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Strange metallicity in an antiferromagnetic quantum critical model:
A sign-problem-free quantum Monte Carlo study
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We compute transport and thermodynamic properties of a two-band spin-fermion model describing itinerant
fermions in two dimensions interacting via Z2 antiferromagnetic quantum critical fluctuations by means of a sign-
problem-free quantum Monte Carlo approach. We show that the phase diagram of this model indeed contains a
d-wave superconducting phase at low enough temperatures. However, a crucial question that arises is whether a
non-Fermi-liquid metallic regime exists above Tc, exhibiting hallmark strange-metal transport phenomenology.
Interestingly, we find that this version of the model describes a non-Fermi-liquid metallic regime that displays
an approximately T -linear resistivity above Tc for a strong fermion-boson interaction. Using the Nernst-Einstein
relation, our QMC results also show that this strange metal phase exhibits a crossover from being characterized
by a charge compressibility given approximately by χc ∼ 1/T at high temperatures to being described by a
charge diffusivity consistent with the scaling Dc ∼ 1/T at low temperatures. Therefore, our paper adds support
to the view that the Z2 antiferromagnetic spin-fermion model at strong coupling can be considered a minimal
model that describes both unconventional superconductivity and strange metallicity, which are fundamentally
interconnected in many important strongly correlated quantum materials.
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I. INTRODUCTION

Quantum criticality is a common theme in many strongly
correlated quantum materials [1] such as, e.g., high-Tc

cuprates [2–7], heavy-fermion compounds [8], and iron-based
superconducting compounds [9–11] (to name only a few
systems). This is due to the fact that the unconventional
superconducting phases exhibited by those systems always
occur close to either one or more symmetry-broken phases
in their corresponding phase diagrams, whose critical order-
parameter fluctuations are believed to provide the underlying
mechanism that mediates the pairing between the fermions
[12]. However, despite this great potential for universal clas-
sification in very different materials, quantum critical models
are famously difficult to be solved analytically, even in sim-
plified large-N flavor generalizations of such systems. This
owes to the fact that the interactions of these models are
relevant parameters in the renormalization group sense and
typically flow to strong coupling at low energies [13,14].
Therefore, in general, perturbative approaches to calculate
their physical properties at relevant temperature scales cannot
be used in a reliable manner. As a consequence, nonpertur-
bative approaches have become of paramount importance for
describing these models in recent years.

One celebrated quantum critical model is the spin-fermion
model in two spatial dimensions [13]. It considers itinerant
fermions in the vicinity of a Fermi surface (FS) interacting via
antiferromagnetic (AFM) fluctuations that effectively carry
momentum close to (π, π ). Recently, it has been investigated
analytically by several authors with many important results.
In this regard, we point out the work in Ref. [14] who im-
plemented a renormalization group analysis combined with a

1/N-expansion (with N being the number of fermionic fla-
vors) for this model. As a result, they found that although
the 1/N expansion ultimately fails for this problem due to
the emergence of strong quantum fluctuations at low energies,
they obtained interesting renormalizations of several parame-
ters of the model. As an example, it was demonstrated that the
Fermi-liquid theory breaks down near the so-called hot spots
[14], which refer to special points of the model in momentum
space that represent the intersection of the underlying FS with
the AFM zone boundary. At weak coupling, the hot spots are
conjectured to effectively control the universal properties of
the spin-fermion model, i.e., different models will belong to
the same universality class in the low-energy limit provided
that the angles between the Fermi velocities at the hot spots
are the same.

Later, in Ref. [15] a self-consistent nonperturbative ana-
lytical strategy was proposed, building on previous results
by the same authors [16], to solve the spin-fermion model
with O(3) symmetry near the hot spots using an emergent
control parameter: the degree of local nesting at those points.
As a result, they obtained a strong-coupling infrared fixed
point at very low energies in the model, which is associated
with (i) a bosonic dynamical critical exponent given by z = 1,
(ii) a consequent emergent nesting at the hot spots, and (iii)
the existence of a finite bosonic anomalous dimension in the
theory.

In contrast, we will focus here on the spin-fermion model
with Z2 symmetry. One of the motivations for the present
paper is that this model is expected to have a lower su-
perconducting transition temperature compared to the same
model with O(3) symmetry. This will give us a large tem-
perature window in which we will be able to characterize the
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normal state of this model. In this regard, there is an important
discussion in the literature (see, e.g., Refs. [17–19]) about
whether the formation of a superconducting phase in quantum
critical models preempts the emergence of non-Fermi liquid
features at low temperatures or if a non-Fermi liquid is capa-
ble of surviving within a sizable temperature window above
Tc. Although there was recently great progress on this ques-
tion regarding the AFM spin-fermion with O(3) symmetry
[19,20], the same study for Z2 spins has not yet been carefully
investigated to our best knowledge.

Another important nonperturbative approach to this prob-
lem is provided by unbiased numerical simulations such as,
e.g., the sign-problem-free quantum Monte Carlo (QMC)
method. This line of research was initiated in recent years
in Refs. [21–25] and it has now been established, e.g., that
a two-band version of the spin-fermion model describes a
high-Tc superconducting phase [22,24] with a pairing gap
consistent with d-wave symmetry (similar in this respect
to the cuprate superconductors). The choice of an effec-
tive two-band model that preserves the structure of the hot
spots is instrumental, since it was demonstrated that there
exists an antiunitary operator in this system that renders
the numerical QMC simulations fermionic sign-problem-
free [21].

To further elucidate the physical mechanism underlying
the formation of the superconducting state, another recent
QMC work on this model was given in Ref. [26], in which
a comparison between the numerical QMC method and the
field-theoretical perturbative Eliashberg approximation was
made. As a result, those authors have demonstrated numeri-
cally that from weak to intermediate couplings (compared to
the noninteracting bandwidth of the model), the hot-spot-only
Eliashberg approximation to the problem gives surprisingly
good results concerning, e.g., the critical temperature of
the corresponding superconducting phase [26]. Despite this,
at very strong couplings, this comparison starts to become
worse, thus showing that the perturbative Eliashberg approxi-
mation eventually breaks down for large enough couplings in
the spin-fermion model.

Transport properties are of course also of crucial interest in
this context, since those quantities provide another important
way to characterize the unconventional phases that emerge in
these systems. In this respect, we note that transport theories
for AFM quantum criticality now have a long history in the lit-
erature (see, e.g., Refs. [27–32]). This problem was addressed
by many authors using different analytical methods such as,
e.g., the Boltzmann equation method [27–29] and the Kubo
formula [30–32]. From a weak-coupling perspective, Ref. [27]
showed that in the clean limit, since only the hot spots at the
underlying FS couple efficiently to the AFM fluctuations, the
remaining regions of the FS would essentially remain cold.
This would lead to a conventional Fermi liquid transport due
to the short circuiting of the unconventional contribution to the
resistivity originated from the hot spots. Later, in Ref. [28], a
non-Fermi-liquid transport result was obtained in the model
by introducing additionally weak disorder, which effectively
changes the balance of hot-spot and cold-region contributions
in the system.

