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Exact dynamics of two holes in two-leg antiferromagnetic ladders
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We study the motion of holes in a mixed-dimensional setup of an antiferromagnetic ladder, featuring nearest-
neighbor hopping t along the ladders and Ising-type spin interactions along, J‖, and across, J⊥, the ladder. We
determine exact solutions for the low-energy one- and two-hole eigenstates. The presence of the trans-leg spin
coupling, J⊥, leads to a linear confining potential between the holes. As a result, holes on separate legs feature
a superlinear binding energy scaling as (J⊥/t )2/3 in the strongly correlated regime of J⊥, J‖ � t . This behavior
is linked to an emergent length scale λ ∝ (t/J⊥)1/3, stemming from the linear confining potential, and which
describes how the size of the two-hole molecular state diverges for J⊥, J‖ � t . On the contrary, holes on the
same leg unbind at sufficiently low spin couplings. This is a consequence of the altered short-range boundary
condition for holes on the same leg, yielding an effective Pauli repulsion between them, limiting their kinetic
energy and making binding unfavorable. Finally, we determine the exact nonequilibrium quench dynamics
following the sudden immersion of initially localized nearest-neighbor holes. The dynamics is characterized
by a crossover from an initial ballistic quantum walk to an aperiodic oscillatory motion around a finite average
distance between the holes due to the confining potential between them. In the strongly correlated regime of
low spin couplings, J⊥, J‖ � t , we find this asymptotic distance to diverge as t/J⊥, showing a much stronger
scaling than the eigenstates. The predicted results should be amenable to state-of-the-art quantum simulation
experiments using currently implemented experimental techniques.

DOI: 10.1103/PhysRevB.108.085125

I. INTRODUCTION

Quantum simulation experiments have matured to the level
at which they push our understanding of many-body quantum
dynamics and inspire new approximate theoretical tools [1–5]
that allow us to explore the complex spatial structures aris-
ing in, e.g., Fermi-Hubbard systems [6–22]. A major driver
for this line of research is to better understand the micro-
scopic origins of high-temperature superconductivity [23],
the basic phenomenology of which may be explained by the
interaction and ensuing pairing of dopants in Fermi-Hubbard
systems [24–26]. Recent experiments [27] have for the first
time successfully demonstrated that cold-atom simulators can
achieve and probe the formation of such pairs in a particular
kind of spin ladder. Whereas these experiments were still
limited to rather small system sizes, they have shown great
promise in how we can understand these mechanisms from
the bottom-up perspective, and the approximate theoretical
description of this situation [28] suggests that the system
supports a strong binding of the dopants, in contrast to the
usual scenario in two-dimensional square lattice geometries
[29–35]. Importantly, spin ladders also arise in compound ma-
terials supporting unconventional superconductivity [36,37].
While these compounds are mainly probed in scattering
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experiments [38–43], cold-atom simulators give direct ac-
cess to spatial correlations and nonequilibrium dynamics
[10,17,20].

Inspired by this development, we analyze a situation
in which we may gain exact results for the binding and
nonequilibrium dynamics of dopants in a mixed-dimensional
Fermi-Hubbard system [Figs. 1(a) and 1(b)]. The main the-
oretical difficulty in previous studies [28] has been fully
describing isotropic spin couplings, coming with the compli-
cation of an underlying order-disorder phase transition as the
trans-leg spin coupling is increased [22,44–48]. However, by
restricting the spin interactions to the Ising type, the under-
lying spin lattice always supports a perfectly Néel-ordered
ground state. Based on this simplification, we find that we
can describe the low-energy single- and two-hole eigenstates
exactly in this case, whether they be on the same or separate
legs [Figs. 1(a) and 1(b)]. Furthermore, using the precise
insights into the two-hole eigenstates, we calculate the exact
quench dynamics following the sudden creation of two holes
as nearest neighbors. Here, Figs. 1(c) and 1(d) show the result
of holes on separate legs. We find that the dynamics can be di-
vided into two characteristic regimes. First, the holes perform
independent quantum walks, meaning that they blow apart
ballistically. Second, as the holes diverge from each other,
a confining string of overturned spins forms between them.
Eventually, the holes are slowed down by this confinement,
and aperiodic oscillations in the strings, and thereby in the
interhole distance, take place around a well-defined long-time
average.

A major challenge in previous experiments with doped
Fermi-Hubbard systems [14,21] has been to reach the
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FIG. 1. Mixed-dimensional t-J model featuring spin-1/2 parti-
cles on a two-leg ladder geometry with two holes on separate legs
(a) or on the same leg (b). The spins can hop to nearest-neighbor
vacant sites along the ladder with amplitude −t , and they have
nearest-neighbor Ising interactions J‖, J⊥ along and across the lad-
der, respectively. (c) Average distance between two holes vs time
τ , which initially sit at nearest-neighbor sites. At short times, the
holes blow apart ballistically as described by a quantum walk (red
line), after which they oscillate around a well-defined long-time
average. This is shown for J⊥/t = 0.2, 1, 3 from top to bottom.
(d) Corresponding dynamical regimes: quantum walk at short times
(red region) and confining string oscillations (blue region) on long
timescales. The crossover scales as (t/J⊥)2 and t/J⊥ in the weak
(J⊥ � t , dashed line) and strong (J⊥ � t , long-dashed line) corre-
lation regime. The lines in (c) are colored to match the dynamical
regimes in (d).

strongly correlated regime, which is interesting both from the
perspective of the physics of the cuprate materials supporting
high-temperature superconductivity [23], and for understand-
ing many-body phenomena outside the realm of perturbation
theory. We note that this system is a natural experimental
candidate for that, because the effective coupling strength
between the holes is 4t/J⊥. Consequently, the crossover
timescale from the quantum walk to the string oscillation
behavior in Fig. 1(d) changes from a perturbative (t/J⊥)2

scaling to a strongly correlated scaling of t/J⊥ already for
J⊥ � 4t . Importantly, the crossover time is still quite moderate
in terms of hopping times 1/t , and it remains below 3/t
for J⊥ > t , which should make it possible to experimentally
observe the departure from the quantum walk. While the
mixed-dimensional property of this model has already been
achieved experimentally [27], the ability to tune the spin inter-
actions to the Ising limit can be facilitated by Rydberg-dressed
atoms [49–54], polar molecules [55], and trapped ions [56].
This setup is, therefore, within reach for modern quantum
simulation experiments.

The paper is organized as follows. In Sec. II, we set up
the mixed-dimensional t-J model. In Sec. III, we determine
the low-energy single- and two-hole eigenstates. In Sec. IV,

we study the nonequilibrium quench dynamics of two holes,
before we conclude in Sec. V. Throughout the paper, we
set the reduced Planck constant, h̄, and the lattice spacing
to 1.

II. MODEL

We consider a system of spin-1/2 particles placed along a
two-leg ladder, described by a mixed-dimensional t-J model
with Hamiltonian Ĥ = Ĥt + ĤJ [Fig. 1(a)]. The spins σ =
↑,↓ can hop to nearest neighbors along the legs μ = 1, 2,

Ĥt = −t
∑
j,σ,μ

[c̃†
j,μ,σ c̃ j+1,μ,σ + c̃†

j+1,μ,σ c̃ j,μ,σ ], (1)

under the constraint that there is at most a single spin on
each site. This is enforced by the modified particle operator
c̃†

j,μ,σ = c̃†
j,μ,σ (1 − n̂μ, j ), with n̂μ, j = ∑

σ ĉ†
j,μ,σ ĉ j,μ,σ the lo-

cal density operator. The nearest-neighbor antiferromagnetic
spin-spin coupling is assumed to be fully polarized in the
z-direction,

ĤJ = J‖
∑
j,μ

[
Ŝ(z)

j,μŜ(z)
j+1,μ − n̂ j,μn̂ j+1,μ

4

]

+ J⊥
∑

j

[
Ŝ(z)

j,1Ŝ(z)
j,2 − n̂ j,1n̂ j,2

4

]
, (2)

with J⊥, J‖ > 0. Such mixed-dimensional models [57,58]
have recently been proposed to yield strong binding of holes
through an emergent confining string potential of overturned
spins [28], and they were recently implemented successfully
in the case of fully symmetric spin couplings [27]. The polar-
ized Ising-type interaction explored here enables us to derive
exact results for low-energy single- and two-hole eigenstates,
as well as the full nonequilibrium dynamics of two initially
localized holes.

