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Using symmetry analysis and a semiclassical Boltzmann equation, we theoretically explore the planar Hall
effect (PHE) in three-dimensional materials. We demonstrate that PHE is a general phenomenon that can occur
in various systems regardless of band topology. Both the Lorentz force and Berry curvature effects can induce
significant PHE, and the leading contributions of both effects linearly depend on the electric and magnetic
fields. The Lorentz force and Berry curvature PHE coefficient possess only antisymmetric and symmetric parts,
respectively. Both contributions respect the same crystalline symmetry constraints but differ under time-reversal
symmetry. Remarkably, for topological Weyl semimetals, the Berry curvature PHE coefficient is a constant that
does not depend on the Fermi energy, while the Lorentz force contribution linearly increases with the Fermi
energy, resulting from the linear dispersion of the Weyl point. Furthermore, we find that the PHE in topological
nodal line semimetals is mainly induced by the Lorentz force, as the Berry curvature in these systems vanishes
near the nodal line. Our study not only highlights the significance of the Lorentz force in PHE, but also reveals
its unique characteristics, which will be beneficial for determining the Lorentz force contribution experimentally.
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I. INTRODUCTION

The study of magnetotransport has always attracted exten-
sive attention in condensed matter physics. Due to the Lorentz
force, electrons experience transverse force perpendicular to
their moving direction under a magnetic field. Hence, for the
systems with crossed electric and magnetic fields, it is easy to
expect that there will exist a transverse current perpendicular
to both electric and magnetic fields, known as the ordinary
Hall effect [1,2]. Besides, there are several other related phe-
nomena, such as the anomalous Hall effect, spin Hall effect,
and quantum (spin) Hall effect [3–7]. All of these Hall effects
are crucial for both theoretical investigations and practical
applications [3–10].

Interestingly, it has been discovered that a coplanar mag-
netic field and electric field can also induce a significant
transverse current [11–14]. Since the exerted electric field,
magnetic field, and Hall current all lie in the same plane, this
phenomenon is called the planar Hall effect (PHE) [11–25].
Compared to the ordinary Hall effect, it generally is difficult
to develop an intuitive picture to understand the PHE. Pal
et al. [26] investigated the longitudinal magnetoresistance
induced by the Lorentz force and showed that certain kinds
of anisotropic spectrum may be relevant to the PHE.

In the past decade, with the discovery of graphene and
topological Weyl semimetals, the field of topological mate-
rials has undergone rapid development [27–29]. Besides the
Weyl and Dirac points, the conduction and valence bands
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of crystals can form many different kinds of degeneracies
around the Fermi energy, such as triple point, nodal line,
and nodal surface [30–38]. Around these degeneracies, the
electronic band generally exhibits significant Berry curvature
and nontrivial band topology [28,29], leading to various exotic
properties [39–50]. The Berry curvature also has an important
influence on the transport properties of systems [2]. Nandy
et al. [51] have shown that the PHE can naturally appear in
Weyl semimetals as a result of chiral anomaly, with the PHE
conductivity depending quadratically on the magnetic field.
This quadratic behavior has also been reported in many other
works, while with different origins [52,53]. However, in the
regime of strong B field, the chiral anomaly can lead to a
linear dependence of the PHE on the field [54,55]. Besides, for
the systems with lower symmetry, such as anisotropic Weyl
cone, the PHE conductivity also scales with the first order of
magnetic field [56–58]. The PHE has been experimentally ob-
served in many topological semimetals, such as PbTe2, ZrTe5,
VAl3, and WTe2 [59–71]. However, there remains a lack of
systematic investigation to show under which condition the
PHE can or cannot occur. Besides, current research on PHE is
generally based on Weyl semimetals and certain topological
insulators [51,53,56–58,72–78]. In contrast, the nodal line
naturally exhibits strong anisotropic spectrum [35], suggest-
ing that for PHE, the Lorentz force may play a more important
role in nodal line systems than that in Weyl semimetals. In
this work, we perform a systematic symmetry analysis of
the PHE conductivity, and show that linear PHE can exist in
various systems with and without band topology. Then via the
semiclassical Boltzmann equation, we expand the PHE con-
ductivity to the linear order of the magnetic field, and find that
both the Lorentz force and Berry curvature can cause linear
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TABLE I. The constraints on χ even
yx and χ odd

yx for some representative symmetry operations. “�” (“×”) means the element is symmetry
allowed (forbidden) by the operation.