However, from a strong-coupling viewpoint, another sce-
nario has recently been put forward, starting from other

transport theories [33–49] that draw inspiration from non-
perturbative calculations in holographic models of metallic
states (see, e.g., Refs. [42,43,49]). This perspective is based on
the memory-matrix approach [49–52] that successfully cap-
tures the hydrodynamic regime, which is expected to describe
the nonequilibrium dynamics of the strange metal phase. In
this point of view, due to the strong coupling nature of the
spin-fermion interaction in two spatial dimensions [14], the
bosonic order parameter fluctuations will not only couple to
the hot spots, but can also couple effectively to the remaining
parts of the underlying FS via composite operators [30,53].
Consequently, the whole FS is expected to become lukewarm,
which could then lead in some cases to non-Fermi-liquid
behavior in the transport coefficients.

In the present paper, we investigate transport and ther-
modynamic properties of the Z2 AFM spin-fermion model
using the sign-problem-free QMC method. The main aim of
our paper is to perform nonperturbative QMC simulations
on this model for stronger couplings in a regime where the
Eliashberg approximation, in principle, is not expected to
yield qualitatively good results. Specifically, we will focus
on describing the metallic state that exists above Tc in the
corresponding phase diagram. In this way, our goal here will
be to address the following fundamental questions regarding
the present problem: (i) Can a superconducting phase with
d-wave symmetry exist in the Z2 AFM spin-fermion model
at low enough temperatures? (ii) Can a strange metal with
T -linear resistivity emerge in the model above the d-wave su-
perconducting phase? (iii) What is the mechanism that drives
the formation of this non-Fermi liquid metallic state?

Therefore, the remainder of this paper will be organized as
follows: In Sec. II, we will define the Z2 AFM spin-fermion
model that we want to investigate. In Sec. III, we briefly
explain the sign-problem-free QMC methodology applied to
this model. Next, in Sec. IV, we will present our numerical
results regarding this investigation. In Sec. V, we end with the
summary and an outlook of our present paper. Lastly, in the
Appendix we provide more details about the finite-size effects
on our simulation results.

II. LATTICE MODEL

We will consider an effective two-band (or two-flavor)
spin-fermion model with fermions from each band assigned
with a band/flavor index α = 1, 2, where the interaction
between α fermions and α′ fermions emerge from their cou-
pling with a Z2 AFM order parameter field. The Euclidean
action of this system is written as a sum of two contribu-
tions: S[ψ̄, ψ, ϕ] = Sψ [ψ̄, ψ, ϕ] + Sϕ[ϕ]. In this manner, the
partition function is given by the following coherent-state
path-integral:

Z =
∫

D(ψ̄, ψ, ϕ) e−S[ψ̄,ψ,ϕ]/h̄

=
∫

Dϕ

{
e−Sϕ [ϕ]/h̄

∫
D(ψ̄, ψ ) e−Sψ [ψ̄,ψ,ϕ]/h̄

}

=
∫

Dϕ e−Sϕ [ϕ]/h̄ Trψ

⎡⎣ lim
�τ→ 0

M∏
m=1

e−�τ H (τm )/h̄

⎤⎦, (1)
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where τm = m�τ (with m = 1, 2, . . . , M and �τ = h̄β/M)
represents discrete values of the imaginary-time τ ∈ [0, h̄β],
in which β = 1/kBT is the inverse temperature (for simplicity,
we set h̄ = 1 and kB = 1 from now on). In this formalism,
the Grassmann variables (ψ̄, ψ) and the bosonic field (ϕ)
are τ -dependent. In terms of fermionic creation (annihilation)
operator c†

α,i,s (cα,i,s) corresponding to the variables ψ̄α,i,s

(ψα,i,s), the τ -dependent Hamiltonian H (τ ) reads

H (τ ) = −
∑

α

∑
i, j

∑
s

[
t (α)

i j + δi j μ
]
c†
α,i,s cα, j,s

+ λ
∑

i

eiQ · ri ϕi(τ )[c†
1,i,↑ c2,i,↓ + c†

2,i,↑ c1,i,↓]

+ H.c., (2)

where α = 1, 2 are the band indices, s =↑,↓ are the spin
indices, ri (for i = 1, 2, . . . , Ns) is the ith site position on
a two-dimensional (2D) square lattice of Ns = L × L sites
( j is defined in the same way) with spacing a, t (α)

i j are
the hopping parameters associated with the α-band, μ is
the chemical potential, λ is the Yukawa coupling param-
eter, and Q = (π/a, π/a) is the wave vector associated
with the commensurate SDW order whose fluctuations in
the lattice are represented by ϕi. The action can be writ-
ten as an imaginary-time integral of the fermionic and
bosonic parts of the Lagrangian of the system: S[ψ̄, ψ, ϕ] =∫ β

0 dτ [Lψ (ψ̄, ψ, ϕ; τ ) + Lϕ (ϕ; τ )]. The term Lψ is given by

Lψ (ψ̄, ψ, ϕ; τ ) =
∑
α,i,s

ψ̄α,i,s(τ ) ∂τψα,i,s(τ ) + H(ψ̄, ψ, ϕ ; τ ),

(3)

with H(ψ̄, ψ, ϕ ; τ ) being the coherent-state path-integral
form of the Hamiltonian in Eq. (2). The bosonic part Lϕ has
the following Ginzburg-Landau (GL) form (ϕi depends on τ ):

Lϕ (ϕ; τ ) = 1

2

Ns∑
i=1

1

c2

(
dϕi

dτ

)2

+ 1

2

∑
〈i, j〉

(ϕi − ϕ j )
2

+
Ns∑

i=1

(
r

2
ϕ2

i + u

4
ϕ4

i

)
, (4)

with r being a parameter (which can be related to either dop-
ing or to an applied external pressure) that tunes the system
through a SDW quantum critical point, c is the bare bosonic
(SDW) velocity, and u is the quartic coupling. The GL action
Sϕ[ϕ] = ∫ β

0 dτ Lϕ (ϕ) can be considered to be the result of the
process of integrating out high-energy electronic degrees of
freedom, in which the time and amplitude fluctuations of the
bosonic field are assumed to be small, so the first-order time
and spatial derivatives are enough for the effective description
of the field near the quantum critical point (moreover, the
overall amplitude of the field is also assumed to be small to
ensure that the leading-order approximation of the GL theory
is valid).