III. LOW-ENERGY EIGENSTATES

In the absence of holes, the polarized AFM coupling in
Eq. (2) results in a perfect Néel ordered state, |AF〉, for any
values of J‖, J⊥ > 0. For periodic boundary conditions of N
spins along each of the two legs, this results in the ground-
state energy

E0 = −N
J‖ + J⊥

2
, (3)

due to a nearest-neighbor spin bond energy of J‖/2 (J⊥/2)
along (across) the ladder. This should be contrasted to the
case of isotropic spin couplings, in which case there is a
quantum phase transition between Néel order along the lad-
der and spin singlet formation along the rungs as J⊥/J‖ is
increased [22,44–48]. Utilizing this simplification, we can
find the single-hole and two-hole ground states. To have a
more efficient description, we employ a Holstein-Primakoff
transformation and describe the system in terms of holes, ĥ,
and bosonic spin excitations ŝ. The latter operators are defined
with respect to the antiferromagnetic ground state ŝ|AF〉 = 0.
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The hopping Hamiltonian then reads [59]

Ĥt = t
∑
j,μ

[ĥ†
j,μF (ĥ j,μ, ŝ j,μ)F (ĥ j+1,μ, ŝ j+1,μ)ĥ j+1,μŝ j,μ

+ ŝ†
j+1,μĥ†

j,μF (ĥ j,μ, ŝ j,μ)F (ĥ j+1,μ, ŝ j+1,μ)ĥ j+1,μ]

+ H.c. (4)

Here, F (ĥ, ŝ) =
√

1 − ĥ†ĥ − ŝ†ŝ ensures that there is at most
a single spin excitation and a single hole on each site. The
spin-coupling Hamiltonian likewise becomes

ĤJ = −J‖
∑
j,μ

[(
1

2
− ŝ†

j,μŝ j,μ

)(
1

2
− ŝ†

j+1,μŝ j+1,μ

)
+ 1

4

]

× [1 − ĥ†
j,μĥ j,μ][1 − ĥ†

j+1,μĥ j+1,μ]

− J⊥
∑

j

[(
1

2
− ŝ†

j,1ŝ j,1

)(
1

2
− ŝ†

j,2ŝ j,2

)
+ 1

4

]

× [1 − ĥ†
j,1ĥ j,1][1 − ĥ†

j,2ĥ j,2]. (5)

We emphasize that the spins can both be fermions and hard-
core bosons. In fact, if the holes sit on separate legs, they are
distinguishable by which leg they move in. If they move along
the same leg, they are equivalently distinguishable by which
one is to the left and which one is to the right. As a result,
the statistics never come into play in what follows, only the
hard-core constraint and the one-dimensional nature of the
motion. The results, therefore, apply equally well to fermionic
and hard-core bosonic spins, as one might expect from the
general duality of fermions and impenetrable bosons in one
dimension [60].

A. Single-hole eigenstates

Central to the analysis of a single hole is the insight that
a single hole doped into the two-leg antiferromagnetic Ising
ladder is localized. Due to inversion symmetry, the low-energy
eigenstates may then be written as (assuming that the hole
resides in leg 1)

|�1〉 =
[
C(0)ĥ†

0,1 + C(1)

√
2

(ĥ†
−1,1 + ĥ†

+1,1)ŝ†
0 + · · ·

]
|AF〉

=
⎡
⎣C(0)ĥ†

0,1 +
N/2∑
d=1

C(d )

√
2

⎛
⎝ĥ†

−d,1

−d+1∏
j=0

ŝ†
j,1 + ĥ†

d,1

d−1∏
j=0

ŝ†
j,1

⎞
⎠
⎤
⎦

× |AF〉. (6)

This describes that for hole positions d sites away from the
central site, with total amplitude C(d ), a resulting string of
overturned spins of length d appears. Taking the energy of
a single stationary hole, E0 + J‖ + J⊥/2, as a reference, and
utilizing the Schrödinger equation, Ĥ |�1〉 = E1|�1〉, we ob-
tain the equations of motion

E1C
(0) =

√
2tC(1),

E1C
(1) = V1(1)C(1) +

√
2tC(1) + tC(2),

E1C
(d ) = V1(d )C(d ) + tC(d−1) + tC(d+1). (7)

The lower equation applies for d � 2. The motion of the
hole d sites away leaves behind a single frustrated spin bond
in leg 1, as well as d frustrated spin bonds across the ladder.
This results in the linear string potential

V1(d ) = J‖
2

+ d
J⊥
2

, (8)

confining the hole to around its origin. The obtained equations
of motion are identical in form to the recently obtained ex-
act results in general Bethe lattices [61]. Utilizing the same
techniques for solving the equations of motion in Eq. (7),
without loss of generality we seek a recursive structure of the
amplitudes

C(d+1) = t f (d+1)
1 (E1)C(d ) (9)

for d � 1. Inserting this into Eq. (7), we obtain the self-
consistency equation

f1(E ) = 1

E − t2 f1(E − J⊥/2)
(10)

for d � 1. Here, we have defined f1(E ) = f (d )
1 [E + V1(d )] for

a yet to be determined function f1. As Eq. (10) is independent
of the distance d , f1(E ) is as well. The self-consistency equa-
tion (10) can finally be used to find a closed-form expression
of f1(E ) in terms of Bessel functions of the first kind, Jν (x),

f1(E ) = −1

t

J�(E )
(

4t
J⊥

)
J�(E )−1

(
4t
J⊥

) , (11)

with �(E ) = −2E/J⊥, similar to the results in Refs. [61–63].
Inserting f (2)

1 (E1) = f1[E − V1(2)] in the equation for d = 1
in Eq. (7) hereby yields C(1) = √

2t f1[E − V1(1)]C(0). Insert-
ing this into the equation for d = 0 in Eq. (7) then finally
results in the equation for the single-hole energy,

E1 = �1(E1) = 2t2 f1

(
E1 − J⊥ + J‖

2

)
, (12)

which defines the single-hole self-energy �1(E ). Equa-
tion (12) actually supports a discrete series of eigenstates
similar to a single hole in a Bethe lattice [61]. Here, however,
our main focus is on the ground state as this is important to
decipher whether two holes will bind or not.

The recursive structure of the amplitudes along with the
result in Eq. (11) thus allows us to construct the full many-
body eigenstate with

C(d ) =
√

2C(0)t d
d∏

j=1

f ( j)
1 (E1)

= (−1)d
√

2Z1

J�[E1−V1(d )]
(

4t
J⊥

)
J�[E1−V1(1)]−1

(
4t
J⊥

) . (13)

Here, Z1 = [1 − ∂E�1(E )|E=E1 ]−1 is the (quasiparticle)
residue of the single-hole Green’s function [E − �1(E )]−1 at
the single-hole energy E1. The result C(0) = √

Z1 is derived
by normalizing the wave function, 1 = 〈�1|�1〉.

At strong coupling, J⊥, J‖ � t , the hole spreads out more
and more, resulting in a continuum limit. This yields the
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FIG. 2. (a) The hole is localized around a particular site along the
ladder (top). As the hole moves, spins align in its wake, generating
more and more spin frustrations [shaded blue and red background].
(b) Resulting lowest single-hole energy for indicated values of intra-
leg spin coupling J‖. For J⊥ = 0.1t , we also show the strong coupling
result [Eq. (14), red dashed line] valid for J⊥, J‖ � 1.

asymptotic single-hole energy

E1 → −2t + ta(0)

(
J⊥
2t

)2/3

+ J‖
2

, (14)

with −a(0) 
 −1.02 the first zero of the derivative of the Airy
function, Ai′(x). In Fig. 2(b), we plot the single-hole energy
as a function J⊥ for a few indicated values of J‖. We see good
agreement between Eq. (14) and the full solution of Eq. (12)
for J‖ = 0.01t and J⊥ � t .

