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Candidate local parent Hamiltonian for the 3/7 fractional quantum Hall effect
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Although a parent Hamiltonian for the Laughlin 1/3 wave function has been long known in terms of
the Haldane pseudopotentials, no parent Hamiltonians are known for the lowest-Landau-level projected wave
functions of the composite fermion theory at n/(2n + 1) with n � 2. If one takes the two lowest Landau levels
to be degenerate, the Trugman-Kivelson interaction produces the unprojected 2/5 wave function as the unique
zero energy solution. If the lowest three Landau levels are assumed to be degenerate, the Trugman-Kivelson
interaction produces a large number of zero energy states at ν = 3/7. We propose that adding an appropriately
constructed three-body interaction yields the unprojected 3/7 wave function as the unique zero energy solution
and report extensive exact diagonalization studies that provide strong support to this proposal.
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I. INTRODUCTION

The fractional quantum Hall effect (FQHE) [1] is one of the
most striking phenomena to arise from the interaction between
electrons. Its rich phenomenology is explained in terms of
emergent particles called composite fermions (CFs), which
are bound states of electrons and an even number of quantized
vortices, sometimes viewed as electrons bound to an even
number of magnetic flux quanta [2]. A remarkable aspect
of the CF theory is that it establishes a mapping between
the FQHE of electrons at filling factors ν = n/(2pn ± 1)
and the integer quantum Hall effect (IQHE) of CFs carrying
2p vortices at filling factor ν∗ = n. It further allows explicit
construction of wave functions for the FQHE states starting
from the known IQHE wave functions [2], which provide ex-
tremely accurate representations of the exact Coulomb wave
functions known numerically for finite systems for which
exact diagonalization on the computer is possible [3,4]. The
Laughlin wave function [5] appears in this theory as the
ground-state wave function of CFs at filling factor ν∗ = 1.

Although the close agreement with the Coulomb solutions
is sufficient to establish the quantitative validity of these
wave functions, one may ask if they are exact solutions of
some model interactions. The interaction is often expressed
in terms of the Haldane pseudopotentials Vm, which are en-
ergies of pairs of electrons with relative angular momenta m
[6]. Haldane showed that the Laughlin 1/3 state is the exact
and unique zero energy state of fully spin-polarized electrons
confined to the lowest Landau level (LLL) for the interaction
Vm = δm,1 [6].

The Jain wave functions at ν = n/(2pn ± 1) are given by

�LLL
n/(2pn±1) = PLLL�±n�

2p
1 , (1)

where �+n is a Slater determinant state of completely filled
lowest n LLs, we define �−n = �∗

−n, and PLLL denotes
projection into the LLL. (We drop the ubiquitous Gaussian
factors, which will be absent anyway once we specialize to the
spherical geometry.) Extensive studies [7] have failed to find

a pseudopotential Hamiltonian for which the LLL projected
Jain 2/5 wave function for fermions or the analogous 2/3
wave function for bosons is the exact ground state.

We will consider in this article the unprojected Jain
n/(2pn + 1) wave functions, referred to simply as the
n/(2pn + 1) wave functions below, given by

�n/(2pn+1) = �n�
2p
1 . (2)

These have a simpler form, but involve higher Landau levels
(LLs). (The number of LLs participating in a wave function
can be read off from the highest power of z̄ j in the polynomial
part of the wave function multiplying the Gaussian factor;
the highest power z̄m implies nonzero weight in the lowest
m + 1 LLs.) Interestingly, the Trugman-Kivelson (TK)
interaction [8],

VTK = ∇2
2δ(2)(r2 − r1) (3)

obtains the 2/5 wave function as the exact and unique zero
energy ground state provided that the lowest two LLs are taken
to be degenerate [9,10]. (Here, ∇2

2 represents the Laplacian
with respect to r2.) One can see, using integration by parts,
that any state that vanishes as the first power of the distance
r between two particles, when they are brought close to one
another, has a finite energy for VTK, but any state that vanishes
as r3 has zero energy. (States that vanish as r2 are not allowed
due to antisymmetry of the fermionic wave functions.) One
can further show that �2�

2
1 is the only state at ν = 2/5

that vanishes as r3 within the space of the lowest two LLs.
Numerical diagonalization has shown that this state evolves
smoothly without gap closing for either the short-range or the
Coulomb interaction as the kinetic-energy gap between the
lowest two LLs is increased from zero to infinity [10].

This strategy does not carry over to the 3/7. Because the
unprojected Jain wave function at ν = 3/7 involves the lowest
three LLs, we assume the lowest three LLs to be degenerate.
The 3/7 wave function �3/7 = �3�

2
1 vanishes as r3 (as each

factor vanishes as r) when two particles approach one another
and, thus, has zero energy for the TK interaction, but it is not
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the only wave function with this property. It is degenerate with
many other states of the form

�
(ν∗

1 ,ν∗
2 )

3/7 = χν∗
1
χν∗

2
�1, (4)

where ν∗
1 and ν∗

2 satisfy (ν∗
1 )−1 + (ν∗

2 )−1 + 1−1 = (3/7)−1

and ν∗
1 , ν∗

2 � 2. Because χν∗
j

contains at most one power of

z̄ j , �
(ν∗

1 ,ν∗
2 )

3/7 has at most z̄2
j and is, therefore, restricted to the

lowest three LLs. (We also must have ν∗
1 , ν∗

2 � 6/5 because
(ν∗

1 )−1 = 4/3 − (ν∗
2 )−1 � 5/6.) We have used the fact that

the inverse of the filling factor of a product state is sum of the
inverse filling factors of the different factors [11]. We use here
and below the symbol χν∗ to denote a Slater determinant in the
standard angular momentum basis in which there is, at least,
one particle in both LLs. The zero mode (ZM) subspace of
VTK is spanned by all wave functions of the form �

(ν∗
1 ,ν∗

2 )
3/7 [12].

