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Electrical conductivity and screening effect of spin-1 chiral fermions
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We theoretically study the quantum transport in a three-dimensional spin-1 chiral fermion system in the
presence of Coulomb impurities based on the self-consistent Born approximation. We find that the flat-band
states anomalously enhance the screening effect, and the electrical conductivity is increased in the low-energy
region. It is also found that reducing the screening length leads to an increase in the forward-scattering
contribution and, thus, an increase in the vertex correction in the high-energy region.
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I. INTRODUCTION

In chiral crystals, energy bands can host topologically
protected multifold degeneracies [1,2]. They are regarded
as multifold chiral fermions; twofold fermions are simply
Weyl (or Dirac) fermions, while threefold, sixfold, and eight-
fold fermions have no counterpart in the standard theory.
Therefore, the multifold fermions have the potential to ex-
hibit unique quantum phenomena. We focus on the threefold
fermion, which hosts two linear bands and one momentum-
independent flat band around the threefold-degenerate point,
called the “spin-1 chiral fermion” or “triple-component
fermion.” The three-dimensional spin-1 fermion has been the-
oretically predicted to appear in chiral crystals [3,4] and has
been observed in CoSi [5–7], RhSi [8,9], and RhSn [10],
and in the sixfold fermion in AlPt [11], which is topologi-
cally equivalent to two copies of spin-1 fermions. In recent
years, quantum transport of the spin-1 fermion [12–17], opti-
cal response [18–31], thermal conduction phenomena [32,33],
quadratic dispersion with the spin-1 structure [34–36], and
quantum phenomena originating from topological structures
[37–39] have been studied, revealing exotic quantum phe-
nomena. A two-dimensional (approximate) version of the
spin-1 chiral fermion has also been studied to show a peculiar
quantum transport phenomenon originating from the flat band
[40–45].

We previously showed the quantum transport of a three-
dimensional spin-1 fermion under the Gaussian impurity
potential and have found a peak of the density of states (DOS)
and the suppressed electrical conductivity near zero Fermi
energy [16]. This peculiar behavior is attributed to the inter-
band effect between the flat and linear bands. On the other
hand, in that study, the screening length was assumed to be a
parameter. In reality, the screening length is not a parameter
but depends on the DOS, which could be strongly modified
by the impurity potential. Furthermore, the type of impurity
potential may alter the transport property. The Weyl fermion,
for example, undergoes a metal-semimetal transition at the
band degeneracy point under the Gaussian impurity but not
the Coulomb impurity [46–50].

In this study, we investigate quantum transport phenomena
in the spin-1 fermion systems subject to impurity scattering
due to the Coulomb potential. For the analysis, we use the self-
consistent Born approximation (SCBA) in the linear response
theory to correctly incorporate the screening effect associated
with the broadening of the spectral function. Our results in-
dicate that the screening effect is strongly enhanced around
the zero energy as the number of flat-band states included
in the theory increases. This screening effect gives rise to a
peak of the electrical conductivity around the zero energy.
We also find a substantial vertex correction effect impacting
conductivity in the high-energy region, where the screening
effect diminishes.

The paper is organized as follows. Our model for a spin-1
chiral fermion in the presence of impurity is introduced in
Sec. II. We calculate the DOS and the conductivity within
the SCBA with the current vertex correction in Sec. III.
The self-consistent equation for self-energy and the Bethe-
Salpeter equation for vertex correction are explicitly shown.
Our findings are detailed in Sec. IV. The conductivity within
the Boltzmann theory is calculated in Sec. V, followed by
a discussion of the roles of the interband effect and vertex
correction in Sec. VI. We also discuss the validity of the
approximation and potential experimental implications. Sec-
tion VII summarizes this work.

II. MODEL

First, we introduce a model for a spin-1 fermion, Coulomb-
impurity potential, and screening length to calculate the elec-
trical conductivity. The Hamiltonian of a three-dimensional
spin-1 fermion is written as

Ĥ = h̄vŜ · k, (1)

where v is the Fermi velocity, k is the electron wave number,
and S = (Ŝx, Ŝy, Ŝz ) are the spin operators:

Ŝx =
⎛
⎝0 i 0

−i 0 0
0 0 0

⎞
⎠, (2)
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Ŝy =
⎛
⎝0 0 −i

0 0 0
i 0 0

⎞
⎠, (3)

Ŝz =
⎛
⎝0 0 0

0 0 i
0 −i 0

⎞
⎠. (4)

From the Hamiltonian, the energy eigenvalues are obtained as

ελ,k = h̄vλk, (5)

where λ is the label for the conduction band (λ = 1), the flat
band (λ = 0), and the valence band (λ = −1). The eigenstates
vλ,k of the spin-1 fermion system are written as

v+1,k = 1√
2k

√
k2

x + k2
z

⎛
⎜⎝

kykz − ikkx

−k2
x − k2

z

kxky + ikkz

⎞
⎟⎠, (6)

v0,k = 1

k

⎛
⎜⎝

kz

ky

kx

⎞
⎟⎠, (7)

v−1,k = 1√
2k

√
k2

x + k2
z

⎛
⎜⎝

kykz + ikkx

−k2
x − k2

z

kxky − ikkz

⎞
⎟⎠. (8)

