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Topological phases of photonic crystals under crystalline symmetries
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Photonic crystals (PhCs) have emerged as a popular platform for realizing various topological phases due to
their flexibility and potential for device applications. In this article, we present a comprehensive classification
of topological bands in one- and two-dimensional photonic crystals, with and without time-reversal symmetry.
Our approach exploits the symmetry representations of field eigenmodes at high-symmetry points in momentum
space, allowing for the efficient design of a wide range of topological PhCs. In particular, we show that the
complete classification provided here is useful for diagnosing photonic crystal analogs of obstructed atomic
limits, fragile phases, and stable topological phases that include bands with Dirac points and Chern numbers.
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I. INTRODUCTION

Photonic crystals (PhCs) are periodically patterned dielec-
tric media that can be described by a Maxwell eigenvalue
problem [1,2]. The periodicity of the dielectric medium acts
analogously to a potential for electromagnetic waves and
the solutions take the form of Bloch functions that are dis-
tributed into photonic bands. Similar to electronic states in
conventional solids, PhC eigenmodes can be characterized by
topological indices that are global properties across momen-
tum space [3–5]. An important physical manifestation of these
topological indices is the existence of states that reside on the
boundaries of the system—this is known as the bulk-boundary
correspondence.

A wide variety of topological phases have been realized
using PhC-based platforms (as distinct from waveguide arrays
[6,7], coupled ring resonators [8,9], microwave resonators
[10], or electrical circuit [11–13] realizations). In one and
two dimensions, this includes analogs of the SSH model with
quantized polarization [14–16], Chern insulators [17–22],
quantum spin-Hall-like phases [23–27], Dirac semimetals
[28–34], valley-Hall phases [35–38], bulk-obstructed higher-
order topological insulators (HOTIs) [39–44], including
quadrupolar HOTIs [45–47], and fragile phases [48]. Several
of these have also been proposed for photonic device appli-
cations such as for lasing [16,49–51], harmonic generation
[52,53], and light transport [54]. Moreover, the flexibility of
the PhC-based platform has made it possible to explore the
effects of nonlinearity [35,55] and non-Hermiticity [56,57]
alongside topology—novel physics that is difficult to realize
in conventional electronic solids.
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Topological systems can be classified in the tenfold way
[58–60] by the presence or absence of the three fundamental
symmetries: time-reversal, chiral, and particle-hole symme-
tries. PhCs generally do not possess chiral and particle-hole
symmetries and therefore belong in either class A (TR broken)
or class AI (TR symmetric) of the tenfold way. However,
crystalline symmetries enrich this classification and can help
identify finer topological distinctions within these classes.

There are three kinds of topological bands: (i) obstructed
“atomic limit” (OAL) bands [61], that admit exponentially-
localized Wannier functions [62] (such bands are referred to as
“Wannierizable”); (ii) fragile bands [48,63–65] that are non-
Wannierizable but become Wannierizable when combined
with other atomic limit bands; and (iii) stable topological
bands that are not Wannierizable. In all cases, topology can
be generally identified by computing Berry phases (or, more
generally, Wilson loops) over the entire Brillouin zone. In the
presence of crystalline symmetries, it is possible to identify
and distinguish a subset of them by constructing symmetry-
indicator invariants [66–69]. Compared to Berry phases, this
symmetry-based approach can be substantially less intensive
for computation since it only requires looking at the eigen-
modes at high-symmetry points of the Brillouin zone (BZ).

In this article, we build on previous studies in elec-
tronic systems [66,68] and comprehensively develop a
complete classification for topological bands in one- and two-
dimensional PhCs under crystalline symmetries, both with
and without time-reversal symmetry. For each point-group
symmetry, we exhaustively calculate the topological indices,
defined using symmetry-indicator invariants, for the basis set
of atomic limits that span the space of all possible atomic
limits via induction of band representations [61,70,71]. This
allows us to establish a bulk-boundary correspondence for
OAL bands where we show that despite the absence of a Fermi
level, the notion of a filling anomaly [66,72–74] remains
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meaningful and can be used to infer the topological origin of
boundary states directly from the frequency spectrum of the
PhCs. This approach also allows us to diagnose topological
bands that are not OALs, namely fragile phases and bands
with Dirac points and Chern numbers, which is made pos-
sible by exploiting the linear structure of the classification.
Based on our classification, we propose a strategy to diagnose
and design topological PhCs. Finally, for completeness, we
discuss the PhC-based implementations of a few other topo-
logical systems that lie outside of this framework but where
symmetry plays an important role.

The rest of the paper is organized as follows: In Sec. II,
we review the concepts of Berry phases, symmetry-indicator
invariants, and filling anomaly for 1D PhCs. In Sec. III, we
extend these ideas to 2D PhCs by developing the classifica-
tion due to rotational symmetries, both with and without TR
symmetry. In Sec. IV, we discuss design and characterization
strategies for various topological PhCs using our classifica-
tion, along with appropriate examples. In Sec. V, we discuss
PhC-based implementations of the quantum spin Hall phases,
valley-Hall phases, and analogs of insulators with quantized
multipole moments, all of which lie outside of this framework.

