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Functional completeness of planar Rydberg blockade structures
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The construction of Hilbert spaces that are characterized by local constraints as the low-energy sectors of
microscopic models is an important step towards the realization of a wide range of quantum phases with
long-range entanglement and emergent gauge fields. Here we show that planar structures of trapped atoms in
the Rydberg blockade regime are functionally complete: Their ground-state manifold can realize any Hilbert
space that can be characterized by local constraints in the product basis. We introduce a versatile framework,
together with a set of provably minimal logic primitives as building blocks, to implement these constraints.
As examples, we present lattice realizations of the string-net Hilbert spaces that underlie the surface code and
the Fibonacci anyon model. We discuss possible optimizations of planar Rydberg structures to increase their
geometrical robustness.
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I. INTRODUCTION

Recent advances in the control of single atoms and their
coherent manipulation [1–5] are the technological foundation
for applications such as quantum simulation [6–9], high-
precision metrology [10,11], and, hopefully, future quantum
computers [12–15]. For any of these applications, suitable
platforms must offer fine-grained control over their degrees of
freedom, dynamically tunable interactions, and the possibility
to decouple the environment. Promising in this regard are
arrays of individually trapped, neutral atoms that can be ma-
nipulated by optical tweezers [1,3] and excited into Rydberg
states [16,17]. These exhibit strong interactions, which lead
to the Rydberg blockade mechanism where excited atoms
prevent their neighbors within a tunable radius from being
excited [18–22]. In this paper, we study on very general
grounds the theoretical capabilities of the Rydberg platform
in the blockade regime and demonstrate its versatility by
constructing the gauge-invariant Hilbert spaces of two models
with Abelian and non-Abelian topological order.

Encouraged by the fast development and scalability of the
Rydberg platform (see e.g., Refs. [23–25]), there has been
increased interest in identifying promising near-term applica-
tions for the NISQ era [26]. Among the many applications
of two-dimensional arrays of Rydberg atoms, the field of
geometric programming and the design of synthetic quan-
tum matter have been identified as promising candidates to
leverage the capabilities of available and upcoming NISQ
platforms.

The rationale of geometric programming is the solution of
algorithmic problems by encoding them into the geometry of
the atomic array. This direction of research is founded on the
insight that due to the Rydberg blockade, the ground states
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of these systems naturally map to maximum independent sets
(MIS) on so called unit disk graphs [27]; finding MIS is a
long-known optimization problem in graph theory that has
been shown to be NP-hard [28]. This makes the computation
of ground-state energies of Rydberg arrangements NP-hard as
well [29], but also opens the possibility to tackle a variety of
other hard optimization problems [30–35] by polynomial-time
reductions to the MIS problem [36]. First solutions of MIS
instances on various graphs in two and three dimensions have
been demonstrated in experiments recently [37–39], and a
quantitative comparison of experimental solutions with clas-
sical algorithms suggest a superlinear quantum speedup for
some classes of graphs [39].

A very different application of the Rydberg blockade
mechanism is the engineering of synthetic quantum matter on
the single-atom level [40]. The potential of this approach has
been demonstrated recently by Verresen et al. [41] (related re-
sults were reported by Samajdar et al. [42]), who proposed the
realization of topological spin liquids on delicately designed
lattice structures of atoms. In this scenario, the Rydberg block-
ade enforces a dimer constraint (the local gauge constraint
of an odd Z2 lattice gauge theory [43]), which, in combina-
tion with quantum fluctuations, can give rise to long-range
entangled many-body states with Abelian topological order.
First experimental results were reported shortly after [44],
accompanied by theoretical studies of the used quasiadiabatic
preparation schemes [45,46].

This paper is written from and motivated by the synthetic
quantum matter perspective, but its results apply to geomet-
ric programming as well. Our starting point is the question
whether other local constraints (besides the dimer constraint)
can be realized on the Rydberg platform. To find an answer,
we first formalize the problem and then use this formulation
to derive our main result, namely that every local constraint
that can be encoded by a Boolean function can be imple-
mented in the ground-state manifold of a planar arrangement
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of atoms in the blockade regime. Crucial for this result is
the existence of a structure that implements the truth table of
a NOR-gate (“Not OR”) in its ground-state manifold. While
our proof is constructive, it does typically not yield optimal
(= small) solutions. We therefore expand on our main result
and compile a comprehensive list of provably minimal struc-
tures that realize all important primitives of Boolean logic.
Together with a structure that facilitates the crossing of two
“wires” within the plane, these primitives provide a toolbox
to build structures that satisfy more complicated constraints.
As an example, we construct a system with a ground-state
manifold that is locally isomorphic to the gauge-invariant
Hilbert space of an even Z2 lattice gauge theory, i.e., the
charge-free sector of the toric code [47]. With a similar con-
struction, we tailor a pattern of atoms with a ground-state
manifold isomorphic to the string-net Hilbert space of the
“golden string-net model [48]”; a system that, with added
quantum fluctuations, could support non-Abelian Fibonacci
anyons. Having constructed all these structures, we briefly
discuss possibilities to numerically optimize their geometries
to make them more robust against geometric imperfections
and the effects of long-range van der Waals interactions.

II. RATIONALE AND OUTLINE

Here we illustrate the rationale of the paper and provide
a brief outline of its main results without technical overhead.
Readers interested in the details can skip forward to Sec. III.
Readers only interested in specific applications can read this
section first and then skip to Sec. VII or Sec. IX.

In this paper, we consider two-dimensional arrangements
of trapped atoms that can either be in their electronic ground
state or excited into a Rydberg state (Rydberg structures).
We focus on systems without quantum fluctuations, where
the ground states are determined by local detunings and Ry-
dberg blockade interactions (Sec. III). The detunings lower
the energy for atoms in the Rydberg state by an atom-specific
amount, and the Rydberg blockade interaction forbids atoms
closer than a specific distance to be excited simultaneously.
The interplay of these two contributions singles out ground
states that are characterized by excitations patterns where no
additional atom can be excited without violating the Rydberg
blockade, and where the sum of the detunings of the excited
atoms is maximal (so called maximum-weight independent
sets). There can be different configurations that minimize the
energy, hence the ground-state manifold is typically degener-
ate. In this paper, we ask which ground-state manifolds such
structures can realize and, conversely, how to tailor structures
that realize a prescribed ground-state manifold (Sec. IV).

A simple example is given in Fig. 1(a) where the position
of the atoms is shown in (i); the two atoms are con-
strained by the Rydberg blockade (gray circles) and cannot be
excited simultaneously (indicated by the black edge connect-
ing them). The color of the atoms encodes their detuning;
here both atoms lower the energy of the system by � when
excited into the Rydberg state (blue nodes). In (ii) we show
the two excitation patterns that minimize the energy (orange
nodes denote excited atoms). Note that the atoms cannot be
excited simultaneously due to the Rydberg blockade. If one
lists the ground-state configurations in a table, where each

FIG. 1. Rationale. (a) Structure of two atoms (i) with local de-
tunings � (blue vertices) that are in Rydberg blockade (gray circles);
the blockade is indicated by a black edge connecting the atoms.
The ground-state manifold (ii) is given by patterns of excited atoms
(orange) that minimize the energy; here it is twofold degenerate.
The two ground-state configurations realize the truth table (iii) of
a NOT-gate Q = A. (b) Structure of five atoms (i) with local detun-
ings � (blue) and 2� (green) in a ring-like Rydberg blockade. The
ground-state manifold (ii) is fourfold degenerate. If one selects the
three labeled atoms and identifies them with the columns of the table
in (iii), the four ground-state configurations realize the truth table
of a NOR-gate Q = A ↓ B = A ∨ B. (c) Joining the output atom of
the NOR-gate with the input atom of the NOT-gate (and adding their
detunings) yields a new structure that realizes the truth table of an OR-
gate: Q = A ↓ B = A ∨ B. This construction is called amalgamation.

column corresponds to an atom and each row to a ground-state
configuration, we find the “truth table” of a Boolean NOT-gate
Q = A. Here we interpret one of the atoms as “input” (A) and
the other as “output” (Q).

This concept generalizes to more complicated Boolean
gates [Fig. 1(b)]: Consider the five atoms in a ring-like block-
ade (i). Three of the atoms (blue) lower the energy by �,
two (green) by 2� when excited. By inspection one finds
the four degenerate ground-state configurations in (ii). This is
promising as truth tables of Boolean gates that operate on two
bits have four rows. However, they only have three columns
(two for the inputs of the gate and one for its output). We
therefore select three of the five atoms by assigning labels
to them: A and B play the role of the inputs and Q is the
output. We call atomic structures with designated input/output
atoms Rydberg complexes [49] (Sec. V A). If we list the four
ground-state configurations of these three atoms, we find the
truth table of a NOR-gate Q = A ↓ B = A ∨ B in (iii). Note
that the remaining two atoms (we call them ancillas)—while
not contributing independent degrees of freedom—are still
necessary to realize this specific ground-state manifold. At
this point things get interesting because it is a well-known fact
of Boolean algebra that the NOR-gate is functionally complete
(just like the NAND-gate): Every Boolean function can be de-
composed into a circuit build from NOR-gates only.

To leverage this decomposition, we need a method to com-
bine “gate complexes” to form larger “circuit complexes”;
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we call this procedure amalgamation (Sec. V B). A simple
example is shown in Fig. 1(c) where we attach the NOT-gate
from Fig. 1(a) to the output of the NOR-gate in Fig. 1(b) (note
that the detunings of the atoms that are joined add up). Using
the detunings and blockades in (i) yields the four degenerate
ground-state configurations in (ii). When we label the inputs
of the NOR-gate again by A and B, and now focus on the output
Q of the attached NOT-gate, we find indeed the truth table of an
OR-gate Q = A ↓ B = A ∨ B in (iii). Thus we can parallel the
logical composition of gates by a geometrical combination of
atomic structures such that the relation between ground-state
configurations and truth tables remains intact. In combination
with the insight that every Boolean circuit can be drawn in the
plane without crossing lines (after suitable augmentations),
this allows us to show that the truth table of any Boolean func-
tion can be realized as the ground-state manifold of a suitably
designed atomic structure. This functional completeness is our
first main result and motivates the title of the paper (Sec. VI).

For instance, the existence of a structure that realizes the
truth table of an OR-gate is a corollary of functional complete-
ness. However, the specific construction as the combination
of a NOR-gate and a NOT-gate in Fig. 1(c) raises the questions
whether this particular realization with six atoms is unique
and whether it is minimal (in the sense that the same truth
table could not be realized with fewer atoms). The answer to
the first question is negative: There are geometrically different
structures that realize the same truth table in their ground-
state manifold. The answer to the second question is positive,
though: We show that it is impossible to implement this truth
table with less than six atoms. Note that the functional com-
pleteness implies the existences of structures for all common
gates of Boolean logic (such as AND, XOR, etc.). We take this
as motivation to construct provably minimal structures for
all these primitives (Secs. VII and VIII). Together with the
procedure of amalgamation, these equip our versatile toolbox
to engineer more complicated structures.

Our second important contribution is an application of the
functional completeness as a tool to engineer synthetic quan-
tum matter (Sec. IX). Many interesting quantum phases in two
dimension are characterized by hidden patterns of long-range
entanglement, known as topological order. These patterns can
give rise to anyonic excitations, which make such systems
potential substrates for quantum memories and even quantum
computers. A large class of entanglement patterns can be un-
derstood as condensates of extended objects (like strings). A
crucial first step for the realization of these phases is therefore
the preparation of Hilbert spaces spanned by states of such
extended objects. However, in experiments, we typically start
from Hilbert spaces with a local tensor product structure (for
example, an array of two-level atoms). Our only hope is to
make the extended objects emerge due to interactions in the
low-energy sector of a suitably designed physical system.
This often boils down to enforce local gauge symmetries,
which single out states that can be interpreted in terms of
extended objects. Such local constraints can be reformulated
as Boolean functions that must be satisfied by the states of
the local degrees of freedom of the underlying system. For
any constraint of this form, our functional completeness result
ensures the existence of a structure of atoms, interacting via
the Rydberg blockade mechanism, that realizes this constraint

in its ground-state space. It is then just a matter of copy-
ing and joining these structures in a translational invariant
way to tessellate the plane. The ground-state manifolds of
such tessellations can therefore implement a large class of
nontrivial Hilbert spaces on which condensation (driven by
quantum fluctuations) might lead to topologically ordered
many-body quantum phases. Using our toolbox developed in
the first part of the paper, we demonstrate this construction
explicitly for the Abelian toric code phase (Sec. IX A) and
the non-Abelian, computationally universal Fibonacci anyon
model (Sec. IX B).

The truth tables realized by the ground states of all atomic
structures presented in this paper depend on the positions of
the atoms. (Because these positions define which pairs are in
blockade and which atoms can be excited simultaneously.)
However, the exact placement is often ambiguous. For ex-
ample, consider the structure in Fig. 1(ai), which realizes the
NOT-gate. It is clear that the blockade constraint (black edge)
does not change if the atoms are slightly shifted, as long as
the blockade radii (gray circles) encompass both atoms. We
refer to the set of atom positions as the geometry of a structure
and argue that “robust” geometries should avoid distances
between atoms that are close to the critical blockade distance.
For the complexes in Fig. 1, this translates into the geometric
objective to maximize the distances between nodes and gray
circles. We formalize this notion by assigning a number to
geometries that quantifies their “robustness” (Sec. X A) and
numerically construct optimized geometries that maximize
this number (Sec. X B).

We conclude the paper with an outline of open questions,
directions for further research (Sec. XI), and a brief summary
(Sec. XII).

III. PHYSICAL SETTING

We consider planar arrangements of trapped atoms with
repulsive van der Waals interactions when excited into the
Rydberg state [2,50]. Every atom is assigned an index i ∈ V =
{1 . . . N}, placed at position ri ∈ R2, and described by a two-
level system |n〉i where n = 0 corresponds to the electronic
ground state and n = 1 the excited Rydberg state.

The quantum dynamics of such systems is achieved by
coupling the electronic ground state to the Rydberg state by
external laser fields with Rabi frequency �i and detuning �i

for each atom [51–53]. Here we are mainly interested in the
regime �i → 0 where the Hamiltonian reduces to

H[C] = −
∑

i

�ini +
∑
i< j

U (|ri − r j |) nin j . (1)

Note that we assume the detunings �i to be site depen-
dent [54,55]. This Hamiltonian acts on the full Hilbert space
H = (C2)⊗N with the representation ni = |1〉 〈1|i. The con-
figuration of the system is completely specified by C ≡
(ri,�i )i∈V to which we refer as (Rydberg) structure; the posi-
tion data GC ≡ (ri )i∈V alone is the geometry of the structure
C (Fig. 2). For atoms in the Rydberg state, the interaction
potential in Eq. (1) is UvdW(r) = C6 r−6 with C6 > 0 the cou-
pling strength of the van der Waals interaction; we refer to
H[C] with U = UvdW as the van der Waals (vdW) model.
However, in many situations a simplified model U = U∞ with
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FIG. 2. Setting and objective. A two-dimensional structure
C = (ri, �i )i∈V of atoms i ∈ V with position ri and detuning �i

is governed by the Hamiltonian H [C] that describes the Rydberg
blockade interaction with blockade radius rB. The Hamiltonian gives
rise to a low-energy eigenspace H0[C] < H of width δE , separated
from the excited states by a gap �E . The objective of this paper is
the construction of a structure C from a given target Hilbert space HT

such that H0[C] � HT.