B. Two-hole eigenstates

We now focus on the low-energy two-hole eigenstates. We
both consider holes moving on separate legs (Fig. 3), as well
as holes moving along the same leg (Fig. 4). For holes travel-
ing on separate legs, the breaking of spin bonds within a leg
can be completely avoided by starting from a configuration of
spins in which the spins to the right of the holes are moved by
one lattice site to the right. Hence, if the holes move alongside
each other, the perfect Neél order is retained and no spin bonds
are broken. The appropriate two-hole eigenstates are therefore
delocalized along the ladder. We thus define the states

|�2⊥(k, d )〉 = 1√
N

∑
j

eik jeikd/2ĥ†
j,1ĥ†

j+d,2

×
∏
l> j

ŝ†
l,1

∏
m> j+d

ŝ†
m,2|AF〉 (15)

for a linear distance d between the two holes. Here, we as-
sume N sites in each leg and periodic boundary conditions.
In this manner, d > 0 (d < 0) indicates that the hole in leg
2 has moved |d| sites to the right (left). The appearance
of the string operator,

∏
l> j ŝ†

l,1

∏
m> j+d ŝ†

m,2, is due to the
shift of the underlying AFM order by one lattice site to
the right at j and j + d . These states have crystal momen-
tum k ∈ (−π, π ], as translating the holes and spin strings
ĥ†

j,1ĥ†
j+d,2

∏
l> j ŝ†

l,1

∏
m> j+d ŝ†

m,2|AF〉 by one lattice site to

the right results in an additional phase of e−ik . As no spin

FIG. 3. (a) Two holes on separate legs are delocalized with
frustrated spin bonds (shaded red and blue) between the holes.
(b) Two-hole spectral function for indicated values of J⊥ as a func-
tion of the crystal momentum k. Because of inversion symmetry,
A2⊥(−k, ω) = A2⊥(+k, ω), this is only plotted for k � 0. In blue is
shown ±4t cos(k/2) for reference. The spectrum of states of the form
in Eq. (15) is independent the intraleg spin coupling J‖.

frustration within a leg occurs for this configuration of holes,
the resulting low-energy eigenstates are independent of the
intraleg spin coupling J‖.

For holes moving along the same leg, the most favorable
configuration of the spins is now obtained by taking out two
adjacent spins. Once again, if the holes move alongside each
other, no spin bonds are broken. The delocalized states for a
distance d between the holes in this case, therefore, become

|�2‖(k, d )〉 = 1√
N

∑
j

eik jeikd/2ĥ†
j,1ĥ†

j+d,1

j+d−1∏
l= j+1

ŝ†
l,1|AF〉,

(16)

in which we see that a string of overturned spins forms be-
tween the two holes. Since two holes cannot sit on top of each
other, let alone pass through one another, the distance is now
always greater than one lattice site, d � 1. The full two-hole
eigenstate can hereby be written as∣∣� (n)

2s (k)
〉 =

∑
d

C(n)
s (k, d )|�2s(k, d )〉, (17)

where s =⊥, ‖ denotes whether the holes move on separate
legs (⊥) or along the same leg (‖). Additionally, the band in-
dex n = 0, 1, 2, . . . specifies that a discrete series of two-hole
bands emerge, which will become essential for describing
the nonequilibrium dynamics in Sec. IV. The normaliza-
tion condition is 1 = 〈� (n)

2s (k)|� (n)
2s (k)〉 = ∑

d |C(n)
s (k, d )|2.

Crucially, the hopping Hamiltonian only couples the states
within Eqs. (15) and (16) in a well-defined hierarchy. In
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FIG. 4. (a) Like holes on separate legs, two holes on the same leg
feature delocalized two-hole eigenstates and frustrated spin bonds
(shaded red and blue) between the holes. (b) Two-hole spectral func-
tion for indicated values of J⊥ and J‖ as a function of the crystal
momentum k. In blue is shown ±4t cos(k/2) for reference. The
spectrum here depends on both the trans- (J⊥) and intraleg (J‖) spin
couplings. For J⊥ → 0 (right), a quasiparticle band appears below
the continuum, when J‖ � 4t cos(k/2). For J‖ = 2t , this corresponds
to k � 2π/3.

particular, it couples holes moving on separate legs as fol-
lows: |� (n)

2⊥ (k, 0)〉 ↔ |� (n)
2⊥ (k,±1)〉 ↔ |� (n)

2⊥ (k,±2)〉 · · · . In-
vestigating the Schrödinger equation, E (n)

2s (k)|� (n)
2s (k)〉 =

Ĥ |� (n)
2s (k)〉 for holes on separate legs (s =⊥) and on the same

leg (s =‖) leads to the equations of motion

E (n)
2⊥ (k)C(n)

⊥ (k, d ) =V2⊥(d )C(n)
⊥ (k, d ) + 2t cos

(
k

2

)

× [C(n)
⊥ (k, d − 1) + C(n)

⊥ (k, d + 1)],

(18)

E (n)
2‖ (k)C(n)

‖ (k, 1) =V2‖(1)C(n)
‖ (k, 1) + 2t cos

(
k

2

)
C(n)

‖ (k, 2),

E (n)
2‖ (k)C(n)

‖ (k, d ) =V2‖(d )C(n)
‖ (k, d ) + 2t cos

(
k

2

)

× [C(n)
‖ (k, d − 1) + C(n)

‖ (k, d + 1)],
(19)

where the lower line in Eq. (19) applies for d � 2. Here, the
hopping Hamiltonian couples |� (d )

2s (k)〉 and |� (d+1)
2s (k)〉 via

two pathways. For holes on separate legs, this corresponds to
the hole in leg 2 hopping to the right with amplitude te−ik/2,
and the hole in leg 1 hopping to the left with amplitude te+ik/2.
For holes on the same leg, it similarly corresponds to the
hole to the right to hop further to the right with amplitude

te−ik/2, and the hole to the left to hop further to the left
with amplitude te+ik/2. In any case, the associated quantum
interference of these pathways leads to the total coupling
of t (e−ik/2 + e+ik/2) = 2t cos(k/2), as was also recognized
previously [28]. Here, we define the two-hole linear string
potentials

V2⊥(d ) = (|d| − 1)
J⊥
2

,

V2‖(d ) = (d − 1)
J⊥
2

− δd,1
J‖
2

, (20)

using the energy of two separate stationary holes, E0 + J⊥ +
2J‖, as a reference. We emphasize that for holes traveling on
separate legs, the string potential does not contain the spin
coupling along the ladder J‖, because no intraleg spin bond
is broken in this case. For holes moving along the same leg,
the intraleg spin coupling J‖ only appears at d = 1, as the two
holes here share a frustrated intraleg spin bond. Similar to the
single-hole case, we propose the recursion relations

C(n)
s (k, d + 1) = 2t cos

(
k

2

)
f (d+1)
2s

(
k, E (n)

2s (k)
)
C(n)(k, d ),

C(n)
⊥ (k, d − 1) = 2t cos

(
k

2

)
f (d−1)
2⊥

(
k, E (n)

2⊥ (k)
)
C(n)

⊥ (k, d ).

(21)

Here, the upper line applies for both configurations of holes
for d � 0 (s =⊥) and d � 1 (s =‖). The lower line is solely
for holes on separate legs in the case of d � 0. Inserting this
into Eqs. (18) and (19) results in the self-consistency equation

f2(k, E ) = 1

E − 4t2 cos2(k/2) f2(k, E − J⊥/2)
, (22)

applying both to holes on separate legs and on the same
leg. Analogous to the single hole case, we set f2(k, E ) =
f (d )
2s (k, E + V2s(d )). As Eq. (22) is independent of d and

the hole configuration s =‖,⊥, so is f2. Note that for holes
on separate legs, this also means that f (d ) = f (−d ), and that
C(n)(k,−d ) = C(n)(k, d ) as one might expect from inversion
symmetry of the system. Equation (22) has the exact same
structure as Eq. (10) for the equivalent function f1 in the
single-hole case. As a result, we may simply replace t →
2t cos(k/2) to once again obtain a closed-form expression in
terms of Bessel functions of the first kind,

f2(E ) = − 1

2t cos(k/2)

J�(E )
( 8t cos(k/2)

J⊥

)
J�(E )−1

( 8t cos(k/2)
J⊥

) , (23)

still with �(E ) = −2E/J⊥. Insertion in the equation of mo-
tion for d = 0 in Eq. (18) and for d = 1 in Eq. (19) reveals
the equations for the two-hole energies

E (n)
2⊥ (k) = −J⊥

2
+ 8t2 cos2

(
k

2

)
f2

(
k, E (n)

2 (k)
)
,

E (n)
2‖ (k) = −J‖

2
+ 4t2 cos2

(
k

2

)
f2

(
k, E (n)

2 (k) − J⊥/2
)
. (24)

As for the single-hole case, we can use the recursion relations
in Eq. (21) along with Eq. (23) to explicitly write the coeffi-
cient of the many-body wave function. For holes on separate