Certain other models have been advanced. Bandyopadhyay
et al. have constructed a local two-body interaction for all un-
projected Jain wave functions at n/(2n + 1) [12] as well as for
the Jain parton states [13] building upon previous work [14]. It
is not evident, however, how this interaction may be expressed
in a real-space form or in terms of Haldane pseudopotentials.
Anand and co-workers [15,16] have introduced an interaction,
defined in terms of generalized Haldane pseudopotentials,
which does not cause inter-LL scattering, and shown that
this interaction can be solved exactly, and its spectrum at ν has
an exact correspondence with that of noninteracting fermions
at ν∗, given by ν = ν∗/(2pν∗ + 1). In particular, it produces
incompressibility at the Jain fractions ν = n/(2pn + 1). This
formulation also provides a solvable model for non-Abelian
FQHE [17]. The eigenfunctions of this interaction, however,
are not the unprojected Jain CF states and for n � 2 have large
occupancy of higher LLs. The 3/7 FQHE has been extensively
studied from various other perspectives as well [18–21].

Our strategy in this paper is to ask if we can add a three-
body interaction to the TK interaction to single out the 3/7
wave-function �3�

2
1 as the unique zero energy solution. The

reason why we can expect a three-body interaction to single
out �3�

2
1 from the other TK ZMs is because χν∗ with ν∗ � 1

has a different behavior than �1 when three particles are
brought close to one another: whereas, �1 vanishes as r3,
χν∗ vanishes as r2. (A proof is given in Appendix A). As a
result, �3�

2
1 vanishes as r8, whereas, χν∗

1
χν∗

2
�1 vanishes as

r7. The three-body interaction that can take advantage of this
difference is

V (s,t,u)
3 = ∇2s

1 ∇2t
2 ∇2u

3 [δ(2)(r1 − r2)δ(2)(r1 − r3)], (5)

where (s, t, u) are non-negative integers. With s + t + u = 7,
the wave-function �3�

2
1 has a zero expectation value for this

interaction, whereas, the other states of the form χν∗
1
χν∗

2
�1

do not.
There are several subtle problems with the above argument,

which we now mention along with possible resolutions.
Problem 1. The three-body interaction V (s,t,u)

3 has positive
as well as negative eigenvalues. This is problematic because,
then, a state with zero expectation value is not necessarily
an eigenstate, and even if it is, lower energy solutions can
exist. Fortunately, within the Hilbert space defined by the ZMs
of VTK, called the TK-ZM space, the eigenvalues of V (s,t,u)

3
are non-negative. (See the discussion below. An analogous

situation occurs when one considers spinful fermions with
TK interaction. In this case, the TK interaction, in general,
has negative energy solutions. However, if one confines the
Hilbert space to the ZMs of the δ-function interaction, i.e.,
to states that vanish when two electrons coincide, then the
eigenenergies of the TK interaction are non-negative. See
Ref. [22].) In what follows, we will first send the coefficient of
VTK to infinity so that only the TK-ZM states survive, and then
diagonalize V (s,t,u)

3 with s + t + u = 7 within that subspace.
In other words, our proposed Hamiltonian is

H = lim
λ→∞

λVTK + V (s,t,u)
3 . (6)

Problem 2. Although χν∗
1
χν∗

2
�1 vanishes as r7, linear com-

binations of χν∗
1
χν∗

2
�1 may vanish as r8. In fact, it was shown

by Bandyopadhyay et al. in Ref. [13] that the Jain unprojected
3/7 state �3�

2
1 can be generated as a linear combination of

χν∗
1
χν∗

2
�1. This does not rule out the possibility, however, that

our model will produce a unique ZM state. This can be tested
by exact diagonalization (ED) on finite systems.

Problem 3. To perform ED for this Hamiltonian, we will
use Haldane’s spherical geometry [6], which is the most
convenient geometry for dealing with incompressible states.
For the 3/7 state, we must have a minimum of nine par-
ticles because it takes a minimum of nine particles to fill
three LLs to produce �3. The dimension of the Hilbert
space for this system is 229,339,157 in the Lz = 0 sector,
which is too large for ED. To get around this issue, we
study the corresponding bosonic system at ν = 3/4. For a
given particle number N , total fluxes 2Q for the bosonic
system at ν = 3/4 and the fermionic system at ν = 3/7 are
related by 2Qboson = 2Qfermion − (N − 1). The total Hilbert
space dimensions across all Lz sectors of the fermionic and
bosonic problems are given by dn,F =(2nQfermion+n2 ) CN and
dn,B =(2nQfermion+n2−(n−1)(N−1)) CN , where n is the number of
LLs included. [The “r choose s” function is defined as rCs =
r!/s!(r − s)!.] From the fact that xCy is an increasing function
of x, we see that dn,B < dn,F if more than 1 LL is included as in
our case (whereas, dn,B = dn,F if only the LLL Hilbert space
is allowed). The reduction in the total dimension when going
from the fermionic to the bosonic problem is reflected in the
individual Lz sectors as well. The dimension of the bosonic
system at N = 9 in the Lz = 0 sector is given by 12,649,289
when we include the lowest three LLs.

The arguments about the vanishing properties and interac-
tions remain valid if one replaces the wave functions as well
as the two- and three-body interactions as

�3/7 = �3�
2
1 → �̃3/4 = �3�1, (7)

�
(ν∗

1 ,ν∗
2 )

3/7 = χν∗
1
χν∗

2
�1 → �̃

(ν∗
1 ,ν∗

2 )
3/4 = χν∗

1
χν∗

2
, (8)

VTK = ∇2
2δ(2)(r2 − r1) → ṼTK = δ(2)(r2 − r1), (9)

s + t + u = 7 → s + t + u = 4, (10)

where the quantities/symbols for bosons are marked by a
tilde. The specific values of s, t, u will be discussed in later
sections.

One may ask how the TK-ZMs of fermions and bosons are
related. If a bosonic state f is a ZM of ṼTK, then it is clear that
f �1 is a ZM of VTK and linearly independent set of f will
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FIG. 1. Energy spectrum of V (0,2,2)
3 within the TK-ZM space for bosons with (N, 2Q) = (9, 8), which represents filling factor 3/4. The

state �̃3/4 is observed as a unique ZM. The integers colored in orange and green in the right panel indicate the dimension of the Hamiltonian
matrix and the TK-ZM space in each L sector, respectively.

produce a linearly independent set of f �1. Conversely, any
fermionic ZM of VTK, which must be a linear superposition of
χν∗

1
χν∗

2
�1 [12], contains the factor �1, which implies that the

set of linearly independent ZMs of fermions will produce a
set of linearly independent set of ZMs of bosons. This implies
that there is an exact one-to-one correspondence between the
TK-ZMs of fermions and bosons. Our numerical diago-
nalization studies presented below are consistent with this
statement.