U∞(r � rB) = 0 and U∞(r < rB) = ∞ with blockade radius
rB is a reasonable approximation for the low-energy physics
of Eq. (1); we refer to H[C] with U = U∞ as the PXP model
[41,56]. In this paper, we use the PXP model unless stated
otherwise. We discuss valid choices for the blockade radius
rB in Sec. X A where we optimize the geometry of structures
to limit the effects of residual van der Waals interactions.

In the PXP model, the effect of the van der Waals in-
teractions is approximated by a kinematic constraint that is
completely encoded by a blockade graph B = (V, E ), where
an edge e = (i, j) ∈ E between atoms i, j ∈ V indicates that
they are in blockade, i.e., their distance is smaller than the
blockade radius rB. An abstract graph that can be realized
in this way is called a unit disk graph (not every graph has
this property); conversely, a geometry GC that realizes a pre-
scribed graph as its blockade graph is a unit disk embedding of
this graph (the “unit” here is the blockade radius rB). Through-
out the paper, the blockade graph of a structure will be drawn
by black edges connecting atoms that are in blockade.

IV. DEFINITION OF THE PROBLEM

The primary goal of this paper is to find structures C such
that there is a well-separated low-energy eigenspace H0[C]
of H[C] where H0[C] satisfies certain prescribed properties
that we describe in detail below. We quantify the separation
of H0[C] by its spectral width δE and its gap �E to the rest
of the spectrum (Fig. 2). Note that the experimental prerequi-
sites for the construction of arbitrary structures C are already
in place [4,54,55,57]. If one would switch on a weak drive
δE < �i � �E , this would induce quantum fluctuations be-
tween the states of the Hilbert space H0[C], potentially giving
rise to many-body states with interesting properties. In this
paper, we do not study such quantum effects but focus on
the implementation of the subspace H0[C]. We specify the
eigenspace to construct in terms of a target Hilbert space HT,

H0[C]
!� HT. (2)

FIG. 3. Tessellated language and target Hilbert space. A tessel-
lated target Hilbert space HT is a subspace of the full Hilbert space
of K qubits placed on each edge of a square lattice L; it is spanned by
product states |x〉 of bit patterns x ∈ LL[ fT]. The tessellated language
LL[ fT] comprises all bit patterns x ∈ F∗

2 that locally satisfy the
Boolean check function fT : F g

2 → F2. The g = 4K arguments of
the check function on each site s are singled out by the bit-projector
us.

Informally speaking, our goal is to “solve” this equation for
structures C for given HT. To make this possible, the target
Hilbert space HT must be specifiable in a form that we define
in the remainder of this section.

Formal languages. Throughout the paper we make use of
the notion of (formal) languages [58] on the binary alphabet
F2 = {0, 1}. A word x ≡ (x1x2 . . . xn) ≡ x1x2 . . . xn ∈ F∗

2 is a
finite string of letters xi ∈ F2 (the set of all such finite strings is
denoted F∗

2 ). A (formal) language L is then simply a collection
of words: L ⊆ F∗

2 . Here we only consider uniform languages
with words that have all the same length. For example, LCPY :=
{000, 111} ⊂ F∗

2 is a uniform language of words with length
n = 3, x = (111) is a word in LCPY and x1 = 1 is the first letter
of x. The words y = (011) ∈ F∗

2 and z = (0000) ∈ F∗
2 are not

in this language: y, z /∈ LCPY. The subscript “CPY” stands for
“copy” and hints at the role this language will play later.

Other examples are the class of languages generated by the
truth tables of Boolean functions. Let w : Fn−1

2 → F2 be an
arbitrary Boolean function of n − 1 variables; then

L[w] := {x1 . . . xn−1y | y = w(x1, . . . , xn−1)} ⊂ F∗
2 (3)

is the language generated from the rows of the truth table of
w, where the first n − 1 letters of each word correspond to the
input x and the last letter encodes the output w(x). A language
of this class always has 2n−1 words of uniform length n. Note
that the “copy” language LCPY is not of the form Eq. (3).

Another special class is given by tessellated languages on
lattices. In the following, we introduce the concept exem-
plarily for a finite square lattice L with periodic boundaries;
the generalization to other lattices and boundary conditions is
straightforward. Start by associating K classical bits to every
edge e ∈ E (L) of the lattice (Fig. 3). A bit configuration
of the system x ∈ XL = FK|E (L)|

2 ⊂ F∗
2 assigns every bit a

Boolean value xi
e (i = 1 . . . K). We focus on the family of

uniform languages L ⊆ XL that can be characterized by a
Boolean function that is local in the following sense: For
a site s ∈ V (L) of the square lattice, let the bit-projector
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us(x) = (x1
e1
, . . . , xK

e4
) single out the (ordered) set of g = 4K

bits on the four edges ei emanating from s. Let f : Fg
2 → F2

be an arbitrary Boolean function of g arguments, henceforth
referred to as check function. The tessellated language of bit
patterns on L generated by f is then defined as

LL[ f ] := {x ∈ XL | ∀s ∈ V (L) : f (us(x)) = 1}. (4)

In words: LL[ f ] is the set of bit patterns on the lattice L that
locally satisfy the constraints imposed by f .

Target Hilbert spaces. To any uniform language L ⊆ Fn
2

we can naturally associate the linear subspace of states on n
qubits (or spin-1/2)

H(L) := span {|x〉 | x ∈ L} ⊆ (C2)⊗n. (5)

For example, H(LCPY) = span{|000〉, |111〉} is the two-
dimensional subspace on three qubits spanned by product
states with configurations in LCPY = {000, 111}. By contrast,
the Hilbert space H′ = span{(|000〉 + |111〉)/√2} is not of
the form (5).

We require the target Hilbert space HT, that we aim to
realize as ground-state manifold H0[C], to be specified by a
language LT according to Eq. (5),

HT = H(LT). (6)

We are particularly interested in the special class of tessellated
target Hilbert spaces given in terms of tessellated languages
that are generated by a check function (Fig. 3),

HT = HL[ fT] := H(LL[ fT]). (7)

Recall that these languages come equipped with a spatial
structure (in the sense that the bits are located on the edges of
a lattice L). This spatial structure is inherited by the Hilbert
space HL[ fT] viewed as state space of a system where K
qubits are placed on every edge of L.

For example, the Hilbert space HZ2 of the even Z2 lattice
gauge theory is a particular subspace of a Hilbert space that
describes a system of qubits on the edges of a square lattice
(i.e., K = 1 and g = 4). HZ2 is spanned by the product states
of patterns of qubits in the state |1〉 that form closed loops
[59]. HZ2 is an admissible tessellated target Hilbert space be-
cause we can realize HZ2 = HL[ fZ2 ] with the check function

fZ2 (x1, x2, x3, x4) = 1 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4, (8)

where ⊕ denotes modulo-2 addition (Exclusive-OR or XOR);
the bit-projector us(x) simply singles out the four bits on edges
emanating from site s,

(9)

Physically, Eq. (8) enforces Gauss’s law on a charge-free
background by forbidding strings of qubits in state |1〉 to end
on a site. Further examples for tessellated target Hilbert spaces
are the more general “string-net” Hilbert spaces that can de-
scribe a large variety of topological orders and deconfined
gauge theories [48].

V. RYDBERG COMPLEXES

Before we can tackle our main goal, namely the construc-
tion of tessellated Rydberg structures C with H0[C] � HT =
HL[ fT] for a given check function fT, we first need to spec-
ify the notion of a finite Rydberg complex as a preliminary
step. Specific examples for Rydberg complexes can be found
throughout the remainder of the paper.

A. From structures to complexes

Consider the language LCPY = {000, 111} and let HCPY =
H(LCPY) = span{|000〉, |111〉} be our target Hilbert space. Our
goal is to realize HCPY as the ground-state manifold H0[CCPY]
of a structure CCPY of n = 3 atoms. This, however, is impos-
sible: Since |111〉 ∈ HCPY, none of the three atoms can be
in blockade with each other. Consequently, H0[CCPY] cannot
contain only the states |000〉 and |111〉 (Appendix A 1). This
problem is not specific to the language LCPY but shared by
many (although not all) languages. The solution is to consider
larger structures of N � n atoms and to identify the letters
of words with a subset of n distinguished atoms (we call
them ports); the remaining N − n atoms play then the role of
ancillas. A structure together with a distinguished set of ports
will be referred to as a (Rydberg) complex.

Let us formalize this notion. Consider a structure C of N
atoms and a language L ⊆ Fn

2 of words of uniform length
n � N . Let L = {A, B, . . . } denote a set of n labels where
each label is associated with a fixed letter position of words
in L. (If one prints all words of L as rows of a table, the
labels correspond to the column headers.) Let � : L → V be
an injective label function that assigns a label to a subset of
n atoms (the ports); the N − n atoms without labels are the
ancillas. We refer to the structure C together with the labeling
� as a (Rydberg) L-complex CL if the states that span H0[C]
can be identified by the configurations of the ports alone,

H0[CL] ≡ H0[C] = span {|x, a(x)〉 ∈ H | x ∈ L}. (10)

In |x, a(x)〉, the state of ports is given by the first n bits x
(in some fixed order) and the state of ancillas by a N − n
bit-valued function a : L → FN−n

2 . The ground-state space
H0[CL] will be referred to as an L manifold. An important
aspect of this definition is that the ancillas do not introduce ad-
ditional low-energy degrees of freedom; they are only needed
to unleash the full potential of the blockade interactions. In
this sense, we say that a complex CT ≡ CLT realizes a target
Hilbert space HT = H(LT) and write

(C2)⊗N ⊇ H0[CT] � HT = H(LT) ⊆ (C2)⊗n (11)

with the isomorphism � given by |x, a(x)〉 ↔ |x〉. If we say
that a complex realizes a language L, we mean that it realizes
the target Hilbert space HT = H(L) defined by this language.

As an example, consider again the “copy” language
LCPY = {000, 111} with n = 3; the ground-state manifold of
a LCPY-complex CCPY ≡ CLCPY

must be two-dimensional (since
|LCPY| = 2) and characterized by the property that three dis-
tinguished atoms (the ones assigned labels by �) are always
forced to be in the same state,

H0[CCPY] = span {|000, a(000)〉, |111, a(111)〉}. (12)
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Such a complex will be one of our primitives to implement
check functions for tessellated target Hilbert spaces. We will
discuss a specific realization CCPY that requires a single ancilla
in Sec. VI; that is, with N = n = 3 atoms the target Hilbert
space HCPY cannot be realized, whereas with N = 4 it can.

As another example, consider the logical XOR-gate
wXOR(x1, x2) = x1 ⊕ x2, which may be needed as a primitive
for a check function like Eq. (8). We can ask for a complex
CXOR that realizes the target Hilbert space HXOR = H(LXOR)
given by the language LXOR ≡ L[wXOR] = {000, 011, 101, 110}
that is generated by this Boolean gate. The ground-state man-
ifold of such a complex must be spanned by four states,

H0[CXOR] = span

{|000, a(000)〉, |011, a(011)〉,
|101, a(101)〉, |110, a(110)〉

}
(13)

where the configurations of potential ancillas are determined
by the configurations of the three ports. We will introduce a
specific realization CXOR in Sec. VII; it requires N = 7 atoms
of which four are ancillas, and we show that this is indeed the
smallest complex that can realize the language of a XOR-gate.

Since LXOR = L[wXOR] is generated from a Boolean gate,
we refer to complexes that realize a language of this form
as gates, too. Furthermore, we denote the atoms that map to
the input bits of the gate as input ports, and the atom that
corresponds to the output bit as the output port. We also extend
this nomenclature to Boolean functions w on more than two
inputs. Let us stress that these terms are only inspired from
the usual role played by such functions as parts of Boolean
circuits. In the present context, there is no time evolution or
dynamics involved (there is no information “flowing into” the
input ports, although it might be sometimes helpful to use this
picture).

The construction of an L complex for a given language
L with word length n can be split into two steps: First, one
has to find a structure C on at least n atoms with an |L|-fold
degenerate ground-state manifold. Then, one has to identify
a labeling � of n atoms such that their states in the ground-
state manifold map one-to-one to words in L. The structure
C together with the labeling then yields an L complex. Note
that the same structure can be interpreted as different com-
plexes for different languages by choosing different label
functions. Furthermore, not every structure with |L|-fold de-
generate ground-state manifold allows for a valid labeling that
realizes L. Hence the construction is a quite nontrivial task
in general. This makes a reductionist approach seem most
promising, where one starts with a finite set of small “primi-
tive” complexes and constructs larger complexes by “gluing”
them together.

B. Amalgamation

The process of combining two complexes by joining (some
of) their ports is referred to amalgamation. To define the
process formally, we first need a new concept to combine two
languages.

Consider two uniform languages L1 and L2 of words
of length n1 and n2, respectively. Let γ ⊆ {(p1, p2) | pi ∈
{1, . . . , ni}} be a set of disjoint [60] pairs of letter positions
and set γi := {pi | p ∈ γ }. For a word x ∈ Li, let xγi denote the
word with all letters at positions in γi deleted. Then, the γ

intersection of L1 and L2 is defined as

L1

γ∩L2 := {
x yγ2 | x ∈ L1, y ∈ L2,∀(a,b)∈γ xa = yb

}
,

which is a language of words of length n1 + n2 − |γ |. L1

γ∩L2

is the set of concatenations of words from L1 and L2 where
the letters at the positions indicated by pairs in γ coincide,
and where the second copy of these letters has been deleted.
Analogously, we define the reduced γ intersection as

L1

γ∩ L2 := {
xγ1 yγ2 | x ∈ L1, y ∈ L2,∀(a,b)∈γ xa = yb

}
,

only that now both copies of identified letters are deleted;
hence this is a language of words with length n1 + n2 − 2|γ |.

As an example, consider again the XOR-language LXOR =
{000, 011, 101, 110} and the CPY-language LCPY={000, 111}.
We would like to copy the output of the XOR-gate. To do this,
we intersect the output bit (letter 3) of the XOR-language with
one of the bits (say letter 1) of the CPY-language: γ = {(3, 1)}.
The γ intersection is the new language

LXOR

γ∩LCPY = {00000, 01111, 10111, 11000} (14)

with words of length 3 + 3 − 1 = 5. The underscores indicate
the letters that derive from words of both languages. If one
drops these letters as well (by using the reduced γ intersec-
tion), the language describes a XOR-gate with fan-out of two,

LXOR

γ∩ LCPY = {0000, 0111, 1011, 1100}. (15)

The above definitions on the level of languages are useful
because they are paralleled by a combination of complexes
called amalgamation: Consider two complexes CL1 and CL2

that realize the languages L1 and L2 with N1 and N2 atoms, re-

spectively. Fix a set of pairs of ports γ such that L′ = L1

γ∩L2 �=
∅, and then combine the two complexes by identifying the
atoms in γ ,

(16)

The new complex CL′ has N1 + N2 − |γ | atoms. For this con-
struction, we assume that the ports that belong to pairs in γ

are located on the boundary of their complex (we will show
in Sec. VI why this is possible). The Hamiltonian of the new
complex is

H[CL′] = (H[CL1 ] + H[CL2 ] + δH )/γ , (17)

where the formal quotient •/γ indicates that pairs of atoms in
γ are identified; δH denotes additional interactions between
the two subcomplexes CLi that vanish in the PXP model (in
the vdW model they are finite but strongly suppressed due to
the quick decay of UvdW).

