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Transport property under metallic ferroaxial ordering in an external magnetic field is theoretically investigated.
After presenting the relation between the magnetoconductivity tensor and ferroaxial moment from the symmetry
viewpoint, we analyze the behavior of the unconventional Hall effect and magnetoconductivity for a general five
d-orbital tight-binding model under the point group C4h, where the ferroaxial moment is activated. We show
that the crystalline electric field that arises from the symmetry reduction from D4h to C4h is essential for the
ferroaxial-related magnetotransport, while the relativistic spin–orbit coupling is not required. We also compare
the unconventional Hall effect driven by the ferroaxial moment with the conventional Hall effect, the latter of
which does not require the ferroaxial moment. The present results provide characteristic transport properties in
the ferroaxial systems, which can be observed in various candidate materials like Ca5Ir3O12.
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I. INTRODUCTION

Ferroaxial order has attracted much attention as a new
quantum state of matter, which is qualitatively distinct from
ferromagnetic, ferroelectric, and ferromagnetoelectric (mag-
netic toroidal) orders in terms of spatial inversion and
time-reversal parities [1–3]. Its order parameter is character-
ized by a time-reversal-even axial vector, which means that the
ferroaxial moment can be activated even in the paramagnetic
state with centrosymmetric lattice structures. Such ferroaxial
order has been mainly studied in dielectric materials, where
the vortex structure of the electric dipole moments corre-
sponding to a signature of the ferroaxial moment emerges in
nanodisks and nanorods [4–8]. So far, several materials have
been identified to be ferroaxial ordered states in bulk sys-
tems, such as Co3Nb2O8 [9], CaMn7 O12 [10], RbFe(MoO4)2

[11,12], NiTiO3 [12–15], Ca5Ir3O12 [16–19], BaCoSiO4 [20],
K2Zr(PO4)2 [21], Na2Hf(BO3)2 [22], and Na-superionic con-
ductors [23].

The microscopic origin of ferroaxial ordering is described
by odd-rank electric toroidal multipoles, such as the electric
toroidal dipole and octupole, whose expression at the classical
level is obtained by performing the multipole expansion under
the assumption that the magnetic charge (monopole) exists in
Maxwell’s equation [24–27]. In this case, the electric toroidal
dipole is described by the outer product of the position vector
and the electric dipole. Meanwhile, recent theoretical studies
revealed an atomic-scale description of the electric toroidal
dipole at the quantum-mechanical level by introducing the
symmetry-adapted multipole basis [28], where it can be also
described by the outer product of the orbital and spin angular
momenta [29]. Such fundamental progress in terms of the
microscopic description of the electric toroidal dipole pro-
vides the possibility of the atomic-scale ferroaxial order and
a way of the quantitative evaluation based on the ab initio
calculations [30].

In parallel with the development of microscopic expres-
sions, physical phenomena driven by the ferroaxial moment
have been extensively investigated [3,31–36]. As the fer-
roaxial moment breaks the mirror symmetry parallel to its
direction, it acts as a rotator against external stimuli [35].
For example, when the ferroaxial moment lies in the z di-
rection, an input field along the x (y) direction induces the
response of the conjugate physical quantities along the y (−x)
direction. In other words, the ferroaxial moment becomes a
source of transverse responses between the input and out-
put fields/currents with the same symmetry. These intriguing
features would open a new research field with the use of
the ferroaxial moment, i.e., “ferroaxiality,” as with ferromag-
netism and ferroelectricity.

In the present study, we further investigate physical phe-
nomena under metallic ferroaxial ordering. We especially
focus on two transport phenomena under an external magnetic
field: one is the unconventional Hall effect and the other
is the magnetoconductivity, both of which are caused by a
ferroaxial moment as nanometric rotator. The former is char-
acterized by the off-diagonal antisymmetric part of the linear
conductivity tensor proportional to an external magnetic field
H , while the latter is by its symmetric part proportional to
H2. We perform symmetry and model analyses for a general
five d-orbital model consisting of electron hopping, rela-
tivistic spin–orbit coupling, and tetragonal crystalline electric
field under the point group C4h. As a result, we find that
the crystalline electric field arising from the symmetry re-
duction from D4h to C4h leads to the unconventional Hall
effect and magnetoconductivity characteristic of the metallic
ferroaxial moment. Our results indicate that the ferroax-
ial system exhibits characteristic transport properties, which
would be observed in ferroaxial materials, such as Ca5Ir3O12

[37].
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FIG. 1. Lattice structure with the lattice constants a and c under
the point group C4h viewed from (a) the z axis and (b) the y axis.
The black-filled circles represent the d-orbital sites, while the black-
dashed circles represent the ligand sites. The hopping parameters,
(t1σ , t1π , tz1σ , tz1π , tz2σ , tz2π ), are presented.

The rest of the paper is organized as follows. In Sec. II,
we present the tight-binding model in the tetragonal lat-
tice structure. We also introduce the ferroaxial moments
described by the electric toroidal dipole, octupole, and elec-
tric hexadecapole. Among them, we discuss the behavior of
the field-induced electric toroidal dipole. We give symmetry
analysis and numerical results in terms of the magnetoconduc-
tivity tensor under an external magnetic field in Secs. III and
IV. In Sec. III, we discuss the behavior of the unconventional
Hall conductivity with an odd function of H and, in Sec. IV,
we discuss that of the magnetoconductivity with an even func-
tion of H . Section V is devoted to a summary of this paper. We
present the essential model parameters for the field-induced
electric toroidal dipole, unconventional Hall conductivity, and
magnetoconductivity in Appendix A. In Appendix B, we show
the result of the optical unconventional Hall conductivity.

II. SETUP

In this section, we introduce the tight-binding model in
the three-dimensional tetragonal lattice system under the point
group C4h in Sec. II A. Then, we discuss the behavior of the
atomic-scale electric toroidal dipole induced by the external
magnetic field in Sec. II B.

A. Model

We consider the tight-binding model consisting of five
d orbitals, where the lattice structure is set as a three-
dimensional square-lattice structure belonging to the point
group C4h; the vertical mirror plane perpendicular to the xy
plane is broken. We suppose here that such a lack of vertical
mirror symmetry is caused by the ligand ions (the black-
dashed circles) around the d-orbital sites (the black-filled
circles), as shown in Fig. 1(a); the point group is D4h if the
ligand ions are absent. The square layers in Fig. 1(a) are
stacked along the z direction, as shown in Fig. 1(b). We set
the lattice constants as a = c = 1 for simplicity. Then, the
Hamiltonian is given by

H = Ht +HSOC +HCEF +HV +HZ, (1)

Ht =
∑

i jαβσ

(
t i j
αβc†

iασ c jβσ + H.c.
)
, (2)

HSOC = λ
∑

i

l i · si, (3)

HCEF =
∑

iσ

(�1c†
ixyσ cixyσ + �2c†

ivσ civσ + �3c†
iuσ ciuσ ), (4)

HV = V
∑

iσ

(c†
ixyσ civσ + c†

ivσ cixyσ ), (5)

HZ = −
∑

i

H · (l i + 2si ), (6)

where c†
iασ (ciασ ) is the creation (annihilation) operator of

an electron with site i, orbital α = (u = 3z2 − r2, v = x2 −
y2, yz, zx, xy) for five d orbitals (du, dv, dyz, dzx, dxy), and
spin σ .