Numerically, for all parameters for which we can study
both the fermionic and bosonic systems, we find a one-to-one
correspondence also between the ZMs of the full Hamiltonian
of Eq. (6) that includes both two and three-body interac-
tions. Assuming this to be generally true, we can address the
question of the uniqueness of the fermionic ZM with N = 9
particles through a study of the corresponding bosonic system,
which is computationally more tractable.

Result. To address these questions, we have considered
fermions (bosons) for a range of filling factors between 3/7 �
ν > 2/5 (3/4 � ν > 2/3) and numerically diagonalized the
three-body interaction within the TK-ZM space. We sum-
marize the results here with details given in the subsequent
sections.

(1) All eigenenergies of Eq. (6) are non-negative.
(2) Fermions and bosons at corresponding filling factors

produce the same number of ZMs.
(3) For fermions at ν < 3/7, the number of ZMs produced

by ED is larger than the number of states of the form χ ′
ν∗�2

1,
where χ ′

ν∗ is confined within the lowest three LLs. This is an
explicit demonstration that many states of the form χν∗

1
χν∗

2
�1

for fermions are combining to produce ZMs for the three-body
interaction. The same is true for bosons with ν < 3/4.

(4) We are able to diagonalize the three-body interaction
within the TK-ZM space for bosons at ν = 3/4 for nine par-
ticles. We find a unique zero energy state here, which must
be the ZM �3�1. The calculated spectrum is shown in Fig. 1.
This implies a unique zero energy state also for nine fermions
at ν = 3/7.

(5) The above result is rather nontrivial: there are 40, 82,
140, 158, 177, . . . ZMs at L = 0, 1, 2, 3, 4, . . . for the TK
interaction, but when the three-body interaction is turned on,
a single ZM remains at L = 0. This strongly suggests that our
model will produce a unique ZM at ν = 3/7 for fermions
or at ν = 3/4 for bosons for arbitrary number of particles.
However, we are not able to prove this statement analytically,
nor are we able to perform ED for the next incompressible
system, which has N = 12 particles.

The plan of the rest of the paper is as follows. In Sec. II,
we discuss how to construct our model interaction V (s,t,u)

3
in greater detail. In Sec. III, we give an explicit expression
of our model in the sphere geometry for ED. In Sec. IV,
we discuss other numerical results. Concluding remarks are
given in Sec. V. More technical details can be found in the
Appendixes.

II. MODEL INTERACTION V (s,t,u)
3

We begin by noting that V (s,t,u)
3 defined in Eq. (5) satisfies

the relation,

V (s,t,u)
3 = V (t,s,u)

3 = · · · = V (u,t,s)
3 . (11)

This can be seen by writing δ(2)(r3 − r1)δ(2)(r3 − r2) as

δ31δ32 = (δ31δ32 + δ23δ21 + δ12δ13)/3, (12)

085130-3



KUDO, SHARMA, SREEJITH, AND JAIN PHYSICAL REVIEW B 108, 085130 (2023)

where δi j is a shorthand for δ(2)(ri − r j ). The expression in
Eq. (12) is invariant under a permutation of particle labels,
which leads to Eq. (11). Hereafter, we set s � t � u without
loss of generality.

A. Short-distance behavior

To facilitate the analysis, we use the center-of-mass coor-
dinate R and relative coordinates ra, rb for three particles,⎛

⎝R
ra

rb

⎞
⎠ = T

⎛
⎝r1

r2

r3

⎞
⎠, T =

⎛
⎝1/3 1/3 1/3

1 −1 0
1 0 −1

⎞
⎠. (13)

We have det T = 1. When three particles approach one an-
other, a general wave function of fermions must vanish, at
least, as rarb due to antisymmetrization. However, in the LLL,
the wave function vanishes faster. Any LLL wave function
has the form f ({zi})�1, and, therefore, a three-particle wave
function vanishes, at least, as fast as

�1 =
∏
i< j

(zi − z j ) ∼ rar2
b , r2

a rb, (14)

where the notation indicates that the quantity is a linear com-
bination of two terms that vanish as rar2

b and r2
arb. When

higher LLs are allowed, the availability of nonholomorphic
coordinates allows one to construct wave functions vanishing
slower as rarb. As shown in Appendix A, any three-body
Slater determinant state � where two particles occupy the
LLL and the third the second LL vanishes as

� ∼ rarb. (15)

Any Slater determinant that has a nonzero occupation of
such three-particle configurations vanishes as ∼rarb. Since the
Slater determinant states �3 and χν∗ with ν∗ > 1 contain such
three-particle configurations, they also scale as

�3 ∼ rarb,

χν∗ ∼ rarb. (16)

Using Eqs. (14) and (16), we have

|�3/7|2 ∼ r6
ar10

b , r7
ar9

b , . . . , r10
a r6

b ,∣∣� (ν∗
1 ,ν∗

2 )
3/7

∣∣2 ∼ r6
ar8

b , r7
ar7

b , r8
ar6

b . (17)

Analogous behavior follows for bosons:

|�̃3/4|2 ∼ r4
ar6

b , r5
ar5

b , r6
ar4

b ,∣∣�̃ (ν∗
1 ,ν∗

2 )
3/4

∣∣2 ∼ r4
ar4

b . (18)

B. Expectation value of V (s,t,u)
3

We consider the expectation value of V (s,t,u)
3 for a general

N-body wave-function �,〈
V (s,t,u)

3

〉
�

∝
∑

i< j<k

∫
dr1 · · · drN |�|2V (s,t,u)

3 (ri, r j, rk )

∝
∫

dr1 · · · drN |�|2V (s,t,u)
3 (r1, r2, r3)

=
∫

dr1 · · · drNδ12δ13∇2s
1 ∇2t

2 ∇2u
3 |�|2. (19)

TABLE I. All terms appearing in expansion of (∇a +
∇b)2s∇2t

a ∇2u
b are shown for each (s, t, u). The operators in bold

text, denoted as D, satisfy D|� (ν∗
1 ,ν∗

2 )
3/7 |2 ∼ 1 for s + t + u = 7 or

D|�̃ (ν∗
1 ,ν∗

2 )
3/4 |2 ∼ 1 for s + t + u = 4. “◦” indicates a candidate of

(s, t, u) to construct a parent Hamiltonian.

