analytic work, Emin [26] also considers the
conductivity in a two-phase system with particular attention
on the dependence on the carrier concentration yet neither
on the concentration of the crystallites nor on temperature.
He also disregards the role of energetic disorder, known to
be crucial for understanding the properties of a real-world
organic semiconductors. In this paper, we demonstrate that the
explicit consideration of disorder is crucial for rationalizing
the dependence of the charge-carrier mobility in a two-phase
organic system as a function of the concentration of crystal-
lites and of their energetic depth.

From the viewpoint of applications, the result of this paper
allows rationalizing charge transport in organic systems that
are prone to aggregation. A timely example is a film of Y6 that
acts as electron acceptor in organic solar cells [27]. Absorp-
tion spectra of Y6 films [28] show that, at room temperature, a
Y6 film is a mixture of an amorphous phase and crystalline do-
mains. The absorption spectrum of the amorphous component
is broad, while that of the crystallites is narrow and redshifted
relative to that of the amorphous phase. Interestingly, the elec-
tron mobility in a PM6:Y6 solar cell is 8 × 10−4 cm2/Vs [27]
which is a comparatively high value for a disordered organic
film. Experimentally, the calculated results could be best ver-
ified by the charge extraction (of injected carriers) by linearly
increasing voltage in the metal-insulator-semiconductor struc-
tures (MIS-CELIV) method, providing rather small injection
current during the interval of negative bias. In this case, it is
possible to measure mobility at low concentration of carriers
in quasiequilibrium. Hence, in summary, in this paper, we
offer guidelines of optimizing composition and energy offset
between the components in an amorphous material with either
crystallites or isolated trap states embedded in it.
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