T P PT C2x C2y C2z Mx My Mz C3z C4z C6z S3z S4z S6z

χ odd
yx,x × � × × � × × � × � × × × × �

χ even
yx,x � � � × � × × � × � × × × × �

χ odd
yx,y × � × � × × � × × � × × × × �

χ even
yx,y � � � � × × � × × � × × × × �

PHE. Particularly, the Berry curvature contribution to linear
PHE vanishes when the systems have time-reversal symme-
try (T ). This means that even in topological semimetals, the
Lorentz force may dominate linear PHE, as long as the system
has T symmetry. For general cases, both Berry curvature and
Lorentz force contribute to PHE. We find that for the Weyl
point, the Berry curvature (Lorentz force) contribution domi-
nates linear PHE when the Fermi energy is close to (far from)
the Weyl point, as the former is a constant that does not depend
on the Fermi energy, while the latter linearly increases with
the Fermi energy. However, for the nodal line systems, the
Lorentz force contribution always dominates the linear PHE
regardless of the position of Fermi level. Our results provide
important insights into the PHE in topological semimetals and
are ready for experimental examination.

This paper is organized as follows. In Sec. II, we provide
a systematic symmetry analysis of the PHE conductivity and
summarize all the results in a table. In Sec. III, we derive the
expressions for PHE conductivity based on the semiclassical
Boltzmann transport theory. The specific numerical calcula-
tions of different models are described in Sec. IV. Finally,
Sec. V contains a brief summary and discussion.

II. GENERAL ANALYSIS

Without loss of generality, we assume that the exerted
electric field E , magnetic field B, and Hall current all lie in the
x-y plane, and the x axis aligns with the electric field direction.
According to the linear response theory, the PHE conductivity
σyx is obtained by [3]

jy = σyx(Bx, By)Ex, (1)

where jy is the Hall current density, and Bx = B cos θ and
By = B sin θ with θ denoting the angle between x axis and
B field. When the magnetic field is weak, we can expand
σyx(Bx, By) in the powers of Bx(y). Up to the linear order,
σyx(Bx, By) can be approximately written as

σyx = σ 0
yx + χyx · B ≡ σ 0

yx + χyx,xBx + χyx,yBy. (2)

σ 0
yx has no dependence on B, resulting from the classical

Drude conductivity and intrinsic anomalous Hall conductivity,
while χyx · B corresponds to the magnetoconductivity induced
by the magnetic field. Generally, the coefficient χyx in Eq. (2)
is a function of the relaxation time τ . Hence, we can further
divide it into two parts:

χyx = χeven
yx + χodd

yx , (3)

where χeven
yx (χodd

yx ) is an even (odd) function of τ . Then, the
PHE conductivity can be rewritten as

σyx = σ 0
yx + σ even

yx + σ odd
yx , (4)

with σ even
yx = χeven

yx · B and σ odd
yx = χodd

yx · B.
The expressions of χeven

yx and χodd
yx should respect the mag-

netic point group symmetry of systems. It should be stressed
that the relaxation time τ in χyx reverses its sign under T
symmetry, and the magnetic symmetry operators OT with
O a spatial operator [3,42]. We summarize the behaviors of
χeven(odd)

yx under different symmetry operations in Table I. One
finds that χeven

yx and χodd
yx respect the same spatial symmetry

constraints, and only a few spatial operations like C2z and Mz

can completely suppress them (Notice that C2
4z = C3

6z = S2
4z =

C2z and S3
3z = (C6zP )3 = Mz). In addition, χodd

yx vanishes in
the nonmagnetic systems. Because the symmetry analysis is
irrelevant to the band topology, the results in Table I clearly
show that the PHE can be realized in a wide variety of systems
regardless of the band topology.

III. SEMICLASSICAL THEORY OF PHE CONDUCTIVITY

We then study the microscopic origin of the PHE con-
ductivity σyx based on the semiclassical Boltzmann transport
theory. In the presence of Berry curvature, the Bloch electrons
under weak electric and magnetic fields can be described by
the following semiclassical equations of motion [2,79]:

ṙ = D(B,�k)
[
ṽ + e

h̄
E × �k + e

h̄
(ṽ · �k)B

]
, (5)

k̇ = D(B,�k)

[
− e

h̄
E − e

h̄
ṽ × B − e2

h̄2 (E · B)�k

]
, (6)

where ṙ and k̇ are the time derivatives of position r and wave
vector k, D(B,�k) ≡ [1 + e(B · �k)/h̄]−1 is the modification
of phase space volume, �k = −2εαβγ Im〈∂kα

u(k)|∂kβ
u(k)〉 de-

notes the Berry curvature with εαβγ the Levi-Civita tensor,
u(k) the cell-periodic part of Bloch function, and ṽ = ∂kε̃/h̄
is the velocity of electrons. ε̃(k) = ε(k) − m · B, ε(k) is the
band dispersion and m is the orbital magnetic moment re-
sults from the semiclassical self-rotation of the electron wave
packet [2]. The electron charge is taken as −e (i.e., e > 0).