+t + u (s, t, u) All terms

7 (0,0,7) ∇0
a ∇14

b

(0,1,6) ∇2
a ∇12

b

(0,2,5) ∇4
a ∇10

b

(0,3,4) ◦ ∇6
a∇8

b

(1,1,5) ∇2
a ∇12

b , (∇a · ∇b)∇2
a ∇10

b , ∇4
a ∇10

b

(1,2,4) ◦ ∇4
a ∇10

b , (∇a · ∇b)∇4
a ∇8

b , ∇6
a∇8

b

(1,3,3) ◦ ∇6
a∇8

b, (∇a · ∇b)∇6
a∇6

b, ∇8
a∇6

b

(2,2,3) ◦ ∇4
a ∇10

b , (∇a · ∇b)∇4
a ∇8

b , ∇6
a∇8

b,
(∇a · ∇b)∇6

a∇6
b, ∇8

a∇6
b

4 (0,0,4) ∇0
a ∇8

b

(0,1,3) ∇2
a ∇6

b

(0,2,2) ◦ ∇4
a∇4

b

(1,1,2) ◦ ∇2
a ∇6

b , (∇a · ∇b)∇2
a ∇4

b , ∇4
a∇4

b

The goal in this subsection is to find a set of (s, t, u) such
that 〈V (s,t,u)

3 〉�3/7 = 0 and 〈V (s,t,u)
3 〉

�
(ν∗

1 ,ν∗
2 )

3/7

�= 0. To simplify

〈V (s,t,u)
3 〉� , we express the derivatives as

∇2s
1 ∇2t

2 ∇2u
3 = (∇a + ∇b)2s∇2t

a ∇2u
b , (20)

where we have plugged ∇R = 0 and used (∇1,∇2,∇3) =
(∇a + ∇b,−∇a,−∇b). Integrating over ra and rb, we get∫

dr1dr2dr3δ12δ13∇2s
1 ∇2t

2 ∇2u
3 |�|2

=
∫

dR(∇a + ∇b)2s∇2t
a ∇2u

b |�|2∣∣ra,rb→0. (21)

For this to be nonzero for the state �
(ν∗

1 ,ν∗
2 )

3/7 , we require s + t +
u = 7 as |� (ν∗

1 ,ν∗
2 )

3/7 |2 ∼ r14 when ra, rb = r → 0. In Table I, we
list all terms appearing in the expansion of (∇a + ∇b)2s∇2t

a ∇2u
b

for different choices of s, t, u. Comparing them with Eq. (17),
we see that 〈V (s,t,u)

3 〉�3/7 = 0, whereas, 〈V (s,t,u)
3 〉

�
(ν∗

1 ,ν∗
2 )

3/7

can be

nonzero if

(s, t, u) = (0, 3, 4), (1, 2, 4), (1, 3, 3), (2, 2, 3). (22)

This makes V (s,t,u)
3 with any of these values of s, t, u a candi-

date parent Hamiltonian. For the remaining choices,

(s, t, u) = (0, 0, 7), (0, 1, 6), (0, 2, 5), (1, 1, 5), (23)

both 〈V (s,t,u)
3 〉�3/7 and 〈V (s,t,u)

3 〉
�

(ν∗
1 ,ν∗

2 )

3/7

are zero. Since �
(ν∗

1 ,ν∗
2 )

3/7

spans the TK-ZM space, V (s,t,u)
3 becomes a zero matrix in this

space.
Applying the above argument to the bosonic-3/4 problem,

we identify V (s,t,u)
3 with

(s, t, u) = (0, 2, 2), (1, 1, 2), (24)

as a candidate parent Hamiltonian for �̃3/4; see Table I.
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We note here that 〈V (s,t,u)
3 〉� = 0 does not necessarily lead

to V̂ (s,t,u)
3 |�〉 = 0. This is guaranteed if V (s,t,u)

3 is positive
semidefinite.

In the following sections, we check, by explicit numerical
diagonalization, whether our model interaction singles out
�3/7 or �̃3/4 from the other TK ZMs.

III. MATRIX ELEMENTS

For diagonalization studies, we consider Haldane’s spheri-
cal geometry [6], where N particles move on the surface under
a radial magnetic field. The total radial flux is 2Qφ0, where
φ0 = hc/e is the flux quantum, and 2Q is an integer. Because
of rotational symmetry, single-particle states are labeled by
the orbital angular momentum l and its z-component m. Their
possible values are l = |Q|, |Q| + 1, . . . and m = −l,−l +
1, . . . , l . The 2l + 1 states with l = |Q| + n corresponds to
the nth LL. Many-body states are labeled by the total orbital
angular momentum L.

In the second-quantized from, the two-body interactions
VTK, ṼTK, and the three-body interaction V (s,t,u)

3 are given by

VTK = 1

2

∑
1,2,1′,2′

f̂ †
1 f̂ †

2 V TK
12;1′2′ f̂2′ f̂1′ , (25)

ṼTK = 1

2

∑
1,2,1′,2′

b̂†
1b̂†

2Ṽ
TK

12;1′2′ b̂2′ b̂1′ , (26)

V (s,t,u)
3 = 1

6

∑
1–3,1′–3′

ĉ†
1ĉ†

2ĉ†
3V (s,t,u)

1–3;1–3′ ĉ3′ ĉ2′ ĉ1′ . (27)

In these expressions, we use shorthands as f †
1 = f †

l1m1
, f †

1′ =
f †
l ′1m′

1
and so on, where f̂ †

lm and b̂†
lm are the creation operators

for a fermion and a boson, respectively, and ĉ†
lm = f̂ †

lm or b̂†
lm.

