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Formation energy of intrinsic defects in silicon from the Galitskii-Migdal formula
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The work is devoted to the formation energy calculations of intrinsic defects in silicon based on the GW
method and the Galitskii-Migdal formula. Two methods for calculating the electronic response function are
applied. The first one uses direct integration over frequency to determine the response function. The diagonal
form of the spectral function is the only assumption within the random phase approximation (RPA) framework,
but the supercell calculations are very time consuming. Therefore, we propose the method in which the response
function is calculated in the plasmon pole approximation, and the GW contribution to the exchange-correlation
energy is taken with a certain mixing constant. The value of the constant is found from the correspondence
with experimental data. This makes it possible to obtain accuracy comparable to the first method at significantly
lower computational costs. The described method is used to calculate the formation energy of the neutral self-
interstitial, vacancy, and two divacancy structures in supercells of 214–217 silicon atoms.
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I. INTRODUCTION

The study of intrinsic defects in a silicon crystal is rel-
evant because of the exceptional role of silicon devices in
microelectronics. Such defects (vacancies, interstitials, etc.)
arise under the influence of ionizing radiation, ion implanta-
tion, plasma etching, mechanical impact, and other factors.
Knowledge of the defect formation energy is necessary for
calculating the concentration of defects and their movement
through the crystal, and finding the corresponding properties
of the system. Experimental methods, however, face diffi-
culties. The results are obtained by indirect methods, often
differ markedly and can be interpreted in different ways [1–5].
Therefore, theoretical methods are of great importance.

The defect formation energy E f is determined as follows.
When removing k atoms from a certain region of a supercell
with N atoms, we can write

E f = Etot (SiN−k ) + kμ − Etot (SiN ), (1)

where Etot (SiN ) is the energy of an ideal supercell of N silicon
atoms, Etot (SiN−k ) is the energy of a supercell with a defect
of N − k silicon atoms, and μ = Etot (SiN )/N is the chemical
potential of silicon atom. Eventually,

E f = Etot (SiN−k ) − N − k

N
Etot (SiN ). (2)

A feature of the defects under study is the appearance of
electronic bands in the band gap of the crystal. It is well
known that methods based on density functional theory (DFT)
and local-density functionals poorly describe such systems,
greatly underestimating the size of the band gap and delo-
calizing defective electronic levels (electron self-interaction
error). The defect formation energy in DFT is also underes-
timated. The reason for such errors lies in the consideration
of the exchange-correlation (xc) contribution. For a correct
quantitative description of a defect in a crystal, one needs to

adequately account for the xc contribution, which will deter-
mine the accuracy of the approximation used. In general, the
electronic response function could be expressed as the Dyson
equation:

χ (kω) = χ0(kω) + χ0(kω)[v(k) + fxc(kω)]χ (kω), (3)

where χ0(kω) is the response function of noninteracting par-
ticles, v(k) is the Coulomb interaction and fxc(kω) is the xc
kernel ( fxc = δVxc/δρ, where Vxc is the exchange-correlation
functional). In the simplest case fxc = 0, which corresponds
to the random phase approximation (RPA) [6]. Despite the
simplicity, this approach makes it possible to describe screen-
ing and improve the treating of quasiparticle properties in
semiconductors [7]. Consideration of more complex kernels
fxc greatly complicates the calculation, but does not always
lead to an increase in accuracy [8]. At the moment, the use of
such cores is limited to simple systems, such as electronic gas
[9–11], as well as systems containing dozens of atoms [12,13].

The use of RPA to calculate the total energy of a system
has a long history. Some papers claimed a noticeable increase
in accuracy compared to the initial approximation. In others
the result was the opposite. In the papers [8,12,14,15] the
atomization energies of main-group molecules calculated with
RPA were often worse than in DFT. In contrast, RPA describes
well structural properties and binding energies of systems in
which the van der Waals (vDW) interaction plays a signifi-
cant role [15–22]. This can be explained as follows. RPA is
known to describe long-range correlations well. Accordingly,
in systems where such a contribution is large, the results
show an increase in accuracy. On the other hand, RPA poor
ly describes short-range correlations, which leads, for exam-
ple, to inaccurate accounting for covalent bond strengths, etc.
Thus, RPA is not suitable as a universal and highly precise
post-DFT method for finding system energy from the first
principles. However, this is the method that goes beyond
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the semilocal approximation, strictly describes metal-type
screening, and shows how correlations affect the properties of
the system [15]. It makes RPA one of several major post-DFT
approaches.