II. 1D PHOTONIC CRYSTALS

Maxwell’s equations with no sources and for a medium that
is linear, isotropic, and lossless are [1,2]

∇ · H(r, t ) = 0,

∇ × E(r, t ) + μ0∂t H(r, t ) = 0,

∇ · [ε(r)E(r, t )] = 0,

∇ × H(r, t ) − ε0ε(r)∂t E(r, t ) = 0, (1)

where E and H are the electric and magnetic fields respec-
tively, ε(r) is the dielectric function, and ε0 and μ0 are the
vacuum permitivity and permeability respectively. Expand-
ing the temporal component of the electric and magnetic
fields into harmonics as H(r, t ) = H(r)e−iωt , E(r, t ) =
E(r)e−iωt , these equations reduce to

∇ ×
(

1

ε(r)
∇ × H(r)

)
=

(
ω

c

)2

H(r),

∇ × ∇ × E(r) =
(

ω

c

)2

ε(r)E(r). (2)

Due to the absence of magneto-electric coupling, we can
choose to solve only the equation for H(r) in Eq. (2) since
E(r) can be found from H(r) using the last equation in Eq. (1).

A 1D PhC, shown schematically in Fig. 1(a), is a 3D ma-
terial characterized by a refractive index that is periodic along
one direction (x) and is uniform along the other two directions
(y and z). The magnetic field eigenmode can therefore be
written as a plane wave solution in the y, z plane multiplied
by an x-dependent vector field, H = eik‖·ρh(x), where k‖ is
the momentum along the uniform directions and ρ = yŷ + zẑ.
However, we are only concerned with propagation along the
periodic direction, which implies that k‖ = 0. Moreover, since
the fields must be perpendicular to the propagation direction,
we can define two orthogonal polarizations where the vec-
tor fields lie in the y, z plane. Assuming isotropy, we can

(a) (b)

(d)
(c)

FIG. 1. (a) Schematic of a 1D PhC made out of alternating layers
of dielectric materials of dielectric constants εh and εl with lattice
constant a. (b) Schematic of the dispersion of light in a 1D PhC.
(c) Wannier centers (solid circles) are located at the two possible
maximal Wyckoff positions in the inversion-symmetric unit cells
(squares). (d) Filling anomaly due to inversion symmetry. The finite
trivial system (with [X1] = 0) has number of states equal to the
number of unit cells and is inversion symmetric. The topological
system (with [X1] = ±1) requires at least one more or one fewer state
to maintain inversion symmetry.

take these polarized fields to be hz(x) = hz(x)ẑ and hy(x) =
hy(x)ŷ. This leads to the following eigenvalue problem for the
scalar fields hξ (x) for ξ ∈ {y, z},

�̂hξ (x) =
(

ω

c

)2

hξ (x), �̂ ≡ −∂x

(
1

ε(x)
∂x

)
, (3)

where �̂ is the 1D Maxwell operator that plays a role analo-
gous to the Hamiltonian in quantum mechanics. By exploiting
the periodicity of the dielectric function, the above equa-
tion can be solved using Bloch’s theorem. Specifically, the
ansatz hξnkx (x) = eikxxuξnkx (x), can be used to solve Eq. (3),
where uξnkx (x) is the periodic part of the field defined over a
unit cell. With this, Eq. (3) can be written as

�̂kx uξnkx (x) =
(

ωn

c

)2

uξnkx (x), (4)

where

�̂kx ≡ −(∂x + ikx )

(
1

ε(x)
(∂x + ikx )

)
. (5)

This yields field solutions distributed across discrete
frequency bands labeled by the index n and with their mo-
mentum, kx, restricted to lie within the first BZ, as shown in
Fig. 1(b). It is also useful to define the inner product between
two fields over a unit cell (UC) as〈

uξn1kx1

∣∣uξn2kx2

〉 =
∫

UC
u∗

ξn1kx1
(x)uξn2kx2

(x) dx. (6)

Similar to electronic energy bands in conventional solids,
the introduction of frequency gaps allows for a topological
characterization of isolated individual photonic bands or a
group of bands, as discussed in the following section.
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A. Classification due to inversion symmetry

One-dimensional PhCs fall into class A or AI of the
tenfold way, depending on whether they break or preserve
time-reversal symmetry (TRS), respectively. In either case, 1D
PhCs are topologically trivial in the absence of other symme-
tries. However, the presence of inversion symmetry protects
two topological phases in both class A and AI. The invariant
for a single band in these phases is the Berry phase

θ =
∫

BZ
Ankx dkx, (7)

whereAnkx = −i〈uξnkx |∂kx |uξnkx 〉 is the Berry connection. Un-
der an inversion-symmetric choice of unit cell, the Berry
phase is quantized to 0 or π . This quantization has an intuitive
interpretation: in 1D, all photonic bands admit maximally
localized Wannier functions whose centers are gauge invariant
quantities [75–81]. Due to inversion symmetry, a single Wan-
nier center (per unit cell) can only be located in two distinct
positions in the unit cell, as shown in Fig. 1(c). These positions
are called maximal Wyckoff positions and are labeled by 1a
and 1b. The Berry phase in Eq. (7) of a single nondegenerate
band indicates the location of the (one) Wannier center within
each unit cell, where θ = 0 and π correspond to the Wannier
center being located at the position 1a (middle of the unit cell)
and 1b (edge of the unit cell), respectively.