The present model can be represented as a system made
of two parallel layers labeled by the flavor index α. With
no interaction (i.e., λ = 0), these layers consist of two
independent lattices where the fermions hop around and the

FIG. 1. Schematic representation of the two-band spin-fermion
model with a Z2 AFM order parameter field. Each α band (α = 1, 2)
is defined by the bare dispersion ε

(α)
k associated with an independent

layer representing a 2D lattice system (a is the lattice spacing),
where the hopping parameters of the fermions with flavor α are
given by t (α)

i j . The interaction (illustrated by a dashed line) between
the fermions of different flavors with opposite spins at the ith site
in both layers occurs via an intermediate layer composed by SDW
fluctuations represented by the order parameter field ϕi.

associated bare energy dispersion ε
(α)
k defines the α-band that

depends on the choice of t (α)
i j parameters. In this picture, the

two-band system is formed when these layers are coupled
by the Yukawa interaction (λ > 0) so fermions of different
flavors with opposite spins at the ith site in both layers in-
teract via the SDW fluctuations. This interaction is depicted
in Fig. 1 (illustrated by a dashed vertical line) where the Z2

fluctuations are represented schematically by the ϕi field in
an intermediate layer between the α = 1 and α = 2 layers. In
the context of determinantal QMC simulations, this two-band
model with an AFM order parameter field turns out to be
sign-problem-free, i.e., the fermionic determinant is always
positive definite (we mention here that the single-band version
of this model suffers from the fermionic minus-sign-problem).
The sign-problem-free property is a consequence of a funda-
mental theorem regarding the invariance of the Hamiltonian
with respect to an antiunitary symmetry [54]. For the current
model, the Hamiltonian H (τ ) given in Eq. (2) is invariant
under the symmetry described by the antiunitary operator
O = γ1C defined in terms of the 4 × 4 Dirac matrix γ1 and
the complex conjugation operator C in the flavor + spin basis
{|α, s〉}, such that OH (τ )O−1 = H (τ ).

III. METHODOLOGY

The determinantal QMC method is a nonperturbative ap-
proach that essentially maps the 2D quantum model defined
in Eq. (1) onto a (2+1)-dimensional classical model, with the
size in imaginary-time direction equal to β, where the func-
tional integral over the bosonic field is estimated via a Monte
Carlo approach [55,56] (i.e., integrals of the form

∫
Dϕ ( …)

are estimated via some importance sampling technique). Here,
we will consider the case of a system described by two
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(a) (b)

FIG. 2. (a) The allowed hopping processes considered in the
present two-band model. (b) The bare Fermi surfaces in the first
Brillouin zone. The components of any wave vector k = kx êx + ky êy

are measured in units of the inverse lattice constant, the four arcs at
the edges correspond to the FS given by ε(k) = μ0, and the closed
curve corresponds to another FS given by ε(k + Q) = μ0, i.e., the
former one shifted by the wave vector Q = (π, π ). The eight large
dots at the intersections points mark the hot spots, where the fermions
scatter via the SDW fluctuation coupling field. The red and blue
dashed lines are perpendicular to the tangent lines associated with
each curve at the highlighted hot-spot momentum khs, which intersect
by forming an angle θhs in the figure.

degenerate bands, i.e., the hopping parameters are assumed
to be the same for both bands: t (1)

i j = t (2)
i j . Figure 2(a) shows a

sketch of the allowed hopping processes in the system, where
[57] t1 = 0.6, t ′

1 = −0.2, t2 = 0.12, t ′′ = 0.02, t ′
2 = −0.04.

We note that, in the noninteracting scenario (λ = 0), the latter
parameters result in an energy band with bandwidth W ≈ 5.1
and dispersion relation ε

(α)
k = ε(k) which yields an FS that

bears some resemblance to the experimental FS obtained
from angle-resolved photoemission measurements [58] in the
cuprate superconductors. For the choice of chemical potential
μ0 = −0.019225, the bare FSs within the first Brillouin zone
ε(k) = μ0 and ε′(k) = ε(k + Q) = μ0 are shown in Fig. 2(b).

We will be interested in studying how the properties of
the system change when the parameters r and T vary, while
λ, c, and u remain fixed: λ = 4, c = 2, and u = 2. Since
in our convention λ2 has the dimension of energy, we have
that λ2/W ≈ 3.1 (i.e., a strong-coupling regime). The system
size L in our numerical simulations will be L = 8, 10, and
12 (with the total number of sites in the lattice given by
Ns = L2). In this regard, we point out that simulating for
even larger lattices takes significantly more CPU time in mod-
ern supercomputers using our present QMC code, since the
simulation time for a single Monte Carlo step tends to scale
(approximately) with a power-law given by L6. Furthermore,
our choice for the imaginary-time step �τ varies according
to the inverse temperature value. For β > 4, we set �τ =
10−1, otherwise it is given by �τ = β/M with the number
of τ slices (M) always close to 40 (for more details, also
see Ref. [57]).

Our investigation will be focused on the transport proper-
ties that can be extracted from the time correlation between
the imaginary-time uniform current density operator �J (τ ) =
Jx(τ ) êx + Jy(τ ) êy (Jx and Jy refers to horizontal and verti-
cal components, respectively), where we will only deal with

the horizontal component since the system is C4 symmetric.
The latter is written as Jx(τ ) = ∑

n jx(rn, τ )/L, with the op-
erator jx(rn, τ ) expressed in terms of fermionic operators in
the Heisenberg representation c(†)

α,n,s = c(†)
α,s(rn, τ ) as follows:

jx(rn, τ ) = −
∑
α,s

tx
[
i c†

α,s(rn, τ ) cα,s(rn + êx, τ ) + H.c.
]
,

(5)

where n = 1, 2, 3, . . . , Ns, and tx = t1 is the nearest-neighbor
hopping parameter along the unit vector êx or êy (see Fig. 2).
The imaginary time-ordered current-current correlation func-
tion that we will examine corresponds to the grand-canonical
ensemble average 〈T Jx(τ )Jx(0)〉, which is explicitly calcu-
lated as

�̃(τ ) = 1

Ns

〈∑
n,m

jx(rn, τ ) jx(rm, 0)

〉
≡ 1

Ns

∑
n,m

�̃nm(τ ). (6)

Due to the bosonic character of the correlator �̃(τ ), the
function �̃(τ ′ + β/2) is found to be even in the shifted
imaginary-time variable τ ′ ∈ [−β/2, β/2], with β/2 being
the half-period value. Numerically, this variable is discretized,
i.e., τ ′

m = m�τ − β/2 (m integer). Hence, when plotting the
estimated values for �̃(τ ′

m + β/2) in terms of τ ′
m, we observe

that the aforementioned parity property is satisfied within
numerical accuracy.

From the calculations required to obtain �̃(τ ), one can
compute the superfluid density ρs that provides information
about the superconducting state. To this end, one needs the
Fourier transform of the current-current correlation function,

�(k, ωl ) =
∑
n,m

∫ β

0
dτ �̃nm(τ ) δm,1 ei(ωl τ−k · Rnm ), (7)

�L ≡ lim
kx → 0

�(kx, 0), �T ≡ lim
ky → 0

�(0, ky), (8)

where ωl = 2lπ/β are the bosonic Matsubara frequencies
(for integer index l), Rnm = rn − rm is the lattice vector con-
necting two sites n and m, and the Kronecker delta essentially
brings rm to the origin of the coordinate system here defined
as r1 = (0, 0). The zero-frequency correlator above is denoted
by �(k, 0) = �(kx, ky), such that the longitudinal (�L) and
transverse (�T ) limits yield ρs = (�L − �T )/4.

