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First-principles study of the spin-orbit coupling contribution to anisotropic magnetic interactions
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Anisotropic magnetic exchange interactions lead to a surprisingly rich variety of magnetic properties. Con-
sidering the spin-orbit coupling (SOC) as perturbation, we extract the general expression of a bilinear spin
Hamiltonian, including isotropic exchange interaction, antisymmetric Dzyaloshinskii-Moriya (DM) interaction,
and symmetric � term. We derive the expressions for the second-order SOC contribution to DM interaction, and
reveal that the essential distinction between the DM and � term is from their different hopping processes, rather
than the different orders of SOC. Based on combining the magnetic force theorem and linear-response approach,
we present a method of calculating anisotropic magnetic interactions, which now has been implemented in
the open source software WIENJ. Furthermore, we introduce another method which could calculate the first-
and second-order SOC contribution to the DM interaction separately, and overcome some shortcomings of
previous methods. Our methods are successfully applied to several typical weak ferromagnets for 3d , 4d ,
and 5d transition-metal oxides. We also predict the conditions where the DM interactions proportional to λ

approximately vanish while the DM interactions proportional to λ2 are nonzero, and believe that it may exist in
certain magnetic materials.
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I. INTRODUCTION

Magnetic properties can be typically described by a
quadratic spin Hamiltonian, which is the basis of most mag-
netic theoretical investigations [1–4]. Generally, spin-orbit
coupling (SOC) always exists and leads to the anisotropic
magnetic interactions with low symmetry. The general form of
the bilinear expression of a spin-exchange Hamiltonian could
be written as

H =
∑
i< j

Ji jSi · S j +
∑
i< j

Di j · [Si × S j] +
∑
i< j

Si · �i j · S j,

(1)

where the first term describes the isotropic Heisenberg Hamil-
tonian, the second one represents the Dzyaloshinskii-Moriya
(DM) [5–7] interaction, and the third one is marked as
the � term [6]. The antisymmetric DM interaction, which
comes from the combination of low symmetry and SOC, was
introduced by Dzyaloshinskii [5] and Moriya [6] in a phe-
nomenological model and a microscopic model, respectively.
Generally, DM interaction favors twisted spin structures and
is constrained by the crystal symmetry. For example, when an
inversion center is located at the bond center of two magnetic
ion sites, the DM interaction between these two magnetic ions
should be zero due to its antisymmetric property [6,8]. Now
the DM interaction is invoked to explain numerous interesting
magnetic systems featuring noncollinear spin textures, such
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as weak ferromagnets [5,6], helimagnets [9], skyrmion for-
mation [10–12], and chiral domain walls [13,14]. In addition,
the DM interaction also plays an important role in multiferroic
materials [15–19], topological magnon materials [20–22], and
spintronics [23]. It is worth mentioning that, since DM inter-
actions are very sensitive to small atomic displacements and
symmetry restrictions, it can also be used to reveal the inter-
play of delicate structural distortions and complex magnetic
configurations [24].

Recently, the first-principles study of magnetic exchange
interactions, especially DM interaction, has also attracted
much interest [3,25–52]. A popular numerical method is the
energy-mapping analysis [3,25,26] to estimate magnetic in-
teractions from the energy differences of various magnetic
structures. However, this approach becomes inconvenient for
the complicated systems where it is not clear how many
exchange interactions needs to be considered, since in some
magnetic compounds the magnetic moments may couple over
a variety of distances, and even the ninth-nearest-neighbor
coupling plays an important role [28,29]. Meanwhile, in itin-
erant magnetic systems, the magnetism is not so localized
and the calculated magnetic moments may depend on the
magnetic configurations, which also significantly affects the
accuracy of the calculated DM interactions. Another approach
using total energy differences could extract DM strength by
directly calculating the energies of spirals with the finite vec-
tor q [30–35]. Meanwhile, an efficient approach is proposed
based on the magnetic force theorem [27,36–48]. Katsnel-
son and Lichtenstein [37] derived the expression for DM
interaction term based on Green’s function approach. This
method is applied to a large number of magnetic materials
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FIG. 1. Schematic pictures of exchange paths for anisotropic magnetic interactions between site A and site B. The dotted line represents
the SOC excitation process, while the solid line represents the hopping process. (a) represents the DM interactions for the first order of SOC.
The DM interactions for the second order of SOC have two types of perturbation processes, (b) and (c). Meanwhile, the perturbation processes
for the symmetric � term are also shown in (d) and (e) for comparison. Here GS and ES represent ground state and excited state, respectively.
It is worth mentioning that the perturbation processes of DM interactions involve the hopping between GSs, denoted by the green solid line.
Meanwhile, � terms would only involve the hopping processes between GS and ES.

such as the antiferromagnets with weak ferromagnetism [38],
thin magnetic films [41], diluted magnetic semiconductors
[42], and various other magnetic materials [39,44–47]. This
Green’s function approach was previously formulated in first-
principles codes with direct definition of a localized orbitals
basis set such as the linear muffin-tin orbitals method [53].
Furthermore, they also developed the method of calculating
DM interactions using Wannier function formalism [40,43]. In
addition, DM interactions could also be estimated by comput-
ing the long-wavelength limit of the spin susceptibility [49],
the expectation value of the spin current density [50,51], or
utilizing Berry phase [52].