We assume the screened Coulomb potential as impurity
potential defined by

U (r) = ± e2

κr
exp(−qsr), (9)

where κ denotes the static dielectric constant, and the double
sign ± assumes an equal number of positive and negative
charged impurities, ensuring that the Fermi level is fixed
irrelevant to the impurity concentration. The Thomas-Fermi
screening length q−1

s is given by

q2
s = 4πe2

κ
D(ε), (10)

at zero temperature where D(ε) is the DOS.
We define a parameter characterizing the scattering

strength, which is an effective fine-structure constant, as

α = e2

h̄vκ
. (11)

The Fourier transform of Eq. (9) is obtained to be

u(q) =
∫

dre−iq·rU (r)

= ± 4πe2

κ (q2 + q2
s )

= ± 1

(q2/4π h̄vα) + D(ε)
. (12)

The isotropic disorder potential is characterized by the mo-
ment of scattering angle as

V 2
n (k, k′) = 2π

∫ 1

−1
d (cos θkk′ )|u(k − k′)|2 cosn θkk′ , (13)

where θkk′ represents the angle between k and k′, and explic-
itly shown as

V 2
0 (k, k′) = e4π3

κ2

64

C(k, k′)2 − 4k2k′2 , (14)

V 2
1 (k, k′) = e4π3

κ2

16

k2k′2

[
2C(k, k′)kk′

C(k, k′)2 − 4k2k′2

− arctanh

(
2kk′

C(k, k′)

)]
, (15)

V 2
2 (k, k′) = e4π3

κ2

16

k3k′3

[
2C(k, k′)2kk′ − 4k3k′3

C(k, k′)2 − 4k2k′2

− C(k, k′)arctanh

(
2kk′

C(k, k′)

)]
, (16)

V 2
3 (k, k′) = e4π3

κ2

4C(k, k′)
k4k′4

[
6C(k, k′)2kk′ − 16k3k′3

C(k, k′)2 − 4k2k′2

− 3C(k, k′)arctanh

(
2kk′

C(k, k′)

)]
, (17)

where

C(k, k′) ≡ k2 + k′2 + q2
s . (18)

We also define

q0 = n1/3
i , (19)

where ni is the number of scatterers per unit volume.

III. THE LINEAR RESPONSE THEORY
(SCBA) FORMULATION

Next, we calculate the DOS and conductivity by SCBA in
the linear response theory.

A. Formulation

Assuming a uniformly random impurity distribution, the
impurity-averaged Green’s function is expressed as

Ĝ(k, ε + is0) = 1

εŜ0 − h̄vkŜ · n − �̂(k, ε + is0)
, (20)

where Ŝ0 is the identity matrix, n = k/k is the unit vector, and
the sign s means the retarded (s = 1) and advanced (s = −1)
Green’s functions. The self-energy is written as

�̂(k, ε + is0) =
∫

dk′

(2π )3
ni|u(k − k′)|2Ĝ(k′, ε + is0) (21)

by SCBA. The DOS per unit volume is written as

D(ε) = − 1

π
Im

∫
dk

(2π )3
TrĜ(k, ε + i0). (22)

The conductivity is calculated as

σ (ε) = − h̄e2v2

4π

∑
s,s′=±1

ss′
∫

dk′

(2π )3
Tr[ŜxĜ(k′, ε + is0)

× Ĵx(k′, ε + is0, ε + is′0)Ĝ(k′, ε + is′0)] (23)

by the Kubo formula. Ĵx(k, ε, ε′) is the current vertex part
in the x direction and is determined by the Bethe-Salpeter

085204-2



ELECTRICAL CONDUCTIVITY AND SCREENING EFFECT … PHYSICAL REVIEW B 108, 085204 (2023)

equation:

Ĵx(k, ε, ε′) = Ŝx +
∫

dk′

(2π )3
ni|u(k − k′)|2Ĝ(k′, ε)

× Ĵx(k′, ε, ε′)Ĝ(k′, ε′). (24)

As demonstrated in the previous study [16], the equation men-
tioned above can be reformulated as an 8×8 matrix equation,
which is conveniently reproduced in Appendix A for the
reader’s benefit.

B. Intraband and interband contributions

For a comprehensive understanding of physical quantities
in multiorbital systems, it is advantageous to decompose them
into intraband and interband components. They are obtained
by diagonalizing the Green’s function matrix as

Û †Ĝ(k, ε + is0)Û =
⎛
⎝Gs

c 0 0
0 Gs

0 0
0 0 Gs

v

⎞
⎠, (25)

where the subscripts c, 0, and v denote the conduction, flat,
and valence bands in the band basis, respectively. In this basis,
the velocities Sx and Jx are written as

Û †ŜxÛ =
⎛
⎝Scc Sc0 0

S0c 0 S0v

0 Sv0 Svv

⎞
⎠ (26)

and

Û †Ĵx(k, ε + is0, ε + is′0)Û =

⎛
⎜⎝

Jss′
cc Jss′

c0 0

Jss′
0c Jss′

00 Jss′
0v

0 Jss′
v0 Jss′

vv

⎞
⎟⎠. (27)