The real-frequency conductivity σ (ω) (horizontal part) is
related to �̃(τ ) via the following expression:

�̃(τ ) = ρq

π

∫ ∞

0
dω

ω cosh[(β/2 − τ )ω]

sinh(βω/2)
σ (ω), (9)

where ρq = h̄/e2 denotes the quantum of resistance. Here,
we will measure the inverse conductivity ρ(ω) = 1/σ (ω)
(i.e., the real-frequency resistivity) in units of ρq. To extract
σ (ω) by inverting the integral above, one could employ the
well-known maximum entropy method [59] for analytical
continuation of the QMC data related to the current-current
correlation function. However, analytical continuation of nu-
merical data is well-known to introduce uncontrollable errors
[60]. Hence, we will employ a proxy for estimating the
direct-current (DC) conductivity σDC = σ (ω = 0) = 1/ρDC

(here, ρDC denotes the DC resistivity). A very simple one
can be derived from Eq. (9). To show that, we first write
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the integral kernel in the latter as a τ - and ω-dependent
function: K (τ, ω) = ω cosh[(β/2 − τ )ω]/ sinh(βω/2). Then,
for τ = β/2 (this is effectively the longest possible imaginary
time), we find K (β/2, ω) = ω/ sinh(βω/2). This function has
a full width at half maximum of approximately � ≈ 8.61/β.
Hence, for low enough temperatures, the range of frequencies
[−�,�] can be narrow so σ (ω) can be approximated by its
zero-frequency component σDC if its low-frequency character
is preserved when |ω| < �. Then [61],

�̃(β/2) ≈
[∫ ∞

0

dω

π
K (β/2, ω)

]
σDC = π

β2ρDC
. (10)

Since �̃(τ ) satisfies the relation g(β − τ ) = g(τ ) (with g
denoting a correlator of bosonic character), the long-time
behavior that the current-current correlator develops at times
close to the half period value β/2 can be used to estimate
the DC resistivity via the proxy: ρ

pr,1
DC = π/[β2�̃(β/2)]. In

Ref. [62], it was shown for an Ising-nematic quantum critical
model with spin-1/2 itinerant electrons that a simple proxy
like the latter is not enough to capture the low-frequency
character of σ (ω). A more suitable proxy is another one
that involves more details on the long-time behavior of �̃(τ )
and can be derived by noticing that the second derivative of
the correlator �̃′′(τ ) = ∂2

τ �̃(τ ) and σ (ω) are connected via
an integral relation involving the kernel function K ′′(τ, ω) =
∂2
τ K (τ, ω) = ω2K (τ, ω). For τ = β/2, this function peaks at

ω = 6/β (assuming positive frequencies) and decays expo-
nentially for ω > �′, where �′ ≈ 11.04/β is the frequency
associated with the half maximum. Then, if the range of
frequencies [−�′,�′] is narrow enough so σ (ω) can be ap-
proximated by σDC just like before, one finds

�̃′′(β/2) ≈
[∫ ∞

0

dω

π
K ′′(β/2, ω)

]
σDC = 2π3

β4ρDC
. (11)

Now, from Eq. (10), we have [π�̃(β/2)]n ≈ π2n/(β2nρn
DC),

with n > 1 being an integer number. Then, by combining the
latter expression with the relation between �̃′′(β/2) and ρDC

given by Eq. (11), we can write that

π�̃′′(β/2)

2[π�̃(β/2)]n
≈ ρn−1

DC

(
β

π

)2(n−2)

. (12)

Thus, for n = 2, a proxy for the DC resistivity involving both
�̃(β/2) and �̃′′(β/2) is given (in units of ρq) by

ρ
pr,2
DC = 1

2π

�̃′′(β/2)

[�̃(β/2)]2
, (13)

whereas, for n = 3, one can define another proxy given by

ρ
pr,3
DC = 1

β

√
�̃′′(β/2)

2[�̃(β/2)]3
. (14)

Henceforth, we will focus only on the proxy given by ρ
pr,2
DC ,

since we verified that the proxies of Eqs. (13) and (14) yield
qualitatively similar results for the resistivity in the present
model. For this reason, we will refer to the proxy of Eq. (13)
as simply ρ

proxy
DC . This latter proxy was also shown to yield

excellent results when compared to the analytically continued
QMC data for the DC resistivity, e.g., of the 2D Hubbard
model [63].

In our investigation of transport properties of the model,
we use the fact that �̃(τ ) has bosonic character so the poly-
nomial function F (τ ) = ∑2

n=1 b2n(τ − β/2)2n can be fitted
to the QMC data for the shifted current-current correlator
�̂(τm) = �̃(τm) − �̃(β/2). This fitting procedure captures
the long-time behavior of the latter while also filtering out
the fluctuations in the estimated values when m � M/2. In
our implementation, we perform successive fits of the func-
tion F (τ ) using data sets with increasing length 2p + 1
containing the estimated values for �̂(τm) such that m =
Mh − p, Mh − p + 1, . . . , Mh + p, where Mh = M/2 is the
central-point index (τM/2 = β/2) and 1 < p < Mh. Then, we
choose the data set for which the fitting function F (τ ) better
describes the QMC data near the central-point while also
giving a reasonable fit of the data for shorter times (i.e.,
far from the central point). Then, our QMC data for the
correlator at imaginary-times τ � β/2 is replaced by this
function: �̂(τm) → F (τm) = �̂fit(τm). Thus, when estimating
the proxy for the DC resistivity given in Eq. (13), the numer-
ator will be replaced by the coefficient b2, i.e., �̃′′(β/2) →
�̂′′

fit(β/2) = b2.

IV. QMC RESULTS

A. Phase diagram

To estimate the magnetic phase diagram for the present
model, we examine the momentum-resolved bosonic spin-
density-wave (SDW) susceptibility for a commensurate SDW
order (i.e., at the wave vector Q), which is calculated in terms
of the grand-canonical ensemble average for the finite-system
magnetization [64] M(ϕ) = 1/(MNs)

∑
i,m ϕi,m as χSDW =

βNs〈M2(ϕ)〉 (notice that M(ϕ) is the average over all sites
and imaginary-time slices for a sampled configuration {ϕi,m}).
For a fixed inverse temperature β, χSDW is strongly enhanced
as the tuning parameter r is varied within a certain range of
values [15, rc(β )], with rc(β ) being a temperature-dependent
critical value (see Fig. 3).