In Ref. [6], Moriya considered the transfer integral C terms
up to the first order of the SOC, and concluded that the
terms linear in the SOC have the antisymmetric form for the
interchange of two spins, while the terms of second order in
the SOC have the pseudodipolar form which is symmetric
for the two spins [6,7]. However, this often leads to over-
looking the exist of second-order SOC correction to DM
interactions. As shown in Refs. [4,54,55], many researchers
believe that the magnitude of DM interaction is proportional
to the SOC strength. Meanwhile, in the first-principles study

of DM interactions, there are many approaches with only the
first-order SOC contribution to DM interactions being con-
sidered [38,39]. On the other hand, in these approaches using
total energy differences, such as energy-mapping [3,25,26],
spirals approach [31,32], and the approaches through calcu-
lating energy variations due to spin rotations [37,56,57], one
can get the entire DM interaction but cannot distinguish the
contribution from which order of SOC.

In this paper, we use perturbation theory to obtain expres-
sions for the DM interaction up to the second-order terms of
SOC, and find that the second-order SOC contribution to the
antisymmetric DM interaction and symmetric � interaction
arise from different hopping processes as shown in Fig. 1 and
following. We extend the method of calculating Heisenberg
interactions based on combining magnetic force theorem and
linear-response approach [27,28,56–59] to estimate DM and �

interactions, and the algorithm of our proposed method is now
implemented in the open source called WIENJ [60] as an inter-
face to the linearized augmented plane wave software WIEN2K

[61]. Furthermore, to overcome some shortcomings of pre-
vious methods, we develop a method that can estimate the
first- and second-order SOC contribution to the DM exchange
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couplings separately. While our methods can also calculate
� interaction, here we only present the results of Heisenberg
and DM interactions since they could be compared with many
previous works. We have applied our methods to several rep-
resentatives of canted antiferromagnetic materials La2CuO4,
Ca2RuO4, and Ca3LiOsO6 for 3d , 4d , and 5d transition-
metal oxides, and the calculation results are consistent with
the experiment. Particularly, we find that the DM interaction
proportional to λ2 cannot be ignored in 4d transition-metal
oxide Ca2RuO4, and the DM interactions proportional to λ

and λ2 have the same magnitude in 5d transition-metal oxide
Ca3LiOsO6. As shown in the following, the DM interactions
proportional to λ and λ2 involve different exchange chan-
nels. Thus, based on the symmetry analysis, we explore the
possibility that the DM interactions proportional to λ approx-
imately vanish while the DM interactions proportional to λ2

still exist. We believe that this case could exist in certain
magnetic materials.

II. METHOD

A. Anisotropic magnetic interactions by perturbation theory

We start from an effective model,

H = H0 + Ht + HU + HSOC

=
∑
iασ

εαc+
iασ ciασ +

∑
i jαβσ

t i j
αβc+

iασ c jβσ

+U

2

∑
i

ni(ni − 1) +
∑

i

λli · si, (2)

where H0, Ht , HU , and HSOC represent the on-site orbital
energy, the hopping term, the Hubbard U term, and the SOC
term, respectively. Here i, j represent the site index, while
α, β represent the orbital index and σ represents the spin
index. ni represents the number of electron operators at site
i. We consider the on-site Coulomb interactions between two
interacting electrons and neglect the dependence of the orbital
indices, since the difference between intraorbital coupling U
and interorbital coupling U ′ is usually smaller than the on-site
Coulomb interaction. Meanwhile, only the on-site SOC effect∑

i λli · si [4] is taken into account, and Eq. (2.6) of Ref. [6],
which is related to Rashba-type SOC that can be sizable at
surfaces and in layered materials, are not included here. We
consider the spin-exchange interaction between the magnetic
ions located at site A and site B. We label the ground state
and the unoccupied states at site A as n and m, respectively.
Similarly, the ground state and the excited states at site B are
labeled as n′ and m′, respectively.

When SOC is not considered, the Heisenberg interactions
Heff = JSA · SB can be obtained by considering the hopping
term as perturbations for the case of U � t [62]. Consider-
ing the SOC term λl · s as perturbation, the first-order SOC
contribution to effective spin model H (1)

eff has the expression
of antisymmetric DM interaction as H (1)

eff = D(1)(SA × SB),
where D(1) could be written as [6]

(Dα )(1) = −4i
λtnn′

U

(∑
m

lα
mn

εm − εn
tmn′ −

∑
m′

lα
m′n′

εm′ − εn′
tm′n

)
.