The current density is given by [1,2]

J = −e
∫

d3k

(2π )3
D−1ṙ fk(r, t ), (7)

with fk(r, t ) the distribution function, which can be de-
termined by solving the semiclassical Boltzmann transport
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equation,

∂ fk

∂t
+ ṙ · ∂ fk

∂r
+ k̇ · ∂ fk

∂k
=

(
∂ fk

∂t

)
coll

. (8)

The right side of Eq. (8) is known as the collision integral and
generally can be treated by relaxation time approximation [1].
Then, for a homogeneous system in the steady state, where
∂ f /∂t and ∂ f /∂r vanish, Eq. (8) is simplified as

k̇ · ∂ fk

∂k
= − fk − f 0

k

τ
≡ −gk

τ
, (9)

with f 0
k the original Fermi-Dirac distribution function and τ

the relaxation time. In the following calculations, we take the
relaxation time τ as 0.1 ps [51,80–82]. Notice that gk vanishes
when E = 0. Hence, for a weak E field, we can approximately
assume gk = � · E, where � is a function to be determined.
Substituting the expression of gk into Eq. (9), and keeping
only the linear order of E and B (as well as their combination
EiBj), � and the distribution function fk can be determined.
Then, the expression of current density is obtained as

J = e2
∫

[dk]
[
τ h̄v(v · E )∂ε f 0

k − (E × �k) f 0
k

]

− e2τ

∫
[dk][v(∂k(m · B) · E ) + (v · E )∂k(m · B)]∂ε f 0

k

− e3τ

∫
[dk]v(v · E )(B · �k)∂ε f 0

k

+ e3τ

∫
[dk][B(v · E ) + v(B · E )](v · �k)∂ε f 0

k

+ e3τ 2
∫

[dk]v[(v × B) · ∂k(v · E )]∂ε f 0
k , (10)

with
∫

[dk] ≡ − 1
(2π )3 h̄

∫
d3k and v = ∂kε/h̄. This result is

consistent with the previous works [26,56] but it captures all
the terms up to order O(E ) and O(EB). Consequently, the
expressions of the PHE conductivity σyx = σ 0

yx + σ even
yx + σ odd

yx
are

σ 0
yx = e2

∫
[dk]

(
τ h̄vxvy

∂ f 0
k

∂ε
− z

k f 0
k

)
, (11)

which are the classical Drude conductivity and intrinsic
anomalous Hall conductivity, and

σ even
yx = e3τ 2

∫
[dk]

∂ f 0
k

∂ε
vy(v × B) · ∂vx

∂k
, (12)

σ odd
yx = e3τ

∫
[dk]

∂ f 0
k

∂ε

[
− (B · �k)vxvy

− vy

e
∂kx (m · B) − vx

e
∂ky (m · B)

+ (Bxvy + Byvx )(v · �k)

]
. (13)

Clearly, σ odd
yx is induced by the Berry curvature and is an

odd function of τ , as it is in direct proportion to τ . In contrast,
σ even

yx describes the Lorentz force contribution to PHE con-
ductivity and is an even function of τ . This means that under
T symmetry, σ even

yx is invariant while σ odd
yx should reverse its

sign. Hence, for the systems with T symmetry, σ odd
yx vanishes

FIG. 1. (a) Energy spectrum of the single-band model (14) with-
out (with) anisotropic effect. (b) Calculated PHC versus the angle θ

for model (14), using Fermi level EF = 20 meV and the magnetic
field B = 0.5 T. In the calculations, we take the model parameter
m = 0.5 eV−1 · Å−2, A = 1.0 eV · Å2 and the PHC is normalized by
the corresponding longitudinal conductivity without magnetic field
[i.e., σ0 = σxx (B = 0; EF = 20 meV)].

and the leading order of the Berry curvature contribution to
PHE is quadratic. Remarkably, we find that σ odd

yx is symmetric
in its two indices, namely σ odd

yx = σ odd
xy . Moreover, both σ odd

yx

and σ even
yx have the term of ∂ f 0

k /∂ε, indicating that only the
electronic states around the Fermi level have contribution to
them.