The summation
∑

i indicates
∑∞

li=|Q|
∑li

mi=−li
. The symbols

V TK
12;1′2′ , Ṽ TK

12;1′2′ , and V (s,t,u)
1–3;1′–3′ are shorthands for the matrix el-

ements, e.g., (〈l1, m1| ⊗ 〈l2, m2|)V̂TK(|l ′
1, m′

1〉 ⊗ |l ′
2, m′

2〉). As
derived in Appendix B, they reduce to

V (n)
12;1′2′ = (−1)2Q−m12−m

∑
l

[−l (l + 1)]nS

⎛
⎝ −Q Q 0

l1 l ′
1 l

−m1 m′
1 m

⎞
⎠S

⎛
⎝ −Q Q 0

l2 l ′
2 l

−m2 m′
2 −m

⎞
⎠. (28)

V s,t,u
1–3;1′–3′ = (−1)3Q−m123

∑
la,lb,lc

S(s)

⎛
⎝ −Q Q 0

l1 l ′
1 la

−m1 m′
1 ma

⎞
⎠S(t )

⎛
⎝ −Q Q 0

l2 l ′
2 lb

−m2 m′
2 mb

⎞
⎠S(u)

⎛
⎝ −Q Q 0

l3 l ′
3 lc

−m3 m′
3 mc

⎞
⎠S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠,

(29)

where

S(t )

⎛
⎝Q1 Q2 Q3

l1 l2 l3
m1 m2 m3

⎞
⎠ ≡ [−l3(l3 + 1)]t S

⎛
⎝Q1 Q2 Q3

l1 l2 l3
m1 m2 m3

⎞
⎠,

S

⎛
⎝Q1 Q2 Q3

l1 l2 l3
m1 m2 m3

⎞
⎠ ≡

∫
d�YQ1l1m1YQ2l2m2YQ3l3m3 ,

and YQlm is the monopole harmonics. Here, V TK
12;1′2′ = V (1)

12;1′2′

and Ṽ TK
12;1′2′ = V (0)

12;1′2′ . In Eq. (28), m12 ≡ m1 + m2, and m ≡
m1 − m′

1. In Eq. (29), m123 ≡ m1 + m2 + m3, ma = m1 − m′
1,

mb = m2 − m′
2, mc = −ma − mb. The range of each summa-

tion is explicitly given in Appendix B.
The interactions VTK, ṼTK, and V (s,t,u)

3 conserve the total
orbital angular momentum L and its z-component Lz. Within
the subspace specified by Lz, we diagonalize these interactions
using the Lanczos method. The Hilbert space is restricted in
the lowest three LLs. In the following, we focus on V (0,3,4)

3 for
fermions and V (0,2,2)

3 for bosons as representatives of Eqs. (22)
and (24).

IV. EXACT DIAGONALIZATION RESULTS

A. Pseudopotentials

We first ask if the three-body interaction V (s,t,u)
3 is

positive semidefinite or not. To this end, we calculate
pseudopotentials VM [6] by diagonalizing the interactions for

three particles, where M ≡ 3Q − L corresponds to the relative
angular momentum in the disk geometry. Figure 2 shows
the pseudopotentials (energy eigenvalues of a three-particle
system) V (0,3,4)

3,M for fermions and V (0,2,2)
3,M for bosons. Only

pseudopotentials with nonzero values are shown for simplic-
ity. Both positive and negative values are obtained in the

FIG. 2. Pseudopotentials of (a) V (0,3,4)
3 for fermions and

(b) V (0,2,2)
3 for bosons. Only the nonzero pseudopotentials are shown

for simplicity. At each M, the number of linearly independent states
with nonzero energy is shown in green. Note that some pseudopoten-
tials are nearly degenerate on the scale shown; for example, it may
appear that we have only two states at M = −3 in (a) but in reality
there are five. We have set 2Q = 8 in both parts. [We have confirmed
that both positive and negative values of the pseudopotentials are also
obtained for the system in (a) when it is confined to the lowest two
LLs.]
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TABLE II. Nonzero pseudopotentials of V (0,3,4)
3 for fermions and

V (0,2,2)
3 for bosons within the TK-ZM space.

V (0,3,4)
3,M

2Q M = 1 2 3

6 4.30344 × 105 1.25378 × 107 2.17974 × 108

7 1.00218 × 106 3.09694 × 107 5.79790 × 108

8 2.18070 × 106 7.06699 × 107 1.40204 × 109

V (0,2,2)
3,M

2Q M = −2 −1 0

6 1.54430 × 102 2.88793 × 103 3.27657 × 104

7 2.65699 × 102 5.10736 × 103 5.99266 × 104

8 4.37421 × 102 8.60243 × 103 1.03738 × 105

two figures. After projecting into the TK-ZM space, we are
left with many fewer pseudopotentials, which are all non-
negative. Table II summarizes those numbers. There are only
three nonzero pseudopotentials in each case, and they are all
positive. Furthermore, the values increase with 2Q, which
suggests that V (0,3,4)

3 for fermions and V (0,2,2)
3 for bosons are

positive semidefinite within the TK-ZM space for arbitrary
2Q. [With (N, 2Q) = (5, 8) for fermions, we confirm that
λVTK + V (0,3,4)

3 with finite λ yields no ZMs, whereas, V (0,3,4)
3

within the TK-ZM space does yield ZMs as shown in Table V
below.] This guarantees that �3/7 and �̃3/4, which give the
zero expectation values for each of the interactions consid-
ered, are zero-energy eigenstates. We investigate the question
of their uniqueness below.

B. Short-distance behavior of χν∗

We noted previously that any Slater determinant χν∗ with
ν∗ > 1 vanishes as ∼rarb [see Eq. (16)] when three particles
come close to one another. It is possible to construct gen-
eral wave functions for fermions at ν > 1, which vanish as
∼rar2

b , r2
a rb. An explicit example is

ψ = A[(z̄1 − z̄2)(z1 − z3)(z1 − z4)(z1 − z5) · · · (z1 − zN )

×(z2 − z3)(z2 − z4)(z2 − z5) · · · (z1 − zN )

×(z̄3 − z̄4)(z3 − z5) · · · (z1 − zN )

· · · ]

= A

⎡
⎣∏

i< j

(zi − z j )
∏

i∈odd

(z̄i − z̄i+1)

(zi − zi+1)

⎤
⎦. (30)

The filling factor of this wave function is close to unity. Of
course, for ν < 1 we can construct wave functions of the type∏

i< j (zi − z j ) f where f is a symmetric polynomial of z j and
z̄ j but with no more than one power of z̄ j . In this subsection,
we numerically show that it is not possible to construct such
wave functions for ν∗ > 6/5, i.e., an arbitrary wave function
(i.e., any linear superposition of Slater determinants) at ν∗ �
6/5 vanishes as ∼rarb.