085125-5



K. KNAKKERGAARD NIELSEN PHYSICAL REVIEW B 108, 085125 (2023)

legs, we obtain

C(n)
⊥ (k, d )

= C(n)
⊥ (k, 0)

[
2t cos

(
k

2

)]|d| |d|∏
j=1

f ( j)
2⊥

(
k, E (n)

2⊥ (k)
)

= (−1)d
√

Z (n)
2⊥ (k)

J
�(E (n)

2⊥ (k))+|d|−1

( 8t cos(k/2)
J⊥

)
J
�(E (n)

2⊥ (k))−1

( 8t cos(k/2)
J⊥

) (25)

for |d| � 1, using �(E − V2⊥(d )) = �(E ) + |d| − 1. For
holes on the same leg, we similarly obtain

C(n)
‖ (k, d )

= C(n)
‖ (k, 1)

[
2t cos

(
k

2

)]d−1 d∏
j=2

f ( j)
2‖

(
k, E (n)

2‖ (k)
)

= (−1)d−1
√

Z (n)
2‖ (k)

J
�(E (n)

2‖ (k))+d−1

( 8t cos(k/2)
J⊥

)
J
�(E (n)

2‖ (k))

( 8t cos(k/2)
J⊥

) (26)

for d � 2. Analogous to the single-hole case, Z (n)
2s (k) = [1 −

∂ω�2s(k, E )|
ω=E (n)

2s (k)]
−1 is the residue of the two-hole Green’s

function

G2⊥(k, ω) = 1

ω + iη + J⊥/2 − �2⊥(k, ω + iη)
,

G2‖(k, ω) = 1

ω + iη + J‖/2 − �2‖(k, ω + iη)
(27)

for η = 0+, �2⊥(k, ω + iη) = 8t2 cos2(k/2) f2(k, ω + iη),
and �2‖(k, ω + iη) = 4t2 cos2(k/2) f2(k, ω + iη − J⊥/2).
The poles of G2s determine the spectra for states of the forms
in Eqs. (15) and (16). These are all states that have a nonzero
overlap with finding holes at adjacent sites with no frustrated
spin bonds. Importantly, this subfamily of states contains
the two-body states with the lowest energy. The spectral
functions A2s(k, ω) = −2 ImG2s(k, ω) are shown in Figs. 3
and 4 for a few indicated values of the spin couplings. From
here, the discrete bands, E (n)

2s (k), with n = 0, 1, 2, . . . , are
now apparent. In the limit of J⊥/t → 0+, a continuum of
states forms between ±4t cos(k/2). Below this continuum of
states, holes traveling on the same leg [Fig. 4(b)] feature a
well-defined quasiparticle state if J‖ > 4t cos(k/2), in which
case Eq. (24) may be solved to yield

E (0)
2‖ (k) = −J‖

2
− 8t2 cos2(k/2)

J‖
, (28)

ending up at −J‖/2 at the Brillouin zone boundary, k = π . For
J‖ > 4t [bottom right in Fig. 4(b)], this state appears for any
k and a full quasiparticle band remains even for J⊥ → 0. For
0 < J‖ < 4t , on the other hand, a quasiparticle state appears
only for crystal momenta close enough to the boundary of the
Brillouin zone [top right in Fig. 4(b)]. We note that at k = π

for general J⊥ > 0, there seems to be an equal spacing of
the bands. In fact, inspecting Eqs. (18) and (19) we see that
the two hopping pathways destructively interfere here, giving
a vanishing total hopping amplitude, 2t cos(π/2) = 0. The
states are therefore completely immobile, and their energies

FIG. 5. (a) Trans-leg binding energy, Eb⊥ = 2E1 − E2⊥(0), vs
the trans-leg spin coupling J⊥/t for several indicated values of the
intraleg spin coupling J‖. For J⊥, J‖ � t , Eb⊥ follows a (J⊥/t )2/3

power-law behavior [light red dashed line, Eq. (30)]. For J⊥ � t ,
Eb⊥ approaches J⊥/2 [black dashed line]. (b) Intraleg binding energy,
Eb‖ = 2E1 − E2‖(0), vs J‖ for several values of J⊥. Eb‖ approaches
J‖/2 for J‖ � t (black dashed line). (c) Intraleg binding energy vs J⊥
instead. Eb‖ approaches J‖/2 for J⊥ � t as well (dashed lines).

are consequently determined by the string potentials

E (n)
2⊥ (π ) = (n − 1)

J⊥
2

,

E (0)
2‖ (π ) = −J‖

2
, E (n)

2‖ (π ) = n
J⊥
2

, (29)

where n � 0 (n � 1) in the upper (lower) line. This gives a
spacing of J⊥/2 at k = π . We note that the overall structure
of the spectra in Fig. 3 is similar to the isotropic spin coupling
case in the regime of J⊥ � J‖, where the underlying spin
lattice resides in a disordered regime of spin-singlets on each
rung [28].

Finally, for the lowest-energy two-hole state, k = 0 and
n = 0, we find that the energies at strong coupling, J⊥, J‖ �
t , behave as E (0)

2⊥ (0) = −4t[1 − a(0)(J⊥/4t )2/3/2] + J⊥/2 and
E (0)

2‖ (0) = −4t[1 − a(1)(J⊥/4t )2/3/2] + J⊥/2. Here, −a(0) 

−1.02 is once again the first zero of the derivative of the Airy
function (see Appendix A for details), while −a(1) 
 −2.34
is the first zero of the Airy function itself. Together with the
single-hole energy in Eq. (14), this leads to the asymptotic
binding energies, Ebs = 2E1 − E (n=0)

2s (k = 0),

Eb⊥ → ta(0)(2 − 21/3)

(
J⊥
2t

)2/3

+ J⊥
2

+ J‖,

Eb‖ → t (2a(0) − 21/3a(1) )

(
J⊥
2t

)2/3

+ J⊥
2

+ J‖. (30)

In Fig. 5(a), we plot the binding energy as a function of
J⊥/t for a few indicated values of J‖ in the case of holes
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on separate legs. The functional form of the binding energy
in the upper line of Eq. (30) is anticipated to remain true
in the case of isotropic spin-couplings [28]. Together with
the behavior of the binding energy for holes on the same leg
[Figs. 5(b) and 5(c)], this lends new insights into when holes
can bind strongly or not. In general, the two holes are confined
by the string of overturned spins between them. This results
in the dominant energy-scaling of (J⊥/t )2/3, and it leads to
a strong binding mechanism for holes on separate legs. For
holes on the same leg, however, since the prefactor in front
of this term is negative, 2a(0) − 21/3a(1) 
 −0.90 < 0, two
holes on the same leg actually energetically prefer to unbind.
Similar to recent cold-atom experiments with isotropic spin
couplings [27], this difference can be understood from a Pauli
repulsion effect. In fact, the hard-core constraint means that
the boundary condition at d = 0 is altered from being soft
for holes on separate legs to exactly zero for holes on the
same leg. This results in the different prefactors of a(0) 
 1.02
and a(1) 
 2.34 in the two cases, which will become apparent
when we investigate the spatial distribution of the holes below.
We may note, however, that already for moderate values of
the intraleg spin-coupling J‖, this unbinding is overcome and
eventually reaches J‖/2 for J‖ � t . In fact, in the extreme
limit of J⊥/t → 0+, Eq. (28) in combination with E (0)

2‖ (0) =
−4t for J‖/t < 4t results in the positive binding energy

Eb‖ = J‖ + 4t −
√

(4t )2 + J2
‖ , J‖ < 4t,

Eb‖ = 3J‖
2

+ 8t2

J‖
−

√
(4t )2 + J2

‖ , J‖ � 4t, (31)

shown with a black line in Fig. 5(b). Here, we use Eq. (28) for
J‖ < 4t and E2‖(0) = −4t for J‖ � 4t , as well as E1 = J‖/2 −
2t

√
1 + (J‖/4t )2 by solving Eqs. (10) and (12) for J⊥ → 0+.

Hence, in this limit the binding energy interpolates between
two linear behaviors in the intraleg spin coupling, from an
initial J‖ to J‖/2 behavior. This illustrates that two holes on
the same leg bind unless both the trans- and intraleg spin
couplings are small. Furthermore, we stress once again that
these results, including the unbinding mechanism for holes on
the same leg, ensue regardless of the statistics of the spins and
only depend on the hard-core constraint, as one should also
expect in a system with one-dimensional motion [60].