IV. MODEL STUDIES

A. Single-band model

To unambiguously demonstrate that the PHE can be in-
duced by Lorentz force, we investigate a single-band model,
where the Berry curvature is definitely zero. Consider a simple
model that meets the symmetry requirements listed in Table I,
for which the Hamiltonian may be written as

H1 = k2

2m
+ Akxkz, (14)

where k2 = k2
x + k2

y + k2
z , m is the effective mass of elec-

tron, and the parameter A is a real number, denoting the
anisotropy of the system [see Fig. 1(a)]. One can check that
the model (14) breaks the C2z symmetry when A is finite.
Hence, PHE can (not) be realized in it when A �= 0 (A = 0).
As shown in Fig. 1(b), this extremely simple model indeed
produces a significant PHE signal with an angular dependence
proportional to cos θ . Since the anisotropy is a common fea-
ture in real materials, one can expect that PHE in most real
materials can be significant and has a period of 2π by varying
the direction of magnetic field in the x-y plane.

B. Weyl semimetals

Although the PHE in Weyl semimetals has been studied
in previous works [51,53,56–58], here we focus on the com-
petition between the Berry curvature and the Lorentz force
contributions to PHE, and show under what conditions the
Berry curvature or the Lorentz force contribution will dom-
inate PHE. For the ideal Weyl point described by k · σ (σs are
Pauli matrices), both σ odd

yx and σ even
yx are zero, due to the high

symmetry of this model. Consequently, the chiral anomaly
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FIG. 2. (a) Band structure of Weyl model (15). (b) Calculated
σ odd

yx and σ even
yx as functions of angle θ , using EF = 50 meV and

B = 0.05 T. (c) Variation of σ odd
yx and σ even

yx with Fermi level with
θ = 3π/4. (d) The density of states (DOS) of Weyl model (15). In
the calculations, we take ω1 = 2.0 eV · Å, v1 = 12.0 eV · Å and the
conductivities in (b) and (c) are normalized by σ0 = σxx (B = 0; EF =
100 meV).

contribution dominates PHE in conventional topological Weyl
semimetals, resulting in PHE having a quadratic dependence
on the magnetic field and an angular dependence with a period
of π [51].

Breaking C2z but keeping T symmetry leads to the vanish-
ing of σ odd

yx , while the Lorentz force contribution σ even
yx will

appear and dominate the PHE in the limit of weak B field.
To demonstrate this directly, we consider the following Weyl
Hamiltonian:

H2 = w1kxσz + v1k · σ, (15)

where w1 and v1 are real parameters. The en-
ergy dispersion of this two-band model is ε±(k) =
±

√
k2v2

1 + k2
x w

2
1 + 2kxkzv1w1, where ± denotes the

conduction and valence bands, respectively. From the band
structure shown in Fig. 2(a), one observes that the additional
term w1kxσz increases the slope along the [101] direction and
changes the shape of the Fermi surface from a sphere to an
ellipsoid.

The calculated results of PHE based on Hamiltonian
H2 (15) are shown in Fig. 2. One observes that σ odd

yx is al-
ways zero regardless of the direction of B field, as guaranteed
by the T symmetry, while σ even

yx is finite except B ⊥ E and
becomes largest when B||E. The period of σ even

yx in θ is 2π .
Since the density of state of the Weyl system (15) increases
with the Fermi energy [Fig. 2(d)], one can expect that σ even

yx
would become more and more significant by raising the Fermi
energy. The calculated σ even

yx as a function of EF is shown
in Fig. 2(c), where a linear increase of σ even

yx is observed.
This linear dependence of σ even

yx on EF is guaranteed by the

linear Hamiltonian of the Weyl system, and can be easily
obtained by the scaling analysis proposed by Cao et al. [83].
Specifically, let us consider a scaling transformation in mo-
mentum and energy: k → λk and EF → λEF , where λ is a
real number. Due to the linear Hamiltonian, one has H2(λk) =
λH2(k) and ε(λk) = λε(k). However, the velocity and the
eigenstates of system are invarient under the scaling, i.e.,
v(λk) = v(k) and |un,λk〉 = |un,k〉. Thus, for Eq. (12), we find
that σ even

yx (λEF ) = λσ even
yx (EF ), indicating σ even

yx (EF ) ∝ EF .
When both C2z and T symmetries of systems are bro-

ken, σ odd
yx and σ even

yx become finite. However, because the
Berry curvature is significantly reduced by increasing Fermi
energy in Weyl semimetals, it can be expected that σ odd

yx
would not linearly increase with the Fermi energy. In fact,
according to the aforementioned scaling analysis, one can find
that σ odd

yx (λEF ) = σ odd
yx (EF ) due to �λk = λ−2�k and mλk =

λ−1mk. Hence, the σ odd
yx is a constant that does not depend on

EF. Thus, the competition between σ odd
yx and σ even

yx may lead
a sign reversal of the total PHC conductivity by increasing
the EF .