(3)

Meanwhile, by considering perturbation theory up to the
second-order SOC correction (see details in the Appendix),
we find that the second-order SOC correction has a contribu-
tion to both the DM term D(2) and the � term, where D(2)

could be written as

(Dα )(2) = 2
λ2tnn′

U

∑
m,m′

lβ

m′n′ l
γ
mn − lγ

m′n′ lβ
mn

(εm′ − εn′ )(εm − εn)
tmm′

− 2
λ2tnn′

U

∑
m1,m2

lβ
m1m2

lγ
m2n − lγ

m1m2 lβ
m2n(

εm1 − εn
)(

εm2 − εn
) tm1n′

+2
λ2tnn′

U

∑
m′

1,m
′
2

lβ

m′
1m′

2
lγ

m′
2n′ − lγ

m′
1m′

2
lβ

m′
2n′(

εm′
1
− εn′

)(
εm′

2
− εn′

) tm′
1n. (4)

Meanwhile, the expression of parameter �(2) could be seen
in Eq. (A7) of the Appendix. Here the SOC contributions are
given up to the second order. The high-order contributions are
usually relatively smaller, since they would involve the excited
states with higher energy.

Here we present schematic pictures of the exchange pro-
cesses in Fig. 1. It is easy to see that the bilinear spin exchange
Hamiltonian should contain two hopping processes between
two sites A and B as shown in Fig. 1. The biquadratic spin
exchange interaction comes from the fourth order of hop-
ping term, which is not included here. Considering up to the
second-order perturbation of SOC, we find that there are sev-
eral different exchange processes. Among them, the first-order
SOC correction has only a DM contribution D(1), as shown
in Fig. 1(a), which represents the first term of Eq. (3). When
swapping sites A and B in Fig. 1(a), one can obtain the second
term of Eq. (3). Meanwhile, the second-order SOC correction
not only has the contribution to DM interaction but also the
contribution to the � term as shown in Figs. 1(b)–1(e). While
type-I D(2) as shown in Fig. 1(b) represents the first term
of Eq. (4), type-II D(2) as shown in Fig. 1(c) represents the
second term of Eq. (4), and the third term of Eq. (4) could be
obtained by swapping sites A and B. It is worth mentioning
that the exchange processes for DM interactions [Figs. 1(a)–
1(c)] involve the hopping between ground states, which is
denoted by the green solid line in Fig. 1 and tnn′ in Eqs. (3) and
(4), respectively. In sharp contrast, there are only hoppings
between ground states and excited states in the processes of
� terms as shown in Figs. 1(d)–1(e). In Ref. [6], Moriya con-
sidered the transfer integral C up to the first order of the SOC
and concluded that the antisymmetric DM interaction is linear
with respect to the SOC while the second-order SOC contri-
bution is the symmetric � term. If C terms had been given up
to the high order of SOC, the DM terms from high-order SOC
may also exist. Here we emphasize that, as shown in Fig. 1, the
essential difference between the DM and � term is from their
different hopping processes rather than the different orders of
SOC.

B. Magnetic interactions in the first-principles approach

First, we present the method to calculate magnetic interac-
tions based on the force theorem and linear-response approach
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[27,56,57], which could be written as the following form [56]:

Jαβ

Rl +τ,Rl′ +τ ′ =
∑
nkn′k′

fnk − fn′k′

εnk − εn′k′
〈ψnk|[σ × Bτ]α|ψn′k′ 〉

× 〈ψn′k′ |[σ × Bτ ′]β |ψnk〉ei(k′−k)(Rl −Rl′ ). (5)

This method has been successfully applied to calcu-
late Heisenberg interactions in various magnetic materials
[27,28,56–59]. This method allows one to calculate in-
teractions in momentum space [63], thus one can easily
calculate long-range exchange interactions even in compli-
cated three-dimensional spin-web compounds like Cu3TeO6

[28]. Considering the case of α �= β, we extend this method
to estimate DM and � interactions, and the algorithm of this
method is now implemented in the open source called WIENJ
[60], as an interface to WIEN2K [61]. It is worth mentioning
that the general expression of bilinear spin exchange param-
eter Jαβ , which could be written in J , D and � as Eq. (1),
has nine independent components. However, one can only
yield four out of nine components of Jαβ for a given mag-
netic configuration. For example, for the collinear magnetic
configuration with all spin moments lying along the z axis,
only the four spin exchange parameters Jxx, Jyy, Jxy, and
Jyx can be estimated. Therefore, to obtain the full nine spin-
exchange parameters Jαβ (i.e., J , D, and � terms), one need
perform different first-principles self-consistent calculations
for at least three independent orientations of the magnetization
[28]. Based on the self-consistent results from different spin
orientations, the magnetic interactions could be calculated
from Eq. (5) [28]. However, these self-consistent calculations
by choosing three different spin orientations would produce
12 parameters, resulting in that sets of parameters Jαβ are
not necessarily unique, naturally leading to the calculation
deviation.