In this manner, we have given a detailed account of the
low-energy behavior for both intra- and trans-leg configura-
tions. Holes on separate legs always bind with a superlinear
scaling of t (J⊥/t )2/3 for J⊥, J‖ � t . For holes on the same
leg, however, the hard-core constraint results in an energy
cost proportional to t (J⊥/t )2/3 for low J⊥, J‖ and leads to
unbinding in this regime. However, for higher values of either
spin coupling the holes will once again bind.

Whereas a determination of the two-hole binding energy
is direct proof of their ability to bind, it is simultaneously
notoriously difficult to measure in modern quantum simula-
tion experiments with ultracold atoms in synthetic lattices,
such as optical lattices and Rydberg arrays. The simple reason
is that the required spectroscopy entails single atom detec-
tion in e.g., time of flight or rather advanced band-mapping
techniques [16,64]. On the other hand, the combination of
the lattice experiments and the development of quantum gas

FIG. 6. (a) Trans-leg g(2)
⊥ correlation function vs the relative

distance d for holes on separate legs and indicated values of
the trans-leg spin coupling J⊥. In dark red, green, and blue is shown
the continuum limit result valid for J⊥/t � 1 [Eq. (33)]. (b) In-
traleg g(2)

‖ correlation function vs d for holes on the same leg for
intraleg spin coupling J‖ = 0.2t and indicated values of J⊥. (c) Aver-
age distances 〈|d|〉s = ∑

d |d|g(2)
s (0, d )/N between the two holes for

the ground state at k = 0 as a function of J⊥/t on a log-log plot for the
intra- (s =‖, red lines) and trans-leg (s =⊥, blue line) configurations
of the holes. The intraleg case is shown for several indicated values of
J‖. We also show the strong-correlation scaling (t/J⊥)1/3 [black short
dashes], as well as the weak-correlation results ∝ (t/J⊥)2 [black long
dashes].

microscopy has enabled the direct and precise measurement
of spatial correlations, and has successfully been employed
to measure antiferromagnetic correlations in Fermi-Hubbard
systems [7,9], as well as characterizing the spatial prop-
erties [14] and formation dynamics of magnetic polarons
[21] in such systems. For two holes, the two-point hole-hole
correlators

g(2)
⊥ (k, d ) =

〈ĥ†
1, j ĥ1, j ĥ

†
2, j+d ĥ2, j+d〉k

〈ĥ†
1, j ĥ1, j〉k

〈ĥ†
2, j+d ĥ2, j+d〉k

= N |C(0)
⊥ (k, d )|2,

g(2)
‖ (k, d ) =

〈ĥ†
1, j ĥ1, j ĥ

†
1, j+d ĥ1, j+d〉k

〈ĥ†
1, j ĥ1, j〉k

〈ĥ†
1, j+d ĥ1, j+d〉k

= N |C(0)
‖ (k, d )|2,

(32)

provide such a spatial probe of their binding, as was also
recently used in experiments [27]. In Eq. (32), the average
is taken for the states |� (0)

2s (k)〉 with s =⊥, ‖ in Eq. (17)
residing in the lowest band E (0)

2s (k). We utilize that the am-
plitude C(0)

s (k, d ) gives the probability to observe the holes
at distance d , |C(0)

s (k, d )|2. Therefore, the numerator simply
gives |C(0)

s (k, d )|2/N , whereas the uniform spreading of the
holes means that 〈ĥ†

μ, j ĥμ, j〉k
= 1/N for both legs μ = 1, 2. In

Figs. 6(a) and 6(b), we plot these correlators as a function of
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d for several values of J⊥. For lower values of J⊥/t , the holes
separate more and more from each other as one expects for a
higher mobility. We note that already for J⊥ = 3t , the prob-
ability of finding the holes as nearest neighbors has dropped
to around 50%. For J⊥/t � 1—and J‖/t � 1 in the intraleg
case—the relative wave functions of the holes, C(n)

s (k, d ), can
be mapped to a continuum model. In this limit, they ful-
fill a continuous one-dimensional Schrödinger equation with
a mass scaling as t and a linear potential scaling with J⊥
[3,5,65,66]. As a result, the relative wave functions take on
the form of Airy functions (see Appendix A), resulting in

g(2)
⊥ (k, d )

N
→ A2

0λ(k)[Ai(λ(k)|d| − a(0))]2,

g(2)
‖ (k, d )

N
→ A2

1λ(k)[Ai(λ(k)d − a(1) )]2, (33)

with the effective inverse length scale λ(k) =
{J⊥/[4t cos(k/2)]}1/3, and the normalization constants Aj .
We compare with these continuum results and see remarkably
good agreement away from d = 0 even for relatively large
values of J⊥. Additionally, we show the average distance
between the holes 〈|d|〉sk = ∑

d |d|g(2)
s (k, d )/N as a function

of J⊥/t in Fig. 6(c) for the ground state at k = 0. This reveals
the strong-correlation scaling

〈d〉‖k = a(1) · 〈|d|〉⊥k = 2a(1)

3λ(k)
∝

(
t

J⊥

)1/3

(34)

for J⊥/t � 1. Figure 6(c) shows that this asymptotic form is
already accurate for J⊥/t � 1. We attribute this to the fact
that the effective interaction strength for two holes is 4t/J⊥,
rather than just t/J⊥. For weak correlations, we similarly get
〈d〉‖k − 1 = 〈|d|〉⊥k/2 = 1/λ6(k) ∝ (t/J⊥)2, becoming accu-
rate for J⊥/t � 10 in Fig. 6(c). Importantly, we emphasize
that for holes on the same leg, the hard-core constraint
g(2)

‖ (k, d = 0) = 0 results in a different boundary condition
in the continuum limit. This change in the boundary condi-
tion alters the relative wave function from being on the form
of Ai(λ(k)|d| − a(0)) to Ai(λ(k)d − a(1)), and it changes the
prefactor of the (J⊥/t )2/3 term in the two-hole energy from
a(0) 
 1.02 to a(1) 
 2.34. This also results in a significant
qualitative change in the relative spatial distribution of the
holes. For holes on separate legs, the holes are always most
likely to be found as nearest neighbors, whereas this is not
true at all for holes on the same leg. This leads to more distant
holes in the intraleg configuration and explains the extra factor
of a(1) 
 2.34 in 〈d〉‖k . In Fig. 6, we focus on the ground-state
behavior, i.e., k = 0. We note, however, that as the momentum
approaches the edge of the Brillouin zone, the correlator com-
presses more and more and eventually the holes only sit next
to each other: g(2)

⊥ (k = π, 0) = N and g(2)
‖ (k = π, 1) = N .

Equation (33) reveals that for holes on separate legs, the
correlator at d = 0 scales with the inverse length scale λ(k) ∝
(J⊥/t )1/3. Since the binding energy scales with t (J⊥/t )2/3,
we get that Eb⊥/J⊥ ∝ 1/g(2)(0, 0) at strong coupling. More
precisely,

Eb⊥
J⊥

= c⊥
g(2)

⊥ (0, 0)/N
+ 1

2
+ J‖

J⊥
, (35)

FIG. 7. (a) Trans-leg binding energy in units of J⊥ vs g(2)
⊥ at k = 0

and for adjacent holes, d = 0, for indicated values of the intraleg spin
coupling J‖. This is compared to the asymptotic behavior in Eq. (35)
for J‖ = 0.1t (light red dashed line), as well as the weak-coupling
binding energy (black long dashed line). We observe a monotonically
decreasing behavior of Eb/J⊥ for increasing g(2)

⊥ . (b) Intraleg binding
energy vs g(2)

‖ at k = 0 and adjacent holes, d = 1, for the same values
of J‖, and also compared to the asymptotic behavior [Eq. (36)].
For small J‖, the binding energy false off very quickly with
increasing g(2)

‖ .

with c⊥ = 2−4/3(1 − 2−2/3) for J⊥, J‖ � t . This is very valu-
able for quantum simulation experiments, as it provides an
indirect probe of the binding energy. In fact, in Ref. [27]
an approximate relation at finite temperatures between the
binding energy and the two-point correlator was used in this
regard. For the configuration with two holes on the same leg,
Eq. (33) similarly gives g(2)

‖ (k, 1) ∝ λ3(k). The asymptotic re-
lation between the binding energy and the correlation function
therefore now takes on the form

Eb‖
J⊥

= c‖
[g(2)

‖ (0, 0)/N]1/3
+ 1

2
+ J‖

J⊥
, (36)

with c‖ = 2−1/3(a(0) − 2−2/3a(1) ). This asymptotic relation-
ship indicates that g(2)

‖ (0, 0) must be much smaller to observe
an impact on the binding energy. To explore these behaviors
further, we plot the binding energy versus g(2) in Fig. 7.
For holes on separate legs, this reveals a monotonic relation
between the binding energy and the g(2) correlator for nearest-
neighbor holes for any value of J‖, which indeed enables
experiments to infer a binding energy from a measured g(2)

function. In the case of holes on the same leg, however, the ap-
plicability of this approach may depend quite crucially on the
value of J‖. In fact, for J‖ � t , we see that only at extremely
low value of g(2)

‖ (0, 0) does the binding energy start to change
significantly, which will naturally make it much harder to infer
a binding energy from a measured g(2) function.