In a nutshell, H[CL′] is the sum of the Hamiltonians of
the original two complexes were the detunings of the ports
that are identified by γ add up. For example, let n(1) and n(2)

describe ports of CL1 and CL2 , respectively, and let γ identify
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these two ports. Then H[CL1 ] contains a term −�(1)n(1) and
H[CL2 ] contains a term −�(2)n(2). The Hamiltonian (17) of the
amalgamation contains the term (−�(1)n(1) − �(2)n(2) )/γ =
−(�(1) + �(2) )n′ where n′ = n(1)/γ = n(2)/γ describes the
atom that corresponds to the identification of the two ports.

With δH = 0, it is straightforward to verify that the amal-

gamation CL′ realizes the language L′ = L1

γ∩L2. This is so
because the ground-state energy of H[CL′] is lower bounded
by the sum of the ground-state energies of the summands
H[CLi ]; but this lower bound is realized by configurations in
L′ �= ∅. The ports identified by γ can be interpreted as ancillas

of the new complex if |L1

γ∩L2| = |L1

γ∩ L2|, i.e., if the states of
these atoms provide redundant information about the ground-

state manifold; in this case, one would define L′ = L1

γ∩ L2

instead.
An important special case of the above construction is

the amalgamation of gates where the input ports of one gate
are identified with the output ports of others. For example,
let w(x1, x2) and w′(x′1, x′2) be two Boolean gates that are
concatenated into the circuit on three inputs w̃(x′1, x1, x2) :=
w′(x′1,w(x1, x2)). It is easy to see that L[w̃] = L[w]

γ∩ L[w′]
with γ = {(3, 2)} where 3 labels the third letter of words in
L[w], which encodes the output y = w(x1, x2), and 2 labels
the second letter of words in L[w′], which encodes the input
x′2. Note that for Boolean circuits without redundancies it

is always |L[w]
γ∩L[w′]| = |L[w]

γ∩ L[w′]| because all words
are identified by the input bits. This example demonstrates
that the amalgamation of gates is a crucial ingredient for the
decomposition of complex Boolean circuits into a small set of
simple gates.

VI. FUNCTIONAL COMPLETENESS

We have now all concepts and tools in place to formulate
the main result of this paper:

Theorem 1 (Functional completeness). For every tessel-
lated target Hilbert space HT = HL[ fT] on some lattice L that
is generated by a check function fT, there exists a structure CT

in the PXP model such that

HT
loc� H0[CT], (18)

with finite gap �E > 0 and perfect degeneracy δE = 0.

In Eq. (18),
loc� denotes an isomorphism of Hilbert spaces

like Eq. (11) that in addition preservers the locality structure:
It maps local unitaries on HT to local unitaries on H0[CT] and
vice versa. Here the locality structure of H0[CT] is induced by
the locality structure of H, which reflects the physical real-
ization of the system. The locality structure of HT = HL[ fT]
derives from the lattice L and the bit-projector us that was
used to define the tessellated language LL[ fT]; it is therefore
part of the defining properties of the Hilbert space HT. This
local isomorphism will be explicit for the examples in Sec. IX.

Proof. The proof of Theorem 1 is constructive in principle
and best split into several steps: Steps 1 to 4 deal with the
construction of a Rydberg complex C fT=1 that implements the
constraint of the check function on a single site of the lattice.

In the final Step 5, the structure CT is then constructed as the
amalgamation of copies of C fT=1 on the full lattice.

Step 1: Decomposition of fT. The first goal is to convert
the check function fT : Fg

2 → F2 on g binary inputs into a
finite set of Boolean gates as “building blocks.” There are
many universal gate sets to choose from [61] but the one that
is most natural to the Rydberg platform is the singleton {NOR}
that contains only the NOR-gate [62],

A ↓ B := A ∨ B. (19)

The idea behind this choice is simple: Placing three atoms
A,C, B in a row such that the pairs (A,C) and (C, B) are in
blockade but the pair (A, B) is not naturally gives rise to a
constraint akin to C = A ↓ B (we discuss the details below).
The functional completeness of {NOR} allows us to write

fT(x1, . . . , xg) = ( . . . (xi ↓ x j ) . . . (xk ↓ xl ) . . . ), (20)

where the expression on the right can be any (recursive) com-
bination of expressions built from the input variables paired by
NOR-gates. On an abstract level, this is a neat result; however,
in reality one has to be more careful because variables can be
used multiple times at different locations in the NOR-expansion
of fT.

To identify the true physical building blocks needed to
cast Eq. (20) into a structure of atoms, it is advisable to
translate the NOR-expansion into a graph G fT that represents
the underlying Boolean circuit and uses the inputs xi only
once at dedicated “input vertices” and outputs the result
fT(x1, . . . , xg) at a dedicated “output vertex” [Fig. 4(a)]. Oth-
erwise, G fT is a trivalent graph with two types of vertices,
corresponding to CPY-operations that copy a bit and NOR-
gates that combine two bits according to Eq. (19). If we
assign arrows to the edges to highlight the information flow,
the two vertices are distinguished by the number of in- and
outgoing edges (CPY: 1 in and 2 out, NOR: 2 in and 1 out).
Furthermore, we can interpret the edges themselves as trivial
single-bit gates (“LNK-gates”). If we assign Boolean values to
the inputs and outputs of these three primitives according to
the truth tables in Fig. 4(b), the value of the output vertex is
given by y = fT(x1, . . . , xg). Without loss of generality, we
consider only circuits without redundancy, i.e., for a given
input {x1, . . . , xg} the state of the inputs and outputs of all its
primitives is uniquely determined. This implies that there are
exactly 2g such assignments that are parametrized by the g
inputs {x1, . . . , xg} (this can be seen as a boundary condition;
in a dynamical circuit, one would call it an initial condition).

Step 2: Embedding of G fT . The graph G fT represents the
Boolean circuit of fT on an abstract level (only the connectiv-
ity of G fT is relevant). Our final goal is to translate this graph
into a functionally equivalent structure of atoms in the plane.
Thus we have to find an embedding �(G fT ) of G fT in R2; this
embedding should be planar, i.e., without crossing edges to
avoid unwanted interactions. Here we skip a formal definition
of �(G fT ) and appeal to the intuition of the reader: �(G fT )
describes a drawing of G fT in the plane without crossing edges
and with well-separated vertices [Fig. 4(c)]. Of course not
every graph G fT is planar, i.e., can be drawn without crossing
edges in the plane. However, it has been shown long ago that
every Boolean circuit can be made planar by augmenting it
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FIG. 4. Decomposition of Boolean functions. (a) Any Boolean function fT can be represented by a graph GfT (a “Boolean circuit”) with
dedicated input vertices (blue squares), one output vertex (red square), and trivalent vertices (circles) of two types (b): NOR-gates with two
incoming and one outgoing edge (orange circles) and CPY-vertices with one incoming and two outgoing edges (black circles); the edges
themselves can be interpreted as trivial single-bit gates, here referred to as LNK-gates (black edges). If the inputs (A,B) and outputs (Q,R) of all
three primitives are assigned Boolean values that satisfy the truth tables in (b), the value at the output vertex is y = fT(x1, . . . ) by construction.
(c) The embedding �(GfT ) (“drawing”) of the abstract graph GfT in the plane R2 typically involves crossings (whenever GfT is nonplanar);
furthermore, input and output vertices may lie in the interior of the graph. Since a crossing of wires can be implemented with the available
vertices (d), the graph can always be enhanced such that it becomes planar and input/output vertices lie on the perimeter of the embedding. (e)
Locally, the embedding �(GfT ) decomposes into three primitives, namely the structures referred to as NOR, CPY, and LNK that are functionally
defined by the truth tables in (b) and geometrically by the sketches in (e).

with “crossover subcircuits” whenever two lines cross [63].
This crossover can be constructed with various gate sets,
including the NOR-singleton [Fig. 4(d)]. The embedding of
the crossover then uses only the three available primitives in
Fig. 4(b) so that we can, without loss of generality, assume
�(G fT ) to be planar. Note that the existence of a crossover
also implies that we can assume the input and output vertices
to be located on the perimeter of the embedding [as realized
in Fig. 4(c)]. Translated into complexes, this will prove our
claim in Sec. V A that we can assume the ports to sit on the
perimeter of a complex.

While �(G fT ) may look very convoluted on a larger scale,
locally it decomposes into the three simple primitives depicted
in Fig. 4(e), namely CPY, NOR, and LNK. The next step is
then to implement these three primitives as complexes both
geometrically [i.e., following the geometry in Fig. 4(e)] and
functionally [i.e., following the truth tables in Fig. 4(b)]. An
fT complex can then be obtained by amalgamation of these
primitives according to the geometric blueprint provided by
�(G fT ).

Step 3a: Implementing the LNK-complex. The LNK-
complex is the physical counterpart of the “wires” in the
drawing of the circuit �(G fT ). Logically, it corresponds to the
trivial gate w(x) = x with language LLNK = {00, 11}. On the
level of pure Boolean logic, wires are not entities of their own
but on the physical level, sending a bit from one location to
another requires dedicated machinery.

Before we discuss its construction, it is useful to introduce
a more fundamental complex that can be used to construct two
of the three primitives: the NOT-gate with defining language
L¬ = {01, 10}; it realizes the single-bit gate w(x) = x and
formalizes the core concept of the Rydberg blockade. In the
PXP model, it can be realized naturally without ancillas by

the Hamiltonian

H¬ = −�(nA + nQ) (21)

with a complex C¬ where |rA − rQ| < rB. The subscripts de-
note the labels of the ports assigned by � (we reserve A, B,
. . . for input ports and Q, R, . . . for output ports). The ground-
state manifold is H0[C¬] = span{|01〉, |10〉} with degeneracy
δE¬ = 0 and gap �E¬ = � > 0.

The elementary LNK-complex that translates a bit in space
can then be constructed as the amalgamation of two NOT-gates
[Fig. 5(a)] with Hamiltonian

HLNK = −�nA − 2�ñ1 − �nQ, (22)

where adjacent atoms are in blockade but next-nearest neigh-
bors are not. Above and in the following we label ancillas with
a tilde and assign them numerical indices. As for the NOT-gate,
it is δELNK = 0 and �ELNK = � with the LNK-manifold

H0[CLNK] = span {|0(1)0〉, |1(0)1〉}. (23)

Here and in the following we mark the states of ancil-
las by parentheses. Repeated amalgamation of elementary
LNK-complexes results in LNK-complexes of arbitrary length
(always composed of an odd number of atoms and with halved
detuning at the endpoints). The two states in H0[CLNK] of such
chains correspond to the two ground states of an antiferromag-
netic Ising chain.

Step 3b: Implementing the CPY-complex. The purpose of
the CPY-complex is to copy classical bits; it is defined by
the “copy” language LCPY = {000, 111}. The CPY-complex is
necessary because expansions in universal gates can reuse
inputs multiple times. Furthermore, circuits can be simplified
dramatically if intermediate results can be reused. In conven-
tional drawings of Boolean circuits, the possibility to copy bits
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FIG. 5. Complete set of logic primitives. (a) The (elementary) LNK-complex CLNK can be realized by a chain of three atoms where adjacent
atoms are in blockade (black edges). The detuning of the ports � (blue squares, labeled by �) is half that of the ancilla 2� (green circle) in the
bulk. The width δE and gap �E are shown together with a schematic spectrum that highlights the logical manifold H0[CLNK] and one of the
states orthogonal to H0[CLNK] that define the gap. The state of ancillas is shown in parentheses. (b) The CPY-complex CCPY can be realized with
a central ancilla (red circle) that is in blockade with the three surrounding atoms (blue squares). To make the two logical states degenerate, the
ancilla has a detuning of 3� if the other atoms are detuned by �. (c) The NOR-complex CNOR can be realized with two ancillas (blue and green
circles) that form a ring-like blockade with the three ports (blue and green squares). To make the four logical states unique and degenerate, the
detunings cannot be chosen uniformly but must break the reflection symmetry about the axis through the output port Q.

is silently assumed whenever one splits up wires. Again, in a
physical implementation one has to provide the means to do
so.

The implementation of the CPY-complex is detailed in
Fig. 5(b). It is easy to see (Appendix A 1) that there cannot
be a CPY-complex without ancillas because the configuration
111 excludes a Rydberg blockade between any of the three
ports (which would automatically render them completely
uncorrelated). Adding a single ancilla does the trick because
the amalgamation of three NOT-complexes on a single atom
yields the desired complex by construction. The four atoms
are described by the Hamiltonian

HCPY = −�(nA + nQ + nR) − 3� ñ1, (24)

and the geometry of the complex CCPY is chosen so that the
ancilla is in blockade with the three ports, but these are not
within blockade of each other. In combination with Eq. (24),
this implements the CPY-manifold,

H0[CCPY] = span {|000(1)〉, |111(0)〉} (25)

with δECPY = 0 and �ECPY = � > 0.
Step 3c: Implementing the NOR-complex. The NOR-

complex is crucial as it realizes a functionally complete
two-bit gate; it is specified by the language LNOR = {001, 010,

100, 110}. In contrast to the LNK- and CPY-complexes, the
NOR-complex cannot be bootstrapped from the NOT-complex
but must be constructed from scratch.

In Appendix A 2 we show that a NOR-complex cannot be
realized with less than two ancillas in the PXP model. One
implementation of a NOR-complex is detailed in Fig. 5(c). The
five atoms are governed by the Hamiltonian

HNOR = −�(nA + nQ + ñ1) − 2�(nB + ñ2), (26)

which gives rise to the NOR-manifold

H0[CNOR] = span

{|001(01)〉, |010(10)〉,
|100(01)〉, |110(00)〉

}
(27)

with δENOR = 0 and �ENOR = �; this requires that the atoms
are arranged in a ring-like blockade, as depicted in Fig. 5(c).

Note that the two ancillas are only necessary to enforce the
degeneracy of the logical states 010 and 100 with 110. All re-
maining constraints come for free with the Rydberg blockade.
As we will show in Sec. VII, the NOR-complex in Fig. 5(c)
is not unique. We will also see that the only fundamental
Boolean gate that can be realized with as few as five atoms
is the NOR-gate, confirming our intuition in Step 1 that the
NOR-gate is the most natural on the Rydberg platform.

Step 4: Constructing the fT-complex. To construct a com-
plex C fT that implements the check function fT (more
precisely: the language L[ fT]), one combines the three prim-
itives above according to an embedding �(G fT ). Since all
vertices are (at most) trivalent, it is easy to check that an
amalgamation in the PXP model is possible without geometri-
cal obstructions, and that this procedure yields an fT-complex
with δE fT = 0 and �E fT � � > 0. At this point, we have a
complex with g = 4K input ports on its boundary that outputs
y = fT(x1

e1
, . . . ) on a dedicated output port (also on its bound-

ary, but this is not important in the following),

(28)

To enforce the constraint fT(x1
e1
, . . . )

!= 1, we only have to
add a local detuning on the output port to lower the energy of
valid configurations and gap out invalid ones. This boils down
to a simple modification of the check function complex,

→ (29)
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where the output port is detuned and downgraded to an ancilla.
The ground-state manifold of the modified complex C fT=1

consists of all input configurations for which fT(x1
e1
, . . . ) = 1.