To reduce this calculation deviation, we also propose a
method when SOC is relatively small. First, we perform the
standard LSDA (+U ) calculations. Based on the eigenvalues
εnk and eigenstates ψ

(0)
nk from LSDA (+U ) calculations, we

take SOC as a perturbation and estimate the first-order and
second-order SOC corrections, wave functions ψ

(1)
nk and ψ

(2)
nk

in WIEN2K [61]. Then all Jαβ elements can be calculated
without doing the separate self-consistent calculations with
different spin orientations. Meanwhile, this method can pro-
duce the first- and second-order SOC contributions to the DM
interaction separately.

The difference between the calculations using WIENJ and
the second approach is that the wave functions in WIENJ
are calculated self-consistently for a given spin configuration,
whereas the second approach includes SOC corrections to the
wave function via perturbation theory. Comparing the results
of these two methods in the following, it can be seen that
the calculated DM interaction in WIENJ has a similar value
as the sum of the first- and second-order SOC contribution to
the DM interaction, which implies that the higher-order SOC
contributions are relatively small.

In the following, we will apply our two methods to several
typical examples corresponding to 3d , 4d , and 5d transition
metal oxides, respectively, in the next section.

TABLE I. The calculated Heisenberg exchange parameters J
(in meV) for La2CuO4. The calculated spin-exchange parameters in
the previous theoretical work are also shown for comparison.

La2CuO4

J Ref. [57] Ref. [38] This paper

J1 27.2 29.2 25.76
J2 −3.00 −4.1, −3.9 −3.80, −3.38
J3 −0.05 0 −0.11

III. RESULTS

A. First-principles examples of typical materials

1. La2CuO4

As a benchmark on the accuracy of our methods in cal-
culating Heisenberg and DM interactions, we first study the
famous La2CuO4, which have been studied in a number of
theoretical works [38,40,57,64–68]. The LSDA+U (=7 eV)
[69] calculation is applied. Without SOC considered, the cal-
culated Heisenberg exchange parameters have no difference
between these two approaches, which are summarized in
Table I. The calculated nearest-neighbor magnetic coupling
J1 are dominant with a value of about 25.76 meV. We can find
that the spin-exchange coupling parameters decrease rapidly
with the increasing distance between two Cu ions. The next-
nearest-neighbor magnetic coupling J2 shows ferromagnetic
behavior and is one order of magnitude smaller than J1. The
third-nearest-neighbor J3 is antiferromagnetic and almost neg-
ligible. The results agree well with previous theoretical work
[38,57].

The weak ferromagnetism of La2CuO4 is originated from
the canting of the magnetic moments, which can be descried
by the competition of Heisenberg interaction and DM inter-
action. Based on the two approaches in above section, the
nearest-neighbor DM parameters are calculated as shown in
Table II. As shown in Table II, the DM interactions propor-
tional to λ2 are negligible due to the small SOC in the 3d
orbital, and the DM interactions proportional to λ using the
second approach are almost the same as the calculated DM
parameters in WIENJ. According to the calculated Heisen-
berg and DM parameters, the value of the canting angle is
estimated to be about 1.7×10−3, which is in a good agree-
ment with the experimental value of 2.2-2.9×10−3 [67,68].
For comparison with previous theoretical works, Mazurenko
and Anisimov [38] proposed the angle value of 0.7×10−3

using Green’s function technique. With the construction of a
tight-binding parametrization of the Hamiltonian with SOC,
Katsnelson et al. [40] calculated the canting angle to be
5.0×10−3. It can be seen that our results agree well with the
experimental and theoretical ones.

2. Ca2RuO4

As the example of 4d transition-metal oxides, Ca2RuO4

crystallizes in the space group Pbca and has the layered per-
ovskite structure [70–75] . The ground state of Ca2RuO4 is an
antiferromagnetic spin ordering with an insulating electrical
behavior [71]. A weak ferromagnetic component is induced
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TABLE II. The calculated nearest-neighbor DM interaction parameters (in meV) for La2CuO4 via the two approaches in this paper. R is the
radius vector from two sites of magnetic ions in units of the lattice constant. The columns D(1) and D(2) represent the calculated DM interaction
proportional to λ and λ2. Due to the small SOC, the DM interactions proportional to λ2 are zero, with an accuracy of 0.01 meV.

WIENJ The second method in this paper

R D D(1) D(2)

(0.5, −0.5, 0) (−0.09, −0.14, 0) (−0.09, −0.14, 0) (0, 0, 0)
(−0.5, −0.5, 0) (−0.09, 0.14, 0) (−0.09, 0.14, 0) (0, 0, 0)
(−0.5, 0.5, 0) (−0.09, −0.14, 0) (−0.09, −0.14, 0) (0, 0, 0)
(0.5, 0.5, 0) (−0.09, 0.14, 0) (−0.09, 0.14, 0) (0, 0, 0)

by spin canting below the magnetic transition temperature
113 K [70].