IV. NONEQUILIBRIUM DYNAMICS

In this section, we investigate the nonequilibrium dynamics
of two initially localized holes. Such a quench experiment
is a natural choice for quantum simulation experiments, and
they have recently been considered for the motion of a hole in
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a Fermi-Hubbard background [21], in which they were able
to see the crossover dynamics from an initial free ballistic
motion of the hole, signatures of string oscillations, and finally
to the ballistic motion of magnetic polaron quasiparticles at
long times [5,67]. In the current setup, we investigate the
situation where the holes are localized and start out as nearest
neighbor, described by the wave functions for the separate-leg
(⊥) and same-leg (‖) configurations,

|�2⊥(τ = 0)〉 = ĥ†
0,1ĥ†

0,2

∏
l>0

ŝ†
l,1

∏
m>0

ŝ†
m,2|AF〉

= 1√
N

∑
k

|�2⊥(k, 0)〉,

|�2‖(τ = 0)〉 = ĥ†
0,1ĥ†

1,1|AF〉 = 1√
N

∑
k

|�2‖(k, 1)〉, (37)

using τ as the variable for time to distinguish it from the
hopping amplitude t . In the second line, as well as the last
expression of the third line, we utilize that the initial state
is the superposition of all the crystal momentum states in
Eqs. (15) and (16) for d = 0 and 1, respectively. To determine
the full dynamics, we calculate the overlap of the initial states
with the two-hole eigenstates in Eq. (17),

〈
�

(n)
2⊥ (k)

∣∣�2⊥(τ = 0)
〉 = C(n)

⊥ (k, 0)√
N

,

〈
�

(n)
2‖ (k)

∣∣�2‖(τ = 0)
〉 = C(n)

⊥ (k, 1)√
N

e−ik/2. (38)

Since the eigenstates are delocalized over the entire lattice,
there is an overall factor of 1/

√
N , whereas the factors of

C(n)
⊥ (k, 0) =

√
Z (n)

2⊥ (k) and C(n)
⊥ (k, 1) =

√
Z (n)

2‖ (k) are the am-
plitudes for finding the holes as nearest neighbors in the states
|� (n)

2⊥ (k)〉 and |� (n)
2‖ (k)〉, respectively. See also Eqs. (25) and

(26). We note that it is crucial to consider that states in all the
bands n have an overlap with the initial state and must be taken
into account. The nonequilibrium wave functions are then

|�2⊥(τ )〉 =
∑
k,n

e−iHτ
∣∣� (n)

2⊥ (k)
〉〈
�

(n)
2⊥ (k)

∣∣�2⊥(τ = 0)
〉

= 1√
N

∑
k,n

C(n)
⊥ (k, 0)e−iE (n)

2⊥ (k)τ
∣∣� (n)

2⊥ (k)
〉

(39)

for the separate-legs configuration, and

|�2‖(τ )〉 =
∑
k,n

e−iHτ
∣∣� (n)

2‖ (k)
〉〈
�

(n)
2‖ (k)

∣∣�2⊥(τ = 0)
〉

= 1√
N

∑
k,n

e−ikC(n)
‖ (k, 1)e−iE (n)

2‖ (k)τ
∣∣� (n)

2‖ (k)
〉

(40)

for holes on the same leg. To describe the two-hole dynamics
more concisely, we use Eqs. (39) and (40) to compute the
probability of finding the holes at a distance d as a function of

time,

P⊥(d, τ ) = 1

N

∑
k

∣∣∣∣∣
∑

n

C(n)
⊥ (k, 0)C(n)

⊥ (k, d )e−iE (n)
2⊥ (k)τ

∣∣∣∣∣
2

,

P‖(d, τ ) = 1

N

∑
k

∣∣∣∣∣
∑

n

C(n)
‖ (k, 1)C(n)

‖ (k, d )e−iE (n)
2‖ (k)τ

∣∣∣∣∣
2

, (41)

describing the relative wave function versus time. Figures 8(a)
and 8(f) show the dynamics of these probability distributions
for several indicated distances, d . At short times, the holes
initially blow apart ballistically as described by the quantum
walks

P(q.w.)
⊥ (d, τ ) = 1

N

∑
k

cos(kd )

∣∣∣∣∣ 1

N

∑
p

e+i(εp−εp+k )τ

∣∣∣∣∣
2

,

P(q.w.)
‖ (d, τ ) = 2

N

∑
k

cos(k)

[
cos(kd )

∣∣∣∣∣ 1

N

∑
p

e+i(εp−εp+k )τ

∣∣∣∣∣
2

−
∣∣∣∣∣ 1

N

∑
p

eipe+i(εp−εp+k )τ

∣∣∣∣∣
2]

, (42)

derived in Appendix B. For holes on the same leg, lower line
in Eq. (42), the hard-core property of the holes constrains
their motion and slightly alters it from the quantum walk of
independent holes on separate legs. On longer timescales,
the distribution of the holes is seen to oscillate around the
time-averaged distributions

P̄⊥(d ) = lim
T →∞

1

T

∫ T

0
dτ P⊥(d, τ )

= 1

N

∑
k,n

|C(n)
⊥ (k, 0)|2|C(n)

⊥ (k, d )|2,

P̄‖(d ) = lim
T →∞

1

T

∫ T

0
dτ P‖(d, τ )

= 1

N

∑
k,n

|C(n)
‖ (k, 1)|2|C(n)

‖ (k, d )|2, (43)

which denotes the steady state approximately reached on long
timescales. We note, however, that because the two-hole spec-
tra in Figs. 3 and 4 consist of a discrete set of coherent peaks
for any nonzero value of the trans-leg spin coupling J⊥, the
motion will generally be highly aperiodic and never settle
at its long-time average. As a result, the system does not
fully equilibrate. It does still, however, give the characterize
distribution of the holes at long times. To understand this
further, in Figs. 8(g) and 8(h) we compare it to the probability
distribution for the two holes in the ground state. We observe
that the behavior of the steady state is markedly different from
the ground state. First and foremost, the state will dynamically
extend over much larger length scales than its ground-state
counterpart. This is challenging for a cold-atom simulation
experiment, and it may hinder the observation of the long-
time dynamics. However, we stress that already over a few
hopping timescales 1/t , the dynamics starts to deviate from
the quantum walk.
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FIG. 8. Temporal evolution of the probability to find the two
holes at distances d = 0 (a), d = 1 (b), and d = 2 (c) for holes on
separate legs of the ladder, and of finding the holes at distances d = 1
(d), d = 2 (e), and d = 3 (f) for holes on the same leg. This is shown
for indicated values of the trans- (J⊥) and intraleg (J‖) spin couplings
and compared to the quantum walk for holes on separate legs (black
lines) and on the same leg (gray lines). We also show the long-time
average probability distributions P̄⊥(d ), P̄‖(d ) in dashed lines. (g)
and (h) P̄⊥(d ), P̄‖(d ) compared to the ground-state probability dis-
tributions, P0

⊥(d ) = |C (0)
⊥ (k = 0, d )|2 and P0

‖ (d ) = |C (0)
‖ (k = 0, d )|2,

for holes on separate legs (g) and on the same leg (h).