We decompose the DOS into the Dirac-cone and the flat-band
terms as

DDirac(ε) = −s
1

π
Im

∫
dk

(2π )3

(
Gs

c + Gs
v

)
(28)

and

Dflat(ε) = −s
1

π
Im

∫
dk

(2π )3
Gs

0. (29)

Also, we decompose the conductivity into the intraband
effect and the interband effect. The intraband effect of the
Dirac cone are defined by

σintra(ε) = − h̄e2v2

4π

∑
s,s′=±1

ss′
∫

dk′

(2π )3

(
SccGs

cJss′
cc Gs′

c

+ SvvGs
vJss′

vv Gs′
v

)
. (30)

And the interband effects between the Dirac cone and the flat
band are defined by

σinter(ε) = − h̄e2v2

4π

∑
s,s′=±1

ss′
∫

dk′

(2π )3

(
S0cGs

cJss′
c0 Gs′

0

+ Sc0Gs
0Jss′

0c Gs′
c + S0vGs

vJss′
v0 Gs′

0 + Sv0Gs
0Jss′

0v Gs′
v

)
.

(31)

The intraband effect of the flat band is zero because the flat
band has zero group velocity. The interband effect between
the conduction and valence bands is also zero because of skew
symmetry of the Hamiltonian represented by Ĥ∗ = −Ĥ [21].

C. Numerical calculations

The self-consistent equations (20), (21), and (24) are
solved by numerical iteration [51]. We discretize the wave
number as

dk j = kc
j∑ jmax

j=1 j
, k j = 1

2
dk j +

j−1∑
j′=1

dk j′ , (32)

where j = 1, 2, . . . , jmax and kc is the cutoff wave number.
Hereafter, we fix jmax = 100.

IV. DENSITY OF STATES AND CONDUCTIVITY

The DOS and conductivity are obtained by SCBA. Note
that the results do not explicitly depend on q0 because the
DOS and the conductivity are functions of ε/(q0 h̄v) and α,
and are normalized by q2

0/h̄v and e2q0/h̄, respectively. We fix
kc = q0 in the following.

A. Density of states

Figure 1(a-1) shows the DOS as a function of Fermi en-
ergy. A peak structure is observed around the zero energy,
which becomes broad as α increases. In the high-energy
region, it approaches ε2/2π2(h̄v)3, the same as the clean
limit. Figure 1(a-2) provides a detailed understanding of these
behaviors: the DOS of the Dirac cones [Eq. (28)] and the
flat band [Eq. (29)]. The DOS from the flat band makes a
pronounced peak with a sharp onset at ε ∼ 0.3, while the
DOS from the Dirac cone is nearly proportional to ε2, similar
to that in the clean limit. This indicates that the peak in the
DOS originates solely from the flat band located at ε = 0.
The Dirac-cone contribution dominates the DOS in the high-
energy region.

B. Conductivity

Figure 1(b-1) shows the conductivity as a function of Fermi
energy. The conductivity shows a kinked structure at the
energy where the onset of the flat-band DOS Dflat occurs.
Namely, the conductivity is slightly suppressed in the low-
energy region inside the kinks. In this region, the flat-band
states, which have the zero group velocity, are dominant and
hence the conductivity is suppressed. Also, as α increases and
the peak of the DOS broadens, the positions of the kinks move
to a higher energy.

Figure 1(b-2) shows the results of decomposing the con-
ductivity for α = 0.01 into the intraband [Eq. (30)] and the
interband contributions between the Dirac cone and flat band
[Eq. (31)]. The contribution of the interband effect is compa-
rable to that of the intraband effect in the low-energy region.
On the one hand, in the high-energy region, the intraband term
becomes dominant.

In addition, we find that almost only the vertex cor-
rection contributes to the conductivity in the high-energy

085204-3



RISAKO KIKUCHI AND AI YAMAKAGE PHYSICAL REVIEW B 108, 085204 (2023)

FIG. 1. Quantum transport for kc = q0 derived by the SCBA. (a-1) DOS for α = 0.01 (red line), α = 0.02 (green line), and α = 0.03 (blue
line). (a-2) DOS from the Dirac cone (green line) and the flat band (yellow line) for α = 0.01. (b-1) The conductivity for α = 0.01 (red line),
α = 0.02 (green line), and α = 0.03 (blue line). (b-2) The conductivity from the intraband contribution of the Dirac cone (green line) and from
the interband contribution between the Dirac cone and the flat band (yellow line) for α = 0.01.

region, as shown in Fig. 2 and will be discussed in detail in
Sec. V C.

C. Screening effect

The significance of the screening effect is depicted in
Figs. 3 and 4, where the dependence of the DOS and con-
ductivity on the cutoff wave number kc is demonstrated. More
details are provided below. For these analyses, we have set
α = 0.02.

Figures 3(a-1) and 3(b-1) show the DOS and conductivity
for the cutoff wave number kc = q0 and 2q0. The larger kc is,
the higher the peak of the DOS becomes because the number
of flat-band states considered increases. On the other hand, the
conductivity shows a small peak near zero Fermi energy for
kc = 2q0. The evolution of DOS and conductivity for −0.2 <

ε < 0.2 with increasing kc is shown in Figs. 3(a-2) and 3(b-2).
It can be seen that the conductivity near zero Fermi energy
increases as kc increases.