The Weyl Hamiltonian breaking C2z and T may be
written as

H3 = w2kx + w1kxσz + v1k · σ, (16)

where the additional term w2kx breaks T symmetry. For this
Weyl model, we numerically evaluate σ odd

yx and σ even
yx as func-

tions of θ and EF, and the obtained results are plotted in
Fig. 3. Again, σ odd

yx and σ even
yx vary with the direction of B

field in the period of 2π due to the linear dependence on B.
Remarkably, we find that for electron doping (EF > 0), the
σ even

yx is always positive and linearly increases with EF, while
σ odd

yx is a negative constant. Thus, the total PHE conductivity
is negative for small EF but changes its sign when EF becomes
large. This sign change of the total PHC may be detected in
experiments.

C. Nodal line semimetals

At last, we study the PHE in topological nodal line
semimetals. Numbers of real materials have been predicted
to be topological nodal line semimetals, and most of them
exhibit T symmetry [34,37,84–88]. With the above symme-
try analysis, we know that in these nonmagnetic nodal line
semimetals, the PHE is mainly induced by the Lorentz force
when the fields are weak. Moreover, for the nodal line pro-
tected by PT symmetry (P is the spatial inversion symmetry),
the Lorentz force contribution also dominates the PHE, as
PT symmetry guarantees the Berry curvature of systems to
vanish.

Here, we consider a nodal line model that breaks both T
and PT symmetries to explore the competition between Berry
curvature and Lorentz force effects. For a concrete example,
we take a nodal line with a mirror symmetry My, for which a
general Hamiltonian may be written as

H4 = ck2 + (m0 − m1k2)σz + vykyσy

+ (
w1kx + w2kz + w3k2

x

)
kyσx, (17)
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FIG. 3. (a) Band structure of Weyl model (16) without (with)
tilt term. (b) The competition between σ odd

yx and σ even
yx under dif-

ferent Fermi levels. (c) Variation of σ odd
yx , σ even

yx , and the total PHC
σ total

yx with Fermi level for θ = 3π/4. (d) The calculated total PHC
versus angle θ with EF = 10 and 50 meV. In the calculations, we
take magnetic field B = 0.05 T, model parameter ω1 = 1.0 eV · Å,
ω2 = 7.0 eV · Å, v1 = 12.0 eV · Å, and the conductivities in (b), (c),
and (d) are normalized by σ0 = σxx (B = 0; EF = 50 meV).

where c, m0, m1, vy, ω1, ω2, and ω3 are real parameters. When
m0m1 < 0, we have a mirror-protected nodal line lying in the
ky = 0 plane, as shown in Fig. 4(a).

In sharp contrast to the Weyl semimetals, we find that
the Berry curvature contribution to PHE (σ odd

yx ) in nodal line
semimetals is several orders of magnitude smaller than the
Lorentz force contribution (σ even

yx ), as shown in Figs. 4(b)
and 4(d). Further calculations reveal that the strong suppres-
sion of the Berry curvature contribution can be attributed to
the special distribution of the Berry curvature of the nodal
line.

Generally, one can expect that the Berry curvature is
significant around the band degeneracies, as it is inversely
proportional to the square of band gap [2]. However, this is
not the case for the mirror-protected nodal line. Since the
model (17) has My symmetry and the nodal line resides in
the ky = 0 plane, we study the distribution of the Berry cur-
vature of this system in the ky = 0 plane. Because the Berry
curvature �(k) is a pseudovector, only the y component of
�(k) can be nonzero in a My-invariant plane. Hence, one has
x = z = 0 in the ky = 0 plane. To calculate y(ky = 0),
we consider a 2D system, for which the Hamiltonian is

H2D(kx, kz ) = H4(kx, ky = 0, kz )

= ck2
x + ck2

z + (
m0 − m1k2

x − m1k2
z

)
σz. (18)