Step 5: Constructing CT. The complex C fT=1 enforces the
local constraint of the check function on a single site of the
lattice on which the tessellated target Hilbert space HT =
HL[ fT] is defined. To construct CT for the full system, place a
copy C fT=1 �→ Cs

fT=1 on every site s ∈ V (L) of the lattice, and
amalgamate adjacent complexes at the corresponding ports
(possibly using LNK-complexes to avoid unwanted interac-
tions),

CT := (30)

By construction, the ground states of this complex are in one-
to-one correspondence with words x ∈ LL[ fT] (using the ports
on the edges denoted by blue squares). Note that here we show
the construction for a square lattice L; the generalization to
other lattices is straightforward.

This concludes the construction of CT such that HT
loc�

H0[CT] in the PXP approximation. Note that the ancillas do
not introduce additional degrees of freedom in this subspace
and local unitaries on HT map to local unitaries on H0[CT]
(the latter involve the ancillas of the C fT=1 complexes and
can therefore be very complicated—but they remain local
on H). �

We conclude this section with a few remarks.
First, while the proof above is constructive, one should

not expect the resulting structures to be useful in real-world
applications, except for simple special cases. In particular,
we established no claims about optimality (in any sense) of
the constructed fT-complexes; on this we focus in the next
Sec. VII.

Second, the modification in Eq. (29) to construct C fT=1

from C fT is often straightforward to implement and can sim-
plify the complex considerably: When there are no blockades
between the output port and some of the input ports, one
simply deletes the output port along with all ancillas that are
in blockade with it. This removes all configurations of input
ports from the ground-state manifold where the output was
not excited (see Appendix B). The removal of the output port

may not be necessary at all if the constraint fT(x1
e1
, . . . )

!= 1
can be rewritten as an equality of the form

f1
(
x1

e1
, . . . , x1

e2
, . . .

) != f2
(
x1

e3
, . . . , x1

e4
, . . .

)
, (31)

with Boolean functions f1,2 that take only 2K inputs

each. Then C fT=1 = C f1

γ⊗ C f2 where the two complexes are

amalgamated at their output ports,

= (32)

An example for this construction can be found in Sec. IX A.
Lastly, the constructive proof implies that all Boolean func-

tions can be realized by a complex with bounded detuning
range {1�, 2�, 3�}, i.e., detunings do not grow with the
size (or depth) of the Boolean circuit. Indeed, since the ports
of the LNK-complex have detuning 1�, and the ports of the
CPY- and NOR-complexes at most 2�, amalgamations of the
latter two primitives via LNK-complexes produce atoms with
maximum detuning 3�. This result is particularly important
for experimental realizations that always operate within a
bounded range of applicable detunings.

VII. LOGIC PRIMITIVES

A crucial step of the proof in the previous section is to show
that every Boolean function f can be realized by a Rydberg
complex C f in the sense that the language L[ f ] of its truth
table can be realized as ground-state manifold. As mentioned
above, the complexes that arise from the decomposition of
f into LNK-, CPY- and NOR-primitives are typically large and
convoluted. For example, the decomposition of a simple AND-
gate (∧) into NOR-gates reads

A ∧ B = (A ↓ A) ↓ (B ↓ B), (33)

which would require two CPY- and three NOR-complexes,
wired together by a bunch of LNK-complexes so that the
resulting complex requires more than 20 atoms. As this is
way too much overhead for a simple gate, the question arises
whether important primitives of Boolean logic can be realized
by complexes that are much smaller than the ones described
by the NOR-decomposition in Sec. VI.

The answer is positive: In the following, we discuss prov-
ably minimal complexes for the most important gates of
Boolean logic, all of which improve significantly over the
naïve NOR-decomposition. Besides the usual gates of Boolean
algebra, NOT (¬ or •), AND (∧), and OR (∨), we search for
minimal complexes that realize the following common logic
gates (given in disjunctive normal form),

NOR: A ↓ B = A ∧ B, (34a)

NAND: A ↑ B := A ∨ B, (34b)

XOR: A ⊕ B := (A ∧ B) ∨ (A ∧ B), (34c)

XNOR: A � B := (A ∧ B) ∨ (A ∧ B). (34d)

Of these gates, only NOR and NAND are universal on their
own. The following identities show that some of these gates
are simply inverted versions of others (we will use this below):

A ∧ B = A ↑ B, (35a)

A ∨ B = A ↓ B, (35b)

A ⊕ B = A � B. (35c)
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FIG. 6. Common logic primitives. Rydberg complexes for the most common primitives of Boolean circuits. All complexes are provably
minimal, see Appendix A. Note that minimal complexes are not necessarily unique; e.g., the shown NOR-gate is an alternative to the one in
Fig. 5(c), both of which are minimal. For each complex we show (1) the geometry with blockade radii (gray dashed circles), (2) the complete
ground-state manifold (orange: |1〉i, black: |0〉i), and (3) the truth table of the ports (labeled atoms) in the ground-state manifold. The rows
of the truth tables correspond to the numbered ground-state configurations. Colors of ancillas and ports in the geometry encode the detuning
(see key). Atoms in blockade are connected by black solid lines.
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FIG. 7. Crossing. (a) The crossing constructed from the Boolean circuit crossing based on XNOR-gates (see Ref. [63] and Fig. 6); it is an
amalgamation of LNK-, CPY-, and XNOR-complexes. The ground-state manifold (not shown) is fourfold degenerate and ensures A = Q and
B = R. The complex requires ∼27 atoms and is therefore of no practical relevance. (b) By contrast, the minimal crossing CCRS requires only
10 atoms; it was constructed by systematically excluding functionally equivalent complexes with fewer atoms. The shown data is explained
in the caption of Fig. 6. (c) The minimal inverted crossing CICRS is smaller than the noninverted crossing and requires only eight atoms. To
construct CCRS from CICRS, two NOT-complexes must be amalgamated to adjacent ports. This is a recurring scheme due to the inverting nature
of the Rydberg blockade.

Of the gates {¬,∨,∧,↑,↓,⊕,�}, we already know min-
imal complexes for NOT (two atoms) and NOR (five atoms),
recall Sec. VI.

Using Eq. (35b), we can immediately construct an OR-
complex with six atoms by amalgamation of a NOT-complex to
the output port of a NOR-complex (remember Fig. 1). However,
it is unclear whether this complex is minimal, i.e., cannot be
realized with fewer atoms. Therefore we systematically de-
vised proofs that a given truth table cannot be realized with a
given number N of atoms, starting at N = 3 for each gate, and
increasing the number incrementally until the proof fails, i.e.,
realizations can no longer be excluded. These arguments are
quite technical and can be found in Appendix A. However, this
approach has two benefits: First, it provides rigorous lower
bounds on how many atoms are needed to realize a given gate,
and second, it often provides a blueprint for the construction
of a minimal complex that saturates this bound by carefully
observing why one cannot exclude realizations with a given
number of atoms.

To complement this rigorous approach, we conducted a
brute force search on a computer that exhaustively scans for
(small) complexes that realize a given truth table. In accor-
dance with our proofs, we found solutions with the minimal
atom number for a given truth table (in addition, we also found
nonminimal complexes). Interestingly, there were alternative
minimal solutions that we missed in our manual approach; so
minimal complexes are not necessarily unique.

A selection of provably minimal complexes for all impor-
tant Boolean primitives is shown in Fig. 6 (for the sake of
completeness, we include the NOT-, LNK- and CPY-complexes
discussed in Sec. VI). There are a few comments in order.
First, an example of nonunique minimal complexes is the
depicted NOR-complex built from five atoms arranged in a
triangular structure [cf. the ring-shaped structure in Fig. 5(c)].
Second, the six-atom OR-complex we proposed above indeed
is minimal, although not unique either. Third, the selection

of minimal complexes in Fig. 6 for {∨,∧,↑,↓,⊕,�} all
build around the triangle-based core of the NOR-complex, once
again emphasizing its central role in the context of Rydberg
complexes. Finally, it turns out that the relations (35) are all
reflected in the minimal complexes, e.g., the amalgamation of
a NOT-complex and a XNOR-complex yields a minimal XOR-
complex; similar constructions hold for NAND and AND as well
as NOR and OR. If we recall the relation between NOT and
the minimal LNK-complex, the general picture emerges that
inverting complexes are simpler (by one atom) than noninvert-
ing ones. This is understandable in so far as inversion is the
most basic operation the Rydberg blockade is capable of, thus
leading to the simplest complexes. This is in contrast to the no-
tation for Boolean circuits known from electrical engineering
where inverting gates are represented by more complicated
symbols than their noninverting counterparts (Fig. 6).

VIII. CROSSING

The crossing complex realizes the somewhat surprising
feature of intersecting information channels in a strictly two-
dimensional setup of strongly interacting information carriers
(recall Step 2 in Sec. VI). The possibility to realize such a
planar crossing in a circuit with the three primitives LNK, CPY,
and NOR was crucial for the proof of Theorem 1. Note that
the existence of such a complex followed immediately from
the existence of the three aforementioned complexes and the
well-known fact that Boolean circuits can be made planar
[63]. However, just as for the Boolean gates in Sec. VII, the
NOR-based implementation of the circuit crossing in Ref. [63]
is of low practical value as it requires seven NOR-gates [if
we implement NOT-gates directly, Fig. 4(d)]; even a simpler
crossing based on only three minimal XNOR-gates requires
∼27 atoms, see Fig. 7(a). Thus we are again tasked with
finding a minimal complex that realizes the same function.
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By systematically excluding the existence of crossing com-
plexes for N = 4, . . . , 9 atoms, we finally find the minimal
complex CCRS depicted in Fig. 7(b) comprising 10 atoms.
The proof for its minimality is very technical and more
complicated than for the logic primitives because geometric
constraints must be taken into account for the crossing [64].
The structure with two dangling ports (Q and R) immediately
suggests the inverted crossing CICRS in Fig. 7(c) with eight
atoms, i.e., a complex that allows two signals to pass each
other while inverting both at the same time. The minimality
of the inverted crossing complex CICRS with eight atoms fol-
lows as a corollary from the minimality of the noninverted
crossing CCRS with 10 atoms as the latter can be obtained from
the former by amalgamation of two NOT-complexes (thereby
adding two atoms). In line with our comment at the end of
the previous Sec. VII, the inverted variant of the crossing is
smaller than its noninverted counterpart. We note that the in-
verted crossing CICRS has also been described in Ref. [33] were
it plays an important role in mapping nonplanar optimization
problems to planar Rydberg structures.

IX. EXAMPLES: SPIN LIQUID PRIMITIVES

In this part, we focus on our motivation outlined in the
introduction, namely the implementation of tessellated target
Hilbert spaces of systems that are characterized by local gauge
constraints. We discuss two models exemplarily: the surface
code with Abelian Z2 topological order and the non-Abelian
Fibonacci model. For the surface code, we will be able to uti-
lize the Boolean primitives discussed in Sec. VII; by contrast,
for the Fibonacci model such a reduction will not be useful.

A. Surface code

The toric code [47] is the prime example for a spin liquid in
two dimensions with long-range entangled ground states that
do not break any symmetries but instead feature topological
order. The toric code is referred to as surface code if realized
on surfaces with boundaries [65]; we will stick to this name
in the following. The surface code describes a gapped phase
with Z2 topological order that is described by the mechanism
of string-net condensation [48]. It allows for localized exci-
tations that are Abelian anyons [66], which, in turn, leads to
ground-state degeneracies on topologically nontrivial surfaces
(including flat surfaces with nontrivial boundaries). As a con-
sequence, surface codes are promising candidates for quantum
memories that encode logical qubits reliably into delocalized
degrees of freedom [67]. This makes the implementation of
systems with this kind of topological order interesting both
from an academic and an applied perspective [44,68,69].

Here we consider the surface code on a finite square lattice
with “rough” boundaries [like the gray background lattice in
Fig. 8(d)]; “rough” boundaries are terminated by dangling
edges that attach to quadrivalent vertices. The Hamiltonian

H = −JA

∑
Sites s

As − JB

∑
Faces p

Bp (36)

operates on qubits that live on the edges e of the square lattice.
The operators

As =
∏
e∈s

σ z
e and Bp =

∏
e∈p

σ x
e (37)

are referred to as star and plaquette operators, respectively.
Here, e ∈ s denotes edges that emanate from site s and e ∈ p
denotes sites that bound face p; σα

e are Pauli matrices for α =
x, y, z acting on the qubit on edge e. Since [As, Bp] = 0, the
Hamiltonian (36) is frustration-free and its ground state |G〉
is characterized by As|G〉 = Bp|G〉 = |G〉 for all sites s and
faces p (assuming JA, JB > 0). Due to the uniform “rough”
boundaries there is no ground-state degeneracy and |G〉 is
unique.

The construction of |G〉 is straightforward: To satisfy the
constraint As|G〉 = |G〉 on sites s, one can choose the product
state |0〉 with σ z

e |0〉 = |0〉 for all edges. This state does not
satisfy the constraint Bp|G〉 = |G〉 on faces, though. To fix
this, one defines the multiplicative group B = 〈{Bp |Faces p}〉
generated by all plaquette operators (note that B2

p = 1), and
constructs the superposition

|G〉 ∝
∑
C∈B

C|0〉. (38)

The state |G〉 is invariant under any Bp by construction since B
is left-invariant under any Bp by definition. Furthermore, since
[As, Bp] = 0, the site-constraint As|G〉 = |G〉 is still satisfied.
Thus Eq. (38) describes, up to normalization, the unique
ground state of Eq. (36).

The states |C〉 ≡ C|0〉 have a peculiar structure: Each C
can be described as a collection of closed loops on the lattice
where the σ x

e of products of Bp operators act (loops that termi-
nate on dangling edges at the boundary are considered closed);
this loop structure is then imprinted on |0〉 so that |C〉 is a
product state with a loop pattern C of flipped qubits |1〉. The
ground state Eq. (38) is therefore given by the equal-weight
superposition of all closed loop configurations on the square
lattice—which makes it an example of a string-net conden-
sate [48] with a nontrivial pattern of long-range entanglement
[70,71].