As shown in Fig. 4, the Coulomb impurity potential has a
strong Fermi energy dependence. The potential is suppressed

in the low-energy region for a large kc. The large DOS for
a large kc in the low-energy region as in Fig. 3(a-2) en-
hances the screening effect, resulting in a large value of qs

within the Thomas-Fermi approximation Eq. (10). Then, the
larger the value of kc, the smaller the impurity potential be-
comes in the low-energy region. In the high-energy region,
the DOS is not substantially enhanced. Thus, the conductivity
generates a peak when kc is significant, even though flat-band
states have a vanishing group velocity in the vicinity of zero
Fermi energy. As shown in Fig. 5, decomposition of con-
ductivity shown in Fig. 3(b-2) into intraband [Fig. 5(a)] and
interband [Fig. 5(b)] effects, the interband term results in the
formation of the peak around zero energy. On the contrary, the
intraband term is nearly independent of kc.

V. BOLTZMANN TRANSPORT THEORY

The Boltzmann equation can be used to derive the qualita-
tive behavior of the intraband effect more easily than SCBA.
Here, we derive the conductivity from the Boltzmann equa-
tion to compare the results of the SCBA and the Boltzmann
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FIG. 2. The conductivity for α = 0.01 and kc = q0 derived by
the SCBA with the vertex correction (red line) and without the vertex
correction (purple line).

FIG. 3. Quantum transport for α = 0.02 derived by the SCBA. (a-1) DOS and (b-1) conductivity for kc = q0 (orange solid line) and
kc = 2q0 (blue dashed line). (a-2) DOS and (b-2) conductivity in the low energy region for kc = q0 (orange line), kc = 1.2q0 (yellow line),
kc = 1.4q0 (green line), kc = 1.7q0 (light-blue line), and kc = 2q0 (blue line).

equation and to explain why the vertex correction effect is
more significant.

A. Conductivity

The conductivity at the zero temperature is given by

σB(ε) = e2v2

3
D0(ε)τtr (ε), (33)

with D0 the DOS per unit volume in the clean limit and τtr the
transport relaxation time. The DOS is given by

D0(ε) = ε2

2π2(h̄v)3
for ε �= 0, (34)

originating from the Dirac cone (λ = ±1). The transport re-
laxation time is calculated by

1

τtr (ελ,k)
=

∑
λ′

∫
dk′

(2π )3
(1 − cos θk′k)Wλ′k′,λk. (35)

The scattering probability Wλ′k′,λk is given by the Fermi’s
golden rule as

Wλ′k′,λk = 2π

h̄
ni|〈λ′, k′|U |λ, k〉|2δ(ελ′,k′ − ελ,k), (36)
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FIG. 4. The impurity potential u(q) for α = 0.02 as a function of q and the Fermi energy derived by the SCBA. From left to right, the
cutoff wave number is taken as kc = q0, kc = 1.2q0, kc = 1.4q0, kc = 1.7q0, and kc = 2q0.

where

〈λ′, k′|U |λ, k〉 =
∫

dre−i(k−k′ )·rU (r)v†
λ′,kvλ,k. (37)

The transport relaxation time is obtained as

1

τtr (ε)
= ni

2π h̄2v

∫ 1

−1

∫ ∞

0
dk′d (cos θkk′ )k′2(1 − cos θkk′ )

× (cos θkk′ + 1)2

4
δ(k − k′)|u(k − k′)|2 (38)

= niε
2

4(2π )2h̄(h̄v)3

[
V 2

0 (ε/h̄v, ε/h̄v) + V 2
1 (ε/h̄v, ε/h̄v)

−V 2
2 (ε/h̄v, ε/h̄v) − V 2

3 (ε/h̄v, ε/h̄v)
]
, (39)

where the momentum is set to the Fermi momentum,
k = ε/h̄v. As a result, we find the conductivity

σB(ε) = e2ε4

6π h̄5v4q3
0α

2

× 1

−π (5π + 3α) + (2π + α)(2π + 3α)arctanh
(

π

π + α

) , (40)

for the Coulomb potential. This result is shown in Fig. 6.

B. Comparison of results from Boltzmann equation and SCBA

Figure 7 compares the conductivity derived from the
Boltzmann equation with that derived from SCBA. As the
Boltzmann equation does not consider the significant con-
tribution of the flat band with spectral broadening, it cannot
reproduce the kinklike structure seen in the SCBA for ε ∼ 0.3,
a point we elaborated in Sec. IV B.

C. Scattering-angle dependence

The conductivity obtained by SCBA shows that the vertex
correction effect contributes significantly to the conductivity,
as described in Sec. IV B. The vertex correction takes into
account the scattering-angle dependence of the conductiv-
ity. That is, the vertex correction incorporates the effect that
forward scattering has a small contribution to conductivity
suppression and backward scattering has a large contribution.
As a result, the conductivity experiences a substantial increase
due to the vertex correction, particularly when forward scat-
tering is the dominant process.