A key feature of this 2D Hamiltonian is that the two bands
in it are decoupled, indicating that the Berry curvature in

FIG. 4. (a) Side view of model (17)’s Fermi surface. (b) The
normalized σ odd

yx and σ even
yx as functions of angle θ . (c) The Berry

curvature distribution of the nodal line model (17) in the Brillouin
zone (BZ). (d) Variation of σ odd

yx and σ even
yx with Fermi level for

θ = 3π/4. σ odd
yx is several orders of magnitude smaller than σ even

yx .
In (a) and (b), we take Fermi level EF = 30 meV. In all calculations,
we take B = 0.5 T, c = 1.0 eV · Å2, m0 = 0.04 eV, m1 = 5.0 eV ·
Å2, vy = 0.9 eV · Å, ω1 = ω2 = 14.0 eV · Å2, ω3 = 30.0 eV · Å2,
and the conductivities in (b) and (d) are normalized by σ0 = σxx

(B = 0; EF = 30 meV).

this system must be zero, i.e., y(ky = 0) = 0. Therefore,
while the nodal line may exhibit sizable Berry curvature in
momentum space, it features vanishing rather than divergent
Berry curvature around the band degeneracy, i.e., the nodal
line [see Fig. 4(c)]. This is completely different from the case
in the Weyl point [28].

We also study the behaviors of σ odd
yx and σ even

yx by varying
EF. As shown in Fig. 4(d), although the Berry curvature contri-
bution increases with Fermi energy, it is always much smaller
than the Lorentz force contribution. Another difference be-
tween Weyl points and nodal lines is that the Lorentz force
contribution (σ even

yx ) in nodal line models may decrease when
Fermi energy increases [see Fig. 4(d)], because the velocity
of electrons around the nodal line has a strong dependence
on momentum and Fermi energy, and some of its components
decrease when the Fermi energy increases.

Additionally, the nodal line is expected to exhibit strong
direction-dependent transport behavior due to its highly
anisotropic band dispersion. We rotate the nodal line by 90◦
around the z axis and the rotated Fermi surface is depicted in
Fig. 5(a). The calculated PHE conductivity σyx for this rotated
nodal line is shown in Fig. 5(b). As expected, the σyx is still
dominated by the contribution from the Lorentz force. The
lower amplitude of σ even

yx in Fig. 5(b) is ascribed to the higher
longitudinal conductivity σxx(B = 0).

085120-5



LI, CAO, CUI, YU, AND YAO PHYSICAL REVIEW B 108, 085120 (2023)

FIG. 5. (a) The side view of Fermi surface of rotated nodal line
model (17) with EF = 30 meV. (b) The normalized σ odd

yx and σ even
yx as

a function of angle θ . The parameter is taken the same as Fig. 4.

V. DISCUSSION AND CONCLUSION

In this work, we have studied the PHE in topological Weyl
and nodal line semimetals. Both Lorentz force and Berry cur-
vature contributions to PHE are discussed. We demonstrated
that these two contributions respect the same crystalline sym-
metry constraints and are entirely suppressed by only a few
symmetries. However, their responses to T symmetry are
opposite. Our results indicate that the PHE can occur in a wide
variety of systems with and without band topology. Remark-
ably, we show the Lorentz force contribution can dominate the
PHE in various topological systems, including Weyl semimet-
als with T symmetry and topological nodal line semimetals.

In experimentation, the angular dependence and the order
of relaxation time in PHE can be directly examined using
magnetotransport measurements [89,90]. As discussed above,
the Lorentz force PHE conductivity is directly proportional
to B and τ 2, while the Berry curvature PHE conductivity
(including the PHE conductivity induced by chiral anomaly)
is proportional to the odd order of τ . Such unique behavior
could be beneficial for experimentally identifying the Lorentz
force contribution to PHE.

Generally, both the Lorentz force and the Berry curva-
ture can also induce finite PHE in topological nodal surface
semimetals, which is protected by the presence of a two-fold
screw rotation and T symmetry [33]. Compared with the
Weyl points and the nodal lines, the anisotropy of the nodal
surface is the strongest. Particularly, the topological charge
of the nodal surface can be any integer, depending on the
material details [91,92]. This means that the strength of the
Berry curvature around the nodal surface can be tuned by
model parameters. Hence, the competition between the Berry
curvature and the Lorentz force contributions to PHE in the
nodal surface would be interesting, and varies with the model
of the nodal surface.
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