The calculation of Eq. (7) involves an integral over the
entire BZ, but it can be greatly simplified by looking at the
representations of the H or E fields at the high-symmetry
points (HSPs) of the BZ [82], which are � (kx = 0) and
X (kx = π/a). Under inversion symmetry I : r → −r, the
1D Maxwell operator obeys

Î�̂kx Î−1 = �̂−kx , (8)

where Î is the inversion operator. Equation (8) implies that
�̂kx commutes with Î at � and X, i.e., [�̂�, Î] = [�̂X, Î] =
0, since these HSPs map to themselves under a negative sign,
modulo a reciprocal lattice vector. Thus, the eigenmodes at
these HSPs can be labeled by the eigenvalues of Î, which are
±1 since Î2 = 1. To aid with generalization to 2D later, we
denote these eigenvalues at the HSP with label � as �1 = +1
and �2 = −1 (where � is either � or X in this case). We can
now define the symmetry-indicator invariant for a set of bands
as

[X1] ≡ #X1 − #�1 ∈ Z, (9)

where #�1 is the number of states at the HSP � with I eigen-
value +1. For example, if a single band has the I eigenvalue
of +1 at � and −1 at X, #�1 = 1 and #X1 = 0, which implies
that the invariant [X1] = −1. The invariant in Eq. (9) then
encodes the value of the Berry phase as [82,83]

θ

2π
= 1

2
[X1] mod 1, (10)

which provides a Z2 classification of dipole moments in
inversion-symmetric 1D crystals. We note that the Berry phase
and the invariant in Eq. (9) depend on the choice of unit cell.

The bands that originate from localized and symmetric
Wannier functions form a representation of the crystal’s sym-
metry group, called a band representation [70,71]. The values

of [X1] for all possible single and isolated bands can be
enumerated exhaustively by working out the inverse problem,
i.e., given some Wannier function, we can calculate the band
representation that it leads to. A group of bands can then
be expressed as a linear combination of these “elementary
band representations”. This inverse problem of band topology
has been used to classify topological phases in insulators
[61,70,71]. We review this procedure for 1D bands in Ap-
pendix C.

In the next section, we explore the physical consequence of
a nontrivial value of the invariant in Eq. (9): the presence of
boundary states. However, as we shall describe shortly, due to
the lack of additional symmetries that impose constraints on
the frequency spectrum (such as chiral or particle-hole sym-
metries), these boundary states need not lie within bandgaps,
and the issue of bulk-boundary correspondence is somewhat
more subtle in PhCs.

B. Filling anomaly, counting mismatch, and boundary states

The existence of boundary states can be heuristically un-
derstood by considering the effect of a boundary between two
distinct topological phases. Since the invariants are quantized
and can only change at gap closings, a gap-closing point at
the boundary is required, resulting in boundary states. For 1D
systems with inversion symmetry, such topological boundary
states are associated with a filling anomaly [66,72–74], which
we will describe now.

Consider a finite tiling of N inversion-symmetric 1D unit
cells, which creates two halves or “sectors” in real space,
related by inversion symmetry, with two boundaries as shown
in Fig. 1(d). A single isolated band in the bulk gives rise to
N states in this finite system. For a trivial bulk band with
[X1] = 0, the Wannier centers in the finite tiling must be
placed at the 1a position of the unit cell, and the number
of states that correspond to this bulk band is equal to N .
However, for a topological bulk band with [X1] = ±1, the
Wannier centers in the finite tiling must be placed at the 1b
position of the unit cell, which leads to a difficulty: N states
cannot maintain inversion symmetry due to the shifted posi-
tion of the Wannier centers. Instead, either N − 1 or N + 1
(or more generally, N − 12 where 12 is any integer congruent
to 1 mod 2) Wannier centers are necessary to be consistent
with inversion symmetry as shown in Fig. 1(d). This inability
to maintain both the expected number of states and inversion
symmetry simultaneously is know as filling anomaly [66], and
leads to the quantization of fractional charge at boundaries
in electronic systems and fractional electromagnetic energy
density in PhCs.