In the case of Boltzmann equation, on the other hand,
the second term in Eq. (35) corresponds to the effect of the
scattering-angle dependence. To extract the contribution from
the scattering-angle dependence, we define the momentum

FIG. 5. The conductivity for α = 0.02 derived by the SCBA (a) from the intraband contribution of the Dirac cone and (b) from the interband
contribution between the Dirac cone and the flat band, for kc = q0 (orange line), kc = 1.2q0 (yellow line), kc = 1.4q0 (green line), kc = 1.7q0

(light-blue line), and kc = 2q0 (blue line). This is a decomposition of Fig. 3(b-2) into intraband and interband effects.
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FIG. 6. Electrical conductivity of the spin-1 fermion for α = 0.01
(red line), α = 0.02 (green line), and α = 0.03 (blue line), derived by
the Boltzmann equation for ε �= 0.

relaxation time τ ′
tr (ε), not including the second term

in Eq. (35), as

1

τ ′
tr (ε)

= ni

2π h̄2v

∫ 1

−1

∫ ∞

0
dk′d (cos θkk′ )k′2

× (cos θkk′ + 1)2

4
δ(k − k′)|u(k − k′)|2

= niε
2

4(2π )2h̄(h̄v)3

[
V 2

0 (ε/h̄v, ε/h̄v) + 2V 2
1 (ε/h̄v, ε/h̄v)

+ V 2
2 (ε/h̄v, ε/h̄v)

]
. (41)

FIG. 7. The conductivity (α = 0.01) derived by the Boltzmann
equation (dashed line) for ε �= 0 and the SCBA (solid line) for
kc = q0.

FIG. 8. The conductivity (α = 0.01, ε �= 0) derived by the Boltz-
mann equation. σB(ε) (red line) derived including the second term in
Eq. (35), and σ ′

B(ε) (purple line) derived not including it.

The corresponding conductivity σ ′
B(ε) = e2v2D0(ε)τ ′

tr (ε)/3 is
obtained as

σ ′
B(ε) = e2ε4

12π 2 h̄5v4q3
0α

[
π (π + α) − α(2π + α)arctanh

(
π

π+α

)] .

(42)

The comparison between σB and σ ′
B is shown in Fig. 8. This

result suggests that the forward scattering dominates over
the scattering process under the Coulomb-potential impurity,
implying that the vertex correction is substantial.

The discussions presented above are corroborated by inves-
tigating the angle-dependent scattering amplitude associated
with the Coulomb potential. For a spin-1 fermion, the scatter-
ing amplitude ρ(θkk′ , qs ) shows an anomalous anisotropy,

ρ(θkk′ , qs ) = |〈±1, k|U |±1, k〉|2

= |u(k)|2|〈±1, k||±1, k〉|2

=
(

4πe2

κ
(
4k2 sin2 θkk′/2 + q2

s

)
)2

cos4 θkk′

2
, (43)

as depicted in Fig. 9. As qs, the inverse of the Thomas-Fermi
screening length, decreases, the forward-scattering θkk′ ∼ 0
contribution increases and diverges as sin−4 θkk′/2 in the un-
screened limit qs → 0. For a typical value, qs ∼ 0.01q0 for
α = 0.01, the contribution predominantly stems from forward
scattering.

Thus, in the present system, the vertex correction in the
SCBA and the second term in Eq. (35) within the Boltz-
mann equation significantly contribute to the conductivity.
This is due to the small screening effect and the dominant
forward scattering. This fact for the spin-1 fermion is ob-
tained by incorporating the screening effect from the DOS in a
self-consistent manner. A similar significant vertex correction
effect can be anticipated for topological semimetals with a
small Fermi energy.
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FIG. 9. The θkk′ dependence of the scattering amplitude
ρ(θkk′ , qs ) for qs = q0 (purple), qs = 0.1q0 (green), qs = 0.01q0

(light blue).

VI. DISCUSSION

We studied the transport phenomena of spin-1 fermions
under Coulomb-type impurity potential and observed a peak
in the DOS and a suppression of conductivity, similar to the
results previously obtained for the Gaussian impurity potential
[16]. On the other hand, when comparing the conductivity
under the two types of potentials, we found a noticeable dif-
ference in the dependence from the number of flat-band states
(cutoff wave number), as discussed below. We also comment
on the experimental realization of our result.

A. Conductivity depending on the number of flat-band states
(cutoff wave number)

The conductivity for the Coulomb potential increases in
the low-energy region as the number of flat-band states, pro-
portional to the cutoff wave number kc, increases. In contrast,
when the screening effect is not considered self-consistently,
the conductivity for the Gaussian potential in the low-energy
region approaches convergence in the kc → ∞ limit (see
Appendix C). The self-consistent formalism allows for the
consideration of the amplified screening effect in the low-
energy region. This enhancement is facilitated by the disorder
potential increasing the DOS, which in turn results in an in-
crease in conductivity. Therefore, the results differ from those
calculated for the Gauss potential without the self-consistent
Fermi-energy dependence of the screening effect.

In typical metals, on the one hand, the Fermi-energy de-
pendence on DOS is negligibly small; the conductivity is
insensitive to the self-consistent inclusion of the screening
effect.