To see this, we use the three-body interaction V (0,1,1)
3 . As

shown in Table III, V (0,1,1)
3 for fermions is positive semidefi-

nite and, thus, states that vanish as ∼rar2
b , r2

a rb are obtained as

TABLE III. Nonzero pseudopotentials of V (0,1,1)
3 for fermions.

V (0,1,1)
3,M

2Q M = −1 M = 0

1 0.182378 1.77819
2 0.422172 4.66801
3 0.863533 10.3624
4 1.59581 20.2545

its ZMs. In Table IV, we list the number of ZMs of V (0,1,1)
3 in

fermionic systems with various (N, 2Q)’s. We find empirically
that there is no ZM if

2Q∗ <

{
N − 2 for odd N,

N − 3 for even N.
(31)

Recall that in �
(ν∗

1 ,ν∗
2 )

3/7 = χν∗
1
χν∗

2
�1 we must have ν∗

1 , ν∗
2 �

6/5. In the spherical geometry, the constraints 1−1 + (ν∗
1 )−1 +

(ν∗
2 )−1 = (3/7)−1 and ν∗

1 , ν∗
2 � 2 translate into

(N − 1) + 2Q∗
1 + 2Q∗

2 = 7N

3
− 5, (32)

(2Q∗
j + 1) + (2Q∗

j + 3) � N, j = 1, 2, (33)

where 2Q∗
j is the flux corresponding to ν∗

j . These lead to

2Q∗
j � 5N/6 − 2 (34)

since 2Q1 = 4N/3 − 4 − 2Q∗
2 � 4N/3 − 4 − (N/2 − 2) =

5N/6 − 2. This is satisfied by Eq. (31) for any N � 9.
Because the 3/7 state has N � 9, this implies that there is no
ZM of the product form φν∗

1
φν∗

2
�1, where φν∗

j
is an arbitrary

state (as opposed to a single Slater determinant state) at
ν∗

j � 6/5. Analogous result holds for bosons.
This, however, does not rule out that linear superposi-

tions of product states of the type χν∗
1
χν∗

2
�1 may vanish as

∼rar2
b , r2

arb. In fact, we already know that this is possible as
�3�

2
1 can be expressed as a linear superposition of such states

[13]. The key question is whether that is the only such state or
there is more than one such state. We address this by direct
numerical diagonalization in the next section.

TABLE IV. Number of ZMs of V (0,1,1)
3 for fermions. ZM indi-

cates the existence of one or more ZMs, although their number is
unknown.

Number of ZM of V (0,1,1)
3

2Q N = 3 4 5 6 7 8 9 10 11 12 13

1 3 1 0
2 10 6 0 0 0
3 17 22 7 1 0 0
4 28 47 40 10 0 0 0
5 108 74 13 1 0 0
6 242 124 19 0 0 0
7 505 208 22 1 0 0
8 ZM ZM ZM 0 0 0
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TABLE V. Number of ZMs of V (0,3,4)
3 for fermions and V (0,2,2)

3 for bosons within the TK-ZM space as a function of the total orbital
angular momentum L. For N = 5–7 we obtain the number of ZMs for both bosons and fermions and find identical numbers; for N = 8, 9 our
calculations are for bosons only. The quantity dim H is the dimension of the full Hilbert space with Lz = 0. NTK-ZM is the number of TK-ZMs
with Lz = 0. We also evaluate the number of ZMs of the type given in Eq. (35), which is shown in parentheses whenever it is different from
the actual number of ZMs.

Fermions Bosons L

N 2Q dim H 2Q dim H NTK-ZM 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

5 8 13,442 4 3,956 138 8(7) 11 16(15) 10 5 0 0 0 0
6 10 145,079 5 28,480 258 3(2) 14(13) 8(7) 9 1 0 0 0 0 0
7 12 1,637,730 6 212,166 454 1(0) 7(4) 3(2) 2 0 0 0 0 0 0 0 0
8 7 1,621,444 761 3(2) 1 1 0 0 0 0 0 0 0 0 0 0
9 8 12,649,289 1203 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

C. Numerical diagonalization

We perform ED for the model interaction V (0,2,2)
3 for 5 �

N � 9 bosons in the range of 3/4 � ν > 2/3, and for the
model interaction V (0,3,4)

3 for 5 � N � 7 fermions in the range
of 3/7 � ν > 2/5. The number of ZMs for these systems is
shown in Table V as a function of the total orbital angular
momentum L. We find that the number of ZMs is identi-
cal for the corresponding bosonic and fermionic systems for
5 � N � 7 where both systems are diagonalizable, strongly
suggesting that the number of ZMs of corresponding bosonic
and fermionic systems are equal, in general. Although we
discuss only the spectrum for (s, t, u) = (0, 3, 4) for fermions,
calculations in specific finite systems suggest that the remain-
ing candidates for (s, t, u) given in Eq. (22) produce the same
ZM counting.

The bosonic system at ν = 3/4 requires a minimum of
N = 9 particles, which is the largest system size that we can
currently diagonalize. As shown in Table V, as well as in the
full energy spectrum in Fig. 1, a unique ZM with L = 0 is ob-
tained here, which must be �̃3/4. The discussion in the preced-
ing paragraph implies a unique ZM for the interaction V (0,3,4)

3
for N = 9 fermions at ν = 3/7. As remarked in the Introduc-
tion, the nontriviality of the result suggests that our model
interaction very likely produces a unique ZM for bosons
(fermions) at ν = 3/4 (ν = 3/7) for arbitrary N . (The next
bosonic system at ν = 3/4 has N = 12 particles with 2Q =
12; this system has 12,982,724,934 basis states with Lz = 0
for which exact diagonalization is currently not feasible.)

We end by presenting an observation on the form of the ZM
states of our model interaction, focusing on the fermionic ZMs
at 3/7 � ν > 2/5; translation to bosons is straightforward.
Two types of product ZM states can be readily constructed

�A
ν = χ ′

ν∗�
2
1,

�B
ν = χν∗

1
φν∗

2
�1, (35)

where χ ′
ν∗ is a Slater determinant confined to the lowest three

LLs and φν∗ is a linear combination of Slater determinants
within the lowest two LLs that vanishes as ∼rar2

b , r2
a rb. The

state φν∗ can be constructed by diagonalizing V (0,1,1)
3 . Both

�A
ν and �B

ν are ZMs of our model interaction as the three
factors within them scale as r2, r3, and r3 when three par-
ticles approach each other. We ask if all ZMs of our model
interaction belong to these two types. For ν < 3/7, the num-

ber of linearly independent states of the forms �A
ν and �B

ν

(shown in parentheses in the Table V) is always less than the
number of ZMs produced by ED, demonstrating that there
also exist ZMs that are not of the above product form but
linear combinations of χν∗

1
χν∗

2
�1. The number of such addi-

tional ZMs decreases as the 3/4 bosonic state with N = 9
is approached, eventually vanishing at 3/4 bosonic state with
N = 9.