Since each Wannier center corresponds to a single state,
the filling anomaly also presents a practical way to diagnose
nontrivial topology by counting states in the spectrum of a
finite system [45,84]. The spectral consequence of the filling
anomaly is that the states in the finite system within the fre-
quency range of a single topological bulk band must have an
odd (12) number of missing or additional states as compared
to the number of unit cells. If there are missing states, they
are paired up with states from a different topological band in
a way that preserves the inversion symmetry of the system
and these typically reside inside the bandgap as boundary
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(a) (b) (c) (d)

FIG. 2. (a) The photonic band structure of a 1D PhC with εh = 6.25, εl = 1, and d = 0.6a. The two possible types of inversion-symmetric
unit cells are shown in the inset. Eigenvalues of I at the HSPs for both types of unit cells are labeled with +/− signs. The Berry phases for
both types of unit cells are shown in blue boxes. (b) The dielectric profile of a finite system of size 61 unit cells with interfaces between the
two types of unit cells. The inset highlights the switch between the unit-cell types across the boundary. (c) The frequency spectrum for the
finite system shown in (b). An odd-integer counting mismatch per band leads to the presence of topological boundary states in the first and
third bandgaps. The photonic DoS is also shown in the same figure, labeled with the number of states. (d) The Ez mode profiles of one of the
two topological boundary states in the first and third gaps.

states. However, due to a lack of additional symmetries that
pin these boundary states to the middle of the gap, they could
be pushed into a bulk band by inversion-symmetry preserving
perturbations to the boundaries. Since such perturbations act
identically on both boundaries of the system, the bulk band
would gain an odd number of additional states.

Crucially, regardless of the details of the perturbation, the
number of expected states and the actual states within the
frequency range of a single topological band will differ by
12; we refer to this as a “counting mismatch”. In contrast,
trivial boundary states, such as defect states, originate from a
single band and would give rise to a counting mismatch of an
even (= 02) number of states for that band, provided that we
have a finite system with two boundaries related by inversion
symmetry. Therefore, the counting mismatch is a Z2 invariant
that can be determined from the frequency spectrum of the
finite PhC and thus can directly reveal the topological nature
of bulk bands. We provide a more detailed discussion of the
origin of this counting mismatch in Appendix A.

To summarize this argument, in the absence of chiral or
particle-hole symmetry, the bulk-boundary correspondence of
topological 1D PhCs with inversion symmetry is subtle in that
the boundary states may or may not appear within a bandgap.
However, regardless of their location in the frequency spec-
trum, the states within the frequency range of a topological
band in a finite system must exhibit an odd-integer counting
mismatch.

We now consider an explicit example of a 1D PhC consist-
ing of alternating layers of TiO2 (ε = 6.25) and air (ε = 1).
The TiO2 layer occupies a filling fraction d/a = 0.6 in the
unit cell with lattice constant a. The first six bands of this 1D
PhC are shown in Fig. 2(a). Two distinct types of inversion-
symmetric unit cells are possible for this PhC, as shown in the

inset of Fig. 2(a). The two types of unit cells are redefinitions
of each other, related by a shift of a/2 along the x direction.
The eigenvalues of I at the HSPs � and X for both types of
unit cells, as well as the Berry phase calculated using Eq. (7),
are shown in the same plot. They show that while the band
structure is identical for the two types of unit cells, the Berry
phases and, correspondingly, the symmetry-indicator invari-
ants are different. This can be easily understood as follows:
Due to inversion symmetry, the Wannier center of a particular
band can only be located either at the center of each unit cell
(1a position) or in between two unit cells (1b position). A shift
of the unit cell by a translation of a/2 switches between these
two cases and, consequently, changes the Berry phase from 0
to π and vice versa. This implies that if a band in one of the
unit-cell types is trivial, the corresponding band in the other
type is topological.

Next, we simulate a large inversion-symmetric supercell
with interfaces between the two types of unit cells in a
strip geometry as shown in Fig. 2(b). This supercell has two
inversion-symmetry-related sectors with two boundaries and
consists of a total of 61 unit cells. Therefore we expect to find
61 states per band in the spectrum of this supercell, which is
shown in Fig. 2(c). However, due to the distinct topology of
the bands in the two unit-cell types, each band in the finite
structure exhibits a counting mismatch of 12 states. For bands
1 to 4, we find the counting mismatch to be one missing state
each and that these mismatched states reside in the bandgaps
as boundary states whose field profiles are shown in Fig. 2(d).
For band 5, we find a counting mismatch of three missing
states, two of which reside in the fourth gap and are trivial
states since they originate from the same band. The remaining
missing state is paired with another state from band 6. How-
ever, we can see that this pair of mismatched states does not
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lie deep inside the fifth bandgap but is instead very close to the
band edge of band 6. Including these states as part of band 6,
we find a counting mismatch of one additional state for
band 6.

The in-gap topological boundary states discussed above
have been directly observed in experiments in 1D PhCs and
1D periodic-dielectric waveguides [14–16].

Having introduced the notion of topological bands in the
presence of crystalline symmetries in 1D, we now extend
the topological classification and characterization of photonic
bands to 2D.