B. Thomas-Fermi approximation

In the present model of the Coulomb potential, the
Thomas-Fermi approximation is considered by taking the
long-wavelength limit q → 0 of the polarization function.
Note that in the q → 0 limit Eqs. (10) and (12) are applicable
to any system due to the compressibility sum rule. On the
other hand, it has been shown that the polarization function
of spin-1 fermions increases with q [30] and implies that the
screening effect may be underestimated by the Thomas-Fermi
approximation [51]. Considering the full polarization function

could yield better quantitative results, which is an issue for
future investigation.

C. On experiment

We theoretically clarified the dependence of the DOS and
the conductivity on the Fermi energy. These are measured ex-
perimentally by continuously varying the Fermi energy with
the gating in the thin films of the spin-1 fermion materials.
Alternatively, the Fermi energy can be varied discretely by
doping the bulk material. However, besides spin-1 fermions,
actual materials also possess electronic states characterized by
double Weyl fermions. To fully comprehend transport mea-
surements, it is necessary to understand the quantum transport
phenomena associated with double Weyl fermions.

It is useful to evaluate the parameters and the order of
conductivity for further theoretical and experimental studies.
To date, no estimation has been made for the value of κ

in spin-1 fermion systems. However, the Dirac semimetal
Cd3As2 has κ = 36 [52]. Thus, we assume that a topolog-
ical semimetal with a spin-1 fermion could exhibit κ = 10,
comparable to that of Cd3As2. The effective fine-structure
constant α is 0.01 ∼ 0.1 for κ ∼ 10. The cutoff wave number
kc is of the order of the reciprocal of the lattice constant,
kc ∼ 1 Å−1. When the impurity concentration is about 0.1%,
the characteristic wave number is q0 = n1/3

i ∼ 0.1 Å−1. The
unit of energy is approximately q0 h̄v ∼ 1 eV, the unit of DOS
is q2

0/h̄v ∼ 10−3 eV−1 Å−3, and the unit of conductivity is
e2q0/h̄ ∼ 1 m−1 cm−1, which is of the order of the conduc-
tivity in semimetals.

VII. CONCLUSION

This study has elucidated the quantum transport theory for
a spin-1 chiral fermion under the Coulomb impurities within
the self-consistent Born approximation (SCBA), accounting
for the current vertex correction. Consequently, we observed
a peak structure in the density of states and identified the
suppression of conductivity arising from the flat band near
zero energy. Additionally, we discovered that an increase in
the number of flat-band electrons (resulting from an increased
cutoff wave number) leads to an anomalously strong screening
effect and substantial electrical conductivity in the low-energy
region. This is attributed to the pronounced Fermi-energy
dependence of the screening length for the Coulomb poten-
tial. In contrast, no such effect is observed for the Gaussian
impurity potential without the screening effect derived by
a self-consistent method. Furthermore, our findings indicate
that most of the scattering is forward scattering, which am-
plifies the vertex correction effect. The results of this study
provide a foundation for understanding the quantum trans-
port behavior of spin-1 fermions. The research suggests the
potential existence of nontrivial impurity effects in multifold
fermions. Exploring the quantum transport phenomena in var-
ious chiral-fermion systems presents an intriguing area for
future research.
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APPENDIX A: DETAILED CALCULATIONS

The self-energy is expressed as

�̂(k, ε) = �1(k, ε)Ŝ0 + �2(k, ε)(Ŝ · n) + �3(k, ε)(Ŝ · n)2,

(A1)

because of (Ŝ · n)3 = (Ŝ · n). From the above expression,
Eq. (20) can be rewritten as

Ĝ(k, ε) = 1

X (k, ε)Ŝ0 + Y (k, ε)Ŝ · n + Z (k, ε)(Ŝ · n)2

= x(k, ε)Ŝ0 + y(k, ε)(Ŝ · n) + z(k, ε)(Ŝ · n)2, (A2)

where

X (k, ε) = ε − �1(k, ε), (A3)

Y (k, ε) = −h̄vk − �2(k, ε), (A4)

Z (k, ε) = −�3(k, ε), (A5)

and

x(k, ε) = 1

X (k, ε)
, (A6)

y(k, ε) = − Y (k, ε)

[X (k, ε) + Z (k, ε)]2 − Y (k, ε)2
, (A7)

z(k, ε) = Y (k, ε)2 − Z (k, ε)[X (k, ε) + Z (k, ε)]

{[X (k, ε) + Z (k, ε)]2 − Y (k, ε)2}X (k, ε)
. (A8)

Substituting Eq. (A2) into Eq. (21), we obtain

�̂(k, ε + is0) = Ŝ0

∫
k′2dk′

(2π )3
ni

{
V 2

0 (k, k′)x(k′, ε + is0) + [
V 2

0 (k, k′) − V 2
2 (k, k′)

]
z(k′, ε + is0)

}

+ (Ŝ · n)
∫

k′2dk′

(2π )3
niV

2
1 (k, k′)y(k′, ε + is0) + (Ŝ · n)2

∫
k′2dk′

(2π )3
ni

(
3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

z(k′, ε + is0),

(A9)

using the relations shown in Appendix B. Comparing Eq. (A9) with Eq. (A1), we get

�1(k, ε + is0) =
∫

k′2dk′

(2π )3
ni

{
V 2

0 (k, k′)x(k′, ε + is0) + [
V 2

0 (k, k′) − V 2
2 (k, k′)

]
z(k′, ε + is0)