To study its magnetic properties, we performed the
LSDA+ U (=3eV ) [72] calculations for Ca2RuO4. The
calculated nearest-neighbor Heisenberg interaction is about
20.9 meV. Experimentally, the Heisenberg parameters were
estimated via inelastic neutron scattering as 16 meV in
Ref. [74] and 5.8 meV in Ref. [75], and our result 20.9 meV
is closer to the first value. Meanwhile, the calculated DM
interactions by the two approaches mentioned above are both
presented in Table III. As shown in Table III, the calcu-
lated DM interactions in WIENJ are also almost the same as
the sum of DM interactions proportional to λ and λ2, i.e.,
D ≈ D(λ) + D(λ2). This implies that the higher-order SOC
contributions are relatively small. Note that the strength of
first-order SOC corrected DM interactions |D(λ)| is around
1.31–1.41 meV, while the |D(λ2)| is about 0.44 meV, therefore
the DM interactions proportional to λ2 are non-negligible
in such 4d magnetic system. The ratio of DM interactions
and Heisenberg interaction is estimated to be |D|/J ≈ 0.05,
which is in good agreement with the rough estimate 0.06 from
experiment [73].

3. Ca3LiOsO6

In 5d transition-metal oxide systems, the strength of SOC
is expected to be stronger than 3d or 4d materials due to
the large atomic number. However, in orbital singlet states
with a relatively large electronic gap such as 5d3 with half-
filling t2g orbitals [76], the electronic structures from fully
self-consistent LSDA (+U ) + SOC calculation and the ones
from further one iteration of SOC calculation after LSDA
(+U ) calculation have a small difference (see Fig. 2 in the
Appendix), indicating that the effect of SOC is still small [76].

As one concrete 5d3 example, we focus on Ca3LiOsO6

[76–79] with the crystal structure of K4CdCl6 type. The

ground state of Ca3LiOsO6 is antiferromagnetic (AFM) with
the magnetic transition temperature 117 K. Both the first-
principles study and the experiment suggest that Ca3LiOsO6

has a fully opened electronic gap [78]. Though the AFM
ordered state has been confirmed experimentally, the mag-
netization curve suggests a soft magnetism with a small
spontaneous magnetization. The net magnetization is about
0.02 μB per Os5+ ion and is suggested due to a DM interaction
generated by the broken inversion symmetry [76].

We perform the LSDA+U calculations of Ca3LiOsO6 with
U = 2 eV [80–83] and calculate the magnetic interactions by
applying our methods. The Heisenberg interactions J1, J2, and
J3 are estimated to be all AFM with the values of 13.1 meV,
5.5 meV, and 1.1 meV, respectively. J1 is the strongest spin
exchange, while J2 is slightly less than one-half of J1, and J3

is an order of magnitude smaller than J1. These properties are
consistent with the energy-mapping results, though our calcu-
lated spin parameters are slightly larger than theirs (9.9 meV,
4.1 meV, and 0.63 meV for J1–J3, respectively) [79]. Mean-
while, our numerical DM interactions by the two approaches
mentioned in the Method section are both summarized in
Table IV. Since the DM interactions between the 3rd nearest
neighbor and longer-range distances for Os5+ ions are negli-
gible, thus we only show the DM interactions for the nearest
neighbor and next-nearest neighbor in Table IV. It can be seen
that the DM interactions proportional to λ2 have the same
order of magnitude as the one proportional to λ in Ca3LiOsO6.
According to the crystal symmetry, the nearest-neighbor D1

has the form of (0, 0, Dz), and the calculated D1 via the two
approaches are summarized in Table IV. Meanwhile, there are
three different directions of D2 connected by the symmetry of
threefold rotation along the z axis, as shown in last three rows
of Table IV. Summarizing the DM parameters of all nearest
neighbors and the isotropic spin-exchange parameters J up to
the third-nearest neighbor, the expected net magnetic moment

TABLE III. The calculated DM interaction parameters (in meV) for Ca2RuO4 via the two approaches in this paper. Here R is the radius
vector from two sites of magnetic ions in units of the lattice constant. The columns D(1) and D(2) represent the calculated DM interaction
proportional to λ and λ2. It can be seen that the calculated interactions via these two approaches are close, i.e., D ≈ D(1) + D(2).

WIENJ The second method in this paper

R D D(1) D(2)

(0.5, −0.5, 0) (0.50, −1.03, 0.17) (0.47, −1.19, 0.60) (0.04, 0.15, −0.41)
(−0.5, 0.5, 0) (0.50, −1.03, 0.17) (0.47, −1.19, 0.60) (0.04, 0.15, −0.41)
(−0.5, −0.5, 0) (−0.43, −0.95, 0.17) (−0.40, −1.10, 0.59) (−0.04, 0.15, −0.41)
(0.5, 0.5, 0) (−0.43, −0.95, 0.17) (−0.40, −1.10, 0.59) (−0.04, 0.15, −0.41)
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TABLE IV. The calculated DM interaction parameters (in meV) for Ca3LiOsO6 via the two approaches in this paper. R is the radius vector
from two sites of magnetic ions in units of the lattice constant. The columns D(1) and D(2) represent the calculated DM interaction proportional
to λ and λ2.