III. 2D PHOTONIC CRYSTALS

Two-dimensional PhCs consist of a periodic patterning
of the dielectric along two directions (e.g., x and y) and a
uniform dielectric profile along the third direction (e.g., z),
with wave propagation restricted to lie in the x, y plane. In this
setting, the equations in (2) can be simplified by exploiting the
mirror symmetry through the x, y plane that sends z → −z.
This separates the states into two orthogonal polarizations:
transverse electric (TE) with E(r) = Ex(x, y)x̂ + Ey(x, y)ŷ,
H(r) = Hz(x, y)ẑ, which is even under the mirror symme-
try, and transverse magnetic (TM) with E(r) = Ez(x, y)ẑ,
H(r) = Hx(x, y)x̂ + Hy(x, y)ŷ, which is odd under the mirror
symmetry. For these generally nondegenerate TE and TM
polarizations, the eigenvalue problem is most easily solved for
the scalar fields Hz(x, y) and Ez(x, y) respectively, via [2]

−
[
∂x

1

ε(x, y)
∂x + ∂y

1

ε(x, y)
∂y

]
Hz(x, y) = ω2

c2
Hz(x, y),

− 1

ε(x, y)

(
∂2

x + ∂2
y

)
Ez(x, y) = ω2

c2
Ez(x, y). (11)

As in the 1D case, these eigenvalue problems can be solved
using Bloch’s theorem, and the solutions are distributed into
frequency bands with their momenta restricted to the 2D BZ.
Since TE and TM polarizations are orthogonal, we restrict the
discussion to a single polarization of choice. We now charac-
terize the topological phases of 2D PhCs by first constructing
the topological invariants that classify them under different
point group symmetries and then deriving bulk-boundary cor-
respondences and their associated index theorems.

The classification of PhCs can be divided into whether they
obey time-reversal symmetry (TRS) (class AI) or not (class
A). In 2D, without additional symmetries, class AI does not
host topological phases. In contrast, class A hosts topological
phases characterized by the Chern number (C ∈ Z) that en-
codes the number of chiral-edge states at the boundaries of a
finite system. The Chern number also presents an obstruction
to the construction of exponentially localized Wannier func-
tions, and hence such bands are non-Wannierizable [85,86].

When the Chern number vanishes, and in the presence
of crystalline symmetries, photonic bands may be associated
with Wannier centers fixed at maximal Wyckoff positions of
the 2D unit cells (Fig. 3). As mentioned previously, such
bands are collectively called atomic limits; in particular, we
use the term “obstructed atomic limits (OAL)” to refer to
cases where the Wannier centers are displaced away from
the center of the unit cell. Under some circumstances, a

(c) (d)

(a) (b)

(e) (f)

FIG. 3. Maximal Wyckoff positions for (a) C2, (b) C4, (c) C6, and
(d) C3 symmetric unit cells. (e) BZ of a square lattice with possible
HSPs. (f) BZ of a triangular lattice with possible HSPs.

symmetry-preserving Wannier representation of bands may
not be possible despite their vanishing Chern number. Such
bands are termed fragile and have the property of admitting a
Wannier representation when considered as a set that includes
additional specific atomic limit bands [48,63,64].

Similar to 1D, the topology of bands in 2D PhCs can be
characterized using Berry phases. However, when bands are
degenerate, they must be treated collectively, which requires
the use of Wilson loops [87,88]. The Wilson loop is defined as

W (C) = P exp

[(
i
∫
C
A(k) · dk

)]
, (12)

where C is a closed contour in k space, P denotes a path
ordering of the exponential, andA(k) is the multiband Berry
connection, a vector-valued matrix with elements

Anm(k) = −i〈unk|∇k|umk〉, (13)

where n and m label the band indices in the considered
set of, usually connected, bands. When C is taken to be a
noncontractible loop in the Brillouin zone, the Wilson loop
eigenvalues are proportional to the expectation values of the
position operator of the hybrid Wannier functions in the same
direction. Therefore, these eigenvalues can indicate the Wan-
nierizable nature of bands in atomic limit phases or indicate
the non-Wannierizable nature of fragile bands or Chern bands
by their nontrivial winding numbers [62,85]. Similar to the
Berry phase in 1D, the calculations of these Wilson loops
can also be simplified by looking at the representations of the
eigenmodes at the HSPs of the BZ.
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A. Classification due to rotational symmetries

Consider a projector into a set of bands { j} at a particular
k point, defined by Pk = ∑

j |u jk〉 〈u jk|. The possible eigen-
values of the n-fold rotation operator R̂n (i.e., rotation by an
angle 2π/n), projected into the bands of interest at the HSP
�, P�R̂nP�, are

�(n)
p = e2π i(p−1)/n, for p = 1, 2, . . . n. (14)

Following previous studies on the characterization of the
topology of energy bands in condensed matter systems [66],
we define the integer invariants