}
, (A10)

�2(k, ε + is0) =
∫

k′2dk′

(2π )3
niV

2
1 (k, k′)y(k′, ε + is0), (A11)

�3(k, ε + is0) =
∫

k′2dk′

(2π )3
ni

(
3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

z(k′, ε + is0). (A12)

Substituting Eq. (A2) into Eq. (22), the density of states can be rewritten as

D(ε) = − 1

π
Im

∫
dk

(2π )3

(
1

X (k, ε + i0)
+ 1

X (k, ε + i0) + Y (k, ε + i0) + Z (k, ε + i0)

+ 1

X (k, ε + i0) − Y (k, ε + i0) + Z (k, ε + i0)

)
. (A13)

In addition, the Bethe-Salpeter equation [Eq. (24)] can be reduced to a more manageable form. The current vertex Ĵx(k, ε, ε′)
is decomposed into eight terms as

Ĵx(k, ε, ε′) = ŜxJ0(k, ε, ε′) + nx(Ŝ · n)2J1(k, ε, ε′) + nx(Ŝ · n)J2(k, ε, ε′) + (Ŝ · n)2ŜxJ3(k, ε, ε′) + Ŝx(Ŝ · n)2J4(k, ε, ε′)

+ (Ŝ · n)ŜxJ5(k, ε, ε′) + Ŝx(Ŝ · n)J6(k, ε, ε′) + nxŜ0J7(k, ε, ε′), (A14)

by using Eqs. (B7)–(B11) for Eq. (24) (see Appendix B).
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From Appendix B, the Bethe-Salpeter equation [Eq. (24)] can be rewritten as

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J0

J1

J2

J3

J4

J5

J6

J7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+
∫

k′2dk′

(2π )3
ni

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

V 2
0 0 1

2V 2
0 − 1

2V 2
2 V 2

0 − V 2
2 V 2

0 − V 2
2 0 0 0

0 5
2V 2

3 − 3
2V 2

1 0 0 0 0 0 0

0 0 3
2V 2

2 − 1
2V 2

0 0 0 0 0 0

0 0 0 3
2V 2

2 − 1
2V 2

0 0 0 0 0

0 0 0 0 3
2V 2

2 − 1
2V 2

0 0 0 0

0 1
2V 2

1 − 1
2V 2

3 0 0 0 V 2
1 0 0

0 1
2V 2

1 − 1
2V 2

3 0 0 0 0 V 2
1 0

0 V 2
1 − V 2

3 0 0 0 0 0 V 2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

T̂

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

J ′
0

J ′
1

J ′
2

J ′
3

J ′
4

J ′
5

J ′
6

J ′
7

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A15)

where Ji = Ji(k, ε + is0, ε + is′0), J ′
i = Ji(k′, ε + is0, ε +

is′0),V 2
i = V 2

i (k, k′), x = x(k′, ε + is0), x′ = x(k′, ε + is′0),
and so on, and the matrix T̂ is defined as

T̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xx′ 0 0 0 0 0 0 0

T01 T11 T21 T31 T41 T51 T61 T71

T02 T12 T22 T32 T42 T52 T62 T72

zx′ 0 0 T33 0 yx′ 0 0

xz′ 0 0 0 T44 0 xy′ 0

yx′ 0 0 yx′ 0 T55 0 0

xy′ 0 0 0 xy′ 0 T66 0

0 0 0 0 0 0 0 xx′

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A16)

Here, the matrix elements Ti j in the second line of T̂ are
given by

T01 = yz′ + zy′, (A17)

T11 = xx′ + xz′ + yy′ + zx′ + zz′, (A18)

T21 = xy′ + yx′ + yz′ + zy′, (A19)

T31 = xy′ + yz′ + zy′, (A20)

T41 = yx′ + yz′ + zy′, (A21)

T51 = xz′ + yy′ + zz′, (A22)

T61 = yy′ + zx′ + zz′, (A23)

T71 = xz′ + yy′ + zx′ + zz′; (A24)

Ti j in the third line are given by

T02 = yy′ + zz′, (A25)

T12 = xy′ + yx′ + yz′ + zy′, (A26)

T22 = xx′ + xz′ + yy′ + zx′ + zz′, (A27)

T32 = xz′ + yy′ + zz′, (A28)

T42 = yy′ + zx′ + zz′, (A29)

T52 = xy′ + yz′ + zy′, (A30)

T62 = yx′ + yz′ + zy′, (A31)

T72 = xy′ + yx′ + yz′ + zy′; (A32)

and the others are given by

T33 = xx′ + zx′, (A33)

T44 = xx′ + xz′, (A34)

T55 = xx′ + zx′, (A35)

T66 = xx′ + xz′. (A36)

By solving these eight self-consistent equations
[Eq. (A15)], J0–J7 are determined. Substituting them into
Eq. (23), the conductivity can be rewritten as

σ (ε) = 2h̄e2v2

3

∫ ∞

0

k′2dk′

(2π )3
Re

[
−J++

0 + J++
1 + J++

2 + J++
3 + J++

4 + J++
5 + J++

6 + J++
7

(X + Y + Z )2

− J++
0 − J++

1 + J++
2 + J++

3 + J++
4 − J++

5 − J++
6 − J++

7

(X − Y + Z )2
− 2J++

0 + J++
3 + J++

4 + J++
5 + J++

6

X (X + Y + Z )