WIENJ The second method in this paper

R D D(1) D(2)

(0.5, 0.5, 0.5) (0, 0, −0.263) (0, 0, −0.223) (0, 0, −0.099)
(−0.5, 0.5, 0.5) (−0.125, 0.205, −0.021) (−0.083, 0.143, −0.052) (−0.055, 0.095, 0.005)
(0.5, −0.5, 0.5) (−0.125, −0.205, −0.021) (−0.083, −0.143, −0.052) (−0.055, −0.095, 0.005)
(0.5, 0.5, −0.5) (0.226, 0, −0.021) (0.165, 0, −0.052) (0.110, 0, 0.005)

is estimated to be 0.03 μB, which is in good agreement with
the experimental value of 0.02 μB [76].

B. Materials with the second-order SOC contribution
to DM interactions

Here we discuss the necessary conditions where the first
order of SOC in DM interactions (i.e., D(1) ) are approximately
absent, while DM interactions proportional to the second or-
der of SOC (i.e., D(2) ) are dominant. According to the picture
of Fig. 1 and Eqs. (3) and (4), when the excited states with
higher energy could be ignored, we only consider the orbital
ground state and the lowest-energy excited states at each site,
and summarize these three conditions that need to be met:

(1) The hopping processes between the ground state and
excited state (tmn′ and tm′n) are symmetry forbidden.

(2) The hopping between ground states (tnn′ ) and the hop-
ping between excited states at two sites (tmm′ ) are nonzero.

(3) The relation of orbital angular momentum of the two
magnetic ions lβ

m′n′ l
γ
mn − lγ

m′n′ lβ
mn should be also nonzero.

According to the first condition tmn′ = tm′n = 0, the ex-
change processes in Figs. 1(a) and 1(c) are forbidden,
therefore D(1) is constrained to zero. Meanwhile, the second
and third conditions make the exchange processes in Fig. 1(b)
exist, thus D(2) could be present. Based on these restrictions,
one can predict possible candidates with only the second-
order SOC contribution to DM interactions according to their
different combinations of crystal symmetry, Wyckoff sites and
orbital occupation pattern. In the Appendix, we present a
concrete magnetic model where the first order of SOC in DM
interactions vanish approximately. However, in real materials,
the high-energy excited states always exist and the D(1) could
be small but not strictly zero. We believe that D(2) could
be dominant in certain magnetic materials, which deserves
further research.

IV. CONCLUSION

The magnetic model plays an important role in magnetic
investigations. Here we revisit the general expression of mag-
netic interactions, including isotropic exchange interaction,
antisymmetric DM interaction and symmetric � term. We
clarify that the DM and � interactions can be separated from
their different hopping processes rather than the orders of
SOC. We present two first-principles methods to calculate the
anisotropic magnetic interactions. Based on the first method,
one need perform self-consistent calculations for at least three
different spin orientations to obtain the full nine exchange
parameters Jαβ . On the other hand, using the second method,
one can estimate these magnetic exchange parameters with
no need to do the separate self-consistent calculations for
different spin orientations. This method can also calculate the
first-order and second-order SOC contributions to DM inter-
actions separately. We have successfully applied our methods
to several typical weak ferromagnetic materials La2CuO4,
Ca2RuO4, and Ca3LiOsO6, respectively. Furthermore, ac-
cording to the microscopic mechanism shown in Fig. 1, we
list three necessary conditions which can lead to the DM
interactions proportional to λ approximately vanishing while
the DM interactions proportional to λ2 exist.
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APPENDIX

1. The anisotropic magnetic interactions proportional to λ and λ2

Based on the effective model written as Eq. (2) in the main text, the magnetic interactions can be obtained by considering the
hopping term and the SOC term as perturbations. Without SOC, the effective spin model is the isotropic Heisenberg model [62].
We further take into account the impact of SOC. As mentioned in the main text, we label the ground state and the unoccupied
states without SOC considered at site A as |ψ (0)

n 〉 and |ψ (0)
m 〉, respectively. Taking λlA · sA as a perturbation, we can obtain the

first-order and second-order SOC corrected wave functions |ψ (1)
n 〉 and |ψ (2)

n 〉. Meanwhile, the wave functions at site B have the
similar expressions by simply replacing n, m by n′, m′. Based on the perturbation theory, the first-order SOC contribution could
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be written as

−
∑
R∈£′

〈
φ

(1)
I

∣∣Ht

∣∣φ(0)
R

〉〈
φ

(0)
R

∣∣Ht

∣∣φ(0)
J

〉
U

−
∑
R∈£′

〈
φ

(0)
I

∣∣Ht

∣∣φ(1)
R

〉〈
φ

(0)
R

∣∣Ht

∣∣φ(0)
J

〉
U

−
∑
R∈£′

〈
φ

(0)
I

∣∣Ht

∣∣φ(0)
R

〉〈
φ

(1)
R

∣∣Ht

∣∣φ(0)
J

〉
U

−
∑
R∈£′

〈
φ

(0)
I

∣∣Ht

∣∣φ(0)
R

〉〈
φ

(0)
R

∣∣Ht

∣∣φ(1)
J

〉
U

, (A1)

where φI and φJ belong to the model space of ground states £, while φR belongs to the space of excited states £′. The superscript
(n) represents the nth order of SOC perturbation. After substituting the SOC corrected wave functions into the above equation,
it is easy to find that the first-order SOC contribution of the effective spin model H (1)

eff has the expression of DM interaction as

H (1)
eff = D(1)(SA × SB), (A2)

where D(1) could be written as [i.e., Eq. (3) in the main text] [6]