V. CONCLUDING REMARKS

To summarize, we have constructed a candidate parent
Hamiltonian for the unprojected Jain wave function at ν =
3/7 for fermions or at ν = 3/4 for bosons. This model
consists of an infinitely strong two-body Trugman-Kivelson
interaction, plus a three-body interaction. We have numeri-
cally demonstrated that our model produces a unique zero
energy ground state for nine particles. We believe this to be
the case for arbitrary particle numbers, although we have not
succeeded in proving that analytically.

As noted above, the unprojected Jain 2/5 state �2�
2
1 is the

unique ground state of the TK interaction within the Hilbert
space of the lowest two LLs. One may ask if it remains
the unique zero energy ground state when we add a three-
body interaction, such as V (0,3,4)

3 . Indeed, this three-body term
has zero expectation value with respect to the wave func-
tion �2�

2
1. However, many pseudopotentials have negative

energies for this three-body interaction as explicitly noted in
Fig. 2. As a result, �2�

2
1 remains a unique zero-energy ground

state for λVTK + V (0,3,4)
3 only in the limit λ → ∞. For general

values of λ, �2�
2
1 has zero energy expectation value, but it is

not the ground state.
It is natural to ask if our strategy can be applied to

other unprojected Jain wave functions at ν = n/(2pn + 1).
The wave-function �n�

2p
1 vanishes as r2p+1 when two par-

ticles are brought close to one another and, thus, has zero
expectation value for a generalized TK interaction V (s)

TK =
∇2s

2 δ(2)(r2 − r1) with s = 2p − 1. Furthermore, as proved in
Appendix A, the Slater determinant state �n�2 vanishes as
r2 when three particles approach one another, whereas, �1

vanishes as r3. Therefore, �n�
2p
1 vanishes as r6p+2 and has

zero expectation value for V (s,t,u)
3 with s + t + u = 6p + 1. If

necessary, one can generalize these interactions to an N-
body one as V (s1,...,sN )

N = ∇2s1
1 · · · ∇2sN

N [δ(2)(r1 − r2) · · · (r1 −
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rN )] by investigating behaviors of N particles in a target state.
Whether these models produce the unprojected Jain wave
functions as the unique zero-energy ground states will require
a more detailed investigation, along the lines presented above
for ν = 3/7.

Finally, we note that this method is not useful for the
negative-flux Jain states at ν = n/(2pn − 1) because the un-
projected wave-functions �∗

n�
2p
1 have arbitrary large powers

of z̄ j and, hence, a nonzero occupation of an infinite number
of LLs in the thermodynamic limit.
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APPENDIX A: PROOF OF EQ. (15)

Single-particle states in the LLL and the second LL are
given by

η0,m ∝ zm (m = 0, 1, . . .),

η1,m ∝ zm(2m + 2 − zz̄) (m = −1, 0, . . .), (A1)

where z = x − iy. The angular momentum of each state is m.
By using coordinates defined in Eq. (13), that is,

z1 = Z + za

3
+ zb

3
, (A2)

z2 = Z − 2za

3
+ zb

3
, (A3)

z3 = Z + za

3
− 2zb

3
, (A4)

a three-body Slater determinant � = det {η0,m, η0,n, η1,k} is
evaluated as

� ∝

∣∣∣∣∣∣∣∣
zm

1 zm
2 zm

3

zn
1 zn

2 zn
3

zk+1
1 z̄1 zk+1

2 z̄2 zk+1
3 z̄3

∣∣∣∣∣∣∣∣
+ O3(za, zb)

=

∣∣∣∣∣∣∣∣∣

zm
1 +zm

2 +zm
3

3 zm
1 − zm

2 zm
1 − zm

3

zn
1+zn

2+zn
3

3 zn
1 − zn

2 zn
1 − zn

3

zk+1
1 z̄1+zk+1

2 z̄2+zk+1
3 z̄3

3 zk+1
1 z̄1 − zk+1

2 z̄2 zk+1
1 z̄1 − zk+1

3 z̄3

∣∣∣∣∣∣∣∣∣
+ O3(za, zb)

=

∣∣∣∣∣∣∣∣
Zm mZm−1za mZm−1zb

Zn nZn−1za nZn−1zb

Zk+1 Zk
(
Zz̄a + (k + 1)Z̄za

)
Zk

(
Zz̄a + (k + 1)Z̄za

)
∣∣∣∣∣∣∣∣
+ O3(za, zb)

= Zm−1+n−1+k

∣∣∣∣∣∣∣
(
1 − m

n

)
Z 0 0

Z nza nzb

1 Zz̄a + (k + 1)Z̄za Zz̄a + (k + 1)Z̄za

∣∣∣∣∣∣∣ + O3(za, zb)

= Zm+n+k (n − m)

∣∣∣∣∣
za zb

z̄a z̄a

∣∣∣∣∣ + O3(za, zb), (A5)

where On(za, zb) represents a polynomial of za and zb where
the sum of their powers in each term is greater than n.

APPENDIX B: DERIVATION OF EQS. (25) AND (26)

We use the following properties of the monopole harmon-
ics YQ,l,m [3,23]:

δ(2)(r2 − r1) =
∞∑

l=0

l∑
m=−l

Y ∗
l,m(�2)Yl,m(�1), (B1)

∇2Yl,m = −l (l + 1)Yl,m, (B2)

Y ∗
l,m = (−1)−mYl,−m, (B3)

YlamaYlbmb = (−1)mc

la+lb∑
lc=|la−lb|

S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠Ylc,−mc ,

(B4)

where Yl,m ≡ Y0,l,m, mc = −ma − mb.