The first term in Eq. (1) represents the hopping Hamilto-
nian Ht in Eq. (2). We consider nonzero hopping elements
allowed from the symmetry based on the Slater-Koster ta-
ble; we parametrize the nearest-neighbor hopping in the xy
plane, (t1σ , t1π ) [Fig. 1(a)], and the nearest-neighbor and next-
nearest-neighbor hoppings along the z direction, (tz1σ , tz1π )
and (tz2σ , tz2π ) [Fig. 1(b)], where we ignore the δ compo-
nent of the Slater-Koster parameters for simplicity. We set
t1σ = −1, t1π = 0.5, tz1σ = −0.8, tz1π = 0.4, tz2σ = −0.5,
and tz2π = 0.25; t1σ is the energy unit of the model. The
second term in Eq. (1) represents the spin–orbit coupling
Hamiltonian HSOC in Eq. (3), where l i and si represent the
orbital and spin angular momentum operators, respectively;
we set λ = 2 unless otherwise stated by implicitly considering
the 5d materials where λ tends to be comparable to the hop-
ping parameters [38]. The third term in Eq. (1) represents the
Hamiltonian for the crystalline electric field (CEF) under the
point group D4h HCEF in Eq. (4). We take �1 = 0.5b, �2 =
6.5b, and �3 = 10.5b with b = √

3/2, where the atomic-
orbital energy levels Eα satisfy Eyz = Ezx < Exy < Ev < Eu.
The fourth term in Eq. (1) represents the additional CEF
Hamiltonian in Eq. (5) to represent the symmetry lowering
from D4h to C4h. The CEF parameter V mixes the xy and x2-y2

orbitals; we set V = 0.7. The choice of the model parameters
does not alter qualitative features in the following sections.
In particular, a different ratio of the spin–orbit coupling and
CEF as found in 3d , 4d , and 5d materials does not affect
the following results at the qualitative level; we demonstrate
this argument by performing the method to extract the es-
sential model parameters in response tensors in Appendix A.
The last term in Eq. (1) represents the Zeeman Hamiltonian
in Eq. (6) for an external magnetic field H = (Hx, 0, Hz ) =
H (sin θH , 0, cos θH ) for 0 � θH � π/2.

B. Ferroaxial moment

In the model in Eq. (1), there are 100 = 10 × 10 inde-
pendent electronic degrees of freedom in the Hilbert space,
which are composed of five orbital and two spin degrees of
freedom (5 × 2 = 10). In spinless space, there are 25 = 5 × 5
electronic degrees of freedom. As we consider d orbital with
the orbital angular momentum l = 2, the spinless Hilbert
space is spanned by the rank 0–4 multipoles [27,29,39,40]:
the electric monopole (Q0), magnetic dipole (Mx, My, Mz ),
electric quadrupole (Qu, Qv, Qyz, Qzx, Qxy), magnetic
octupole (Mxyz, M3a, M3b, Mα

z , M3u, M3v, Mβ
z ), and electric
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TABLE I. Relationship between the irreducible representation (irrep) and multipole activated in spinless and spinful spaces under the
point groups D4h and C4h. The sign of the superscript in the irreducible representation denotes the time-reversal parity (+: even; −: odd).
The multipole degrees of freedom belonging to the A+

2g representation correspond to the ferroaxial moment.

Irrep (D4h ) (C4h ) Spinless Multipole Spinful Multipole

A+
1g A+

g 4 Q0, Qu, Q4, Q4u 5 Q0, 2Qu, Q4, Q4u

A+
2g A+

g 1 Qα
4z 3 Qα

4z, Gz, Gα
z

B+
1g B+

g 2 Qv, Q4v 4 2Qv, Q4v, Gxyz

B+
2g B+

g 2 Qxy, Qβ

4z 4 2Qxy, Qβ

4z, Gβ
z

E+
g E+

g 3 Qyz, Qα
4x, Qβ

4x 7 2Qyz, Qα
4x, Qβ

4x, Gx, G3a, G3u

Qzx, Qα
4y, Qβ

4y 2Qzx, Qα
4y, Qβ

4y, Gy, G3b, G3v

A−
1g A−

g 0 4 M5u, Tu, T4, T4u

A−
2g A−

g 2 Mz, Mα
z 7 2Mz, 2Mα

z , Mα1
5z , Mα2

5z , T α
4z

B−
1g B−

g 1 Mxyz 5 2Mxyz, M5v, Tv, T4v

B−
2g B−

g 1 Mβ
z 5 2Mβ

z , Mβ

5z, Txy, T β

4z

E−
g E−

g 3 Mx, Mα
x , Mβ

x 12 2Mx, 2M3a, 2M3u, Mα1
5x , Mα2

5x , Mβ

5x, Tyz, T α
4x, T β

4x

My, Mα
y , Mβ

y 2My, 2M3b, 2M3v, Mα1
5y , Mα2

5y , Mβ

5y, Tzx, T α
4y, T β

4y

hexadecapole (Q4, Q4u, Q4v, Qα
4x, Qα

4y, Qα
4z, Qβ

4x, Qβ

4y, Qβ

4z ),
i.e., 1 + 3 + 5 + 7 + 9 = 25. Among them, only Qα

4z

belongs to the A+
2g representation of D4h point group (+

in the superscript means the time-reversal even), which
is related to the ferroaxial moment. The matrix of HV

in Eq. (5) corresponds to Qα
4z. The other 75 electronic

degrees of freedom activated in spinful Hilbert space
are as follows: one electric monopole, two magnetic
dipoles, two electric quadrupoles, two magnetic octupoles,
one electric hexadecapole, one magnetic dotriacontapole
(M5u, M5v, Mα1

5x , Mα1
5y , Mα1

5z , Mα2
5x , Mα2

5y , Mα2
5z , Mβ

5x, Mβ

5y, Mβ

5z),
one electric toroidal dipole (Gx, Gy, Gz ), one magnetic
toroidal quadrupole (Tu, Tv, Tyz, Tzx, Txy), one electric toroidal
octupole (Gxyz, G3a, G3b, Gα

z , G3u, G3v, Gβ
z ), and one mag-

netic toroidal hexadecapole (T4, T4u, T4v, T α
4x, T α

4y, T α
4z, T β

4x,

T β

4y, T β

4z ), i.e., 1 + 2 × 3 + 2 × 5 + 2 × 7 + 9 + 11 + 3 +
5 + 7 + 9 = 75. Among them, there are three multipole
degrees of freedom belonging to the A+

2g representation
of D4h; Qα

4z, Gz, and Gα
z . The relationship between the

irreducible representation under the point groups D4h and C4h

and multipoles activated in spinless and spinful spaces are
summarized in Table I.

The matrix elements of four multipoles belonging to the
A+

2g representation are given by

Qα
4z =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

σ0, (7)

Gz = 1

2

⎛
⎜⎜⎜⎜⎝

0 0
√

3i 0 0
0 0 i 0 0

−√
3i −i 0 0 0

0 0 0 0 i
0 0 0 −i 0

⎞
⎟⎟⎟⎟⎠

σy − 1

2

⎛
⎜⎜⎜⎜⎝

0 0 0 −√
3i 0

0 0 0 i 0
0 0 0 0 −i√
3i −i 0 0 0

0 0 i 0 0

⎞
⎟⎟⎟⎟⎠

σx, (8)

Gα
z =

⎛
⎜⎜⎜⎜⎜⎝

0 0 2i 0 0
0 0 −√

3i 0 0
−2i

√
3i 0 0 0

0 0 0 0 −√
3i

0 0 0
√

3i 0

⎞
⎟⎟⎟⎟⎟⎠

σy −

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −2i 0
0 0 0 −√

3i 0
0 0 0 0

√
3i

2i
√

3i 0 0 0
0 0 −√

3i 0 0

⎞
⎟⎟⎟⎟⎟⎠

σx, (9)

Q′α
4z =

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 i
0 0 0 −i 0

⎞
⎟⎟⎟⎟⎠

σy +

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 i 0
0 0 0 0 i
0 −i 0 0 0
0 0 −i 0 0

⎞
⎟⎟⎟⎟⎠

σx,

(10)

for the basis (du, dv, dyz, dzx, dxy); σ = (σx, σy, σz ) is the vec-
tor of the Pauli matrices and σ0 is the 2 × 2 unit matrix in
spin space [35,41]. To distinguish the electric hexadecapole
in spinless and spinful bases, we denote the latter as Q′α

4z.
By numerically calculating the expectation values of

(Qα
4z, Q′α

4z, Gz, Gα
z ) for the Hamiltonian in Eq. (1) at zero field,

one finds that 〈Qα
4z〉, 〈Q′α

4z〉, and 〈Gα
z 〉 become nonzero but 〈Gz〉
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FIG. 2. (a), (b) Hx dependence of the expectation values of Gz,
〈Gz〉, for several electron fillings ne at (a) λ = 2 and (b) λ = 0. (c),
(d) The double logarithmic plot for Hx > 0 corresponding to (a) and
(b) at ne = 0.2. The black lines are lines proportional to (c) H2

x and
(d) H 4

x . (e), (f) θH dependence of 〈Gz〉 at (e) λ = 2 and (f) λ = 0 for
H = 0.3 and several ne.

vanishes (〈· · · 〉 stands for the statistical average) [35]. In other
words, the dipole component of the electric toroidal multipole
is not activated in the model Hamiltonian in Eq. (1) even when
it belongs to the totally symmetric irreducible representation
for V �= 0.