To investigate this more quantitatively using a simple ex-
perimental probe, we compute the average distances

〈|d|〉⊥(τ ) =
∑

d

|d|P⊥(d, τ ),

〈d〉‖(τ ) =
∑

d

dP‖(d, τ ), (44)

as a function of time. Two exemplary results are shown in
Figs. 9(a) and 9(b). For times τ < 2/t , holes on the same leg
will depart slightly slower than holes on separate legs, simply
because there are more configurations available for holes on
separate legs in the very first hop. After that, the hard-core
constraint leads to faster divergent motion for holes on the
same leg, but the motion remains a ballistic quantum walk.
When the holes cross their long-time average, 〈|d|〉⊥, 〈d〉‖,
the motion starts to deviate significantly from the initial

FIG. 9. (a),(b) Mean distance vs time for indicated intra- and
trans-leg spin couplings for holes on separate legs (blue lines) and
the same leg (red lines). The black and gray dashed lines show
the quantum walk for holes on separate legs and the same leg,
respectively. At long times, the holes oscillate around well-defined
mean distances 〈|d|〉⊥, 〈d〉‖ (long-dashed lines), shown in (c) as a
function of the trans-leg spin coupling J⊥, for indicated values of the
intraleg spin coupling J‖. For weak correlations, the time-averaged
mean distances scale as (t/J⊥)2 as the eigenstates in Fig. 6, while the
scaling in the strong correlation limit is changed from (t/J⊥)1/3 for
the eigenstates to t/J⊥ for the dynamics.

ballistic behavior and instead crosses over to oscillations
around 〈|d|〉⊥, 〈d〉‖. We use this to define the dynami-
cal regimes in Fig. 1(d). In fact, the interhole distance
in the separate-legs configuration quickly evolves linearly
in time, 〈|d|〉(q.w.)

⊥ = 13/8(tτ ). We therefore simply de-
fine the crossover timescale in Fig. 1(d) as the time τ at
which 〈|d|〉(q.w.)

⊥ 
 13/8(tτ ) = 〈|d|〉⊥. We hereby note that
the crossover from the quantum walk to the string oscillation
regime for, say, J⊥ = 3t happens already around τ 
 1/t .
This should be a significant help to see at least the onset of
the oscillation regime in a cold-atom simulation [21].

Finally, Fig. 9(c) shows the long-time average distances

〈|d|〉⊥ =
∑

d

|d|P̄⊥(d ) = 1

N

∑
k,n

Z (n)
2⊥ (k)〈|d|〉(n)

⊥k,

〈d〉‖ =
∑

d

dP̄‖(d ) = 1

N

∑
k,n

Z (n)
2‖ (k)〈|d|〉(n)

‖k , (45)

as a function of the trans-leg spin coupling, J⊥. For the
same-leg configuration, this is, furthermore, shown for indi-
cated values of the intraleg spin coupling, J‖. In Eq. (45),
we use that the probability to find the holes as nearest
neighbors in a given eigenstate n, k is given by the quasipar-
ticle residues |C(n)

⊥ (k, 0)|2 = Z (n)
2⊥ (k), |C(n)

⊥ (k, 1)|2 = Z (n)
2‖ (k).

The expressions to the right in Eq. (45) reveal that the long-
time averages of the nonequilibrium average distances are
given by an appropriate mean value of the interhole average
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distances, 〈|d|〉(n)
⊥k , 〈|d|〉(n)

‖k , of the eigenstates. One could there-
fore naively expect these to scale in the same manner as the
eigenstates with t/J⊥. For weak correlations, J⊥ � t , this is
indeed the case, where we find that this distance is the same as
for the ground states in Fig. 6(c) and thus vanishes as (t/J )2.
For strong correlations J⊥ � t , however, we see that the dis-
tance between the holes reaches a universal t/J⊥-scaling. For
the same-leg configuration, this also requires J‖ � t . This
same scaling was found for the motion of a single hole in
antiferromagnetic Bethe lattice structures [61], and it shows a
remarkable qualitative difference to the equilibrium situation
with eigenstates supporting only a much weaker (t/J )1/3 scal-
ing for the eigenstates, Fig. 6(c). This quantifies the qualitative
picture drawn from Figs. 8(g) and 8(h) that the quenched
holes already for intermediate values of J⊥ ∼ t spread out
much more than one would expect from the spatial size of
the ground state.

For the computation of the dynamics, we increase the sys-
tem size N and the number of included bands nmax until the
results have converged. As a rule of thumb, this is achieved
when the system size is a few times larger than the mean
distance between the holes. For the most strongly correlated
case of J⊥ = 0.1t , we go up to N = 600 sites and nmax = 88
bands. Utilizing the inversion symmetry of the system, we
need to resolve the energy and residue of N/2nmax = 26 400
states. This emphasizes that we need a very thorough un-
derstanding of the eigenspectrum to be able to simulate the
quench dynamics in this manner.

V. CONCLUSIONS AND OUTLOOK

Inspired by the recent experimental realization of hole
pairing in a cold-atom quantum simulator [27] of a mixed-
dimensional t-J model [28], we have investigated a simplified
setup of Ising spin interactions. This allowed us to determine
the exact low-energy single- and two-hole eigenstates. We
used this to rigorously show that two holes on separate legs
bind strongly to each other in the strongly correlated regime
of J⊥, J‖ � t , in that it features a superlinear binding energy:
Eb ∝ (J⊥/t )2/3.

Furthermore, we used this exact description to rigorously
account for the nonequilibrium quench dynamics following
two initially localized holes at adjacent sites. Similar dy-
namics has previously been investigated for a single hole
in a square lattice geometry [21], whose analysis provided
evidence of emergent dynamical regimes, describing the
crossover from a quantum walk on short timescales to string
oscillations at intermediate timescales and finally the ballis-
tic motion of magnetic polaron quasiparticles at long times
[5,67]. In the present mixed-dimensional setup, we found a
similar dichotomy of the dynamics for two holes with two
major differences. First, the holes are confined to each other,
such that their distance remains finite. Second, the string
oscillations in the present scenario have an infinite lifetime,
and therefore they persist indefinitely, hindering the long-time
equilibration of the system.

These results pave the way for a precise comparison with
state-of-the-art cold-atom quantum simulation experiments.
There are three essential ingredients that make the system in-
teresting from this perspective. First, our mixed-dimensional

model may be implemented both with fermions and hard-core
bosons. Second, the effective interaction strength of 4t/J⊥
means that the experiments can more easily access a strongly
correlated regime already for J⊥ � 4t . Third, this is particu-
larly relevant for the quench dynamics, where the crossover
from the quantum walk to the string oscillations already hap-
pens around times of τ 
 1/t in this intermediate parameter
regime. We therefore believe that it should be possible to
experimentally access the crossover from the quantum walk
to the confinement-induced oscillations.

Furthermore, such experiments also naturally lead to two
interesting roads ahead. First, by systematically increasing the
number of legs in the ladder, one can carefully analyze if
the system supports the formation of stripes [68–71] inherent
to the phenomenology of high-temperature superconductors.
Such inquiries were investigated in Ref. [58] using quantum
Monte Carlo calculations, in the special case where the trans-
and intraleg spin interactions are equal. We speculate that our
methodology may provide exact insights into this scenario at
zero temperature. Second, we believe that it is possible to
use the present methodology also at nonzero temperatures.
This would require a thorough analysis of the eigenstates
as more and more spins are flipped. This would enable the
exact determination of the nonequilibrium dynamics of holes
at finite temperatures, and it could be used to answer whether
the holes will deconfine [72] from each other as a result of
thermal spin fluctuations.
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APPENDIX A: CONTINUUM LIMIT FOR TWO HOLES

In this Appendix, we derive the two-hole energy in the limit
J⊥/t � 1. The derivation is very similar to the recent results
in Bethe lattice structures [61].

We initially analyze the situation for holes on separate
legs, starting from the equations of motion in Eq. (18). Using
ψ (n)(k, d ) = (−1)dC(n)(k, d ), we obtain

E (n)
2⊥ (k) + 4t cos(k/2) + J⊥/2

2t cos(k/2)
ψ (n)(k, d )

= J⊥
4t cos(k/2)

|d|ψ (n)(k, d ) − [ψ (n)(k, d − 1)

− 2ψ (n)(k, d ) + ψ (n)(k, d + 1)], (A1)

valid for any k �= ±π . We then rescale lengths according to
d = x/λ, and we define φ(n)(k, x) = ψ (n)(k, x/λ)/

√
λ. Insert-

ing this in Eq. (A1), we obtain

a(n)φ(n)(k, x)

= J⊥
4t cos(k/2)

|x|
λ3

φ(n)(k, x)

− φ(n)(k, x − λ) − 2φ(n)(k, x) + φ(n)(k, x + λ)

λ2
, (A2)
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with a(n) = [E (n)
2⊥ (k) + 4t cos(k/2) + J⊥/2]/[2t cos(k/2)λ2].