There are several ways to find the total energy within RPA.
The RPA correlation energy can be calculated with the adi-
abatic connection fluctuation dissipation theorem (ACFDT)
by integrating over the coupling constant [12,23,24]. At the
moment, it is one of the most commonly used approaches
for calculating RPA total energy for realistic systems [18].
The total energy can be found variationally by functionals of
the Green’s function, such as the Klein and Luttinger-Ward
functionals [25,26]. The shortcoming of this approach is that
the functionals have an implicit form and are very complicated
when calculating real systems.

The following features that specify the calculation methods
can be distinguished for the systems with intrinsic defects in
the silicon. The electron density in such systems is inhomo-
geneous. There are two different regions: the crystal region
and the defect one. The standard DFT local xc functional is
constructed to work well in the first region, but is poorly appli-
cable to the description of the second. The electron density in
the defect region is formed by dangling weakly bound orbitals
with a high electronic response, that is well described in terms
of RPA long-wave screening.

In this paper, the system energy within the RPA framework
is found by the Galitskii-Migdal formula [27] on the basis
of a one-iteration GW calculation (G0W0) with the Perdew-
Burke-Ernzerhof (PBE) initial approximation. The advantage

of this approach is the simplicity of the Galitskii-Migdal an-
alytical expression and the practical implementation of the
GW method in many software packages. GW is a perturbative
method and initial approximation can significantly affect the
results [28]. This problem is removed in a self-consistent GW
(sc-GW ) that is a norm-conserving, starting point independent
approximation [29,30]. For electron gas sc-GW gives total
energy in perfect agreement with Monte Carlo calculations
[31,32]. But, even for such a system, this is a computation-
ally expensive task. In recent years, sc-GW calculations for
real systems have also appeared [33–35]. The accuracy of
sc-GW total energy calculation decreases as the behavior of
the system moves away from the case of an electron gas
[36–38]. In addition, self-consistency in GW can lead to neg-
ative effects in the description of the quasiparticle spectrum:
excessive broadening of the valence band, the appearance of
nonphysical features in the spectral function, and distortion
of the satellite structure [39]. There are no such problems in
G0W0, which is due to the fact that errors from the lack of
self-consistency and the absence of vertex corrections are mu-
tually subtracted. G0W0 is accurate for semiconductors [12,23]
and is widely used in practice. Moreover, crystalline silicon
is a reference example for G0W0 PBE calculation. Thus, the
approximation used should be accurate for systems of silicon
defects too. In addition to the calculations of the defect for-
mation energies, the effectiveness of the proposed approach
will be analyzed, since its accuracy is limited by taking into
account only RPA-type correlations, while calculations can be
quite time consuming.

II. THEORY

The total energy is given by

Etot{ρ} = Ekin +
∫

Vext (r)ρ(r)d3r + 1

2

∫
d3r d3r′〈N |ψ̂†(r)ψ̂†(r′)v(r − r′)ψ̂ (r′)ψ̂ (r)|N〉 (4)

where the first term is kinetic energy, the second is the energy in an external field, and the last term describes the electron-electron
interaction. The equation of motion for the Green’s function G is[

i
∂

∂t
− h(r)

]
G(rt, r′t ′) + i

∫
d3r′′〈N |ψ̂†(r)ψ̂†(r′′)v(r − r′′)ψ̂ (r′′)ψ̂ (r)|N〉 = δ(r − r′)δ(t − t ′), (5)

where h(r) = − h̄2

2m ∇2 + Vext (r) is the single-particle operator, r′ → r, t ′ → t+. After expressing the last term in the left part of
(5) (electron-electron interaction) and substituting into (4), we get

Etot{ρ} = − i

2

∫
d3r

[
i
∂

∂t
+ h(r)

]
G(rt, r′t ′)r′→r,t ′→t+ . (6)

Expression (6) is the Galitskii-Migdal formula for the total energy depending on the single-particle Green’s function. The spectral
representation for the Green’s function is

G(r, r′; ω) =
∫ μ

−∞
dω′ A(r, r′; ω′)

ω − ω′ − iδ
+

∫ ∞

μ

dω′ A(r, r′; ω′)
ω − ω′ + iδ

. (7)

After substituting the spectral representation in (6),

Etot{ρ} = 1

2

∫
d3r

∫ μ

−∞
dω[ω + h(r)]A(r, r′; ω)r′→r . (8)

We express the spectral density in the Kohn-Sham basis:

A(r, r′; ω) =
∑
knn′

ψkn(r)Ann′ (k, ω)ψ∗
kn′ (r′) (9)
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and substitute in (8). Substituting also h(r) from the Kohn-Sham equation [h + VH + Vxc]ψkn = εknψkn and assuming the spectral
function to be diagonal,

∫ μ

−∞ dωAnn′ (k, ω) = nknδnn′ , we get

Etot{ρ} = 1

2

[∫ μ

−∞
dω ωA(ω) +

∑
kn

nknεkn −
∫

drVHρ(r) −
∫

drVxcρ(r)

]
. (10)

Such an approximation is valid, since calculations show that the nondiagonal elements are very small [7,28,40]. When
considering only the diagonal self-energy elements in silicon, it is possible to obtain quasiparticle energies with an error of less
than 0.05 eV [7]. Moreover, off-diagonal elements can change sign, so the integration over frequency makes their contribution
even less [28,41].

The DFT total energy is

EDFT
tot = Ekin +

∫
Vext (r)ρ(r)dr + e2

2

∫
ρ(r)ρ(r′)
|r − r′| drdr′ +

∫
εxc{ρ(r)}ρ(r)dr. (11)

Let us express Ekin from the Kohn-Sham equation:

Ekin = −
∑

kn

h̄2∇2

2m
ψ2

kn =
∑

kn

εDFT
kn nkn −

∑
kn

∫
Veff (r)ψ2

kn(r)dr (12)

=
∑

kn

εDFT
kn nkn −

∫
Vext (r)ρ(r)dr − e2

∫
ρ(r)ρ(r′)
|r − r′| dr dr′ −

∫
Vxc(r)ρ(r)dr. (13)

After substitution into (11) we get

EDFT
tot =

∑
kn

nknε
DFT
kn − e2

2

∫
ρ(r)ρ(r′)
|r − r′| dr dr′ +

∫
εxc{ρ(r)}ρ(r)dr −

∫
Vxc(r)ρ(r)dr, (14)

and together with (10) we obtain the Galitskii-Migdal correction to the DFT total energy [28]:

Etot − EDFT
tot = −Exc + 1

2

[∫ μ

−∞
dω ωA(ω) −

∑
kn

nknε
DFT
kn +

∑
kn

nknV
xc

kn

]
, (15)

where V xc
kn = 〈ψkn|V̂xc|ψkn〉. The formula (15) will be used further to calculate the total energy.

When calculating with the use of generalized plasmon pole approximation (GPP approximation), the spectral function was
considered as a set of delta functions at quasiparticle energies εGW

kn = εDFT
kn − V xc

kn + 	GPP
kn [42]. Then

EGW
tot = EDFT

tot − Exc + 1

2

[∑
kn

(
εGW

kn − εDFT
kn

)
nkn +

∑
kn

nknV
xc

kn

]
= EDFT

tot − Exc + 1

2

∑
kn

nkn	
GPP
kn . (16)

Simplification in the form of GPP makes the resulting correction to energy rougher and overestimated. So it is logical to take
it into account with some weight factor. This approach is similar to the hybrid functional method [43–45]: when the exchange-
correlation energy includes the exact exchange multiplied by the mixing constant α, the rest is calculated by the corresponding
DFT functional. In our case, not only static correlations at the Hartree-Fock level are taken into account, but also dynamic
correlations at the RPA level:

EGPP
tot = EDFT

tot − αExc + α	GPP = EDFT
tot − αExc + α

1

2

∑
kn

nkn
[
εGW

kn − εDFT
kn + V xc

kn

]
. (17)

Regarding the use of the standard hybrid functional for defects
in silicon, the following can be noted. The performance of lo-
cal xc functionals [like the local density approximation (LDA)
and generalized gradient approximation (GGA)] is largely due
to cancellation of errors between exchange and correlation.
This cancellation works well for typical bulk, but is violated
for dangling bonds, for the dissociated atoms, etc. The hybrid
functional, although improving the description, retains the
same limitation. The hybrid functional has an addition of a di-
rect static exchange, but the absence of a dynamic contribution
does not allow for the error of the correlation part in the local

xc functional to be compensated. This makes it necessary to
take into account the dynamic contribution as well.