(Dα )(1) = −4i
λtnn′

U

(∑
m

lα
mn

εm − εn
tmn′ −

∑
m′

lα
m′n′

εm′ − εn′
tm′n

)
. (A3)

The second-order SOC contribution could be written as

−
∑
R∈£′

〈
φ

(1)
I

∣∣Ht

∣∣φ(0)
R

〉〈
φ

(1)
R

∣∣Ht

∣∣φ(0)
J

〉
U

−
∑
R∈£′

〈
φ

(0)
I

∣∣Ht

∣∣φ(1)
R

〉〈
φ

(0)
R

∣∣Ht

∣∣φ(1)
J

〉
U

−
∑
R∈£′

〈
φ

(1)
I

∣∣Ht

∣∣φ(0)
R

〉〈
φ

(0)
R

∣∣Ht

∣∣φ(1)
J

〉
U

−
∑
R∈£′

〈
φ

(0)
I

∣∣Ht

∣∣φ(1)
R

〉〈
φ

(1)
R

∣∣Ht

∣∣φ(0)
J

〉
U

−
∑
R∈£′

〈
φ

(1)
I

∣∣Ht

∣∣φ(1)
R

〉〈
φ

(0)
R

∣∣Ht

∣∣φ(0)
J

〉
U

−
∑
R∈£′

〈
φ

(0)
I

∣∣Ht

∣∣φ(0)
R

〉〈
φ

(1)
R

∣∣Ht

∣∣φ(1)
J

〉
U

−
∑
R∈£′

〈
φ

(2)
I

∣∣Ht
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R

〉〈
φ

(0)
R
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∣∣φ(0)
J
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U

−
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φ

(0)
I
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R
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φ

(0)
R
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J
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U

−
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φ

(0)
I
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R
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φ
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R
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∣∣φ(0)
J
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U

−
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〈
φ

(0)
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∣∣φ(0)
R
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φ
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R
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J
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. (A4)

There are in total ten terms, in which the first six terms come from the first-order corrected wave functions, and the last four
terms come from the second-order corrected wave functions. After substituting the SOC-corrected wave functions into Eq. (A4),
we find that the first four terms have the expression as the anisotropic symmetric � interaction, while the last six terms have the
expression as the antisymmetric DM interaction.

Finally, the second-order SOC correction of effective Hamiltonian H (2)
eff could be written as

H (2)
eff = D(2)(SA × SB) + SA · �(2) · SB, (A5)

where D(2) could be written as [i.e., Eq. (4) in the main text]

(Dα )(2) = 2
λ2tnn′

U

∑
m,m′

lβ

m′n′ l
γ
mn − lγ

m′n′ lβ
mn

(εm′ − εn′ )(εm − εn)
tmm′ − 2

λ2tnn′

U

∑
m1,m2

lβ
m1m2

lγ
m2n − lγ

m1m2 lβ
m2n

(εm1 − εn)(εm2 − εn)
tm1n′

+ 2
λ2tnn′

U

∑
m′

1,m
′
2

lβ

m′
1m′

2
lγ

m′
2n′ − lγ

m′
1m′

2
lβ

m′
2n′(

εm′
1
− εn′

)(
εm′

2
− εn′

) tm′
1n. (A6)

Here {α, β, γ } represents {x, y, z}, {y, z, x}, or {z, x, y}. Meanwhile, the anisotropic symmetric parameter �(2) could be written
as

(�βγ )(2) = 2
λ2

U

∑
m,m′

lβ

m′n′ l
γ
mn + lγ

m′n′ lβ
mn

(εm′ − εn′ )(εm − εn)
tmn′tm′n − 2

λ2

U

∑
m1,m2

lβ
m1nlγ

m2n(
εm1 − εn

)(
εm2 − εn

) tm1n′tm2n′

− 2
λ2

U

∑
m′

1,m
′
2

lβ

m′
1n′ l

γ

m′
2n′(

εm′
1
− εn′

)(
εm′

2
− εn′

) tm′
1ntm′

2n (for β �= γ ),
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FIG. 2. (a) The electronic structures within fully self-consistent LSDA (+U )+SOC calculation of Ca3LiOsO6. (b) The electronic structures
with one iteration of calculation with SOC after LSDA (+U ) calculation of Ca3LiOsO6. The value of U is set to be 2 eV.