Meanwhile, we find that 〈Gz〉 becomes nonzero by intro-
ducing an external magnetic field in Eq. (6). Figure 2(a) shows
the Hx dependence of 〈Gz〉 for electron fillings ne = 0.2, 2, 4,
and 6; ne = 10 means the full filling. We take the summation
of the momentum k over 3603 grid points in the first Brillouin
zone. The results at ne = 0.2 and 2 are metallic and those at
ne = 4 and 6 are insulating. The data show that 〈Gz〉 becomes
nonzero irrespective of metals and insulators for Hx �= 0 at
all ne and its Hx dependence is symmetric. Similarly, such
behavior is also found in the case of λ = 0, as shown in
Fig. 2(b), which indicates that the spin–orbit coupling is not
important in driving the field-induced electric toroidal dipole.
Meanwhile, the Hx dependence of 〈Gz〉 is different in each
case; 〈Gz〉 is proportional to H2

x (H4
x ) for λ �= 0 (λ = 0), as

shown in Fig. 2(c) [Fig. 2(d)]. One can analytically obtain
such a difference by performing essential-model-parameter
calculations in Appendix A [42].

We also show the θH dependence of 〈Gz〉 for H = 0.3
at λ = 2 in Fig. 2(e) and at λ = 0 in Fig. 2(f). The result
indicates that 〈Gz〉 becomes nonzero except for θH = 0, i.e.,
the z direction. Moreover, one finds that 〈Gz〉 tends to be

larger as θH approaches π/2. Thus the atomic-scale electric
hexadecapole 〈Qα

4z〉 that arises from V in Eq. (5) is related to
the electric toroidal dipole via the in-plane component of the
applied magnetic field.

The above result that 〈Gz〉 is symmetric against the mag-
netic field is understood from the time-reversal symmetry.
Since the time-reversal parity of Gz is +1, it can couple to
the even order of the magnetic field, whose time-reversal
parity is given as −1. Meanwhile, when the time-reversal
symmetry of the system is broken so as to accommodate
the time-reversal odd and spatial-inversion even multipoles,
such as the magnetic toroidal monopole and quadrupole, 〈Gz〉
behaves antisymmetric against the magnetic field [43].

III. UNCONVENTIONAL HALL EFFECT

In this section, we discuss the unconventional Hall effect
under the ferroaxial ordering. We first discuss the general
symmetry condition of the Hall effect in Sec. III A. Next, we
examine the numerical results by comparing the conventional
Hall effect without the ferroaxial moment in Sec. III B.

A. Hall conductivity tensor

The Hall conductivity tensor σ H
μν;η is defined by

Jμ =
∑
νη

σ H
μν;ηEνHη, (11)

where Jμ, Eν , and Hη are electric current, electric field, and
magnetic field for μ, ν, η = (x, y, z), respectively. Since σ H

μν;η
corresponds to the antisymmetric part of the linear conduc-
tivity tensor proportional to H , it satisfies the relation of
σ H

μν;η = −σ H
νμ;η from the Onsager reciprocal relations. Then,

there are nine independent tensor components in σ H
μν;η, which

are represented by

σ H =

⎛
⎜⎜⎝

σ H
yz;x σ H

yz;y σ H
yz;z

σ H
zx;x σ H

zx;y σ H
zx;z

σ H
xy;x σ H

xy;y σ H
xy;z

⎞
⎟⎟⎠

=

⎛
⎜⎝

Q0 − Qu + Qv Qxy + Gz Qzx − Gy

Qxy − Gz Q0 − Qu − Qv Qyz + Gx

Qzx + Gy Qyz − Gx Q0 + 2Qu

⎞
⎟⎠.

(12)

Here, the second line of Eq. (12) describes the component of
σ H in terms of multipoles. Since the antisymmetric σ H

μν;η is the
second-rank polar tensor, the relevant multipoles are the rank
0–2 time-reversal even multipoles, i.e., electric monopole Q0,
electric toroidal dipole (Gx, Gy, Gz ), and electric quadrupole
(Qu, Qv, Qyz, Qzx, Qxy) [29]. Once any of the multipoles be-
long to the totally symmetric irreducible representation under
the point group we focus on, the corresponding tensor compo-
nent can be nonzero.

In the case of the point group D4h, Q0 and Qu belong
to the totally symmetric irreducible representation. Then, the
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nonzero tensor component is represented by

σ H(D4h) =

⎛
⎜⎝

Q0 − Qu 0 0

0 Q0 − Qu 0

0 0 Q0 + 2Qu

⎞
⎟⎠. (13)

The induced component corresponds to the conventional Hall
effect, where the transverse current occurs perpendicular to
both the input electric field and the magnetic field.

Meanwhile, when the symmetry is lowered from D4h to C4h

so that the ferroaxial moment is induced, the component cor-
responding to the electric toroidal dipole Gz can be nonzero.
The additional tensor component is represented by

σ H(FAO) =

⎛
⎜⎝

0 Gz 0

−Gz 0 0

0 0 0

⎞
⎟⎠. (14)

Thus σ H
zx;x = −σ H

yz;y is expected under the ferroaxial ordering.
Both σ H

zx;x and σ H
yz;y mean the transverse conductivity under

the magnetic field perpendicular to the ferroaxial moment; all
Jμ, Eν , and Hη lie in the same plane, which corresponds to
the unconventional Hall effect [44] rather than the planar Hall
effect [45–48].

The emergence of the unconventional Hall effect under the
ferroaxial ordering is intuitively understood from the nature
of the ferroaxial moment as a nanometric rotator that causes
the transverse responses between the conjugate physical quan-
tities [31,35]. We consider the case of σ H

zx;x as an example.
When the magnetic field is applied in the x direction, the
system exhibits the magnetization along the perpendicular y
direction in addition to the parallel x direction [36]. Such an
induced magnetization along the y axis can contribute to the
ordinary Hall effect in the zx plane. In the end, one can find
the emergence of the unconventional Hall effect σ H

zx;x under
the ferroaxial ordering. In addition, one finds that σ H

zx;x is an
odd function of the magnetic field owing to the time-reversal
parity of the ferroaxial ordering. In the following, we focus on
the behavior of σ H

zx;x induced by the ferroaxial ordering.

B. Numerical results

We compute σ H
μν (Hη ) by using the Kubo formula within the

linear response theory [49] as

σ H
μν (Hη ) = e2

h̄

1

iV̄

∑
m,n,k

f (εnk) − f (εmk)

εnk − εmk

Jnm
μk Jmn

νk

εnk − εmk + iδ
,

(15)

where e is the elementary charge, h̄ = h/(2π ) is the reduced
Planck constant, V̄ is the system volume, δ is the broadening
factor, f (ε) is the Fermi distribution function, and Jnm

μk =
〈nk|Jμ|mk〉 is the matrix element of the current operator in
the direction μ = (x, y, z), Jμ. εmk and |mk〉 are the mth eigen-
value and eigenstate ofH , respectively; we include the effect
of an external magnetic field as the Zeeman coupling inH (η
represents the magnetic-field direction) and hence the higher-
order contribution of H is included in the conductivity tensor.
We set e2/h = 1, δ = 0.01, and temperature T = 0.001.
The summation of k is taken over the 3603 grid points in
the Brillouin zone.
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FIG. 3. Hx dependence of the unconventional Hall conductivity
σ H

zx (Hx ) at λ = 0 and 2 for (a) ne = 0.2 and (b) ne = 6. The inset of
(a) represents σ H

zx (Hx ) for small positive Hx .