III. CALCULATION DETAILS

DFT calculations in the QUANTUM ESPRESSO code [46]
with PBE GGA pseudopotential were used as a starting point
for the GW computations. The calculations in crystalline sil-
icon were carried out for the diamond structure with a cubic
unit cell edge of 5.43 Å, and plane wave basis cutoff energy
was set to 45 Ry. Calculations in 64–65 atom supercells were
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carried out on a uniform grid containing 3 × 3 × 3 k points in
the case of the full frequency dielectric matrix calculations,
and containing 4 × 4 × 4 k points in the case of the GPP
approximation. The total energy for a given structure was
found as a weighted average for three k points (�; 0, 0, 1/3;
0, 1/3, 2/3), with k-point weight corresponding to its sym-
metry degeneration (1, 3, and 6 respectively). Calculations in
214–217 atom supercells were carried out on a uniform grid
containing 2 × 2 × 2 k points. The total energy was calculated
at the � point; at other k points the total energy differed by no
more than 0.01 eV.

For GW approximation calculations the BERKELEYGW

[7,42,47] package was applied. The unoccupied bands were
calculated up to 20 eV above the Fermi surface. Energy cutoff
for the dielectric matrix was set to 5 Ry. Two methods for
calculating the total energy from GW were used. In the first
method (full-frequency GW ), the dielectric response function
is found by integrating over frequency with the contour-
deformation formalism. The dielectric matrix is evaluated for
both real and imaginary frequencies: a uniform grid with steps
of 0.25 eV for the frequency range of 0–46 eV on the real
axis plus 15 imaginary frequencies. The spectral function is
integrated over the frequency interval starting from 50 eV
below the Fermi energy and ending at energy 1 eV above
the Fermi energy. Such an interval ensures the integration of
all features of the spectral function, taking into account its
satellite structure [48]. The total energy for a chosen k point
was calculated by the formula (15). It is worth noting that the
calculation by the full-frequency GW for 64–65 atom super-
cells turns out to be computationally extremely expensive. The
calculation of one k point took 3–4 days for 2048 Intel Xeon
E5-2697Av4 core processor.

The second method of calculating the total energy uses
the GPP approximation to find the dielectric matrix. The
computational requirements in this case are an order of mag-
nitude less in comparison with full-frequency GW . The total
energy is found by the formula (17) based on the calculated
quasiparticle energies εGW

i = εDFT
i + 〈ψi|	(εGW

i ) − Vxc|ψi〉.
The energy εGW

i appears in the right and left sides of the equa-
tion. To find a self-consistent value we make iterations of the
substitutions εGW

i into 	 for the next step until convergence is
achieved (self-consistency in the eigenvalues, or ev-sc-GW )
[7]. This reduces the dependence of the GW calculation on
the initial approximation [49] and, in most cases, increases the
accuracy of the quasiparticle energies [49–51]. Comparison
of GPP GW results with experimental data, as will be shown
below for several calculations, demonstrates that the value of
the optimal mixing constant α belongs to the range of 5%–
15%. Note, for example, that in the hybrid functional PBE0
the mixing constant is higher and usually amounts to about
20%–25% [44,45]. When mentioning the GW calculation be-
low, we will mean a one-iteration calculation of G0W0.

The calculations of the energy for silicon cluster dissocia-
tions Si4 → 2Si2 and Si6 → 2Si3 were carried out at the �

point with the same parameters as calculations in a silicon
crystal. A cubic supercell with a side of 50 bohrs was used.
This size provides a sufficient vacuum layer to minimize the
impact of replicas from neighboring supercells. The dissoci-
ation energy was defined as the difference between the total
energy of the initial cluster and the energy when the cluster

FIG. 1. Structures of symmetric and asymmetric divacancies
(left part), self-interstitial structure with the split 〈110〉 symmetry
(right part). Lengths are given in angstroms.

is divided into two equal parts separated by a distance of
half the diagonal of the supercell. In the Si2 cluster, the PBE
gives fractional occupancies of the electronic levels. There-
fore, when calculating the total energy with formulas (15)
and (17), the corresponding occupation numbers should be
substituted.

The structures of the considered defects were relaxed using
the PBE GGA functional until atomic forces became less than
10−4 Ry/Å. The Si vacancy in a neutral charge state has the
symmetry D2d . The self-interstitial has several structures that
are close in energy. We consider the most stable structure split
〈110〉 [52], the geometry of which is shown in Fig. 1. The ge-
ometries of the two most energetically favorable divacancies
[53], which were considered in the paper, are also shown in
Fig. 1. The defect formation energy was determined by the
formula (2).