(�αα )(2) = 4
λ2

U

∑
m,m′

lα
m′n′ lα

mn

(εm′ − εn′ )(εm − εn)
tmn′tm′n − 2

λ2

U

∑
m,m′,β

lβ

m′n′ lβ
mn

(εm′ − εn′ )(εm − εn)
tmn′tm′n

− 2
λ2

U

∑
m1,m2

lα
m1nlα

m2n(
εm1 − εn

)(
εm2 − εn

) tm1n′tm2n′ + λ2

U

∑
m1,m2,β

lβ
m1nlβ

m2n(
εm1 − εn

)(
εm2 − εn

) tm1n′tm2n′

− 2
λ2

U

∑
m′

1,m
′
2

lα
m′

1n′ lα
m′

2n′(
εm′

1
− εn′

)(
εm′

2
− εn′

) tm′
1ntm′

2n + λ2

U

∑
m′

1,m
′
2,β

lβ

m′
1n′ l

β

m′
2n′(

εm′
1
− εn′

)(
εm′

2
− εn′

) tm′
1ntm′

2n. (A7)

2. The electronic structures of Ca3LiOsO6

Here we present the electronic structures of Ca3LiOsO6.
In Fig. 2(a), the electronic structures from standard self-
consistent LSDA (+U )+SOC calculation are shown. On the
other hand, we perform the standard self-consistent LSDA
(+U ) calculation. After this, we perform one more iteration
of calculation with SOC considered. The corresponding elec-
tronic structures are shown in Fig. 2(b) for comparison. These
band structures are almost the same, indicating the reliability
of the second method for anisotropic magnetic interactions in
this paper.

3. The magnetic model with the second-order SOC
contribution to DM interactions

In the following, we present a concrete magnetic model
where the first order of SOC in DM interactions (i.e., D(1) )

vanish approximately, while DM interactions proportional to
the second order of SOC (i.e., D(2) ) are dominant. Here we
focus on the well-known perovskite structures. In ideal per-
ovskite structures, the nearest-neighbor DM coupling would
vanish due to the inversion symmetry at the center of two
M ions (M is the magnetic ion). Perovskite materials usually
have lattice distortion, and we assume that the MO6 octahedra
are rotated with respect to the z axis with staggered rotation
angle ±θ as shown in Fig. 3(a). It leads to a doubling of
the unit cell, and we denote the magnetic ions in these two
sublattices as A and B both with (4/m) site symmetry, as
shown in Fig. 3(b). The inversion symmetry at the center of
A and B ions is broken, but the mirror symmetry within the
xy plane is maintained while O ions are still located at the
mirror plane, as shown in Fig. 3(b). Here we start from the
effective model written as Eq. (2), and consider the term of
on-site orbital energy first. Usually, the octahedral crystal field

FIG. 3. (a) The distorted perovskite structures with the staggered rotation of neighboring oxygen octahedra by an angle θ about the z axis.
(b) A and B sublattices with a view of z direction. (c) The splitting and electron occupation pattern of d orbitals of M ions.
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splitting between the eg and t2g levels is large, thus we can only
consider the t2g manifold. According to the tetragonal crystal
field in each local coordinate, the t2g orbitals would split into
dxy orbitals and twofold degenerate states dyz/dxz, as shown in
Fig. 3(c). Here we assume the M magnetic ion to be d1 config-
uration. The ground orbital state of magnetic ion is dxy orbital,
and the on-site energy difference of these orbitals is labeled
as � = εdyz/dzx − εdxy. Then we consider the hopping term
between A and B magnetic ions lying in the same mirror
plane. It is worth mentioning that the eigenvalues of the mirror
operation for ground state dxy and excited states dyz/dxz are +1
and −1, respectively. The hopping between the orbitals with
different eigenvalues of mirror operation are symmetry for-
bidden, therefore the nearest-neighbor hopping matrix could
be written as

Ht =

⎡
⎢⎣

t0
t1 t3

−t3 t2

⎤
⎥⎦, (A8)

where the left and right basis vectors are {〈dA
xy|, 〈dA

zx|, 〈dA
yz|}

and {|dB
xy〉, |dB

zx〉, |dB
yz〉}T . Considering the mirror plane in-

cluding sites A and B, the DM interaction D should be
perpendicular to the mirror plane, which is along the z direc-
tion written as D = (0, 0, Dz ). Using Eqs. (3) and (4), we can
obtain the DM interaction proportional to λ or λ2, which could
be written as

(Dz )(1) = 0,

(Dz )(2) = 2
λ2t0[(t1 + t2) sin 2θ + 2t3 cos 2θ ]

U�2
. (A9)

As shown above, the DM interactions proportional to λ are
forbidden while the DM interactions proportional to λ2 are
present. Notice that in the above magnetic model, the eg

orbitals are ignored since the crystal field splitting between
the eg and t2g levels is usually large. When all the orbitals are
considered, the DM interactions proportional to λ exist but
should be relatively small. This anomalous DM interactions
may exist in certain magnetic materials, and one can exploit
our restraint conditions to predict promising candidates ac-
cording to the combination of orbital occupation pattern and
crystal symmetry.
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