[

( j)

p

] ≡ #�( j)
p − #�( j)

p ∈ Z, (15)

where #�
( j)
p is the number of states in the frequency band(s)

in question with rotation eigenvalue �
( j)
p . The practical eval-

uation of the rotation eigenvalues in Eq. (14) for a set of
(possibly degenerate) bands { j} at k proceeds straightfor-
wardly [2,89,90]: given a set of eigensolutions E jk (including
Bloch phases) with associated displacement fields D jk(r) ≡
ε(r)E jk(r) (with normalization 〈E jk|D jk〉 = 1), we construct
the matrix M whose elements are the overlap integrals Mi j ≡
〈Eik|R̂n|D jk〉 (or, equivalently, in a magnetic-field formula-
tion, Mi j ≡ 〈Hik|R̂n|B jk〉). The eigenvalues of M then the
give the rotation eigenvalues of the bands { j}. The evaluation
of the overlap integrals involve the transformation of the D-
or B-eigenfields under R̂n, which transform either vectori-
ally or pseudovectorially, i.e., as R̂nD jk(r) = (R̂nD jk )(R̂−1

n r)
or R̂nB jk(r) = det(R̂n)(R̂nB jk )(R̂−1

n r), respectively. For di-
electrics with μ = 1, the magnetic-field formulation reduces
to Mi j ≡ 〈Hik|R̂nH jk〉, which can be simpler in implementa-
tion.

Using the rotation eigenvalues, the symmetry-indicator in-
variants can be constructed for 2D lattices with Cn symmetry
at all high-symmetry points shown in Figs. 3(e) and 3(f).
However, some of the invariants in Eq. (15) are redundant for
three reasons: (i) Rotation symmetry forces representations
at certain HSPs to be the same. Particularly, C4 symmetry
forces equal representations at X and Y, while C6 symmetry
forces equal representations at M, M′, and M′′, as well as at
K and K′; (ii) the fact that the number of bands in consid-
eration is constant across the BZ, from which it follows that∑

p #�(n)
p = ∑

p #�(n)
p , or

∑
p[
(n)

p ] = 0; and (iii) the exis-
tence of TRS, which implies that the Chern number vanishes
and that rotation eigenvalues at �(n) and −�(n) are related by
complex conjugation. This leads to [M (4)

2 ] = [M (4)
4 ] (for C4),

[K (3)
2 ] = [K ′(3)

3 ] (for C3), [K (3)
3 ] = [K ′(3)

2 ] (for C3), [K (3)
1 ] =

[K ′(3)
1 ] (for C3), and [K (3)

2 ] = [K (3)
3 ] (for C6).

Therefore, in the presence of TRS (class AI), the classifi-
cation for N bands is given by the indices [66]

χ
(2)
T = ([

X (2)
1

]
,
[
Y (2)

1

]
,
[
M (2)

1

]
; N

)
,

χ
(3)
T = ([

K (3)
1

]
,
[
K (3)

2

]
; N

)
,

χ
(4)
T = ([

X (2)
1

]
,
[
M (4)

1

]
,
[
M (4)

2

]
; N

)
,

χ
(6)
T = ([

M (2)
1

]
,
[
K (3)

1

]
; N

)
. (16)

TABLE I. C2 symmetry: Indices induced from every maximal
Wyckoff position (WP).

WP Site symm. χ
(2)
T χ (2)

1a ρ(C2) = any (0, 0, 0; 1) (0 | 0, 0, 0; 1)
1c ρ(C2) = +1 (−1, 0, −1; 1) (0 | − 1, 0,−1; 1)
1c ρ(C2) = −1 (1, 0, 1; 1) (0 | 1, 0, 1; 1)
1d ρ(C2) = +1 (0,−1, −1; 1) (0 | 0, −1, −1; 1)
1d ρ(C2) = −1 (0, 1, 1; 1) (0 | 0, 1, 1; 1)
1b ρ(C2) = +1 (−1,−1, 0; 1) (0 | − 1, −1, 0; 1)
1b ρ(C2) = −1 (1, 1, 0; 1) (0 | 1, 1, 0; 1)

On breaking TRS, the classification of 2D Cn-symmetric
PhCs must include the Chern number since it can now ad-
mit nonzero values. Furthermore, breaking TRS reduces the
number of constraints on the invariants [i.e., condition (iii)
above is relaxed] and therefore increases the number of invari-
ants required to identify distinct topological phases uniquely.
Taking into account these considerations, the most general
classification (class A) of 2D Cn-symmetric PhCs is given by
the indices

χ (2) = (C | ρ (2) ) = (
C

∣∣ [X (2)
1

]
,
[
Y (2)

1

]
,
[
M (2)

1

]
; N

)
,

χ (3) = (C | ρ (3) ) = (
C

∣∣ [K (3)
1

]
,
[
K (3)

2

]
,
[
K ′(3)

1

]
,
[
K ′(3)

2

]
; N

)
,

χ (4) = (C | ρ (4) ) = (
C

∣∣ [X (2)
1

]
,
[
M (4)

1

]
,
[
M (4)

2

]
,
[
M (4)

4

]
; N

)
,

χ (6) = (C | ρ (6) ) = (
C

∣∣ [M (2)
1

]
,
[
K (3)

1

]
,
[
K (3)

2

]
; N

)
, (17)

where C is the Chern number given by

C = 1

2π

∫
BZ

Tr[∇k ×A(k)] d2k. (18)

Similar to the 1D case, we can exhaustively calculate the
values of χ (n) (in the case when C = 0) or χ

(n)
T by induction of

band representations. To perform this, we require knowledge
about the Wannier functions’ internal-symmetry representa-
tion, known as “site-symmetry representation” ρ(Cn), as well
as the location of their gauge-invariant centers, the Wannier
centers. We provide a detailed derivation of the symmetry-
indicator invariants at HSPs and the corresponding indices for
all 2D atomic limits, with and without TRS, in Appendix D
and show the final results in Tables I–IV. Each row of these

TABLE II. C3 symmetry: Indices induced from every maximal
Wyckoff position.