To prepare this state in a real system, one could try to
implement the Hamiltonian (36) and cool the system into its
ground state. This is a challenging task due to the four-body
interactions (37), which are notoriously hard to realize. On
the Rydberg platform, an alternative and more promising ap-
proach goes as follows: In a first step, one prepares only the
subspace

HLoop := {|
〉 | ∀Sites s : As|
〉 = |
〉}
= span {|C〉 |C ∈ B} (39)

as the low-energy manifold of a suitably designed structure
of atoms. (HLoop is the Hilbert space of a Z2 lattice gauge
theory with charge-free background [59]. The local constraint
As|
〉 = |
〉 corresponds to the gauge symmetry of this the-
ory and is known as Gauss’s law.) The Bp terms in Eq. (36)
induce quantum fluctuations on this subspace, which give
rise to the string-net condensed ground state in Eq. (38). On
the Rydberg platform, quantum fluctuations can be induced
perturbatively by ramping up the Rabi frequency �i. Such
fluctuations can give rise to interesting quantum phases, as
shown in Ref. [41] for a different model. This motivates the
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FIG. 8. Surface code. (a) Unit-cell/vertex complex CSCU for the surface code (Z2 topological order). The complex is the amalgamation and
deformation of two XNOR-complexes [see Fig. 6 and Eq. (43)] and implements the check function constraint fLoop = 1 defined in Eq. (42). The
deformations are necessary to prevent an unwanted blockade of ancillas in the amalgamation. Black edges denote blockades between atoms,
gray edges illustrate the underlying square lattice. [(b), (c)] Truth table and ground-state manifold of the complex. The manifold contains all
configurations with an even number of labeled atoms excited, thereby realizing Gauss’s law on the site (colored edges). This provides the local
isomorphism between HT = HLoop and H0[CLoop]. (d) Periodic tessellation CLoop of the vertex complex CSCU. The copies overlap on the edges
and are amalgamated at these ports (which makes the detunings uniform in the bulk).

construction of a Rydberg complex CLoop with

H0[CLoop]
loc� HT = HLoop = span {|C〉 |C ∈ B}, (40)

i.e., a Rydberg complex the degenerate ground states of which
can be locally mapped one-to-one to loop configurations on
the square lattice. H0[CLoop] is then a subspace with dimen-
sion dim H0[CLoop] ∼ 2M where M denotes the number of
unit cells of the square lattice. Note that H0[CLoop] cannot be
decomposed into factors of local Hilbert spaces [like, e.g., the
full Hilbert space H = (C2)⊗2M can].

To this end, we assign bits x1
e to the edges of the square

lattice L (K = 1). Our goal is to specify the tessellated “loop
language” LL[ fLoop]—which contains all bit patterns that
trace out closed loop configurations on the lattice (closed in
the sense defined above)—in terms of a local check function
fLoop and a local bit-projector us on each site s of the square
lattice. The bit-projector simply selects the four bits on edges
adjacent to s,

(41)

and the check function reads

fLoop(x1, x2, x3, x4) = (x1 � x2) � (x3 � x4) (42)

with the XNOR-gate � defined in Eq. (34d), that is, A � B = 1
iff A = B. It is easy to verify by inspection that fLoop = 1 if

and only if the number of active bits is even, thereby enforcing
Gauss’s law on every site of the lattice (because loops cannot
terminate there).

We could now construct a complex as discussed in
Sec. V A, using the minimal XNOR-complex depicted in Fig. 6.
For this construction, we would amalgamate three of these
complexes according to Eq. (42) and detune the final output
to enforce fLoop = 1; this would require at least 16 atoms
per site. However, we can do much better by rewriting the
constraint as an equality,

fLoop = 1 ⇔ x1 � x2 = x3 � x4. (43)

Indeed, Eq. (43) evaluates to true iff x1 + x2 + x3 + x4 is
even. In general, an implementation of an equality constraint
f1 = f2 of two functions on separate inputs is achieved by
amalgamation of their complexes C f1 and C f2 at their output
ports, as noted at the end of Sec. VI. Therefore, the vertex
complex CSCU ≡ C fLoop=1 (“surface code unit cell”) that real-
izes the constraint Eq. (43) is that of only two XNOR-gates
amalgamated at their outputs [Fig. 8(a)], which requires only
11 atoms. Surprisingly, it turns out that this realization is also
minimal, see Appendix C 1 for a proof. (Note that typically
the construction of larger complexes from minimal primitives
does not yield minimal complexes.) The two XNOR-complexes
that make up the vertex complex are geometrically deformed
variants of the XNOR-complex shown in Fig. 6. This is neces-
sary to prevent unwanted blockades between ancillas in the
amalgamation.
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In Fig. 8(b) we show the configurations of the four la-
beled ports (A, B, C, and D) of the complex in the eightfold
degenerate ground-state manifold. In Fig. 8(c) we illustrate
the excitation patterns of these eight ground states (atoms
excited to the Rydberg state are colored orange). Highlighting
the edges of the square lattice whenever the labeled ports
associated to them are excited yields the local mapping (40)
to the loop structure of states in HLoop. Note that the ancillas
do not add additional degrees of freedom in the ground-state
manifold.

For the tessellation [Fig. 8(d)] the vertex complex is
copied and shifted periodically along the basis vectors of the
square lattice. The labeled ports are then amalgamated to the
corresponding ports of complexes on adjacent sites. Quite
remarkably, due to the amalgamation, the detunings in the
bulk become uniform, which makes this tessellation interest-
ing under the constraints of current platforms [39,44]. (Note
that imposing periodic boundary conditions on the lattice,
i.e., going back to the toric code, would render the detunings
completely uniform.)

Let us briefly comment on the modifications of the surface
code patch in Fig. 8(d) that would be necessary to use it as
a quantum code. It is well known [65] that a surface code
patch encodes a single logical qubit if its four sides alternate
in boundary types: top and bottom remain “rough” but left
and right are modified to “smooth” boundaries by cutting of
the dangling edges of the square lattice. On these boundaries,
the sites become trivalent “T” shaped with the same Gauss’s
law (i.e., the number of active edges must be even). On these
sites, the quadrivalent complex in Fig. 8(a) must be replaced
by a trivalent one. Conveniently enough, this is just the XOR-
complex in Fig. 6 as the truth table of XOR contains exactly
the four assignments of three Boolean variables such that
x1 + x2 + x3 is even. As a bonus, closing of the left and right
sides of the patch with XOR-complexes leads to completely
uniform detunings along these boundaries. The simplicity of
the vertex complex on trivalent sites suggests a definition of
the surface code on the Honeycomb lattice (which is perfectly
possible [48]). However, because of the two sites per unit cell,
this does not reduce the number of required atoms per unit
cell to implement the check function. Indeed, the realizations
with minimal Rydberg complexes on both lattices are essen-
tially equivalent, as can be seen in Fig. 8(d) by rotating the
tessellation by 45◦.

Note that the unit-cell complex in Fig. 8(a) for the square
lattice allows for tessellations [Fig. 8(d)] with nine atoms per
unit cell (four of the 11 atoms of CSCU are shared between pairs
of unit cells) such that the number of atoms for an L × L
lattice is of order 9L2. The number of Rydberg atoms that
can be prepared and controlled in tweezer arrays has recently
reached the range of several hundreds [23–25], so that lattices
with ∼6×6 sites are already within reach of state-of-the art
platforms.

B. Fibonacci model

The surface code only supports Abelian anyons, which are
not sufficient for universal topological quantum computation,
where gates are implemented fault tolerantly by braiding of
localized excitations and measurements correspond to their

fusion [72–74]. The simplest anyon model that supports uni-
versal computation by braiding is known as Fibonacci model
due to the role the Fibonacci numbers play in the fusion rules
[75–77]; it may be realized in some fractional quantum Hall
states [78,79]. As quasiparticles, the properties of Fibonacci
anyons are a consequence of and encoded in the entanglement
pattern of the ground state on which they live. The latter turns
out to have a representation as a string-net condensate with
weights and “string-net” patterns that differ from the surface
code [cf. Eq. (38)]. If we consider a Honeycomb lattice with
qubits on its edges, the fixed-point ground state of the Fi-
bonacci model has the form [48]

|G〉 =
∑

S

�(S) |S〉, (44)

where the sum goes over all patterns (“string-nets”) S of
flipped qubits |1〉 on the edges of the Honeycomb lattice where
no single string ends on a vertex. That is, in contrast to the
loop patterns C of the surface code, vertices with three fusing
strings are allowed. The coefficients �(S) of the superposition
are nontrivial functions of the pattern S, so that the condensate
is no longer an equal-weight superposition [48,80,81]. It is
possible to write down a solvable, local Hamiltonian like
Eq. (36) with the exact ground state (44), which is, however,
so complicated that it is essentially useless for implemen-
tations [48]. This complication, together with the potential
usefulness of the model for quantum computation, motivates
again the construction of a Rydberg complex CFib that imple-
ments the tessellated target Hilbert space

H0[CFib]
loc� HT = span {|S〉 |String-net S}, (45)

which has the dimension dim H0[CFib] ∼ (1 + ϕ2)M + (1 +
ϕ−2)M where M is the number of unit cells of the Honeycomb
lattice and ϕ = (1 +√

5)/2 is the golden ratio [82,83]. As for
the surface code, H0[CFib] is a Hilbert space that cannot be
decomposed into factors of local Hilbert spaces.

Since the Honeycomb sites are trivalent, the bit-projector
takes now the form

(46)

and the check function that specifies the allowed string nets
can be written in the compact form

fFib(x1, x2, x3) = (x1 ⊕ x2 ≡ x3) ∨ (x1 ∧ x2 ∧ x3) (47)

where the first clause (x1 ⊕ x2 ≡ x3) realizes the loop con-
straint (≡ denotes the logical equivalence, which is equivalent
to the XNOR-gate as a connective) and the second clause
(x1 ∧ x2 ∧ x3) allows for the fusion of three strings. Note that
without the second clause we fall back to the loop constraint
of the surface code (now on the honeycomb lattice).

Since there are five assignments with fFib = 1, this check
function cannot be realized by a single logic gate (despite
having three ports) but must be decomposed into a circuit.
Furthermore, since the amalgamation of two logic gates al-
ways results in a complex with an even number of ports, at
least three gates would be necessary to realize the Fibonacci
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FIG. 9. Fibonacci model. (a) Unit-cell complex CFMU for the Fibonacci model that implements two copies of the single-site check function
constraint fFib = 1 defined in Eq. (47). The complex is the amalgamation of two equivalent eight-atom complexes C fFib=1 on the two trivalent
sites that make up the basis of the honeycomb unit cell. Black edges denote blockades between atoms, gray edges illustrate the underlying
Honeycomb lattice. [(b), (c)] Truth table and ground-state manifold of the unit-cell complex. The manifold contains all configurations with
closed strings and, in addition, configurations with three strings fusing on a site. This provides the local isomorphism between the string-net
Hilbert space HT and H0[CFib]. (d) Periodic tessellation CFib of the complex CFMU. The copies overlap on the edges and are amalgamated at the
corresponding ports.

constraint. This already leads into the territory of �15 atoms,
which we deem too much overhead for a single site. Therefore
we follow the same approach as for the logic primitives in
Sec. VII: We systematically exclude the existence of com-
plexes C fFib=1 for N = 3, 4, . . . , 7 atoms (Appendix C 2). The
approach fails for N = 8 and we find the minimal complex
in Fig. 9(a) (dashed box). The amalgamation of two of the
complexes, one mirrored horizontally, yields the complex CFMU
(“Fibonacci model unit cell”) for the two-site unit cell of the
Honeycomb lattice, which can then be tessellated as shown in
Fig. 9(d). In contrast to the surface code, the detunings are not
uniform in this case. The full ground-state manifold of the unit
cell is shown in Fig. 9(b). The colored edges in Fig. 9(c) for
each ground-state configuration establish the local mapping
in Eq. (45). Note how all string-net configurations are allowed
except for single strings terminating at a site.

Note that the complex for the hexagonal unit cell with 15
atoms in Fig. 9(a) can be interpreted as the complex on a tilted
square lattice (by virtually contracting the vertical edges of the
honeycomb lattice). This complex, however, is not minimal as
we know of a 12-atom complex that realizes the Fibonacci
check function constraint on quadrivalent sites.

We conclude this section with a comment on the detunings
4� of the ports of the tessellated complex [Fig. 9(d)]. Note
that this is the first (and only) complex studied in this paper
with detunings exceeding the range {1�, 2�, 3�}. This seems
to be in tension with the claim at the end of Sec. VI (according

to which this range is sufficient to implement any Boolean
constraint). The solution is simple: Instead of amalgamating
the single-site complexes C fFib=1 directly (which yields the
4� on the identified ports), one can use a single three-atom
LNK-complex to establish the connection between two ports.
On each edge of the lattice, a single atom with detuning
4� is then replaced by three atoms with detunings 3�, 2�,
and 3�, respectively. This modification spoils of course the
minimality of the complex, but the corollary in Sec. VI did
not come with an assertion for minimality. This observation
suggests a tradeoff between minimizing the number of atoms
and minimizing the range of required detunings; a potentially
interesting and useful direction for future research (see also
Sec. XI).

X. GEOMETRIC OPTIMIZATION

So far we optimized complexes only in terms of their size
(number of atoms) for a given language. As a result, we ended
up with minimal complexes that are defined by their blockade
graph B, local detunings {�i}, and an assignment of ports �,
i.e., atoms that realize the desired language in the ground-state
manifold. Remember that in a blockade graph B = (V, E ) an
edge e = (i, j) ∈ E between atoms i, j ∈ V indicates that they
are in blockade, i.e., cannot be excited simultaneously. An ab-
stract graph that can be realized in this way by placing atoms
in the plane, which are in blockade if and only if their distance
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is smaller than some blockade radius rB is called a unit disk
graph, and a geometry GC that realizes a prescribed graph as
its blockade graph is a unit disk embedding of this graph. So
far, the actual geometry GC of our minimal complexes was
only taken into account insofar as a unit disk embedding of
the required blockade graph B must exist. (Note that there are
graphs that cannot be realized as blockade graphs of planar
geometries, so that this “geometric realizability” is a nontriv-
ial condition; deciding whether a given graph can be realized
in this way is unfortunately NP-hard [84].)

Whenever there exists a planar geometry GC = (ri )i∈V ∈
R2N ≡ CN that realizes a prescribed blockade graph, there
typically exist many such geometries: In most cases, there is a
bit of “wiggle room” around a given geometry without chang-
ing the blockade graph. In addition, there can be geometrically
distinct realizations of the same blockage graph that cannot be
continuously deformed into each other without violating the
blockade constraints. For example:

This can lead to disconnected regions in the configuration
space CN that realize a given blockade graph.

To optimize the geometry of a complex in CN , we have to
quantify what we mean by a “good” complex. To this end,
we define an objective function � : CN → R that quantifies
the quality of the complex and that we seek to minimize. One
example is

�̃(GC ) = δE

�E
(48)

where δE and �E are the width of the ground-state manifold
and the gap (recall Fig. 2). The problem with Eq. (48) is
that its evaluation scales exponentially with the number of
atoms N because the computation of δE and �E in principle
requires access to the complete spectrum of Eq. (1) (which
is in general an NP-hard problem [29]). While this is feasible
for small complexes, it becomes quickly a bottleneck as �̃

must be evaluated repeatedly when iteratively optimizing a
geometry. Furthermore, in the PXP approximation, interaction
energies are either infinite or zero so that �̃ vanishes whenever
the blockade constraints are satisfied. Thus we need a simpler,
heuristic quantity that can be directly computed from the
geometry of the complex.

A. Geometric robustness

To motivate the quantity we propose as objective function
below, we first have to review the role of the blockade radius
rB in the PXP model. In the limit of vanishing driving, the
blockade radius rB is the distance from an atom where the

van der Waals interaction matches its detuning: C6 rB
−6
i

!= �i.
As the detunings can vary from atom to atom in a generic
structure C, so does the blockade radius rBi (this dependence
is quite weak, though). However, as outlined in Sec. III, we

would like to work in the approximate framework of the PXP
model with a unique blockade radius rB, because then the
effects of interactions between atoms simplify to kinematic
constraints encoded in a blockade graph. In the following,
we interpret a given blockade graph B as the encoding of the
constraints we would like to realize with a structure C of yet
unknown geometry GC .