Through the analysis of quantities such as the local mo-
ment [65], the average double- and single-site occupancy, and
also the averages of both fermionic and bosonic energies [i.e.,
the grand-canonical ensemble averages of the Hamiltonian in
Eq. (2) and of the Lagrangian terms in Eq. (4)], one infers that
the system is in the AFM/SDW phase for r < rc(β ), and that
the paramagnetic (PM) phase, established when r > rc(β ), is
characterized by an increase in the degree of itinerancy of
the fermions and disordered sampled configurations of the
bosonic field. For instance, the average site occupancy is cal-
culated as 〈n〉 = 1/(2Ns)

∑
i 〈ni〉 with ni = ∑

α,s c†
α,i,s cα,i,s

(total occupation operator for the ith site), which can be re-
lated to the doping parameter δ = 〈n〉 − 1, such that 〈n〉 = 1
(half filling) implies δ = 0. In the present model, δ is very
small when r � rc(β ) and it increases with r as the latter is
tuned across the critical region r ∼ rc (more on that in the next
section). For r < rc(β ), we find that χSDW(r, β ) � ξ (β ) e−br ,
where ξ (β ) � a0 + a1 ln(1/T ) with a0, a1 and b being pos-
itive real numbers. As r is increased beyond rc(β ), we find
that χSDW is strongly suppressed as it tends to decrease fol-
lowing closely a 1/r power law (for fixed β) in the PM phase.
The value of rc(β ) can be determined from the QMC data
for a fixed temperature by examining the behavior of many
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FIG. 3. (a) Phase diagram of temperature T versus tuning parameter r for the two-dimensional Z2 spin-fermion model obtained in this
paper. (b) Plot of the rescaled superfluid density ρ̄s. (c) Log-linear plot of the d-wave SC susceptibility χSC

− as a function of r for β = 18 in a
narrow range where both quantities peak (maximum value indicated by the triangular mark in the r-axis where rSC = 19). (d), (e) Log-linear
plots of the most relevant susceptibilities calculated for the present model, namely, finite-lattice susceptibility χ (fitted values given by the
rescaled dashed curve), SDW susceptibility χSDW, d-wave SC susceptibility χSC

− , d-wave on-site-CDW susceptibility χON-SITE CDW
− for k = Q,

s-wave bond-CDW susceptibility χBOND-CDW
+ (k) with k ≈ 0 in (d) and |k| > 0 in (e). The green point in (a) corresponds to the peak of the d-wave

superconducting dome as signaled by the quantities in (b) and (c). The competition between SC and CO fluctuations is shown schematically
by the color gradient in the PM region of the diagram in (a). In the same plot, these two competing fluctuations (the most important ones in
the PM phase) are almost equal in magnitude (absolute value of the susceptibility) in the close vicinity of the dashed curved line, which was
estimated via linear interpolation of the QMC data in the T domain. In (c), we only showed the data for the PM phase where the statistical
errors for χSC

− were reasonably small, and in (b) we found that ρ̄s − 1 at rSC = 19 (see the triangular mark and the orange horizontal dashed
line) is smaller than the associated error. The diagram was estimated via the analysis of the QMC data from simulations of an 8×8 system.
SDW, SC, CDW, and PM refer to spin density-wave, superconductivity, charge density-wave, and paramagnetic, respectively.

order-parameter susceptibilities, since a noticeable increase
or decrease (mainly at low temperatures) in the numerical
values is found when r is tuned across the critical region
in between the ordered and disordered phases. Particularly,
the finite-lattice susceptibility [66] (which is proportional to
the variance corresponding to the measurements of M(ϕ))
χ = χSDW − βNs〈|M(ϕ)|〉2 is very useful in this regard as it
shows a prominent peak at rc(β ), such that the latter can be
estimated (for a certain system size L) by looking at where χ

is maximum (an example of this is shown in the Appendix).
In this way, we obtained the AFM/SDW phase boundary dis-
played in Fig. 3(a).

To extract the information about the SC state, we followed
the approach of Ref. [67] for the determination of the SC
critical temperature Tc of a state of Berezinskii-Kosterlitz-
Thouless (BKT) character, which is associated with a super-
fluid density (for details about the estimation of such quantity,
see the Refs. [65,67,68]) that exceeds the universal BKT
value CBKT(T ) = 2T/π . Hence, for each fixed temperature
value T , we mapped out a range of the tuning parameter where
the quantity ρ̄s(T ) = ρs(T )/CBKT(T ) is greater than unity. In
Fig. 3(b), the QMC results obtained from the simulations at
β = 18 are shown for ρ̄s. For the present model, we find that
ρ̄s is very close to unity (but still slightly below this value) for
a single point in the diagram: β = 18 (or T ≈ 0.057) and r =
rSC. This peak at r = rSC is expected to increase for β > 18,
such that the shape of a SC dome might be revealed at lower
temperatures. By fixing r at such a peak value and performing
a linear fit of the quantity ln ρ̄s(T ) for β ∈ [6, 18], we find
that ln ρ̄s(T ) = a + bT , where the coefficients are given by
a = 1.43 ± 0.06 and b = −27.5 ± 0.6. Thus, if we extrapo-

late this fit of the QMC data to β > 18, the SC transition will
likely be found at the inverse temperature βc = 19.2 ± 0.9
(i.e., Tc ≈ 0.052). We point out that this critical temperature
agrees within numerical accuracy with the general theoretical
formula derived from Eliashberg theory for the O(N ) spin-
fermion model [24,26], which predicts that βc ≈ 19.7 for the
present model. As a result, although the Eliashberg formula, in
principle, assumes a weak spin-fermion coupling, our results
reaffirm that it holds even in a stronger coupling regime in
qualitative agreement with the conclusions of Ref. [26].

The nature of the SC state can be extracted from the quan-
tity �χSC = χSC

+ − χSC
− defined as the difference between the

s-wave (η = +1) form and the d-wave (η = −1) form of the
uniform (k = 0) superconducting susceptibility [22,69]

χSC
η (k) =

∫ β

0

dτ

Ns

Ns∑
i, j

〈P†
η (ri, τ )Pη(r j, 0)〉 eik · (ri−r j ), (15)

where Pη(ri, τ ) is an auxiliary operator associated with the SC
order (in the r-basis representation) defined as follows:

Pη(ri, τ ) =
2∑

α=1

ηα−1
[
c†
α,i,↑(τ )c†

α,i,↓(τ ) − c†
α,i,↓(τ )c†

α,i,↑(τ )
]

= 2
[
c†

1,i,↑(τ )c†
1,i,↓(τ ) + η c†

2,i,↑(τ )c†
2,i,↓(τ )

]
. (16)

As for an operator associated with charge order (CO), we ob-
tain the susceptibility χCO

η (k) by means of an imaginary-time
integral analogous to the previous one. We examine CO of two
types: on-site-CDW order (χONSITE-CDW

η ) and bond-CDW order
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(χBOND-CDW
η ). They are given by the following expressions:

χONSITE-CDW
η (k) =

∫ β

0

dτ

Ns

Ns∑
i, j

〈C†
η (ri, τ )Cη(r j, 0)〉 eik · (ri−r j ),

χBOND-CDW
η (k) =

∫ β

0

dτ

Ns

Ns∑
i, j

〈B†
η(ri, τ )Bη(r j, 0)〉 eik · (ri−r j ),

(17)

where η = ±1 are again associated with the s and d-wave
forms. In the calculation of χBOND-CDW