Figure 3(a) shows the Hx dependence of σ H
zx (Hx ) at λ = 0

and 2 for ne = 0.2. As expected from the symmetry con-
sideration in Sec. III A, σ H

zx (Hx ) becomes nonzero and is an
odd function of Hx, as the conventional Hall effect. We also
confirm the relation of σ H

zx (Hx ) = −σ H
yz (Hy), although σ H

zx (Hx )
is not linear to Hx for small Hx, as shown in the inset of
Fig. 3(a); this might be ascribed to the higher-order effect in
terms of Hx included in Eq. (15). Furthermore, one finds that
the spin–orbit coupling λ does not play an intrinsic role in
inducing σ H

zx (Hx ), as shown in the comparison of the results at
λ = 0 and 2. Since a larger Hall response is obtained for larger
|Hx|, a larger magnetic field is preferred in order to detect it in
experiments. Note that the interband process with εmk �= εnk

in Eq. (15) contributes to σ H
zx (Hx ).

In order to analytically obtain the essential model param-
eters to cause σ H

zx (Hx ), we perform an expansion method to
σ H

zx (Hx ) [42]. As a result, we find that σ H
zx (Hx ) is proportional

to V H2m+1
x g(tz2σ , tz2π ); m is integer and g(tz2σ , tz2π ) is an

appropriate function depending on tz2σ and tz2π ; g(0, 0) = 0,
which is consistent with both the symmetry and the numerical
results. From the above expression, we find that the next-
nearest-neighbor hopping along the z direction (tz2σ , tz2π ) is
important to obtain nonzero σ H

zx (Hx ). The details of the expan-
sion method are presented in Appendix A.

A similar behavior is found in the insulating case at ne = 6,
as shown in Fig. 3(b). Although σ H

zx (Hx ) = 0 for |Hx| � 1.4 at
λ = 2 and for |Hx| � 0.45 at λ = 0 in the insulating region,
Hx-odd behavior becomes prominent once the band gap is
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FIG. 4. Hx dependence of the conventional Hall conductivity
σ H

yz (Hx ) at λ = 0 and 2 for (a) ne = 0.2 and (b) ne = 6.

closed by a larger magnetic field. In other words, it is dif-
ficult to observe the Hall response in the insulating case in
experiments, since the large magnetic field comparable to the
band gap is necessary; such an issue is evaded by considering
the optical Hall conductivity by applying an ac electric field
instead of a dc one. We also present the result of the optical
unconventional Hall conductivity, which can give a signal of
ferroaxial ordering in the insulating case, in Appendix B.

We also calculate the ordinary nonplanar Hall conductivity
σ H

yz (Hx ) while the field direction is kept. Figures 4(a) and 4(b)

show the Hx dependence of σ H
yz (Hx ) at ne = 0.2 and ne = 6,

respectively. As compared to the result of the unconventional
Hall effect in Fig. 3, the behaviors are similar to each other;
σ H

yz (Hx ) becomes nonzero for Hx �= 0 and an odd function of
Hx. On the other hand, we find the difference in their essen-
tial model parameters; the unconventional Hall conductivity
σ H

zx (Hx ) needs the CEF parameter V , while the conventional
Hall conductivity σ H

yz (Hx ) does not, as detailed in Appendix A.

IV. MAGNETOCONDUCTIVITY

We discuss the magnetoconductivity under the ferroaxial
ordering. Similar to the unconventional Hall effect in Sec. III,
we show the symmetry condition and the relation to the
multipoles in Sec. IV A. Then, we compute the magnetocon-
ductivity tensor based on the Kubo formula in Sec. IV B.

A. Magnetoconductivity tensor

The magnetoconductivity tensor corresponding to the rank-
4 polar tensor is defined by

Jμ =
∑
νηγ

σ MC
μν;ηγ EνHηHγ , (16)

where σ MC
μν;ηγ is the symmetric tensor as σ MC

μν;ηγ = σ MC
νμ;ηγ =

σ MC
μν;γ η. The independent 36 components in σ MC

μν;ηγ are repre-
sented by the 6 × 6 matrix as follows:

σ MC =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σ MC
xx;xx σ MC

xx;yy σ MC
xx;zz σ MC

xx;yz σ MC
xx;zx σ MC

xx;xy

σ MC
yy;xx σ MC

yy;yy σ MC
yy;zz σ MC

yy;yz σ MC
yy;zx σ MC

yy;xy

σ MC
zz;xx σ MC

zz;yy σ MC
zz;zz σ MC

zz;yz σ MC
zz;zx σ MC

zz;xy

σ MC
yz;xx σ MC

yz;yy σ MC
yz;zz σ MC

yz;yz σ MC
yz;zx σ MC

yz;xy

σ MC
zx;xx σ MC

zx;yy σ MC
zx;zz σ MC

zx;yz σ MC
zx;zx σ MC

zx;xy

σ MC
xy;xx σ MC

xy;yy σ MC
xy;zz σ MC

xy;yz σ MC
xy;zx σ MC

xy;xy

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= σ MC(M) + σ MC(D) + σ MC(Q) + σ MC(O) + σ MC(H),

(17)

where σ MC(M), σ MC(D), σ MC(Q), σ MC(O), and σ MC(H) denote the
monopole, dipole, quadrupole, octupole, and hexadecapole
components in σ MC. The correspondence between the tensor
components and multipoles is given by

σ MC(M) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

4Q0 + Q′
0 −2Q0 + Q′

0 −2Q0 + Q′
0 0 0 0

−2Q0 + Q′
0 4Q0 + Q′

0 −2Q0 + Q′
0 0 0 0

−2Q0 + Q′
0 −2Q0 + Q′

0 4Q0 + Q′
0 0 0 0

0 0 0 3Q0 0 0

0 0 0 0 3Q0 0

0 0 0 0 0 3Q0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (18)

σ MC(D) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −2Gy 2Gz

0 0 0 2Gx 0 −2Gz

0 0 0 −2Gx 2Gy 0

0 −2Gx 2Gx 0 −Gz Gy

2Gy 0 −2Gy Gz 0 −Gx

−2Gz 2Gz 0 −Gy Gx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (19)
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σ MC(Q) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q̃u + Q̃v −Q̃(+)
u − Q̃(−)

u + 2Q̃(−)
v Q̃(+)

u + Q̃(−)
v Q̃(+)

yz Q̃′(+)
zx Q̃′(+)

xy

−Q̃(+)
u − Q̃(−)

u + 2Q̃(+)
v Q̃u − Q̃v Q̃(+)

u − Q̃(−)
v Q̃′(+)

yz Q̃(+)
zx Q̃′(+)

xy

Q̃(−)
u + Q̃(+)

v Q̃(−)
u − Q̃(+)

v −2Q̃u Q̃′(+)
yz Q̃′(+)

zx Q̃(+)
xy

Q̃(−)
yz Q̃′(−)

yz Q̃′(−)
yz 3Qu − 3Qv 3Qxy 3Qzx

Q̃′(−)
zx Q̃(−)

zx Q̃′(−)
zx 3Qxy 3Qu + 3Qv 3Qyz

Q̃′(−)
xy Q̃′(−)

xy Q̃(−)
xy 3Qzx 3Qyz −6Qu

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (20)

σ MC(O) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Gxyz −Gxyz −2Gβ
x Gα

y + Gβ
y −Gα

z + Gβ
z

−Gxyz 0 Gxyz −Gα
x + Gβ

x −2Gβ
y Gα

z + Gβ
z

Gxyz −Gxyz 0 Gα
x + Gβ

x −Gα
y + Gβ

y −2Gβ
z

2Gβ
x Gα

x − Gβ
x −Gα

x − Gβ
x 0 −2Gα

z 2Gα
y

−Gα
y − Gβ

y 2Gβ
y Gα

y − Gβ
y 2Gα

z 0 −2Gα
x

Gα
z − Gβ

z −Gα
z − Gβ

z 2Gβ
z −2Gα

y 2Gα
x 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

σ MC(H) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2Q4 − Q4u + Q4v −Q4 + 2Q4u −Q4 − Q4u − Q4v 2Qβ