WP Site symm. χ
(3)
T χ (3)

1a ρ(C3) = any (0, 0; 1) (0 | 0, 0, 0, 0; 1)
1b ρ(C3) = +1 (−1, 1; 1) (0 | − 1, 1, −1, 0; 1)
1b ρ(C3) = ei 2π

3 σz (1,−1; 2) (0 | 1, −1, 1, 0; 2)
1b ρ(C3) = ei 2π

3 (0 | 0, −1, 1, −1; 1)
1b ρ(C3) = ei 4π

3 (0 | 1, 0, 0, 1; 1)
1c ρ(C3) = +1 (−1, 0; 1) (0 | − 1, 0, −1, 1; 1)
1c ρ(C3) = ei 2π

3 σz (1, 0; 2) (0 | 1, 0, 1, −1; 2)
1c ρ(C3) = ei 2π

3 (0 | 1, −1, 0, −1; 1)
1c ρ(C3) = ei 4π

3 (0 | 0, 1, 1, 0; 1)
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TABLE III. C4 symmetry: Indices induced from every maximal
Wyckoff position.

WP Site symm. χ
(4)
T χ (4)

1a ρ(C4) = any (0, 0, 0; 1) (0 | 0, 0, 0, 0; 1)
2c ρ(C2) = +1 (−1,−1, 1; 2) (0 | − 1, −1, 1, 1; 2)
2c ρ(C2) = −1 (1, 1, −1; 2) (0 | 1, 1, −1, −; 2)
1b ρ(C4) = +1 (−1,−1, 0; 1) (0 | − 1, −1, 0, 0; 1)
1b ρ(C4) = −1 (−1, 1, 0; 1) (0 | − 1, 1, 0, 0; 1)
1b ρ(C4) = iσz (2, 0, 0; 2) (0 | 2, 0, 0, 0; 2)
1b ρ(C4) = +i (0 | 1, 0, −1, 1; 1)
1b ρ(C4) = −i (0 | 1, 0, 1, −1; 1)

tables uniquely identifies an atomic limit protected by the
corresponding rotational symmetry.

B. Relation between symmetry-indicator invariants
and Chern number

The Chern number mod n can be inferred from the rota-
tion eigenvalues at HSPs of systems with Cn symmetry [91].
Using this, relations between the Chern numbers, Eq. (18),
and the symmetry-indicator invariants can be derived, as done
in Appendix B. These relations take the form of equivalence
relations modulo the rotation order of the considered group,

C(2) = −[
X (2)

1

] − [
Y (2)

1

] − [
M (2)

1

]
(mod 2),

C(3) = −[
K (3)

1

] − 2
[
K (3)

2

] + 2
[
K ′(3)

1

] + [
K ′(3)

2

]
(mod 3),

C(4) = 2
[
M (4)

1

] + [
M (4)

2

] − [
M (4)

4

] − 2
[
X (2)

1

]
(mod 4),

C(6) = −8
[
K (3)

1

] − 4
[
K (3)

2

] + 3
[
M (2)

1

]
(mod 6).

(19)

Compared to the direct evaluation of Eq. (18), these relations
provide a fast and simple way to calculate the Chern number
mod n for Cn-symmetric PhCs with broken TRS.

C. Index theorems

Cn-symmetric PhCs with different χ (n) or χ
(n)
T belong to

different topological phases, as they cannot be deformed into
one another without closing the bulk energy gap or break-
ing the symmetry [68,92–94]. Furthermore, for Wannierizable
bands, the Wannier center configuration directly determines
the existence of a filling anomaly and consequently the pos-

TABLE IV. C6 symmetry: Indices induced from every maximal
Wyckoff position.

WP Site symm. χ
(6)
T χ (6)

1a ρ(C6) = any (0, 0; 1) (0 | 0, 0, 0; 1)
2b ρ(C3) = +1 (0,−2; 2) (0 | 0,−2, 1; 2)
2b ρ(C3) = ei 2π

3 σz (0, 2; 4) (0 | 0, 2, −1; 4)
2b ρ(C3) = ei 2π

3 (0 | 0, 1, −2; 2)
2b ρ(C3) = ei 4π

3 (0 | 0, 1, 1; 2)
3c ρ(C2) = +1 (−2, 0; 3) (0 | − 2, 0, 0; 3)
3c ρ(C2) = −1 (2, 0; 3) (0 | 2, 0, 0; 3)

sible existence of in-gap edge and corner states. Therefore,
finding the symmetry-indicator invariants is useful in estab-
lishing a bulk-boundary correspondence for such bands. The
presence of edge states is directly related to the dipole moment
of the Wannier centers. In 1D, this takes the form of Eq. (10)
whereas in 2D, Ref. [66] showed that the bands have dipole
moments indicated by