η , we consider only
nearest-neighbor bonds [69]. The auxiliary operators for these
two CDW orders can be expressed as Cη(ri ) = ∑

s Cs
η(ri )

and Bη(ri ) = ∑
s Bs

η(ri ), where, for on-site- and bond-CDW
orders, respectively, the sum over the spin index s =↑,↓ in-
volves the following imaginary-time dependent operators (we
omit τ for compactness):

Cs
η(ri ) = [c†

1,s(ri )c1,s(ri ) + η c†
2,s(ri )c2,s(ri )],

Bs
η(ri ) = [c†

1,s(ri )c1,s(ri + êx ) + c†
1,s(ri )c1,s(ri − êx )]

+ η[c†
2,s(ri )c2,s(ri + êy) + c†

2,s(ri )c2,s(ri − êy)]

+ H.c. (18)

We note that the d-wave symmetry of the set of operators
{P−1,Cs

−1, Bs
−1} can be understood by considering a system

composed of nondegenerate bands defined in such a way
that π/2 rotations in momentum space transform one band
into the other. This can be achieved by slightly deforming
the initially degenerate bands by assuming horizontal (x)
and vertical (y) nearest-neighbor hopping parameters given
by t (α)

1,x = t1 + (−1)α−1�t and t (α)
1,y = t1 + (−1)α�t (where

�t > 0 measures the magnitude of the deformation). In this
scenario, the π/2 rotations are equivalent to exchanging the
band indices. Applying this transformation to the auxiliary
operators from Eqs. (16) and (18) changes their signs, as
expected. We argue that these operators remain the same in the
limit of degenerate bands (i.e., �t → 0), since the properties
of the model should not be sensitive to small modifications of
the hopping parameters.

In Fig. 4, the dependence with r and T of the difference of
susceptibilities �χSC and �χSC/CO = χSC

− − χBOND-CDW
+ are

shown for β � 12. The color-coded plots in the figure repre-
sent the results of linear interpolations of the QMC data in
the T domain (the interpolated data provide a much better
visualization of the behavior of the plotted quantity along
the whole diagram region since the resolution in the both
directions are similar). The plot in Fig. 4(a) reveals that SC
fluctuations of d-wave character are always stronger than
those of s-wave character (i.e., �χSC < 0), with χ SC

− being
more strongly enhanced relatively to χ SC

+ at low temperatures
and in the vicinity of the magnetic transition r ∼ rc(β ), which
is an expected behavior since a model with a bosonic order
parameter of higher dimensionality [21–24] yields similar
results. In the same plot, the ratio χSC

− /χSC
+ is slightly larger

than 2.4 at rSC = 19 and β = 12, which is the r value where
the quantity |�χSC| is maximum and also the one associated
with the peak of the d-wave SC dome indicated previously

FIG. 4. Diagram view (T -r plot) showing the temperature depen-
dence of the susceptibilities: (a) �χSC and (b) �χSC/CO for different
fixed r parameter values. The curved dashed line in (b) follows the
contour corresponding to �χSC/CO = 0, and the vertical dotted line at
r = 21 roughly divides the diagram into two parts: AFM region and
PM region. In the latter, �χSC/CO is weakly dependent on r, so there
is an approximate temperature value T0 ≈ 0.2125 [estimated from
the linear interpolated data points and it is indicated in the right-
edge of the plot (b)] for which CO fluctuations of the type s-wave
bond-CDW dominate in the PM phase if T > T0, while d-wave SC
fluctuations dominate at low temperatures T < T0.

in Figs. 3(a)–3(c). When analyzing χSC
− in the PM phase, we

noticed that it increases monotonically with 1/T at a rate
that is gradually weakened as the positive difference �rc =
r − rc(β ) > 0 increases and, for r < 19, these SC fluctuations
become saturated when T decreases below the magnetic tran-
sition threshold.

Moreover, in the disordered phase, we found that uniform
(k = 0) CDW fluctuations of the bond type with s-wave char-
acter compete with the d-wave SC fluctuations (this is why
we examined the susceptibility given by �χSC/CO which is
plotted in Fig. 4), i.e., for r > rc(β ), there are two main
regions in the diagram: �χSC/CO < 0 (CO fluctuations dom-
inate), �χSC/CO > 0 (SC fluctuations dominate). For β = 4,
χBOND-CDW

+ > χSC
− in the whole r parameter range as shown in

the plot of Fig. 3(d), while in Fig. 3(e) we see that for β = 12
the SC fluctuations become dominant: χSC

− > χBOND-CDW
+ . In

Fig. 4(b), the regions where CO or SC fluctuations dominate
emerge clearly in the diagram. As explained in the caption of
the same figure, for r � 21 (see the vertical dotted line), we
can find an approximate temperature value T0 so a dashed line
given by T = T0 separates these two regions in the PM phase.
This result was previously shown in Fig. 3(a). For r � 21, we
see that the region where the �χSC/CO < 0 extends along the
AFM/SDW phase boundary down to temperatures T � 0.125
below T0. Thus, at low temperatures T � 0.1, SDW order
competes mainly with the increasing d-wave SC fluctuations
in the close vicinity of the magnetic ordered phase region
(i.e., near the AFM-PM transition), while at temperatures T �
0.125, the main type of fluctuations that competes with the
SDW order are of s-wave bond-CDW type. Interestingly, this
type of CO fluctuation can be associated with finite ordering
wave vectors when β � 6. In the case of on-site-CDW order,
the results indicate that the ordering wave vector coincides

085131-7



TEIXEIRA, PÉPIN, AND FREIRE PHYSICAL REVIEW B 108, 085131 (2023)

FIG. 5. Imaginary time behavior of the current-current correlator
�̃(τm ) for inverse temperatures (a) β = 1 and (b) β = 4 (results from
QMC simulations of a model with lattice size L = 12). The estimated
valued for �̂(τm ) = �̃(τm ) − �̃(β/2) are shown for increasing r
values (see inset plot) and m = M/2 − p, . . . , M/2 + p with p = 15.
The r values associated with each data set are color coded according
to the inset plot in the top-right corner, where the vertical dashed
lines give a reference for the proximity of r to the AFM/SDW phase
boundary. Here, we assumed that the function f (τm − β/2) = �̂(τm )
is an even function of the discretized imaginary time τm = m�τ ,
with m = 1, 2, . . . , M and M = 40.

with Q for system sizes up to L = 12, since the susceptibility
χONSITE-CDW

η was always found to peak at k = Q.