To remove the dependency on J⊥/t , we set λ3(k) =
J⊥/[4t cos(k/2)]. In the limit of λ ∝ (J⊥/t )1/3 → 0+, the sec-
ond line of Eq. (A2) simply becomes the second derivative of
φ. Hence, we are left with the differential equation

a(n)φ(n)(k, x) = |x|φ(n)(k, x) − d2φ(n)(k, x)

dx2
, (A3)

where the wave function is subject to the normalization con-
dition

∫ +∞
−∞ dx|φ(k, x)|2 = 1. Hence, we effectively have a

single particle in one dimension subject to a linear potential
in this limit. Rearranging yields

d2 f (y)

dy2
= y f (y), (A4)

where y = |x| − a(n) and f (y) = φ(n)(k, y + a(n) ). Hence, y �
−a(n) is required here. The solutions to Eq. (A5) are the
Airy functions Ai, Bi, such that f (y) = A Ai(y) + B Bi(y).
Normalization of the wave function then dictates that B = 0,
i.e., φ(n)(k, |x|) = A Ai(|x| − a). Since the potential is even in
x, we may choose eigenfunctions that are either even or odd.
For even functions, the derivative of φ at x = 0 is

dφ(n)(k, x)

dx

∣∣∣∣
x=0±

= ±A
dAi(y)

dy

∣∣∣∣
y=−a(n)

. (A5)

Since the potential is continuous everywhere, so must be
the derivative. This, in particular, holds at x = 0, and
therefore −a(n) must be a zero of the derivative of the
Airy function, Ai′(−a(n) ) = 0. This defines one set of
eigenfunctions with the lowest eigenvalues given by ae =
1.018 79 . . . , 3.248 19 . . . , 4.820 10 . . . , . . . .

For odd functions, we need φ(n)(k, x) = A sgn(x)Ai(|x| −
a(n) ) to vanish at x = 0. Hence, −a(n) must be
a zero of the Airy function itself, Ai(−a(n) ) =
0. This defines another set of eigenvalues: ao =
2.338 11 . . . , 4.087 95 . . . , 5.520 56 . . . , . . . . As one can
expect, we get an alternating pattern of even and odd
eigenstates. The asymptotic energies are given by

E (n)
2⊥ (k) = −4t cos

(
k

2

)[
1 − a(n)

2
λ2(k)

]
+ J⊥

2
, (A6)

with λ(k) = {J⊥/[4t cos(k/2)]}1/3, and where a(2m) = a(m)
e

and a(2m+1) = a(m)
e for even n = 2m and odd n = 2m + 1

eigenstates, respectively. The asymptotic eigenstates for holes
on separate legs are

ψ (n)(k, d ) = A[sgn(d )]n
√

λ(k) Ai(λ(k)|d| − a(n)), (A7)

with normalization constants An. The full derivation here car-
ries over to two holes on the same leg. However, in this case
the hard-core constraint of the holes means that the wave
function must vanish at d = 0. Consequently, only the odd
asymptotic wave functions, ψ (2n+1)(k, d ), from above are al-
lowed in this case, and hence

E (n)
2‖ (k) = −4t cos

(
k

2

)[
1 − a(2n+1)

2
λ2(k)

]
+ J⊥

2
. (A8)

The lowest two-hole eigenstates are at vanishing total
momentum, k = 0, and for a(0) = 1.018 79 . . . and a(1) =
2.338 11 . . . for holes on separate legs and the same legs,
respectively,

E (0)
2⊥ (0) = −4t

[
1 − a(0)

2

(
J⊥
4t

)2/3
]

− J⊥
2

,

E (0)
2‖ (0) = −4t

[
1 − a(1)

2

(
J⊥
4t

)2/3
]

− J⊥
2

. (A9)

We note that for a fixed J⊥/t , Eqs. (A6) and (A7) will
break down as one approaches k = ±π . Finally, a very sim-
ilar calculation shows that asymptotically, the single-hole
energy is

E (n)
1 = −2t

[
1 − a(n)

2

(
J⊥
2t

)2/3
]

+ J‖
2

. (A10)

Equations (A10) and (A9) give the asymptotic binding energy
in Eq. (30).

APPENDIX B: QUANTUM WALKS OF TWO HOLES

In this Appendix, we derive the probability distributions in
Eq. (42) describing the distance between two noninteracting
particles performing quantum walks either in the separate-legs
or same-leg configuration.

The hopping Hamiltonian for identical particles may sim-
ply be written as

Ĥt = −t
∑
j,μ

[ĉ†
j,μĉ j+1,μ + ĉ†

j+1,μĉ j,μ]. (B1)

To easily enforce the hard-core constraint in the case of
particles on the same leg, we use fermionic commutation re-
lations {ĉ j,μ, ĉ†

l,ν} = δ j,lδμ,ν . The Hamiltonian is diagonalized

by Fourier transforming to crystal momentum states, ĉ†
j,μ =∑

k e−ik j ĉk,μ/
√

N ,

Ĥt =
∑
k,μ

εk ĉ†
k,μ

ĉk,μ, (B2)

with εk = −2t cos(k). From the initial states |�⊥(τ = 0)〉 =
ĉ†

0,1ĉ†
0,2|0〉, |�‖(τ = 0)〉 = ĉ†

0,1ĉ†
1,1|0〉, we find the nonequilib-

rium states

|�⊥(τ )〉 = 1

N

∑
k,q

e−i(εk+εq )τ ĉ†
k,1ĉ†

q,2|0〉,

|�‖(τ )〉 = 1

N

∑
k,q

e−iqe−i(εk+εq )τ ĉ†
k,1ĉ†

q,1|0〉. (B3)

So far, there is hardly any difference between the two cases.
This, however, appears when we compute the amplitude for
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seeing the particles at positions j, j + d ,

A⊥( j, d, τ ) = 〈0|ĉ j,1ĉ j+d,2|�⊥(τ )〉 = 1

N2

∑
k1,k2
q1,q2

ei(k2+q2 ) j+q2d e−i(εk1+εq1 )τ 〈0|ĉq2,2ĉk2,1ĉ†
k1,1

ĉ†
q1,2

|0〉,

A‖( j, d, τ ) = 〈0|ĉ j,1ĉ j+d,1|�‖(τ )〉 = 1

N2

∑
k1,k2
q1,q2

ei(k2+q2 ) j+q2d e−iq1 e−i(εk1+εq1 )τ 〈0|ĉq2,1ĉk2,1ĉ†
k1,1

ĉ†
q1,1

|0〉, (B4)

because the particles on separate legs only have a single nonzero matrix element 〈0|ĉq2,2ĉk2,1ĉ†
k1,1

ĉ†
q1,2

|0〉 = δk1,k2δq1,q2 , whereas

particles on the same leg also feature an exchange term 〈0|ĉq2,2ĉk2,1ĉ†
k1,1

ĉ†
q1,2

|0〉 = δk1,k2δq1,q2 − δk1,q2δq1,k2 . As a result, the
amplitudes simplify to

A⊥( j, d, τ ) = 1

N2

∑
k,q

eiqd ei(k+q) je−i(εk+εq )τ ,

A‖( j, d, τ ) = 1

N2

∑
k,q

[eiqd − eikd ]ei(k+q) je−iqe−i(εk+εq )τ . (B5)

From here, we may then calculate the probabilities to find the holes a distance d apart. Since we are not interested in the absolute
position of the holes, j, we obtain

Pq.w.

⊥ (d, τ ) =
∑

j

|A⊥( j, d, τ )|2

= 1

N4

∑
j,k1,k2
q1,q2

ei(q1−q2 )d ei(k1−k2+q1−q2 ) je−i(εk1+εq1−εk2−εq2 )τ

= 1

N3

∑
k,q,p

eipd ei(εk+p+εq−p−εk−εq )τ

= 1

N3

∑
k,q,p

eipd ei(εk+p−εk )τ e−i(εq+p−εq )τ

= 1

N

∑
p

eipd

∣∣∣∣∣ 1

N

∑
k

ei(εk−εk+p)τ

∣∣∣∣∣
2

. (B6)

Combining the summands at p and −p then results in the
top line of Eq. (42) describing the probability distribution
for the distance between the holes on separate legs. A

completely analogous calculation derives the bottom line of
Eq. (42) from the bottom line of (B5) for two holes on the
same leg.
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