4x −Qα
4y − Qβ

4y Qα
4z − Qβ

4z

−Q4 + 2Q4u 2Q4 − Q4u − Q4v −Q4 − Q4u + Q4v Qα
4x − Qβ

4x 2Qβ

4y −Qα
4z − Qβ

4z

−Q4 − Q4u − Q4v −Q4 − Q4u + Q4v 2Q4 + 2Q4u −Qα
4x − Qβ

4x Qα
4y − Qβ

4y 2Qβ

4z

2Qβ

4x Qα
4x − Qβ

4x −Qα
4x − Qβ

4x −Q4 − Q4u + Q4v 2Qβ

4z 2Qβ

4y

−Qα
4y − Qβ

4y 2Qβ

4y Qα
4y − Qβ

4y 2Qβ

4z −Q4 − Q4u − Q4v 2Qβ

4x

Qα
4z − Qβ

4z −Qα
4z − Qβ

4z 2Qβ

4z 2Qβ

4y 2Qβ

4x −Q4 + 2Q4u

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(22)

where

(Q̃u, Q̃(±)
u ) ≡ (−4Qu − 2Q(+)

u ,−4Qu + Q(+)
u ± 3Q(−)

u ),

(Q̃v, Q̃(±)
v ) ≡ (4Qv + 2Q(+)

v ,−4Qv + Q(+)
v ± Q(−)

v ),

(Q̃(±)
ζ , Q̃′(±)

ζ ) ≡ (−4Qζ + Q(+)
ζ ± Q(−)

ζ , 2Qζ + Q(+)
ζ ± Q(−)

ζ ),

(23)

for ζ = (yz, zx, xy). Thus rank-0–4 multipoles can contribute
to σ MC.

For the point group D4h, the multipoles belonging to the
totally symmetric irreducible representation up to rank 4 are
Q0, Qu, Q4, and Q4u. Then, nonzero components of σ MC under
D4h are given by

σ MC(D4h) =

⎛
⎜⎜⎜⎜⎜⎜⎝

Q1 Q3 Q4 0 0 0
Q3 Q1 Q4 0 0 0
Q5 Q5 Q2 0 0 0
0 0 0 Q6 0 0
0 0 0 0 Q6 0
0 0 0 0 0 Q7

⎞
⎟⎟⎟⎟⎟⎟⎠

, (24)

where

Q1 = 4Q0 + Q′
0 + Q̃u + 2Q4 − Q4u, (25)

Q2 = 4Q0 + Q′
0 − 2Q̃u + 2Q4 + 2Q4u, (26)

Q3 = −2Q0 + Q′
0 − Q̃(+)

u − Q̃(−)
u − Q4 + 2Q4u, (27)

Q4 = −2Q0 + Q′
0 + Q̃(+)

u − Q4 − Q4u, (28)

Q5 = −2Q0 + Q′
0 + Q̃(−)

u − Q4 − Q4u, (29)

Q6 = 3Q0 + 3Qu − Q4 − Q4u, (30)

Q7 = 3Q0 − 6Qu − Q4 + 2Q4u. (31)

There are seven independent components of σ MC.
For the point group C4h, the electric toroidal octupole Gα

z
and electric hexadecapole Qα

4z belong to the totally symmetric
irreducible representation in addition to the electric toroidal
dipole Gz. Then, the additional nonzero components of σ MC

are given by

σ MC(FAO) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 G2

0 0 0 0 0 −G2

0 0 0 0 0 0
0 0 0 0 −G3 0
0 0 0 G3 0 0

G1 −G1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(32)

where G1 = −(2Gz − Gα
z − Qα

4z ), G2 = 2Gz − Gα
z + Qα

4z,
and G3 = Gz + 2Gα

z . Thus σ MC(FAO) has three independent
components: σ MC

xy;xx = −σ MC
xy;yy, σ MC

xx;xy = −σ MC
yy;xy, and

σ MC
zx;yz = −σ MC

yz;zx. We focus on σ MC
xy;xx in the following

calculations, since other components, σ MC
xx;xy and σ MC

zx;yz,
also show a similar behavior to σ MC

xy;xx.

B. Numerical results

We calculate σ MC by using the Kubo formula in Eq. (15),
where the effect of the magnetic field is included in the
Hamiltonian. In contrast to the unconventional Hall effect,
the intraband process proportional to 1/δ contributes to the
magnetoconductivity tensor. Figure 5(a) shows the Hx depen-
dence of σ MC

xy (Hx ) in the metallic ferroaxial ordered state at
ne = 2 for λ = 0 and 2. Similar to the unconventional Hall
effect in Sec. III B, σ MC

xy (Hx ) becomes nonzero for Hx �= 0
irrespective of λ. On the other hand, it is the even function of
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FIG. 5. Hx dependence of σ MC
xyxx at λ = 2 for (a) ne = 2 and

(b) ne = 4.

Hx owing to the opposite time-reversal parity of σ H. Indeed,
the essential model parameters of σ MC

xy (Hx ) are obtained in the
form of V H2m

x , as shown in Appendix A. These features are
common to the insulating ferroaxial ordered state, as shown in
Fig. 5(b).

V. SUMMARY

To summarize, we have investigated metallic ferroaxial
ordering, which is characterized by mirror symmetry breaking
without the breaking of spatial inversion and time-reversal
symmetries, by focusing on its transport property in the exter-
nal magnetic field. We analyzed a fundamental five d-orbital
model to include the electric toroidal dipole, electric toroidal
octupole, and electric hexadecapole degrees of freedom corre-
sponding to the ferroaxial moment under the tetragonal lattice
structure. As a result, we find three characteristic features
under the magnetic field. First, the electric toroidal dipole is
induced by the in-plane magnetic field. Second, the uncon-
ventional Hall effect is induced as an odd function of the
applied magnetic field. Third, the magnetoconductivity as an
even function of the applied magnetic field occurs. In all the
cases, we derive the essential model parameters out of the

hoppings, spin–orbit coupling, and crystalline electric field.
Our results indicate that the metallic ferroaxial ordered state
becomes the source of unconventional magnetotransport phe-
nomena in which the spin-orbit coupling is not necessary; it is
noted that similar transport phenomena can be also expected
in the insulating ferroaxial ordered state by applying an ac
electric field. The present transport property can be detected
in various materials without mirror symmetry parallel to the
ferroaxial moment, such as Co3Nb2O8 [9], CaMn7O12 [10],
RbFe(MoO4)2 [11,12], NiTiO3 [12–15], Ca5Ir3O12 [16–18],
BaCoSiO4 [20], K2Zr(PO4)2 [21], Na2Hf(BO3)2 [22], and
Na-superionic conductors [23]. By using tight-binding model
parameters obtained from density functional theory (DFT)
calculations, one can quantitatively evaluate the transport ten-
sors in these materials. Since such model parameters were
obtained for Ca5Ir3O12 [38], it is intriguing to examine the
transport behavior in the ferroaxial system, which is left for
future study.
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APPENDIX A: ESSENTIAL MODEL PARAMETERS

1. Hamiltonian in terms of electronic multipoles

In this section, we present the model Hamiltonian ex-
pressed as the linear combination of the symmetry-adapted
multipole basis (SAMB) [41,50], which enables us to clarify
the hidden multipole degrees of freedom in the present sys-
tem. First, we introduce the atomic multipole basis defined
in the spinful d orbitals at a single site and the momentum
multipole basis defined as the function of the wave vector k
[28,29,51]. Then, we show that the SAMB is decomposed as
the linear combination of the products of these two multipole
bases.

a. Atomic multipole basis

Let us first introduce the atomic multipole basis within
the spinful d orbitals. There are 25 (75) independent spin-
less (spinful) atomic multipoles. Here, we only show the
multipoles that appeared in the Hamiltonian and some rele-
vant ones discussed in the main text, Qα

4z, Q′α
4z, Gz, and Gα

z .
The explicit expressions of these multipoles are summarized
in Table II and their matrix elements in the five d orbitals
(du, dv, dyz, dzx, dxy) are given by
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TABLE II. Operator expressions of the atomic multipole basis in the point group D4h. Only the multipoles appearing in the Hamiltonian
and some relevant ones are summarized. E, M, ET, and MT stand for electric, magnetic, electric toroidal, and magnetic toroidal, respectively.
The superscript (a) denotes the atomic multipole. l and σ/2 represent the dimensionless orbital and spin angular-momentum operators. The
upper and lower parts separated by the horizontal line represent the spinless and spinful multipoles, respectively.