B. Resistivity of the normal phase

The plots in Fig. 5 show our QMC results for the
imaginary-time behavior of the current-current correlation
function �̃(τm) defined in Eq. (6). Within the range of the
plotted data, the behavior of �̃(τm) is found to be quite well-
defined for both temperature values in the plots. For β = 1,
the plot in Fig. 5(a) shows that �̃(τm) ∼ b0 + b2(τ − β/2)2

with b0 = �̃(β/2) and the coefficient b2 decreasing as r is

increased. As the temperature is lowered, it tends to flatten
at β/2 as shown in the plot (b) for β = 4, i.e., �̃(τm) ∼
b0 + b2(τ − β/2)2 + b4(τ − β/2)4. In a narrower imaginary
timescale, �̃(τm) can become irregular near the central point
at m = M/2. This is more noticeable for larger r values and
at lower temperatures so, for β � 4 and r tuned closer to the
AFM/SDW phase boundary, the numerically discrete current-
current correlator behavior with τ (assuming long imaginary
times τ ∼ β/2) remains reasonably regular. Theoretically, the
proxy is expected to better approach the true DC resistivity
value as β increases [62]. However, at lower temperatures
β � 6, we found that r needs to be limited even more to
ensure that the information for long imaginary times is not
hampered by fluctuations that lead to the irregular behavior
that we commented on. Hence, in the present paper, we chose
to focus on the intermediate temperature range β ∈ [0.25, 4].

For all temperature values considered in the present paper,
we estimated the DC resistivity via the proxy formula given
by Eq. (13). In doing so, [�̃(β/2)]2 is taken directly from the
QMC results and the second-derivative �̃′′(β/2) is estimated
from the fitting function, as explained at the end of Sec. III. In
Fig. 6(a), we display the plots for the DC resistivity proxy as
a function of the temperature T in the model. To better under-
stand how r affects the fermionic system through the Yukawa
coupling of the latter with the bosonic order parameter field,
we show in Fig. 6(b) a plot of the inverse SDW susceptibility
χ−1

SDW as a function of the average site occupancy δ = 〈n〉 − 1
defined in the previous section. In the figure, we tune the
fermionic system from an AFM/SDW ordered phase into a
PM disordered phase by indirectly varying the doping given
by δ = 〈n〉 − 1. We see that δ � 0 when r < rc and also
that the SDW susceptibility is strongly suppressed for doping
values δ � 8%. In our DC resistivity proxy results of Fig. 6(a),
an approximately T -linear behavior is obtained for a doping
of δopt ≈ 0.095. If we fit the data, we obtain that ρ

proxy
DC ≈

FIG. 6. (a) DC resistivity proxy ρ
proxy
DC as a function of T (in units of ρq) for L = 10. The r parameter values associated with each set

of points in (a) are color coded according to the vertical bar in the plot. At r = 26.8, an approximately T -linear behavior is obtained. The
corresponding fitting function is ρ

proxy
DC ≈ a + bT , where a = 0.025 ± 0.002 and b = 0.141 ± 0.002. (b) The inverse SDW susceptibility χ−1

SDW

as a function of the estimated doping δ = 〈n〉 − 1 for L = 10 and L = 12 (same fixed temperature: β = 4). Each point (from both sets) in the
plot maps to one r value which is indicated by a color according to the vertical bar on the right side. The dashed line marks the optimal doping.
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c

FIG. 7. The QMC results obtained for the charge compressibility χc = χON-SITE CDW
+ (0) are shown in the color-coded plot in (a), where the

behavior of this quantity in terms of both r and T (in logarithmic scale) can be visualized in the whole diagram region (the resolution in the T
domain was improved via linear interpolation of the QMC data). (b) The dependence of χc for r = 26.8 as a function of temperature is shown.
(c) The dependence of χcT 2 for r = 26.8 as a function of temperature is shown. (The red dashed line is only a guide for the eye.)

a + bT , where a = 0.025 ± 0.002 and b = 0.141 ± 0.002.
Therefore, our results are consistent with the existence of a
finite residual resistivity ρ0 at T = 0. This bears some resem-
blance with recent transport properties obtained, e.g., in the
Hubbard model [70] in the high-temperature regime [71,72],
in other boson-fermion quantum critical theories [73,74],
and in some Sachdev-Ye-Kitaev-motivated models [75]. Fi-
nally, we note that recent experiments also show a finite
residual resistivity at T = 0, e.g., in the cuprate compounds
(see Refs. [76–78]).

The strange metal behavior indicated by our DC resistivity
proxy results is established when the doping is close to δopt,
which for our choice of parameters would be the optimal
doping of the model. This means that a strange-metal be-
havior is indeed obtained for an AFM/SDW quantum critical
model at stronger couplings. Moreover, since CO correlations
of s-wave bond-type are dominant in the PM phase within
the temperature range that we measured the DC resistivity
proxy, these fluctuations might also have an influence in the
dependence of ρDC(T ) at higher temperatures.

The proxy results that we found here support the con-
clusion that a strange metal phase can emerge from the Z2

spin-fermion model at intermediate temperatures in the crit-
ical regime. In contrast, we point out that inside the AFM
phase (or reasonably close to it) an upturn of the resistivity
is observed. Moreover, we also note that the resistivity of the
strange metal phase obtained here does not extend beyond the
Mott-Ioffe-Regel limit (ρq ≈ 1) at the measured temperatures.
Therefore, we currently see no evidence of the existence of a
bad metal regime within the Z2 spin-fermion model.

C. Charge compressibility and charge diffusivity
in the strange metal phase

In the absence of a coupling between the charge and heat
carriers, the charge compressibility χc = χON-SITE CDW

+ (0) (i.e.,
the s-wave on-site-CDW susceptibility for k = 0) and the DC
conductivity σDC are connected via the Nernst-Einstein rela-
tion σDC = Dcχc, where Dc is the charge diffusion constant

[71,79,80]. The results of our QMC simulations revealed that
χc is weakly dependent on the parameter r when the system is
in the disordered/PM phase as shown in Fig. 7(a). In general,
χc is always finite for r > rc (as expected from a metallic sys-
tem) and, for r < rc, it tends to be suppressed as r decreases.
We analyzed this quantity in two regimes: T � 0.75 (high
temperatures) and T � 0.5 (low temperatures). The plots in
Figs. 7(b) and 7(c) show the overall behavior that we find
when T is varied and r > rc(β ) remains fixed. In the plot of
Fig. 7(b), we see that χc tends to a constant 0.72 ± 0.05 (this
value corresponds to the average of the results for T � 0.5
in the corresponding figure) for the temperature range β ∈
[2, 12]. Moreover, in the high temperature regime in Fig. 7(c),
we find that χcT 2 tends to increase linearly with T , which im-
plies the following fitting function given by χc ∼ a/T + b/T 2

with the coefficients being a � 1.0 and b � −0.31. For lattice
size L = 10 and 12, the overall behavior of the charge com-
pressibility for temperatures T � 0.75 remains qualitatively
the same.