We can now introduce two dimensionless quantities. First,
the robustness of a structure with respect to a given blockade
graph B = (V, E ) is defined as

ξB(C) := min(i, j)/∈E d (ri, r j ) − max(i, j)∈E d (ri, r j )

min(i, j)/∈E d (ri, r j ) + max(i, j)∈E d (ri, r j )
, (49)

where d (ri, r j ) denotes the Euclidean distance. The robust-
ness is a scale-invariant, finite number ξB(C) ∈ [−1, 1] where
ξB(C) > 0 indicates a valid unit disk embedding GC that re-
alizes the prescribed blockade graph B for blockade radii in
some finite interval. Larger positive values of ξB(C) indicate
more robust embeddings with more “wiggle room” around
the positions without changing the blockade graph, or, equiv-
alently, a wider range of blockade radii that yield the same
blockade graph. If ξB(C) < 0, the unit disk graph induced by
GC does not match the prescribed blockade graph B.

Similarly, the spread of a structure C is defined as

s(C) := maxi rBi − mini rBi

maxi rBi + mini rBi

= (maxi �i )1/6 − (mini �i )1/6

(maxi �i )1/6 + (mini �i )1/6
. (50)

The spread s ∈ [0, 1] quantifies the relative variations in
blockade radii of a structure (a system with uniform detun-
ing �i ≡ � has vanishing spread). Just as Eq. (49) does not
depend on the length scale, Eq. (50) is independent of the C6

coefficient, i.e., the strength of the interaction.
We can now take into account the variability of the block-

ade radius without abandoning the PXP model as follows. We
call a structure C a valid implementation of a blockade graph
B if

s(C) < ξB(C). (51)

This condition ensures that the geometry GC can be scaled
such that all distances of atoms that should (not) be in
blockade according to B, are smaller (larger) than the smallest
(largest) blockade radius of the structure C. As this condition
is scale invariant, we do not have to specify rB in the follow-
ing. Note that all structures presented in this paper are valid in
the sense of Eq. (51).

B. Numerical optimization

These considerations suggest the robustness ξB as a mea-
sure for the quality of geometries. We therefore set � = −ξB

to maximize this quantity by minimizing �. The blockade
graph B and the detunings {�i} are fixed and define the
functional properties of the complex; in particular, the spread
s(C) is constant. Thus we optimize for geometries that satisfy
the validity constraint (51) with a maximal margin between
robustness and spread.

We call a complex C globally (locally) optimal if ξB(C) > 0
and its geometry is a global (local) minimum of � in CN .
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(a)

ξ(Copt
NOR�) = 0.268

ξ(CNOR�) = 0.088

s(C(opt)
NOR� ) = 0.058

ξ(Copt
NOR◦) = 0.236

ξ(CNOR◦) = 0.111

s(C(opt)
NOR◦ ) = 0.058

(b)

ξ(Copt
SCU ) = 0.133

ξ(CSCU) = 0.117

s(C(opt)
SCU ) = 0.058

FIG. 10. Optimization (examples). (a) Comparison of perturbed
(black) and optimized (red) geometries for the two minimal NOR-
complexes. Maximum distance blockades are highlighted yellow,
minimum distances of unblocked atoms are indicated by dashed
blue edges. The optimal geometries are highly symmetric and match
the manually constructed ones in Figs. 6 and 5(c). The robustness
for each complex is printed below the geometries and the spread
on the bottom of each column (we omit blockade graph indices).
Note that ξ (Copt

NOR!) > ξ (Copt
NOR◦), which makes the triangular version

NOR! potentially more robust than the ring-shaped NOR◦. For all
geometries the validity constraint s(C) < ξ (C) is satisfied. (b) Com-
parison of the optimized geometry for the vertex complex CSCU of the
surface code (red) and the manually constructed geometry (black)
from Fig. 8(a); the robustness increases by �ξ = 0.016. Due to
unconstrained atoms, the optimization can break the symmetry and
produce slightly skewed geometries.

To minimize � on the high-dimensional space CN , we em-
ploy the SciPy implementation [85] of generalized simulated
annealing [86,87] in combination with a local optimization
based on the Nelder-Mead algorithm [88,89], see Appendix D
for details. Remember that the robustness is a scale-invariant
quantity, so that the scale of the optimized geometry is arbi-
trary. For normalization, we rescale the geometries by setting
the blockade radius

rB := 1
2

[
max

(i, j)∈E
d (ri, r j ) + min

(i, j)/∈E
d (ri, r j )

]
!= 1. (52)

First, we initialized the algorithm with the hand-crafted ge-
ometries of all primitives in Secs. VII and VIII and the vertex
complexes in Sec. IX to optimize their robustness (we believe
the results to be globally optimal but we did not prove this).
With these initial configurations, the optimizer already started
with a valid unit disk embedding of B (ξB > 0) and tried to
maximize the robustness further. The results were typically
only slightly deformed versions of the manually constructed
complexes, confirming our intuition. Some of the primitives
[in particular the ring-shaped NOR-complex in Fig. 5(c)] were
already optimal due of their high symmetry. In Fig. 10(a) we
demonstrate this by comparing slightly perturbed geometries
(black) to the subsequently optimized versions (red) for both
minimal realizations of the NOR-complex. In particular, we
find

ξBNOR!
(
Copt
NOR!

) = 0.268 > 0.236 = ξBNOR◦
(
Copt
NOR◦

)
(53)

and conclude that the triangular version NOR! (Fig. 6) is
potentially more robust than the ring-shaped NOR◦ [Fig. 5(c)].
For both, the validity constraint (51) is safely satisfied
(x ∈ {◦,!}),

s
(
C (opt)
NORx

) = 0.058 < ξBNORx

(
Copt
NORx

)
. (54)

Since the robustness depends only on the maximum (min-
imum) distance of atoms that are (not) in blockade, there
can be atoms with positions that are unconstrained in small
regions of the plane. These positions can be chosen by the
optimization algorithm at will, leading to slightly skewed
geometries that break the natural symmetry of the complex;
an example is given by the optimized surface code unit-cell
complex in Fig. 10(b). This is an artifact of our particular
objective function that can be eliminated by more sophisti-
cated choices for � (e.g., motivated by specific experimental
requirements). All optimized complexes are accessible online
[90], normalized according to Eq. (52).

In a second run, we went one step further and initialized
the optimization with geometries that violated the prescribed
blockade graphs (by placing the atoms randomly). In this case,
the algorithm started with ξB < 0 and first had to identify valid
unit disk embeddings by stochastic jumps in the configura-
tion space. These runs typically rediscovered the geometries
we already knew. In some cases, alternative geometries were
found (which turned out to be local maxima of robustness,
though). We conclude that it is not only possible to optimize
given geometries but also to find them (if they exist), at least
for small complexes.

As a final remark, we stress that geometric optimization is
in general not reducible, i.e., optimizing the primitives of a
larger circuit does not necessarily optimize the whole circuit
as constraints between primitives are not taken into account
by this approach. This is particularly important for tessellated
complexes of quantum phases like the spin liquids in Sec. IX,
where one should optimize the complete tessellation to mini-
mize unwanted residual interactions that are not present in the
optimization of a single-site or unit-cell complex.

XI. OUTLOOK AND COMMENTS

We conclude with a few comments on open questions and
directions for future research.

Minimality. To find and prove the minimality of complexes
we systematically excluded realizations with fewer atoms.
While this approach is more efficient than a brute force search
(by exploiting constraints from the language, the detunings,
and the planar geometry), it is still far from trivial and cannot
be easily automated. It would be both interesting and useful
to develop an algorithm that given a uniform language, con-
structs a minimal graph with weighted nodes, and a labeled
node for each letter position of the language, such that each
maximum-weight independent set [91] is in one-to-one corre-
spondence with a word of the language. We are neither aware
of such an algorithm nor of statements on the complexity to
find minimal solutions. (Note that a solution of this problem
might not even be a unit disk graph, i.e., realizable by the
blockade graph of a planar Rydberg complex.)

Optimization. It is clear that our treatment of optimiza-
tion in Sec. X only scratches the surface. First, our choice
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of the objective function � is heuristic and other functions
may be more appropriate for specific experimental settings.
This would change the “optimal” geometries of complexes,
of course. Second, there is a plethora of alternative numeri-
cal algorithms available that could be used to minimize the
objective function more efficiently. In particular the existence
of distinct geometries that are separated by complexes that
violate the blockade graph may require more sophisticated
algorithms to escape locally optimal configurations and find
the global optimum. The algorithms also should scale well
with the size of the complex because, as mentioned previ-
ously, tessellations should be optimized as a whole to take
into account constraints between its primitives.

If we go one step further and ask for an algorithm that con-
structs geometries from a given blockade graph, we quickly
enter complexity hell: Deciding whether a given blockade
graph can be realized as a unit disk graph is known to be
NP-hard [84]. Even if we are promised to be given a unit disk
graph as blockade graph, there is no efficient algorithm that
outputs the geometry of a complex that realizes it. This is so
because there are unit disk graphs that require exponentially
many bits to specify the positions of the nodes [92]. To add
insult to injury, even finding certain approximations of unit
disk graph embeddings are known to be NP-hard [93]. None
of these statements prevent us from looking for heuristic al-
gorithms to solve these problems for specific cases, of course
(as we demonstrated in Sec. X).

Uniformity. Most of the complexes discussed in this paper
make use of atom-specific detunings [e.g., Figs. 6 and 9(d)].
Only the surface code tessellation in Fig. 8(d) is uniform in
detunings, at least in the bulk. While it is possible to real-
ize atom-specific detunings [54,55], single-site addressability
adds significant experimental overhead. Thus it is reasonable
to ask whether complexes with nonuniform detunings can
be replaced by (potentially larger) complexes with uniform
detunings (without adding additional degrees of freedom).
For instance, there is a third minimal NOR-complex with uni-
form detuning �i ≡ �. However, in amalgamated circuits
this uniformity is often destroyed—on the contrary, it is the
nonuniformity of the XNOR-complex (Fig. 6) that made the
bulk of the surface code uniform [Fig. 8(d)]. The quest for
uniformity is therefore best formulated on the level of com-
plete circuits or tessellations.

Beyond planarity. We focused completely on planar Ry-
dberg complexes to comply with the restrictions of current
experimental platforms: For the addressability of single atoms
it is simply convenient to have a dimension of unimpeded ac-
cess. However, technologically, three-dimensional structures
of Rydberg atoms are possible and have been experimen-
tally demonstrated [5,38]. Releasing the planarity constraint
drastically changes the rules for the construction of Rydberg
complexes. For instance, ports that are located inside a 2D
complex (and would require expensive crossings to be routed
to the perimeter) can be directly accessed from the third di-
mension, possibly simplifying certain functional primitives.
Note, however, that at least the logic primitives in Fig. 6 do not
profit from a third dimension. (This follows from the proofs in
Appendix A.)

Beyond the PXP approximation. Our construction of Ry-
dberg complexes was based on the assumption that atoms

within the blockade radius can never be simultaneously ex-
cited, while atoms separated by more than the blockade radius
do not interact at all; this “PXP approximation” implements
the dynamical effect of the interactions as a kinematic con-
straint. In reality, however, the atoms interact via the van
der Waals interaction UvdW = C6 r−6, which contributes also
beyond the blockade radius, can lift the degeneracy δE of the
ground-state manifold, and reduce the gap �E that separates it
from excited states. One therefore expects that complexes with
δE ≈ 0 in the vdW model are geometrically more constrained
than in the PXP model. This has an effect on the geometrical
optimization of complexes (see above) and the appropriate
choice of the objective function: To take into account residual
interactions properly, heuristic functions like the robustness
should be replaced by realistic functions like Eq. (48), at least
for small complexes where they can be computed exactly.

We checked that the three primitives in Fig. 5 can be
realized with perfect degeneracy δE = 0 and gap �E > 0
in the vdW model by small adjustments of the detunings to
balance residual interactions. In principle, a NOR-complex can
even be realized with only three atoms, arranged in a triangle
with precisely defined shape. This is possible, because the two
ancillas in Fig. 5(c) were only necessary to balance the ener-
gies of states with one and two input ports active; in the vdW
model, the same can be achieved by exploiting the residual
interaction between the two input ports. Which version of the
NOR-complex is more useful for implementations is an open
question.

Quantum phase diagrams. In this paper, we only studied
the ground-state manifold of the Hamiltonian (1) without
quantum fluctuations (�i = 0). As has been demonstrated in
Refs. [41,42], the interplay of quantum fluctuations (�i > 0)
and the strong blockade interactions can give rise to inter-
esting many-body quantum phases at zero temperature. Thus
it seems natural to explore the quantum phase diagrams of
the proposed spin liquid tessellations in Sec. IX, for exam-
ple numerically using density matrix renormalization group
(DMRG) techniques. Analytically, one could derive the ef-
fective Hamiltonians on the constructed low-energy manifolds
for finite but small Rabi frequencies �i � �E in perturbation
theory [94]. Note that in general one expects the relative
strengths of the effective terms to depend on the specific
complex used to implement the local constraints. This raises
the subsequent question whether these couplings can be tuned
by modifications of the used complexes.

Dynamical preparation. In recent experiments [44], dy-
namical preparation schemes have been used to prepare
long-range entangled many-body states out-of-equilibrium
[45,46]. The idea is to use “quasiadiabatic” protocols �i(t )
and �i(t ) where the detuning increases continuously to its
target value while a finite Rabi frequency ensures the coupling
of different excitation patterns. This allows for the preparation
of nontrivial superpositions of states in the low-energy sub-
space of the classical Hamiltonian (1). It would be interesting
to explore the states of the proposed tessellations that can be
prepared by such dynamical protocols numerically, and study
the effects of defects in the intended logic of the complexes
due to local excitations. Similar questions arise for the prim-
itives in Secs. VII and VIII and circuits built from these by
amalgamation.
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Alternative platforms. Rydberg atoms in optical tweezer
arrays are the most prominent and advanced platform with a
high level of coherent control that features a blockade mech-
anism. Our paper originated in this context and is therefore
phrased in its terminology. It is important to keep in mind,
however, that our main results only require some sort of
blockade mechanism, fine-grained control over the geometric
structure of the system, and locally tunable energy shifts (like
chemical potentials or magnetic fields). A natural follow-up
question is then whether there are alternative physical systems
with these features. Both our abstract framework and the in-
troduced complexes could be applied to and realized by such
systems.

XII. SUMMARY

In this paper, we developed a framework to design pla-
nar structures of atoms, which can be excited into Rydberg
states under the constraint of the Rydberg blockade mech-
anism (“Rydberg complexes”). Our framework targets the
preparation of degenerate ground-state manifolds that are
characterized locally by arbitrary Boolean constraints. We
proved that the truth table of an arbitrary Boolean function
can be realized as ground-state manifold by decomposing its
circuit representation into three primitives that leverage the
Rydberg blockade. Motivated by this existence claim, we then
presented provably minimal complexes that realize the most
important primitives of Boolean circuits, including a crossing
complex that is needed to embed nonplanar circuits into the
plane. As an application of our framework, we constructed
periodic Rydberg complexes with degenerate ground-state
manifolds that map locally on the nonfactorizable string-net
Hilbert spaces of the surface code (with Abelian topological
order) and the Fibonacci model (with non-Abelian topolog-
ical order). In combination with quantum fluctuations, these
structures may be the starting point to prepare topologi-
cally ordered states in upcoming quantum simulators. We
concluded the paper with a discussion of the geometric op-
timization of Rydberg complexes using numerical algorithms
to increase their robustness against geometric imperfections
and the effects of long-range van der Waals interactions.