Rank Type Irrep Symbol Expression

0 E A+
1g Q(a)

0 1

1 M A−
2g M (a)

z lz

M E−
g M (a)

x , M (a)
y lx, ly

2 E A+
1g Q(a)

u 3z2 − r2

E B+
1g Q(a)

v x2 − y2

E E+
g Q(a)

yz , Q(a)
zx yz, zx

E B+
2g Q(a)

xy xy

3 M E−
g M (a)

3a , M (a)
3b (x2 − y2)lx − 2xyly, 2xylx + (x2 − y2)ly

M E−
g M (a)

3u , M (a)
3v (5z2 − r2)lx + 2x(5zlz − r · l ), (5z2 − r2)ly + 2y(5zlz − r · l )

4 E A+
1g Q(a)

4 x4 − 3x2y2 − 3x2z2 + y4 − 3y2z2 + z4

E A+
1g Q(a)

4u −(x4 − 12x2y2 + 6x2z2 + y4 + 6y2z2 − 2z4)

E B+
1g Q(a)

4v (x2 − y2)(x2 + y2 − 6z2)

E A+
2g Qα(a)

4z xy(x2 − y2)

E B+
2g Qβ(a)

4z xy(7z2 − r2)

E E+
g Qα(a)

4x , Qα(a)
4y yz(y2 − z2), zx(z2 − x2)

E E+
g Qβ(a)

4x , Qβ(a)
4y yz(7x2 − r2), zx(7y2 − r2)

0 E A+
1g Q′(a)

0 l · σ

1 ET A+
2g G(a)

z lxσy − lyσx

3 ET A+
2g Gα(a)

z M (a)
3u σy − M (a)

3v σx

4 E A+
2g Q′α(a)

4z M (a)
3a σy + M (a)

3b σx

Q(a)
0 = 1√

10

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

σ0,

M (a)
z =

√
5

10

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 −2i
0 0 0 i 0
0 0 −i 0 0
0 2i 0 0 0

⎞
⎟⎟⎟⎟⎠

σ0, M (a)
x =

√
5

10

⎛
⎜⎜⎜⎜⎝

0 0
√

3i 0 0
0 0 i 0 0

−√
3i −i 0 0 0

0 0 0 0 i
0 0 0 −i 0

⎞
⎟⎟⎟⎟⎠

σ0,

M (a)
y =

√
5

10

⎛
⎜⎜⎜⎜⎝

0 0 0 −√
3i 0

0 0 0 i 0
0 0 0 0 −i√
3i −i 0 0 0

0 0 i 0 0

⎞
⎟⎟⎟⎟⎠

σ0,

Q(a)
u =

√
7

14

⎛
⎜⎜⎜⎜⎝

2 0 0 0 0
0 −2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 −2

⎞
⎟⎟⎟⎟⎠

σ0, Q(a)
v =

√
7

14

⎛
⎜⎜⎜⎜⎝

0 −2 0 0 0
−2 0 0 0 0
0 0 −√

3 0 0
0 0 0

√
3 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

σ0,

Q(a)
yz =

√
7

14

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 0 0
0 0 −√

3 0 0
1 −√

3 0 0 0
0 0 0 0

√
3

0 0 0
√

3 0

⎞
⎟⎟⎟⎟⎟⎠

σ0, Q(a)
zx =

√
7

14

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 1 0
0 0 0

√
3 0

0 0 0 0
√

3
1

√
3 0 0 0

0 0
√

3 0 0

⎞
⎟⎟⎟⎟⎟⎠

σ0,

085124-9



HAYAMI, OIWA, AND KUSUNOSE PHYSICAL REVIEW B 108, 085124 (2023)

Q(a)
xy =

√
7

14

⎛
⎜⎜⎜⎜⎝

0 0 0 0 −2
0 0 0 0 0
0 0 0

√
3 0

0 0
√

3 0 0
−2 0 0 0 0

⎞
⎟⎟⎟⎟⎠

σ0,

M (a)
3a =

√
2

4

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 −i 0 0
0 i 0 0 0
0 0 0 0 i
0 0 0 −i 0

⎞
⎟⎟⎟⎟⎠

σ0, M (a)
3b =

√
2

4

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 i 0
0 0 0 0 i
0 −i 0 0 0
0 0 −i 0 0

⎞
⎟⎟⎟⎟⎠

σ0,

M (a)
3u =

√
10

20

⎛
⎜⎜⎜⎜⎜⎝

0 0 2i 0 0
0 0 −√

3i 0 0
−2i

√
3i 0 0 0

0 0 0 0 −√
3i

0 0 0
√

3i 0

⎞
⎟⎟⎟⎟⎟⎠

σ0, M (a)
3v =

√
10

20

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 −2i 0
0 0 0 −√

3i 0
0 0 0 0

√
3i

2i
√

3i 0 0 0
0 0 −√

3i 0 0

⎞
⎟⎟⎟⎟⎟⎠

σ0,

Q(a)
4 =

√
15

30

⎛
⎜⎜⎜⎜⎝

3 0 0 0 0
0 3 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 0 0 −2

⎞
⎟⎟⎟⎟⎠

σ0, Q(a)
4u =

√
21

42

⎛
⎜⎜⎜⎜⎝

3 0 0 0 0
0 −3 0 0 0
0 0 −2 0 0
0 0 0 −2 0
0 0 0 0 4

⎞
⎟⎟⎟⎟⎠

σ0,

Q(a)
4v =

√
7

14

⎛
⎜⎜⎜⎜⎝

0 −√
3 0 0 0

−√
3 0 0 0 0

0 0 2 0 0
0 0 0 −2 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

σ0,

Qα(a)
4z = 1

2

⎛
⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0

⎞
⎟⎟⎟⎟⎠

σ0,

Q′(a)
0 = 1√

3
M (a) · σ,

G(a)
z = 1√

2

(
M (a)

x σy − M (a)
y σx

)
, Gα(a)

z = 1√
2

(
M (a)

3u σy − M (a)
3v σx

)
, Q′α(a)

4z = 1√
2

(
M (a)

3a σy + M (a)
3b σx

)
, (A1)

where the superscript (a) denotes the atomic multipole, σi (i =
x, y, z) are the Pauli matrices, and σ0 is the 2×2 identity matrix
in spin space. In this Appendix, these atomic multipoles are
normalized as Tr(X (a)

i Y (a)
j ) = δXY δi j (X,Y = Q/M/G).

b. Momentum multipole basis

To decompose the real and imaginary parts of the nearest-
neighbor hopping in the xy plane, we introduce the electric
and magnetic toroidal momentum multipole bases as

A+
1g : Q(1)

0 (k) = cos(kx ) + cos(ky), (A2)

B+
1g : Q(1)

v (k) = cos(kx ) − cos(ky), (A3)

E−
u : T (1)

x (k) =
√

2 sin(kx ), T (1)
y (k) =

√
2 sin(ky), (A4)

where the superscript (1) denotes the nearest-neighbor hop-
ping within the xy plane.