− 2J++
0 + J++

3 + J++
4 − J++

5 − J++
6

X (X − Y + Z )
+ J+−

0 + J+−
1 + J+−

2 + J+−
3 + J+−

4 + J+−
5 + J+−

6 + J+−
7

|X + Y + Z|2
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+ J+−
0 − J+−

1 + J+−
2 + J+−

3 + J+−
4 − J+−

5 − J+−
6 − J+−

7

|X − Y + Z|2 + J+−
0 + J+−

4 + J+−
6

X (X ∗ + Y ∗ + Z∗)

+ J+−
0 + J+−

4 − J+−
6

X (X ∗ − Y ∗ + Z∗)
+J+−

0 + J+−
3 + J+−

5

X ∗(X + Y + Z )
+ J+−

0 + J+−
3 − J+−

5

X ∗(X − Y + Z )

]
, (A37)

where Jss′
i = Ji(k′, ε + is0, ε + is′0), X = X (k′, ε + i0), and

so on.

APPENDIX B: USEFUL RELATIONS

Consider n⊥1, n⊥2, and n as three mutually perpendicular
unit vectors in three-dimensional space. Let Sx, Sy, and Sz

represent the 3 × 3 spin-1 representation matrices introduced
in the primary text. The following valuable relationships can
be derived from these parameters:

(Ŝ · n)3 = (Ŝ · n), (B1)

(Ŝ · n)2Ŝi(Ŝ · n)2 = (Ŝ · n)Ŝi(Ŝ · n) = ni(Ŝ · n), (B2)

(Ŝ · n⊥1)2 + (Ŝ · n⊥2)2 + (Ŝ · n)2 = 2Ŝ0, (B3)

(Ŝ · n⊥1)Ŝi(Ŝ · n⊥1) + (Ŝ · n⊥2)Ŝi(Ŝ · n⊥2)

+ (Ŝ · n)Ŝi(Ŝ · n) = Ŝi, (B4)

(Ŝ · n⊥1)ŜiŜ j (Ŝ · n⊥1) + (Ŝ · n⊥2)ŜiŜ j (Ŝ · n⊥2)

+ (Ŝ · n)ŜiŜ j (Ŝ · n) = −Ŝ j Ŝi + 2δi j Ŝ0. (B5)

An arbitrary unit vector n′ is written as

n′ = n⊥1 sin θ cos φ + n⊥2 sin θ sin φ + n cos θ, (B6)

where θ represents the angle between n and n′, while φ

signifies the azimuth angle within the n⊥1-n⊥2 planes.
By Eqs. (B1)–(B5), we derive the following equations as∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2(Ŝ · n′) = (Ŝ · n)V 2

1 (k, k′), (B7)∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2(Ŝ · n′)2

=
(

3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

(Ŝ · n)2

+ [
V 2

0 (k, k′) − V 2
2 (k, k′)

]
Ŝ0, (B8)∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2n′

xŜ0 = V 2
1 (k, k′)nxŜ0, (B9)∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2n′

x(Ŝ · n′)

=
(

3

2
V 2

2 (k, k′) − 1

2
V 2

0 (k, k′)
)

nx(Ŝ · n)

+ 1

2

[
V 2

0 (k, k′) − V 2
2 (k, k′)

]
Ŝx, (B10)

∫ 2π

0

∫ π

0
dθdφ|u(k − k′)|2n′

x(Ŝ · n′)2

= 1

2

[
V 2

1 (k, k′) − V 2
3 (k, k′)

]
Ŝx(Ŝ · n)

+ 1

2

[
V 2

1 (k, k′) − V 2
3 (k, k′)

]
(Ŝ · n)Ŝx

+ [
V 2

1 (k, k′) − V 2
3 (k, k′)

]
nxŜ0

+
(

5

2
V 2

3 (k, k′) − 3

2
V 2

1 (k, k′)
)

nx(Ŝ · n)2. (B11)

APPENDIX C: GAUSS POTENTIAL

Here we show the results for the cutoff-wave-number de-
pendence of conductivity under the Gaussian potential [16].

The Gaussian potential is defined by

U (r) = ±u0

(
√

πd0)3
exp

(
− r2

d2
0

)
, (C1)

where d0 is the characteristic length scale and ±u0 is the
strength of the impurity potential. The Fourier transforms are
obtained to be

u(k) = ±u0 exp

(
−k2

q2
0

)
, (C2)

FIG. 10. The conductivity derived by the SCBA for kc = q0 (or-
ange line), kc = 2q0 (yellow line), and kc = 10q0 (blue line) under
the Gaussian potential (W = 2).
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with q0 = 2/d0. Note that the definition of q0 differs from that
of the Coulomb potential case [Eq. (19)]. We also define a
parameter characterizing the scattering strength,

W = q0niu
2
0, (C3)

where ni is the number of scatterers per unit volume.
Numerical calculations by the SCBA yield the conductivity

as shown in Fig. 10. In the low-energy region, the conductivity
is suppressed by the flat band with zero group velocity, and
nearly independent of the cutoff wave number kc.
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