Our results highlight the versatility of planar structures of
atoms that interact via the Rydberg blockade mechanism. We
provide a conceptual foundation for the rationales of geomet-
ric programming, the encoding and solution of problems by
tailoring the geometry of atomic systems, and synthetic quan-
tum matter, the goal-driven design of quantum materials on
the atomic level. Due to the noisiness of near-term experimen-
tal platforms, the latter seems particularly promising because
quantum phases come with an inherent robustness against a
finite density of excitations. This robustness is less clear in
the geometric programming paradigm were the search for
(near-)optimal solutions can be severely impeded by defects
in the prepared states, especially at scale.

Note added. We became aware of related results [33,34];
the authors of both publications focus on optimization prob-
lems and find some of the primitives discussed in this paper.
(The ring-shaped NOR-gate and the crossing is found by
Nguyen et al. [33] and the triangle shaped XNOR-gate by
Lanthaler et al. [34].) Both papers follow the rationale of

geometric programming, so that their motivation, approach
and framework differ from ours.
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APPENDIX A: MINIMALITY OF LOGIC PRIMITIVES

Here we prove the claims in Secs. VI and VII about the
minimality of the logic primitives. The proofs in this sec-
tion do not require geometric arguments (i.e., whether a given
blockade graph is a unit disk graph or not). This makes the
claims independent of the embedding dimension; in particular,
they remain valid for three-dimensional complexes.

We start with a few general remarks. First, the languages
we seek to implement as ground-state manifolds (GSM) are
irreducible in the sense that they cannot be written as a prod-
uct of two smaller languages. (The product of two formal
languages is simply the set of all words from the first con-
catenated with all words from the second.) This is easy to
check for all Boolean gates by inspecting their truth tables.
The crucial point is that irreducible languages can only be
implemented by complexes with connected blockade graphs.

Second, because we are only interested in GSM of PXP
models, all detunings can be assumed to be strictly positive,
�i > 0. Indeed, atoms with negative detuning cannot be ex-
cited in the GSM so that they can be deleted from the complex
without changing the GSM (and without closing the gap).
The argument against atoms with vanishing detuning is more
subtle. If such an atom is not excited in any of the GSM states,
it can be deleted without changing the GSM. If it is excited
in some of the GSM states, there is always an otherwise
identical state in the GSM where it is not excited. Such an
atom therefore must be a port because as an ancilla it would
add internal degrees of freedom that are not accessible via the
ports (this follows from our definition of a complex). The lan-
guage that corresponds to a complex with a zero-detuning port
therefore has the property that for every word with a “1” at the
corresponding position, there must be an otherwise identical
word with a “0”. (This does not imply that the language is
reducible; for example, L = {111, 011, 000} has this property
for the first letter but is irreducible.) While such languages do
exist, they cannot be truth tables of Boolean functions because
such a port cannot be used as an input or an output (assuming
we forbid “dummy” inputs that have no effect on the output).
All languages discussed and implemented in this paper (also
the ones for the vertex complexes of spin liquids) do not have
this property, hence we can assume nonvanishing detunings.

Because of the positivity of all detunings, ground states
are always given by maximal independent sets (MIS*) of the
blockade graph. [A maximal independent set is a subset of
vertices such that (1) no two vertices of the set are connected
by an edge of the graph and (2) no vertex can be added
to the set without violating (1). Maximum independent sets
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(MIS) are the largest maximal independent sets.] The inverse
is not necessarily true: Depending on the detunings, not every
MIS* describes a ground-state configuration (an example is
the ring-like NOR-complex).

1. CPY-complex

Lemma 1. A CPY-complex cannot be realized with less
than four atoms (one ancilla).

Proof. Assume there is a complex without ancillas de-
scribed by

H = −�1n1 − �2n2 − �3n3 =: En1n2n3 . (A1)

Since (n1n2n3) = (111) must be a ground state of the com-
plex, none of the pairs of the atoms can be in blockade so
that there is no kinematic constraint on the configurations
(n1n2n3). To be a CPY-complex, it must be

−(�1 + �2 + �3) = E111
!= E000 = 0 and En1n2n3 > 0

for all (n1n2n3) �= (000), (111). (A2)

The finite-gap condition requires in particular �i > 0 for
all i = 1, 2, 3, which leads to −(�1 + �2 + �3) < 0 and
thereby contradicts the degeneracy condition.

Alternative argument. The copy language LCPY={000, 111}
is irreducible. Since (111) must be in the GSM, the only
admissible blockade graph is the trivial graph on three
vertices without edges: B = (V = {1, 2, 3}, E = ∅). But a dis-
connected blockade graph cannot implement an irreducible
language. �

2. NOR-complex

Lemma 2. A NOR-complex cannot be realized with less
than five atoms (two ancillas).

Proof. We show that a NOR-complex cannot be realized
with one ancilla or less. First, assume there is no ancilla so
that the Hamiltonian is again

H = −�1n1 − �2n2 − �3n3 =: En1n2n3 , (A3)

now with potential kinematic constraints due to the Ryd-
berg blockade. The conditions for a NOR-complex demand the
equality of the following energies:

E001 = −�3, (A4a)

E010 = −�2, (A4b)

E100 = −�1, (A4c)

E110 = −�1 − �2. (A4d)

It follows immediately �1 = �2 = �3 and �1 = 0 so that
all detunings must vanish. But then (n1n2n3) = (000) is—
independent of the configuration and its implied kinematic
constraints—degenerate with the four states that belong to the
NOR-manifold (which it must not be).

Alternative argument. The NOR-language LNOR={001, 010,

100, 110} is irreducible and forbids a blockade between the
two input ports [because of (110)]. The only consistent block-
ade graph B is therefore the line graph of three vertices. But
this graph has only two maximal independent sets, whereas
we need at least four to realize LNOR.

So let us assume a system with one additional ancilla,

H = −�1n1 − �2n2 − �3n3 − �4ñ4, (A5)

and an arbitrary geometry that may lead to kinematic con-
straints on the allowed configurations. Let now ε(n1n2n3)
denote the minimal energy of the system without the contribu-
tion from the ports under the “boundary condition” that these
are in the state (n1n2n3) and under the kinematic constraints
imposed by the Rydberg blockade; furthermore, set En1n2n3 :=
−�1n1 − �2n2 − �3n3 + ε(n1n2n3). In the current situation
with only one ancilla, it is either ε(n1n2n3) = 0 if the min-
imum is obtained by ñ4 = 0, or ε(n1n2n3) = −�4 if ñ4 = 1
minimizes the energy [and this is consistent with the config-
uration (n1n2n3)]. With this notation, the conditions to be a
NOR-complex take the following form. First, the degeneracy
of the NOR-manifold demands the equivalence of the following
expressions:

E001 = −�3 + ε(001), (A6a)

E010 = −�2 + ε(010), (A6b)

E100 = −�1 + ε(100), (A6c)

E110 = −�1 − �2 + ε(110), (A6d)

which immediately implies

�1 = ε(110) − ε(010), (A7a)

�2 = ε(110) − ε(100), (A7b)

�3 = ε(110) + ε(001) − ε(100) − ε(010). (A7c)

Second, the gap condition requires (among other conditions)

ε(000) = E000
!
> E100 = −�1 + ε(100) = ε(010)

− ε(110) + ε(100) (A8a)

⇔ ε(000) + ε(110) > ε(010) + ε(100) (A8b)

because a state with (n1n2n3) = (000) is not allowed in the
NOR-manifold. Note that the only kinematic constraints on the
ancilla in Eq. (A8b) can come from the two input vertices
since n3 = 0 for all four terms. We show now that Eq. (A8b)
cannot be satisfied with a single ancilla.

Consider first the case where �4 � 0. Then the minimal
energy under any condition (n1n2n3) is reached by switching
the ancilla off, ñ4 = 0 (this is possible for all kinematic con-
straints), so that 0 + 0 > 0 + 0 leads to a contradiction. Thus
we have to assume �4 > 0 (this we could have anticipated
from the arguments above). Now the energy can be low-
ered by switching the ancilla on, but this might be forbidden
by the kinematic constraints for certain boundary conditions
(n1n2n3). We consider three cases:

(1) No blockade between the two inputs and the ancilla.
In this case, the ancilla will be switched on in all four terms
of Eq. (A8b) so that −�4 − �4 > −�4 − �4 violates the gap
condition.

(2) The ancilla is in blockade with one of the inputs.
W.l.o.g. let n1 be in blockade with ñ4. Then Eq. (A8b) reads
−�4 + 0 > −�4 + 0 which again violates the gap condition.

(3) The ancilla is in blockade with both inputs. Now
Eq. (A8b) reads −�4 + 0 > 0 + 0 which is in contradiction
with the assumption �4 > 0.
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n1 ñ2 n3 ñ4 n5

(n1n3n5) = (111) (n1n3n5) = (001) (n1n3n5) = (100) (n1n3n5) = (000)

FIG. 11. The line graph is the only connected blockade graph on five vertices with (at least) four maximal independent sets (orange
vertices), (at least) one of which has (at least) three vertices. To realize the state (111), the vertices {1, 3, 5} must be chosen as ports, with 3 as
output; the four maximal independent sets then realize the truth table of AND (these four states cannot be made degenerate while maintaining a
gap, see text).

In conclusion, we showed that it is impossible to satisfy the
gap condition with a single ancilla.

Alternative argument. Of the six connected graphs on
four vertices, only the “tetrahedron graph” has four maximal
independent sets (the others have at most three), which is
necessary to realize the four words in LNOR. But none of these
four maximal independent sets contain more than one vertex
[which would be necessary for (110)]. �

3. AND-complex, OR-complex and XNOR-complex

Lemma 3. AND-, OR- and XNOR-complexes cannot be real-
ized with less then six atoms (three ancillas).

Proof. All these complexes contain the state (111) such
that no two ports can be in blockade with each other. This
implies that no realization of these gates is possible with four
or less atoms as the only connected blockade graph, which
fulfills this constraint is the star graph of the CPY-complex
(which has only two MIS*).

The number of vertices is still small enough to system-
atically screen the 21 connected graphs on five vertices and
select the 11 relevant ones with at least four maximal inde-
pendent sets. One can check that only the chain graph has a
MIS* with (at least) three vertices, which is needed to realize
the port configuration (111) (Fig. 11). This MIS* contains the
vertices {1, 3, 5} of the chain, which we therefore must choose
as ports: (n1n3n5) = (111). With these ports, the set of four
MIS* then realizes the language L = {111, 100, 001, 000},
which we identify as the truth table of the AND-gate if we
choose the port on the central atom 3 as output. This proves
that the OR- and XNOR-complex cannot be realized with five
atoms (even if another port is declared as output).

So far the arguments were purely kinematic insofar as only
the blockade constraints and the knowledge that the GSM is
generate by maximal independent sets were used. To exclude
the AND-gate, this is not enough, and we have to use energetic
arguments by studying possible choices for detunings. The de-
generacy of the GSM requires the following four expressions
to be equal,

E111 = −�1 − �3 − �5, (A9a)

E100 = −�1 − �4, (A9b)

E001 = −�2 − �5, (A9c)

E000 = −�2 − �4, (A9d)

which immediately implies �4 = �5 and therefore �3 = 0,
which is not allowed (remember that vanishing detunings are
forbidden). This proves that also the AND-complex cannot be
realized with five atoms. �

4. NAND-complex and XOR-complex

Lemma 4. NAND- and XOR-complexes cannot be realized
with less than seven atoms (four ancillas).

Proof. The truth tables of both NAND and XOR contain
the states (110), (101), and (011) so that no two ports can
be in blockade with each other. This excludes a realization
with less than four atoms (see Appendix A 3). If two ancillas
are available, we can switch one of the input ports on; this
switches (at least) one ancilla off. The remaining two ports
and (at most) one ancilla then must realize the NOT-language
L¬ = {01, 10}. This is impossible since the two ports cannot
be directly connected and the only blockade graph with a
single ancilla realizes the LNK-language LLNK = {00, 11}. So
let us assume that the complexes can be realized with three
ports and three ancillas. For the following arguments, only the
edges between ports and ancillas are of importance; potential
blockades between ancillas can be ignored. We consider three
cases:

(1) There is at least one port that connects to all three
ancillas. If this port is on, all ancillas are off, hence the two
remaining ports must be on as well; but then at least two of
the three states (110), (101), and (011) cannot be realized in
the GSM.

(2) There is at least one port that connects to a single
ancilla. This edge can be interpreted as an amalgamated NOT-
complex. If we delete the port, subtract its detuning from the
connected ancilla, and declare the latter as a new port, the new
complex of five atoms realizes the truth table of the original
complex with one column inverted (w.l.o.g. the first one).
For both gates, this new manifold contains the states (010),
(001), and (111) (plus another one that depends on the gate).
The only blockade graph on five vertices with at least four
MIS*, one of which contains at least three vertices [needed for
(111)], has been identified in Appendix A 3 as the line graph.
There it has also been shown that there is no assignment of
detunings that realizes a fourfold degenerate GSM.

(3) All inputs are connected with exactly two ancillas.
There are three possibilities to connect three ports with two
ancillas each (Fig. 12). By inspection one shows that in all
three cases there is a pair of ports that, when activated, forces
all ancillas connected to the third port to be off; as this forces
the third port to be on, at least one of the states (110), (101),
and (011) cannot be realized in the GSM.

This proves that the NAND- and XOR-complex cannot be
realized with six atoms. �

Note. Removing a NOT-complex by deleting the port, sub-
tracting its detuning from its ancilla, and declaring the ancilla
as new port, is the inverse of amalgamation; let us call it
amputation. One has to make sure that the subtraction of the
detuning of the port �p from the detuning of its adjacent
ancilla �a does not lead to negative (or vanishing) detunings
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Δ1

Δ̃1

Δ2

Δ̃3

Δ3

Δ̃2

(a) (b) (c)

FIG. 12. The three bipartite graphs between three ports (red) and three ancillas (blue) where all ports have degree two. Note that these do
not represent complete blockade graphs as we omit blockades between ancillas. The detunings in (c) are used in Appendix A 5.

on the ancilla (= new port). Indeed, if �p > �a, the port
would be always on in all ground-state configurations; this
makes the port superfluous and the language of the GSM
reducible. If �p = �a, the language of the original complex
would have the property that for every word with a “0” at the
corresponding position, there is a otherwise identical word
with a “1”. This is the dual property of the one discussed at
the beginning of Appendix A and no language discussed in
this paper has this property.

5. Uniqueness of the blockade graph
of the minimal XNOR-complex

In contrast to the minimal NOR-complexes (for which there
are different blockade graph realizations), there is only one
realization of the minimal XNOR-complex. This will be useful
in Appendix C 2 to prove the minimality of the vertex complex
of the Fibonacci model.