Similarly, the electric and magnetic toroidal momentum
multipole bases for the nearest-neighbor hoppings along the
z direction are given by

A+
1g : Q(2)

0 (k) =
√

2 cos(kz ), (A5)

A−
2u : T (2)

z (k) =
√

2 sin(kz ), (A6)

and those for the next-nearest-neighbor hoppings along the z
direction are given by

A+
1g : Q(3)

0 (k) =
√

2[cos(kx ) + cos(ky)] cos(kz ), (A7)

B+
1g : Q(3)

v (k) =
√

2[cos(kx ) − cos(ky)] cos(kz ), (A8)

E+
g : Q(3)

yz (k) = 2 sin(ky) sin(kz ),

Q(3)
zx (k) = 2 sin(kz ) sin(kx ), (A9)
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A−
2u : T (3)

z (k) =
√

2[cos(kx ) + cos(ky)] sin(kz ), (A10)

B−
2u : T (3)

3v (k) =
√

2[cos(kx ) − cos(ky)] sin(kz ), (A11)

E−
u : T (3)

x (k) = 2 sin(kx ) cos(kz ),

T (3)
y (k) = 2 sin(ky) cos(kz ), (A12)

where the superscripts (2) and (3) represent the nearest-
neighbor and next-nearest-neighbor hoppings along the z
direction. The momentum multipoles are normalized as∑

k Tr[X (n)
i (k)Y (n)

j (k)] = δXY δi j (X,Y = Q/T, n = 1, 2, 3).

c. Multipole decomposition of the tight-binding Hamiltonian

Next, we express the model Hamiltonian by using the
atomic and momentum multipoles given in Secs. A 1 a and
A 1 b, respectively [41,51–53]. Through this procedure, we
can clarify the microscopic multipole degrees of freedom in
the present system.

Let us consider the total Hamiltonian given in the main
text, h(k) ≡ Ht +HSOC +HCEF +HV . The crystalline elec-
tric field HCEF is expressed by using the spinless atomic
multipoles belonging to the A+

1g irreducible representation as

HCEF = ε1Q(a)
u + ε2Q(a)

4 + ε3Q(a)
4u . (A13)

By using �1, �2, and �3 defined in the main text, ε1, ε2, and
ε3 are expressed as follows:

ε1 = 1√
7

(−3�1 − 3�2 + �3),

ε2 =
√

15

3
(�2 + �3),

ε3 = 1√
21

(6�1 − �2 + 5�3). (A14)

The atomic spin–orbit coupling, HSOC = (λ/2)l · σ, is repre-
sented by using the spinful atomic monopole Q′(a)

0 in A+
1g as

HSOC = 2
√

15λQ′(a)
0 . (A15)

Similarly, the symmetry-breaking term HV in D4h is rep-
resented by using the spinless atomic hexadecapole Qα(a)

4z

belonging to A+
2g irreducible representation,

HV = 2V Qα(a)
4z . (A16)

Since the kinetic energy term, Ht = H (1)
t +H (2)

t +H (3)
t ,

is also fully symmetric for all the symmetry operations in the
point group D4h, only the independent products of the atomic
and momentum multipoles belonging to A+

1g irreducible rep-
resentation contribute to Ht . Considering A±

1g ⊗ A±
1g = A±

2g ⊗
A±

2g = A+
1g, we obtain

H (1)
t = t1Q(a)

0 Q(1)
0 (k) + t2Q(a)

u Q(1)
0 (k) + t3Q(a)

v Q(1)
v (k) + t4Q(a)

4 Q(1)
0 (k) + t5Q(a)

4u Q(1)
0 (k) + t6Q(a)

4v Q(1)
v (k),

H (2)
t = t7Q(a)

0 Q(2)
0 (k) + t8Q(a)

u Q(2)
0 (k) + t9Q(a)

4 Q(2)
0 (k) + t10Q(a)

4u Q(2)
0 (k),

H (3)
t = t11Q(a)

0 Q(3)
0 (k) + t12Q(a)

u Q(3)
0 (k) + t13Q(a)

v Q(3)
v (k) + t14

1√
2

(
Q(a)

yz Q(3)
yz (k) + Q(a)

zx Q(3)
zx (k)

) + t15Q(a)
4 Q(3)

0 (k) + t16Q(a)
4u Q(3)

0 (k)

+ t17Q(a)
4v Q(3)

v (k) + t18
1√
2

(
Qα(a)

4x Q(3)
yz (k) + Qα(a)

zx Q(3)
zx (k)

) + t19
1√
2

(
Qβ(a)

4x Q(3)
yz (k) + Qβ(a)

zx Q(3)
zx (k)

)
. (A17)

By using the Slater-Koster parameters given in the main text,
t1σ , t1π , tz1σ , tz1π , tz2σ , tz2π , ti (i = 1–19) are represented
by

t1 = 4
√

5

5
(2t1σ + t1π ),

t2 = −
√

14

7
(4t1σ + t1π ),

t3 = −
√

42

7
(4t1σ + t1π ),

t4 = 4
√

30

15
(3t1σ − t1π ),

t5 = −2
√

42

21
(3t1σ − t1π ),

t6 = −2
√

14

7
(3t1σ − t1π ), (A18)

t7 =
√

10

5
(2tz1π + tz1σ ),

t8 = 2

√
7

7
(tz1π + tz1σ ),

t9 = −
√

15

15
(4tz1π − 3tz1σ ),

t10 = −
√

21

21
(4tz1π − 3tz1σ ), (A19)

t11 = 2
√

10

5
(2tz2π + tz2σ ),

t12 =
√

7

7
(tz2π + tz2σ ),

t13 = −
√

21

7
(tz2π + tz2σ ),

t14 = 2
√

21

7
(tz2π + tz2σ ),
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t15 =
√

15

30
(4tz2π − 3tz2σ ),

t16 = 5
√

21

84
(4tz2π − 3tz2σ ),

t17 = −5
√

7

28
(4tz2π − 3tz2σ ),

t18 = 0,

t19 =
√

7

7
(4tz2π − 3tz2σ ). (A20)

Notably, although there are 19 independent parameters
allowed by the symmetry, only the six independent Slater-
Koster parameters appear in the hopping Hamiltonian. This
is because the Slater-Koster approach assumes the axial sym-
metry along the bond direction and neglects the surrounding
environment of the actual system.

2. Essential model parameters in response tensors

In this section, we show the essential model parameters to
give a nonzero thermal average of the electric toroidal dipole
under the external magnetic field along the x direction Hx �= 0
and the linear electric conductivity tensors under the exter-
nal magnetic fields, by using the systematic analysis method
given in Refs. [51] and [42], which has been used to analyze
the essential model parameters of nonlinear (spin) transport
[42,54–58] and nonreciprocal magnon dispersion [59].

a. Thermal average of the electric toroidal dipole

Let us begin with the essential model parameters for the
thermal average of the electric toroidal dipole G(a)

z given in
Eq. (8) in the main text. The essential model parameters for
〈G(a)

z 〉 �= 0 under Hx �= 0 are extracted by analytically eval-
uating the low-order contributions of the following quantity
[42,51]:

�i
(
G(a)

z

) =
∑

k

Tr
[
G(a)

z hi(k)
]
, (A21)

where hi(k) denotes the ith power of the Hamiltonian matrix
including the Zeeman coupling with Hx �= 0 at wave vector k.
The summation of the momentum k is taken over a 103 grid.

The lowest- and next-lowest-order contributions i = 5 and
i = 6 are explicitly given by

�5
(
G(a)

z

) = −120V H4
x , (A22)

�6
(
G(a)

z

) = −6V λ

× [
100H4

x +(−8t1π t1σ−tz2π tz2σ − 32t2
1σ−t2

z2σ

)
H2

x

]
.

(A23)

As a result, V is the essential model parameter for 〈G(a)
z 〉 �= 0

under Hx �= 0. Notably, the second term in Eq. (A23) indicates
that the coupling between V and λ gives rise to the additional
contributions proportional to H2

x in 〈G(a)
z 〉. These results are

consistent with the numerical calculation results shown in
Figs. 2(a) and 2(b) in the main text.

b. Unconventional Hall conductivity tensors

We also identify the essential model parameters in the
unconventional Hall conductivity tensors σ H

μν (Hx ) given in
Eq. (11) in the main text by evaluating the following quantity
[42]:

�i j
μν (Hη ) =

∑
k

Tr[Jμkhi(k)Jνkh j (k)], (A24)

where Jμk is the μ directional electric current operators at
k and h(k) includes the Zeeman coupling with Hη �= 0. The
summation of the momentum k is taken over a 103 grid.
Since the essential model parameters are contained in any
pairs of (i, j) in Eq. (A24), we only show several lowest-order
contributions to Eq. (A24).