IV. RESULTS AND DISCUSSION

To evaluate the methods used, we calculated the energy
for cluster dissociations Si4 → 2Si2 and Si6 → 2Si3. These
examples are indicative because the dangling bonds of silicon
affect the energy of clusters, as in the case of intrinsic defects
in a crystal. However, the screening in such small objects
differs from the screening in a crystal and is described worse
in terms of RPA [14]. Table I shows the experimental values
for the Si4 and Si6 dissociation energies, the results using
PBE, hybrid functionals PBE0, B3LYP, and HSE06, as well as
in the full-frequency GW and GPP GW with mixings of 15%,
10%, and 5%. In the case of Si4 → 2Si2 the dissociation en-
ergy error is 0.98 eV (17.5%) for PBE and 1.02 eV (18%) for
PBE0, 0.3 eV (5%) for B3LYP, 2 eV (36%) for HSE06, and
0.26 eV (4.5%) for full-frequency GW . The dissociation en-
ergy error of Si6 → 2Si3 is 0.05 eV (1%) for PBE and 0.27 eV
(4.5%) for PBE0, −1.03 eV (18%) for B3LYP, 0.26 eV (4.5%)
for HSE06, and 0.01 eV (0.2%) for full-frequency GW . The
accuracy of PBE and hybrid functionals is noticeably lower
than the accuracy of full-frequency GW .

When calculating the Si4 dissociation energy with GPP
GW , the optimal mixing value is about 15%. In the case of
Si6 dissociation, the optimal mixing is slightly less than 5%.
This difference is explained by the fact that the examples con-
sidered represent two extreme cases. Within the framework
of PBE, the Si6 → 2Si3 dissociation is described well, while
the Si4 → 2Si2 dissociation energy exhibits a serious error,
which is caused by an inaccurate description of the Si2 dimer.
In Si2, only one electron per atom participates in the formation
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TABLE I. Dissociation energy of Si4 and Si6 clusters. For the GPP G0W0 the mixing constant is given in parentheses.

Si4 → 2Si2 diss. energy (eV) Si6 → 2Si3 diss. energy (eV)

Experiment [54] 5.6 5.82
Full-freq. G0W0 5.86 5.83
GPP G0W0 5.62 (15%), 5.94 (10%), 6.26 (5%) 5.64 (15%), 5.71 (10%), 5.79 (5%)
PBE 6.58 5.87
PBE0 6.62 6.09
B3LYP 5.9 4.79
HSE06 7.6 6.08

of a covalent bond; the other three valence electrons remain
unpaired and delocalized, and make a large contribution to
the electron self-interaction error. In the Si3 cluster (obtained
in Si6 dissociation), the self-interaction error is noticeably
smaller, since two unpaired electrons on each atom are local-
ized on opposite sides of the cluster plane and interact more
weakly. These two considered cases allow us to estimate the
limits of the mixing constant in GPP GW ; a typical value
should be in this range. In DFT PBE calculations for a silicon
crystal, the defective bands depend on the self-interaction
error noticeably. Therefore, for GPP GW it is logical to expect
the mixing in the region of 15%–10%, comparable to mixing
for Si4 → 2Si2 dissociation.

The upper part of Table II contains the results of the E f

calculations for the self-interstitial in a 65 atom supercell by
the PBE, full-frequency GW , and GPP GW methods. As a
reference value for the self-interstitial E f , we consider the
range of 5–4.4 eV, which is based on quantum Monte Carlo
calculations: 4.96 eV in [55], 4.94 eV in [56], and also 4.4 eV
in [57]. Experimental energy values vary too much to be ref-
erence ones. For example, the experimental activation energy
(formation energy + migration barrier) of an interstitial was
determined as 4.68 eV in [4] and as 5.8 eV in [58]. The mi-
gration barrier values are determined from 0.13 to 2 eV [59].
The full-frequency GW in a 65 atom supercell gives interstitial
formation energy of 6.07 eV. This overestimates the reference
value by 1–1.5 eV (while PBE underestimates by the same
amount). Apparently, a significant error of full-frequency GW
is explained by insufficient calculation parameters. A more
accurate description of the spectral function in the region of

the Fermi surface (where it has a form close to the δ function)
is needed. The GPP GW with 10% mixing gives an interstitial
E f of 4.56 eV, which lies in the reference range. Further, 10%
mixing for GPP GW will be considered as the default; the
corresponding values in the table are marked in bold.