Lemma 5. The blockade graph of the minimal XNOR-
complex with six atoms (Fig. 6) is unique.

Proof. We showed in Appendix A 3 that a XNOR-complex
needs at least six atoms; so let us assume we have six atoms
at our disposal. We now try to contrive a complex that realizes
the language L� = {001, 010, 100, 111} systematically:

(1) Assume there exists such a complex with at least one
port that connect to only one ancilla. If this port is am-
putated, the remaining five atoms realize the XOR-language
L� = {101, 110, 000, 011}, which is impossible as shown in
Appendix A 4.

(2) Assume at least one port connects to all three ancillas.
If this port is switched on, all ancillas are switched off and
therefore the other two ports must be active. This is inconsis-
tent with one of the states (001), (010), and (100).

(3) Because of (1) and (2), only the case where all ports
connect to two ancillas remains. There are three classes
of blockade graphs that satisfy this, Fig. 12. The first two
graphs in Fig. 12 can be immediately excluded as they are
inconsistent with the states (001), (010), and (100) (= only
one port activated). Only the “hexagon graph” in Fig. 12
remains as a possible blockade structure between ports and
ancillas. Without additional blockades between the ancillas,
the maximal independent sets of this graph allow for the states
{000, 001, 010, 100, 111} ⊃ L�.

Let �1,2,3 denote the detunings of the three ports and �̃1,2,3

the detunings of the three ancillas (where �̃i describes the
ancilla opposite of port i, Fig. 12). In the state (100), only the
first port is excited. So the opposite ancilla must be excited

as well to block the two other ports (if this ancilla were off,
one could lower the energy by switching the other two ports
on). To balance this state energetically with the state (111), the
detuning of the ancilla must equal the sum of the detunings of
its two adjacent ports. Due to the permutation symmetry of
L� and the rotation symmetry of the “hexagon graph”, this
argument is valid for all three ancillas,

�̃1 = �2 + �3, �̃2 = �1 + �3, and �̃3 = �1 + �2.

(A10)

Because all detunings must be positive, this implies for any
pair of ancillas

−�̃i − �̃ j < −�1 − �2 − �3 = E111. (A11)

Since (111) must be in the GSM (i.e., E111 must be the
lowest allowed energy), there must be an additional block-
ade between all pairs of ancillas to prevent them from
being excited simultaneously. This yields the blockade graph
of the XNOR-complex depicted in Fig. 6. It has only four
maximal independent sets that realize the language L� =
{001, 010, 100, 111}. The choices of the port detunings
�i > 0 are arbitrary; the ancilla detunings are then given by
Eq. (A10).

We conclude that the blockade graph of the minimal re-
alization of a XNOR-complex with six atoms is unique (there
is only freedom in choosing the detunings). In addition, we
proved that no strict superset of L� can be realized by a com-
plex with six atoms or less (this is used in Appendix C 2). �

APPENDIX B: CONSTRUCTING SUBCOMPLEXES

Here we discuss a method to construct subcomplexes by
fixing a port in the active state and deleting its adjacent ancil-
las in the blockade graph. This method is used in the proofs
of Appendix C and the final remark of Sec. VI. Consider a
complex C that realizes a language L with ports that are not
in blockade with each other. We can select one of the ports
p and define the sublanguage Lp ⊂ L of words x ∈ L with
xp = 1. Our goal is to construct a L′

p-complex C ′
p where L′

p
is obtained from Lp by deleting the constant letter at position
p that corresponds to the fixed port. The simplest solution is to
keep the geometry of the complex C and increase the detuning
of the fixed port �p, thereby creating a gap between states
of the original GSM where the port is on and states where it
is off; the port can then be downgraded to an ancilla. In all
states of the new GSM this ancilla is active, while its adjacent
ancillas are inactive. This suggests that one can delete these
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atoms to obtain a smaller complex C ′
p that realizes the same

language L′
p:

Lemma 6. Let the finite complex C realize the irreducible
language L with ports that are not in blockade with each
other (with δE = 0 and �E > 0). Consider one of the ports
p with detuning �p > 0 and let the languages Lp and L′

p
be defined as above. Then the structure C ′

p obtained from C
by deleting the port p and all its adjacent ancillas is a L′

p-
complex if the ports of C ′

p are inherited from C in the natural
way.

Proof. First, note that since L is irreducible, it is Lp �= ∅,
i.e., there are configurations in the GSM of C where the port
p is active. We have to show two things: (a) the structure C ′

p
together with the inherited ports is a complex (i.e., its ground
states can be labeled by the configurations of the ports), and
(b) the language that describes this GSM is L′

p.
Let the GSM of the new structure C ′

p be defined by δE = 0
(since the structure is finite, it is automatically �E > 0).
Every kinetically allowed (= admissible) configuration in this
GSM can be extended to an admissible configuration of C by
setting the deleted ancillas to off and the port p to on. If E0(C ′

p)
denotes the ground-state energy of C ′

p and E0(C) the same
for C, this implies that E0(C) � E0(C ′

p) − �p. Conversely, be-
cause Lp �= ∅, there are admissible configurations in the GSM
of C where the port p is on and, consequently, all adjacent an-
cillas are off. By truncating the configurations of the adjacent
ancillas and the port p, this yields a admissible configuration
for C ′

p with energy E0(C) + �p so that E0(C ′
p) � E0(C) + �p.

In combination, we have

E0(C ′
p) = E0(C) + �p (B1)

for the ground-state energy of the new structure C ′
p. Using this

result and the mappings of extension and truncation, we can
draw two conclusions:

(1) Every configuration in the GSM of C ′
p can be extended

to a configuration in the GSM of C, which corresponds to a
word in Lp. We can immediately conclude two things:

(i) Since the extended configurations must be distin-
guishable by the ports of the complex C ignoring port p
(this port is always on for configurations in Lp), and be-
cause these ports are inherited by the structure C ′

p, we can
conclude that the configurations of the GSM of C ′

p can also
be distinguished by these ports. This makes C ′

p a complex
that realizes some language L?.

(ii) Every word in L? is mapped by the extension to a
word in Lp, which implies L? ⊆ L′

p.
(2) Conversely, every configuration in the GSM of C,

which corresponds to a word in Lp can be truncated to an
admissible configuration of C ′

p with energy E0(C) + �p =
E0(C ′

p), which implies L′
p ⊆ L?.

In conclusion, we showed that L? = L′
p and therefore that

C ′
p is indeed a L′

p-complex. �

APPENDIX C: MINIMALITY OF SPIN
LIQUID PRIMITIVES

1. Vertex/Unit cell complex for the surface code (CSCU)

Lemma 7. The vertex complex (unit-cell complex) CSCU of
the surface code on the square lattice cannot be realized with
less than 11 atoms.

Proof. Here we show that the vertex complex of the sur-
face code on the square lattice requires at least 11 atoms;
to this end, we use and expand on the tricks introduced in
Appendix A 4. First, note that the GSM is symmetric under the
permutation of ports [Fig. 8(b)] and includes the state (1111),
i.e., no two ports can be in blockade with each other. In addi-
tion, the GSM is symmetric under the simultaneous inversion
of an even number of letters in all words (= columns),

LSCU ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1111
1100
0011
1001
0110
0101
1010
0000

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

inv. 4. letter−−−−−→ LSCU ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1110
1101
0010
1000
0111
0100
1011
0001

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

inv. 3. letter−−−−−→ LSCU =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1100
1111
0000
1010
0101
0110
1001
0011

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

inv. 2. letter−−−−−→ LSCU =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1000
1011
0100
1110
0001
0010
1101
0111

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

· · · (C1)

Let us now systematically exclude the existence of surface
code complexes with N � 10 atoms:

(1) N < 8: If one fixes one port of a surface code complex
as active, the remaining three ports realize a XNOR-complex
with at least two atoms less than the surface code com-
plex (because the active port deactivates at least one ancilla
permanently). Since we proved in Appendix A 3 that XNOR-
complexes require at least six atoms, this implies immediately
that the surface code complex cannot be realized with N < 8
atoms.

(2) N = 8: If there are at least two ports that are con-
nected to only one ancilla each, we can consider these as
amalgamated NOT-complexes and amputate two of them (see

the note in Appendix A 4), thereby creating a complex with
only six atoms that realizes the same GSM due to the inversion
symmetry detailed in Eq. (C1). Since this is not possible, there
can be at most one port that connects to only one ancilla.
Choose one of the other ports that connect to at least two
ancillas and again fix it in the active state (here we use the
permutation symmetry of LSCU). This produces a complex with
at most five atoms (the fixed port plus at least two ancillas are
removed from the surface code complex) that realizes again
the XNOR-manifold, which is impossible. Hence the surface
code complex cannot be realized with eight atoms.

(3) N = 9: To show that the complex cannot be realized
with nine atoms we consider three cases:
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(a) (b) (c)

1 2

3 4

5 6

7 8

(d) (e) (f)

FIG. 13. The remaining six classes of blockade graphs for the surface code vertex complex on nine atoms with ports of degree 2 and
without disconnected ancillas. Ports (ancillas) are colored red (blue) and connections between ancillas are omitted. The only class that cannot
be excluded kinematically is the “cross” graph (c) with atom labels {1, . . . , 8} and ports {1, 2, 3, 4}, see text.

(i) Assume there is at least one port connected to three
or more ancillas. If this port is fixed as active, it blocks
at least three ancillas. The resulting XNOR-complex on the
three remaining ports has at most five atoms, which is
impossible.

(ii) Assume at least one port connects to a single an-
cilla. Amputating this port yields a LSCU-complex with
eight atoms. If an arbitrary port of this complex is fixed
as active, the resulting complex has at most six atoms.
Inspection of the language LSCU [Eq. (C1)] shows that
this complex realizes the truth table of a XOR-gate, which,
however, requires at least seven atoms (as shown in
Appendix A 4).

(iii) Because of (i) and (ii), only the case that all ports
connect to exactly two ancillas remains. There are six noni-
somorphic bipartite graphs that connect sets of four (ports)
and five vertices (ancillas), where all ports have degree 2,
Fig. 13. We exclude graphs with disconnected ancillas
because these are typically covered by the analogous step
for N = 8. (Above we omitted this step to simplify the
prove, so in principle here one has to check the graphs with
disconnected ancillas too. The result is the same, though.)
By inspection, one shows that all these graphs [except for
the “cross” in Fig. 13(c)] allow for a pair of ports that when
activated, block all ancillas of a third port (which then must
be switched on as well). This, however, is inconsistent with
the language LSCU, which includes for all triples of ports
states where two are on and one is off.

The “cross” graph in Fig. 13(c) cannot be excluded with
this type of kinematic reasoning because the set of maximal
independent sets [with the convention of ports shown in
Fig. 13(c)] induces a superset of LSCU. Therefore we have
to use energetic arguments instead. With the atom indices
shown in Fig. 13(c), the gap condition requires

E1111 = −�1 − �2 − �3 − �4
!
< −�1 − �2 − �3 − �8

= E1110 ⇒ �8 < �4, (C2a)

E1100 = −�1 − �2 − �7 − �8
!
< −�1 − �2 − �7 − �4

= E1101 ⇒ �8 > �4. (C2b)

Hence this graph cannot realize the LSCU manifold.
(4) N = 10: To show that the surface code complex can-

not be realized with N = 10 atoms, one follows the same
procedure as detailed above for the case of N = 9 atoms
(here we only briefly summarize the necessary steps): First,
one excludes the case with ports that connect to a single
ancilla (where one has to use that a N = 9 realization of a
LSCU-complex can have only ports that connect to at least
two ancillas). Then, one excludes the existence of ports that
connect to at least four ancillas by using that XNOR-complexes
cannot be realized with five atoms or less. Finally, one must
exclude blockade graphs with ports of degree three or two by
the same procedure as in Step (iii) above. In this case, there
are 20 graph classes to cover of which 15 can be kinemati-
cally excluded and five can be energetically ruled out. These
arguments show that the surface code vertex complex cannot
be realized with 10 atoms. �

2. Vertex complex for the Fibonacci model (C fFib )

Lemma 8. The vertex complex C fFib of the Fibonacci model
on the Honeycomb lattice cannot be realized with less than
eight atoms.

Proof. The Fibonacci language LFib = {000, 011, 110,

101, 111} contains the three states (011), (110), and (101),
which we used in Appendix A 4 to show (with purely
kinematic arguments) that XOR- and NAND-complexes cannot
be realized with less than seven atoms. As the argument only
relied on these three states (and the existence of at least one
other state), it extends to the Fibonacci complex, which there-
fore also requires at least seven atoms. Furthermore, the three
states forbid blockades between any two ports. So assume
a realization with seven atoms exists. We distinguish three
cases:

(1) At least one port connects to a single ancilla. Am-
putation (see the note in Appendix A 4) of this port yields
a complex with six atoms that realizes the manifold LFib =
{100, 111, 010, 001, 011} obtained from LFib by inverting the
first letter (note that LFib is symmetric under permutations
of ports). This language contains all XNOR states: L� ⊂ LFib.
In Appendix A 5 we showed that there is only one blockade
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(a) (b) (c)

FIG. 14. The remaining three classes of blockade graphs for the Fibonacci vertex complex on seven atoms with ports of degree 2. Ports
(ancillas) are colored red (blue) and connections between ancillas are omitted. Only the graph in (b) must be energetically excluded.

graph on 6 vertices that can realize these states; this graph
has only four maximal independent sets and therefore cannot
realize the additional state (011) in LFib.

(2) At least one port connects to at least three ancillas.
First, a port that connects to all four ancillas is inconsistent
with two of the three states (011), (110), and (101). So assume
there is a port that connects to three of the four ancillas.
If this port is activated, it deactivates three ancillas and the
remaining two ports (together with one ancilla) realize the
irreducible language L = {01, 10, 11} (the blockade graph of
these three atoms must therefore be connected). But there
is no graph on three vertices with (at least) three maximal
independent sets of which (at least) one has (at least) two
vertices.

(3) Because of (1) and (2), only the case where all ports
connect to two ancillas remains. The possible classes of bi-
partite graphs are shown in Fig. 14. With a similar line of
arguments as used for the surface code [Case (iii) for N = 9
in Appendix C 1], one can exclude two of the three graphs
[(a) and (c)] with kinematic arguments [using the states (011),
(110), and (101)]. The set of maximal independent sets for the

graph in Fig. 14(b) includes LFib as a subset and can again be
excluded by energetic arguments. �

APPENDIX D: NUMERICAL APPROACH
FOR GEOMETRIC OPTIMIZATION

To minimize the objective function � on the high-
dimensional configuration space CN , we used the SciPy
method scipy.optimize.dual_annealing [85,97,98] that
implements generalized simulated annealing [86,87] in com-
bination with a local optimization based on the Nelder-Mead
algorithm [88,89]. The stochastic algorithm starts from an
initial geometry (which can be chosen randomly), followed
by iterations of jumps in CN with probabilities that depend
on the distance of the jump and the variation of the objective
function �; following each random jump, the Nelder-Mead al-
gorithm optimizes the new configuration locally. After �2000
iterations we stop the algorithm and compute the robustness
of the final geometry. More technical details and all obtained
optimal complexes can be found in Ref. [64]; the data of the
optimized complexes can also be accessed online [90].
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