First, we focus on the �
i j
zx(Hx ) that corresponds to the

unconventional Hall conductivity tensor σ H
zx (Hx ). The lowest-

order contributions to Im[�i j
zx(Hx )] = −Im[�i j

xz(Hx )] that are
proportional to Hx and H3

x are explicitly given by

Im
[
�03

zx (Hx )
] = − 3

√
2

10
V Hx(8t1π tz1π tz2π − 3t1π tz1π tz2σ

− 12t1σ tz1π tz2σ −12t1σ tz1σ tz2π−6t1σ tz1σ tz2σ ),
(A25)

Im
[
�05

zx (Hx )
] = − 3

√
2

10
V H3

x (148t1π tz1π tz2π − 36t1π tz1π tz2σ

+ 12t1π tz1σ tz2π + 9t1π tz1σ tz2σ −138t1σ tz1π tz2σ

− 180t1σ tz1σ tz2π − 72t1σ tz1σ tz2σ ). (A26)

We find that all the terms in Im[�i j
zx(Hx )] are proportional to

V H2m+1
x and hence σ H

zx (Hx ) is an odd function of Hx:

σ H
zx (Hx )

= V
∑
m=0

H2m+1
x

× Fm(V, λ,�1,�2,�3, t1π , t1σ , tz1π , tz1σ , tz2π , tz2σ ),
(A27)

where Fm is a function of the parameters. Therefore, the essen-
tial model parameters for σ H

zx (Hx ) �= 0 are V under Hx �= 0.
These results are consistent with the numerical calculation
results shown in Figs. 3(a) and 3(b) in the main text.

On the other hand, the lowest-order contributions to
Im[�i j

yz(Hx )] = −Im[�i j
zy(Hx )] that correspond to the conven-

tional Hall conductivity tensor σ H
yz (Hx ) are explicitly given by

Im
[
�02

yz (Hx )
] = −3

√
2

5
Hx(4t1π tz1π tz2π + 3t1π tz1σ tz2σ

+ 12t1σ tz1π tz2σ + 12t1σ tz1σ tz2σ ), (A28)

Im
[
�04

yz (Hx )
] = −12

√
2

5
H3

x (8t1π tz1π tz2π + 9t1π tz1σ tz2σ

+ 36t1σ tz1π tz2σ + 39t1σ tz1σ tz2σ ). (A29)

We find that all the terms in Im[�i j
yz(Hx )] are proportional

to the odd power of Hx. Unlike the unconventional Hall
conductivity tensor σ H

zx (Hx ), V is not essential for the con-
ventional Hall conductivity tensor σ H

yz (Hx ) �= 0. These results
are consistent with the numerical calculation results shown in
Figs. 4(a) and 4(b) in the main text.
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c. Magnetoconductivity tensors

We show here the essential model parameters in the mag-
netoconductivity tensors σ MC

μν (H ) for Hη = Hγ = H given in
Eq. (15) in the main text by evaluating Eq. (A24).

First, we focus on the �
i j
xy(Hx ) that corresponds to the mag-

netoconductivity tensor σ MC
xy (Hx ) by setting η = γ = x. The

lowest-order contributions to Re[�i j
xy(Hx )] = Re[�i j

yx(Hx )] that
are proportional to H2

x and H4
x are explicitly given by

Re
[
�05

xy (Hx )
] = − 1

512
V H2

x

(
2560t2

1π t2
z2π − 1536t2

1π tz2π tz2σ − 192t2
1π t2

z2σ + 6144t1π t1σ t2
z2π − 14592t1π t1σ tz2π tz2σ

− 8448t1π t1σ t2
z2σ + 6144t2

1σ t2
z2π − 30720t2

1σ tz2π tz2σ − 11520t2
1σ t2

z2σ + 768t4
z2π

−1728t3
z2π tz2σ − 4632t2

z2π t2
z2σ − 1644tz2π t3

z2σ − 135t4
z2σ

)
, (A30)

Re
[
�07

xy (Hx )
] = − 3

256
V H4

x

(
12544t2

1π t2
z2π − 7296t2

1π tz2π tz2σ − 1248t2
1π t2

z2σ + 29696t1π t1σ t2
z2π

− 68224t1π t1σ tz2π tz2σ − 39552t1π t1σ t2
z2σ + 26624t2

1σ t2
z2π − 145408t2

1σ tz2π tz2σ

−52992t2
1σ t2

z2σ + 4544t4
z2π − 8640t3

z2π tz2σ − 23328t2
z2π t2

z2σ − 8256tz2π t3
z2σ − 747t4

z2σ

)
. (A31)

We find that all the terms in Re[�i j
xy(Hx )] are proportional to V H2m

x and hence σ MC
xy (Hx ) is an even function of Hx:

σ MC
xy (Hx ) = V

∑
m=0

H2m
x Fm(V, λ,�1,�2,�3, t1π , t1σ , tz1π , tz1σ , tz2π , tz2σ ), (A32)

where Fm is a function of the parameters. Therefore, the essential model parameters for σ MC
xy (Hx ) �= 0 are V under Hx �= 0.

These results are consistent with the numerical calculation results shown in Figs. 5(a) and 5(b) in the main text.
Finally, let us discuss the lowest-order contributions to Re[�i j

zx(H )] = Re[�i j
xz(H )] that correspond to the magnetoconductivity

tensor σ MC
zx (H ) for Hx = Hz = H and are explicitly given by

Re
[
�02

zx (H )
] = −72

5
H2(t2

z2π + t2
z2σ

)
, (A33)

Re
[
�04

zx (H )
] = −144

5
H4

(
11t2

z2π + 10t2
z2σ

)
. (A34)

Unlike the magnetoconductivity tensor σ MC
xy (Hx ), σ MC

zx (H ) �= 0 can be realized without the ferroaxial ordering term V .

There are other contributions, Im[�i j
zx(H )] = −Im[�i j

xz(H )], that correspond to the unconventional Hall conductivity tensor
σ H

zx (Hx ) with H �= 0. The lowest-order contributions are explicitly given by

Im
[
�03

zx (H )
] = −3

√
2

10
V H (8t1π tz1π tz2π − 3t1π tz1π tz2σ − 12t1σ tz1π tz2σ − 12t1σ tz1σ tz2π − 6t1σ tz1σ tz2σ ), (A35)

Im
[
�05

zx (H )
] = −3

√
2

10
V H3(296t1π tz1π tz2π − 90t1π tz1π tz2σ + 12t1π tz1σ tz2π + 9t1π tz1σ tz2σ + 48t1σ tz1π tz2π − 366t1σ tz1π tz2σ

−360t1σ tz1σ tz2π − 162t1σ tz1σ tz2σ ). (A36)
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FIG. 6. ω dependence of σ H
zx (Hx ) at λ = 2 for (a) ne = 0.2 and

(b) ne = 6.

Similar to Eq. (A27), all the terms in Im[�i j
zx(H )] are propor-

tional to V H2m+1.

APPENDIX B: OPTICAL UNCONVENTIONAL
HALL CONDUCTIVITY

We show the optical unconventional Hall conductivity
σ H

zx (Hx ) by considering finite frequency ω in Fig. 6. The data
are calculated at fixed Hx = 0.3 and λ = 2 for ne = 0.2 in
Fig. 6(a) and ne = 6 in Fig. 6(b). As shown in Figs. 6(a)
and 6(b), σ H

zx (Hx ) becomes nonzero for finite frequency ω,
although it shows a complicated behavior including the sign
change with changing ω. In the insulating case in Fig. 6(b),
σ H

zx (Hx ) remains zero for a low frequency smaller than the
band gap, but it becomes nonzero when the frequency is larger
than the band gap. Thus the optical unconventional Hall con-
ductivity is one of the measurements with which to identify
the ferroaxial ordering when the materials are insulating.
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