Considering our numerical results from the previous sub-
section, we showed that an approximately T -linear behavior
of the proxy for the resistivity ρDC = 1/σDC extends over a
reasonable range of temperatures for the present model. As
a result, for lower temperatures, since the charge compress-
ibility tends to a constant value, the charge diffusivity of the
model then becomes described by the Planckian dissipation
scaling Dc(T ) ∼ 1/T . In this regard, we note that, inspired by
groundbreaking results of dissipative processes in holographic
models [81,82], a theory of universal incoherent metallic be-
havior was proposed in Ref. [79], where it was argued that the
transport properties in the strange metal phase that emerges
in many strongly correlated systems should be described in
terms of the diffusion of both charge and energy rather than
momentum relaxation. In this latter theory, the mechanism
that drives the formation of this non-Fermi liquid state at low
temperatures is characterized by the charge compressibility
saturating to a constant and a charge diffusivity scaling with
the inverse of temperature. This scenario is clearly consistent
with the scaling that we find in the Z2 spin-fermion model for
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low temperatures. Therefore, our present result adds support
to the interpretation that the mechanism for the approximate
T -linear resistivity obtained here for the strongly coupled
spin-fermion model at low temperatures might be indeed con-
nected to Planckian dissipation [83].

V. SUMMARY AND OUTLOOK

In this paper, we have calculated the transport and ther-
modynamic properties of a two-band spin-fermion model
describing itinerant fermions in two dimensions interacting
via Z2 AFM quantum critical fluctuations by means of a
sign-problem-free QMC approach. We have found that this
version of the spin-fermion model describes a non-Fermi-
liquid metallic regime that exhibits an approximately T -linear
resistivity above Tc for a strong fermion-boson interaction
strength. Using Nernst-Einstein relation, our QMC results
have also shown that this strange metal phase is described
by either a charge compressibility given approximately by
χc ∼ 1/T at higher temperatures or by a charge diffusivity
consistent with the Planckian dissipation scaling Dc ∼ 1/T at
lower temperatures. We note that both scenarios were recently
observed in Ref. [63] in a study of the 2D Hubbard model on
a square lattice for U = 6t .

It would be interesting to compare our present QMC results
with recent more efficient quantum machine learning methods
(such as, e.g., self-learning QMC [84], quantum loop topog-
raphy [85], etc.) to check if the transport coefficients obtained
here are universal for general O(N ) spin-fermion models and
possibly for other quantum critical theories at strong coupling
as well. Moreover, we point out that there are many other
directions that can be explored in the future with the current
QMC code. For instance, one can further investigate how the
prefactor of the 1/T dependence of the charge diffusivity at
low temperatures calculated in the present paper correlates
with the choice of other completely different band structures
in the model, thus potentially establishing the Planckian dis-
sipation as a universal mechanism responsible for the strange
metal phase that could emerge in any AFM/SDW quantum
critical model at strong coupling. Another direction of re-
search is to calculate the thermal conductivity in the strange
metal phase to extract information about the diffusion of heat
(via the Nernst-Einstein relation) and to discuss the validity

of the Wiedemann-Franz law at low temperatures. Other in-
teresting possibilities include using the current QMC code
to study other classes of strongly correlated models such as,
e.g., sign-problem-free Hubbard-like models with two bands
(for a recent example, see, e.g., Ref. [86]). This investigation
could potentially shed light from a numerically exact point of
view on the pseudogap phase that emerges in the underdoped
regime of the cuprate superconductors.
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APPENDIX: FINITE-SIZE EFFECTS

In the main text, we pointed out that the QMC simulations
of the metallic system described by the spin-fermion model
depend on a finite size L of the lattice. In this Appendix, we
will present an analysis for different lattice sizes in order to
show that the finite-size effects are indeed mild for all the
quantities calculated in this work.

Let us start by considering the finite-lattice susceptibility
χ and the SDW susceptibility χSDW at β = 4. In Fig. 8(a),
we see that the peak of χ is broad for a small lattice size
(L = 6). Therefore, it leads to an estimate for rc that deviates
from the more precise estimates obtained for larger lattices.
Indeed, for L � 8, the peak becomes much sharper and only
shifts slightly to the right as we increase L. Also, we notice
that the maximum value of χ tends to decrease, although the
logarithmic of χSDW increases for r < rc (see the inset plot in
the same figure). Thus, these results indicate that the upper
part of the magnetic phase diagram from Fig. 3(a) does not
change much for larger systems. After analyzing the behavior
of the two main fluctuations competing in the PM phase,
namely, the d-wave SC and the CO fluctuations of s-wave
bond-CDW-type, we find that these quantities are also only
weakly affected by the lattice size for r < rc and L � 8, as

d

FIG. 8. Plots of some susceptibilities estimated by the QMC simulations of the model for β = 4 and lattice size increasing from
L = 6 to L = 12: (a) Finite-lattice susceptibility χ = χSDW − βNs〈|M(ϕ)| 〉2 and log-linear plot of the SDW susceptibility χSDW (see inset
plot), (b) d-wave SC susceptibility χSC

− , (c) d-wave on-site-CDW susceptibility χONSITE-CDW
− (k = Q), (d) s-wave bond-CDW susceptibility

χBOND-CDW
+ (k = 0).
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FIG. 9. DC resistivity proxy ρ
proxy
DC as a function of T (in units of

ρq) for L = 12. The r values associated with each T -plot are color-
coded according to the horizontal bar in the plot. The corresponding
fitting function is ρ

proxy
DC ≈ a′ + b′T , where a′ = 0.074 ± 0.002 and

b′ = 0.166 ± 0.002.

shown in the plots of Figs. 8(b)–8(d). From these plots, we
see that χSC

− tends to scale linearly with L, as r is tuned away
from rc in PM phase. The same does not apply though to the
CO susceptibilities χCDW

− (k = Q) and χBCDW
+ (k = 0), shown

in Figs. 8(c) and 8(d), respectively. However, for moderate
temperatures, the results for lattice sizes L � 10 presented
here indicate that the latter two quantities might increase
with L at a faster rate when compared with χSC

− in the PM
phase, such that the regime with dominant CO correlations
at moderate temperatures described in the main text will also
likely remain in the thermodynamic limit.

For completeness, regarding the QMC results for the DC
resistivity proxy of the spin-fermion model, we consider the
plot in Fig. 9 for lattice size L = 12. Compared to Fig. 6(a)
in the main text, a similar trend is observed in this plot with
a regime inside the AFM phase (or reasonably close to it),
displaying an upturn of the resistivity as a function of T . Upon
doping, a quantum critical regime with an approximately T -
linear resistivity emerges in the model, which is found for a
doping parameter reasonably close to the optimal value δopt

obtained for L = 10 [see also Fig. 6(b)]. In this regime, we ob-
tain a linear fitting function given by ρ

proxy
DC ≈ a′ + b′T , where

a′ = 0.075 ± 0.002 and b′ = 0.166 ± 0.002. Therefore, we
conclude that the finite-size effects for the DC resistivity
proxy are also relatively mild for the estimate of this transport
coefficient in the present model.
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