The second part of Table II contains the results of the E f

calculations in a 214–217 atom supercell by the PBE and GPP
GW methods for vacancy, interstitial, and two divacancies.
The use of full-frequency GW in such a supercell requires
excessive computing resources. The interstitial formation en-
ergy in GPP GW is 4.58 eV and coincides with the value
for a 65 atom supercell, which indicates that convergence in
the supercell parameter for the interstitial has been achieved.
The interstitial has the lowest E f . The structures next on the
energy scale are a vacancy with E f = 5.23 eV, and two diva-
cancies with E f = 5.84 eV and E f = 5.95 eV. This ordering
differs from PBE calculations, in which the interstitial and
vacancy have approximately equal E f , that is 1.5 eV less
than E f for divacancies. In all considered defects, PBE shows
noticeably lower formation energy in comparison with GW .
Underestimation of E f is typical in local-density functionals,
including defects in other materials [60,61]. GW corrects the
PBE formation energy towards the right value. This correction
is usually excessive due to the overestimation of the correla-
tion energy contribution in RPA [12,13,15].

For comparison, we present the E f obtained in RPA by
other authors for the split 〈110〉 interstitial, vacancy, and di-
vacancy. In [52] interstitial E f equals 4.46 eV. In [62] E f

equals 4.33 eV for a vacancy and 4.20 eV for an intersti-
tial. In [63] the range-separated RPA gives E f of a vacancy

TABLE II. Defect formation energy Ef in a supercell (eV). For the GPP G0W0 the mixing constant is given in parentheses.

Interstitial Divacancy

Vacancy split 〈110〉 Nonsymmetric Symmetric

64–65 atom supercell
PBE 3.6 3.62 5.4
full-freq. G0W0 6.07
GPP G0W0 5.03 (15%)

4.56 (10%)
4.09 (5%)

214–217 atom supercell
PBE 3.63 3.66 5.1 5.19
GPP G0W0 6.05 (15%) 5.03 (15%) 6.21 (15%) 6.32 (15%)

5.24 (10%) 4.58 (10%) 5.84 (10%) 5.95 (10%)
4.44 (5%) 4.12 (5%) 5.47 (5%) 5.57 (5%)
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equal to 4.33 eV and to 4.49 eV for an interstitial. In [64]
the RPA with the exact exchange included gives E f equal to
4.51 eV for a vacancy, 4.24 eV for an interstitial, and 6.59 eV
for a divacancy. The range-separated RPA gives E f equal to
4.26 eV for a vacancy, 4.42 eV for an interstitial, and 6.79 eV
for a divacancy in [64]. The structure of the divacancy in
[64] is not specified. We also indicate the experimental values.
The experimental activation energy of the self-interstitial was
determined in the range from 4.68 eV [4] to 5.8 eV [58], the
experimental formation energy of a vacancy was determined
in the range from 2 eV [3] to 3.6 eV [1]. As can be seen, in
the works cited, the calculated values of E f for each defect
vary by 0.2–0.3 eV. The calculated vacancy formation energy
in given works is almost 1 eV higher than our value. The
interstitial E f in our calculations is in good agreement with
the results of [52,63], as well as the range-separated RPA in
[64]. The E f for divacancies in our calculations are almost
1 eV lower than in [64]; however, the divacancy structure
considered in [64] can be, in principle, higher in energy.

V. CONCLUSIONS

Total energy calculations in the framework of the Galitskii-
Migdal formalism based on the G0W0 method were made.
It was shown that in silicon structures with dangling elec-
tronic bonds this approach improves the accuracy of the
total energy differences compared to the initial PBE approx-
imation. The approach was applied to the formation energy
calculations of the neutral intrinsic defects in a silicon super-
cell. The full-frequency GW calculations for a 64–65 atom

supercell turn out to be very time consuming, while the value
of self-interstitial E f is greatly overestimated. Improving the
accuracy requires better calculation parameters. To circum-
vent the limitation of excessive computational requirements,
a method has been proposed where the response function is
calculated in the plasmon pole approximation. In this case,
the value of the exchange-correlation energy is usually over-
estimated compared to the full-frequency GW . Therefore, the
contribution of GPP GW was taken with a certain mixing con-
stant. The optimal mixing coefficient of 10% was determined
from the analysis of GPP GW results for Si4 and Si6 clusters
dissociation and the calculation of E f for the silicon self-
interstitial. The demonstrated accuracy becomes comparable
to full-frequency GW , while the computational requirements
are much lower. Eventually this allows one to calculate the
defect formation energies in supercells of 214–217 silicon
atoms. The following values were obtained: 4.58 eV for an
interstitial, 5.23 eV for a vacancy, and 5.84 eV and 5.95 eV for
asymmetric and symmetric divacancies. The applied approach
is conceptually similar to the hybrid functional in DFT, but in
comparison to the latter it takes into account the effects of
dynamic correlations beyond the local approximation.
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