085130-8



CANDIDATE LOCAL PARENT HAMILTONIAN FOR THE … PHYSICAL REVIEW B 108, 085130 (2023)

1. Two-body interaction

To treat VTK and ṼTK simultaneously, we consider the following two-body interaction:

V (n)
2 =∇2n

2 δ(2)(r2 − r1)

=∇2n
2

∞∑
l=0

l∑
m=−l

(−1)−mYl,−m(�2)Yl,m(�1)

=
∞∑

l=0

[−l (l + 1)]n
l∑

m=−l

(−1)−mYl,−m(�2)Yl,m(�1). (B5)

Note that VTK = V (1)
2 and ṼTK = V (0)

2 . The matrix element is given by

(〈l1, m1| ⊗ 〈l2, m2|)V̂ (n)
2 (|l ′

1, m′
1〉 ⊗ |l ′

2, m′
2〉)

=
∞∑

l=0

[−l (l + 1)]n
l∑

m=−l

(−1)−m
∫

d�1d�2
[
Y ∗

Q,l2,m2
(�2)Y ∗

Q,l1,m1
(�1)

]
[Yl,−m(�2)Yl,m(�1)]

[
YQ,l ′1,m

′
1
(�1)YQ,l ′2,m

′
2
(�2)

]

=
∞∑

l=0

[−l (l + 1)]n
l∑

m=−l

(−1)2Q−m2−m1−mS

⎛
⎝ −Q Q 0

l1 l ′
1 l

−m1 m′
1 m

⎞
⎠S

⎛
⎝ −Q Q 0

l2 l ′
2 l

−m2 m′
2 −m

⎞
⎠

= (−1)2Q−m2−m1−m

min [l1+l ′1,l2+l ′2]∑
l=max [|l1−l ′1|,|l2−l ′2|]

[−l (l + 1)]nS

⎛
⎝ −Q Q 0

l1 l ′
1 l

−m1 m′
1 m

⎞
⎠S

⎛
⎝ −Q Q 0

l2 l ′
2 l

−m2 m′
2 −m

⎞
⎠

∣∣∣∣∣
m=m1−m′

1

. (B6)

One gets Eq. (28) by defining m1 + m2 as m12.

2. Three-body interaction

We can write

δ(2)(r3 − r1)δ(2)(r3 − r2) =
∞∑

la,lb=0

la∑
ma=−la

lb∑
mb=−lb

Y ∗
lama

(�3)Ylama (�1)Y ∗
lbmb

(�3)Ylbmb (�2)

=
∞∑

la,lb=0

la∑
ma=−la

lb∑
mb=−lb

⎡
⎣(−1)mc

la+lb∑
lc=|la−lb|

S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠Ylc,−mc (�3)

⎤
⎦

∗

Ylama (�1)Ylbmb (�2),

=
∞∑

la,lb=0

la+lb∑
lc=|la−lb|

la∑
ma=−la

lb∑
mb=−lb

S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠Yla,ma (�1)Ylbmb (�2)Ylcmc (�3), (B7)

where mc = −ma − mb. Using this, we have

V̂ (s,t,u)
3 =

∞∑
la,lb=0

la+lb∑
lc=|la−lb|

[−la(la + 1)]s[−lb(lb + 1)]t [−lc(lc + 1)]u

×
la∑

ma=−la

lb∑
mb=−lb

S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠Yla,ma (�1)Ylbmb (�2)Ylcmc (�3), (B8)

where we have used δ(2)(r1 − r2)δ(2)(r1 − r3) = δ(2)(r3 − r1)δ(2)(r3 − r2). The matrix element is

(〈l1, m1| ⊗ 〈l2, m2| ⊗ 〈l3, m3|)V̂ (s,t,u)
3 (|l ′

1, m′
1〉 ⊗ |l ′

2, m′
2〉 ⊗ |l ′

3, m′
3〉)

=
∞∑

la,lb=0

la+lb∑
lc=|la−lb|

[−la(la + 1)]s[−lb(lb + 1)]t [−lc(lc + 1)]u
la∑

ma=−la

lb∑
mb=−lb

S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠∫

d�1d�2d�3

× [
Y ∗

Ql3m3
(�3)Y ∗

Ql2m2
(�2)Y ∗

Ql1m1
(�1)

][
Yla,ma (�1)Ylbmb (�2)Ylcmc (�3)

][
YQl ′1m′

1
(�1)YQl ′2m′

2
(�2)YQl ′3m′

3
(�3)

]
085130-9



KUDO, SHARMA, SREEJITH, AND JAIN PHYSICAL REVIEW B 108, 085130 (2023)

= (−1)3Q−m1−m2−m3

∞∑
la,lb=0

la+lb∑
lc=|la−lb|

[−la(la + 1)]s[−lb(lb + 1)]t [−lc(lc + 1)]u
la∑

ma=−la

lb∑
mb=−lb

S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠

× S

⎛
⎝ −Q Q 0

l1 l ′
1 la

−m1 m′
1 ma

⎞
⎠S

⎛
⎝ −Q Q 0

l2 l ′
2 lb

−m2 m′
2 mb

⎞
⎠S

⎛
⎝ −Q Q 0

l3 l ′
3 lc

−m3 m′
3 mc

⎞
⎠

= (−1)3Q−m1−m2−m3

l1+l ′1∑
la=|l1−l ′1|

[−la(la + 1)]sS

⎛
⎝ −Q Q 0

l1 l ′
1 la

−m1 m′
1 ma

⎞
⎠ l2+l ′2∑

lb=|l2−l ′2|
[−lb(lb + 1)]t S

⎛
⎝ −Q Q 0

l2 l ′
2 lb

−m2 m′
2 mb

⎞
⎠

×
min[l3+l ′3,la+lb]∑

lc=max[|l3−l ′3|,|la−lb|]
[−lc(lc + 1)]uS

⎛
⎝ −Q Q 0

l3 l ′
3 lc

−m3 m′
3 mc

⎞
⎠S

⎛
⎝ 0 0 0

la lb lc
ma mb mc

⎞
⎠

∣∣∣∣∣
ma=m1−m′

1,mb=m2−m′
2,mc=−ma−mb

. (B9)

One gets Eq. (29) by defining m1 + m2 + m3 and [−l (l + 1)]t S as m123 and S(t ), respectively. The calculation of the elements
with large 2Q is a time-consuming task. The expression in Eq. (B9) should be employed rather than that in Eq. (29) to reduce
the number of times S is computed in numerical calculations.
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