P(2) = 1
2

([
Y (2)

1

] + [
M (2)

1

])
a1 + 1

2

([
X (2)

1

] + [
M (2)

1

])
a2,

P(4) = 1
2

[
X (2)

1

]
(a1 + a2),

P(6) = 0, (20)

where the superscript n in P(n) labels the Cn symmetry. The
dipole moments in Eq. (20) are defined modulo 1 and are valid
for both TR-symmetric and TR-broken PhCs, as long as the
Chern number vanishes in the latter case. P(2) is a Z2 × Z2

index and P(4) is a Z2 index. In the case of C3 symmetry, the
dipole moment is given by

P(3) = 2
3

([
K (3)

1

] + 2
[
K (3)

2

])
(a1 + a2) (TRS),

P(3) = ([
K (3)

1

] + [
K (3)

2

] − 2
3

[
K ′(3)

1

]
− 1

3

[
K ′(3)

2

])
(a1 + a2) (broken TRS), (21)

where P(3) is a Z3 index for C3 symmetry.
In all cases, nontrivial P is associated with an edge-induced

filling anomaly. For 2D spinless systems, such as the PhCs
considered here, I and C2 have identical transformation prop-
erties and are isomorphic operations that send x, y → −x,−y.
Therefore, for C2, C4, and C6 symmetries, a nontrivial P
is associated with a counting mismatch of 12 in the edge
spectrum since inversion symmetry (I) is a subgroup of
these rotations and an edge supercell (with one periodic di-
rection) can always be chosen such that I is maintained.
In the case of C2 symmetry, the counting mismatch is a
Z2 × Z2 invariant as edge supercells in both directions must
be independently considered (i.e., finite-in-x, periodic-in-y or
finite-in-y, periodic-in-x). In the case of C4 symmetry, the
edge spectrum is identical in both directions, and therefore
the counting mismatch is a Z2 invariant. In the case of C6

symmetry, both P(6) and the counting mismatch in the edge
spectrum are always trivial. Since I is not a subgroup of C3

symmetry, an edge supercell can never be chosen such that
I is maintained. Therefore, the counting mismatch cannot
distinguish between different values of P(3). Instead, in this
case, the fractionalization of energy density at the edges must
be directly calculated using the eigenmodes of a C3-symmetric
finite system.

Additionally, some Wannier center configurations can lead
to higher-order topological states. In class AI, these phases are
determined by the corner “charges” [95]

Q(2)
corner,T = 1

4

( − [
X (2)

1

] − [
Y (2)

1

] + [
M (2)

1

])
,

Q(3)
corner,T = 1

3

[
K (3)

2

]
,

Q(4)
corner,T = 1

4

([
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
,

Q(6)
corner,T = 1

4

[
M (2)

1

] + 1
6

[
K (3)

1

]
, (22)
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as shown initially in Ref. [66]. We extend this to class A,
where they are

Q(2)
corner = 1

4

( − [
X (2)

1

] − [
Y (2)

1

] + [
M (2)

1

])
,

Q(3)
corner = 1

3

([
K (3)

1

] + [
K (3)

2

] − [
K ′(3)

1

])
,

Q(4)
corner = 1

4

([
X (2)

1

] + 2
[
M (4)

1

] + 3
2

[
M (4)

2

] + 3
2

[
M (4)

4

])
,

Q(6)
corner = 1

4

[
M (2)

1

] + 2
3

[
K (3)

1

]
, (23)

Q(n)
corner,T (for TR symmetric) or Q(n)

corner (for TR broken), are
Zn topological quantities and are associated with a corner-
induced filling anomaly, a counting mismatch of states ∈
{0n, . . . n − 1n} in a finite system with n symmetry-related
sectors and possibly the presence of in-gap corner-localized
states. The derivation of these formulas and other details con-
cerning the finite systems where these formulas are valid are
given in Appendix E.

For the formulas in Eq. (23), we have assumed that the
Chern number vanishes and that the bands are OALs with
well-defined Wannier centers. However, it is also possible for
fractional charges to localize at disclinations [68,96,97]
and dislocations [98] in Cn-symmetric systems with
non-Wannierizable Chern bands. In the case of disclinations,
the formulas for fractional charges contain a Chern number
contribution along with contributions from the symmetry-
indicator invariants [96]. We note that our formulas in Eq. (23)
are consistent with the disclination charges given in Ref. [96]
with a vanishing Chern number contribution as is expected.

Finally, we note that in fermionic systems, where insulating
states rely on completely filled bands, a quantization of corner
charge requires P(n) = 0. In photonic systems, however, we
are only concerned with the existence of localized states, and
the P(n) = 0 constraint can be relaxed. Therefore, we also con-
sider cases where P(n) and Q can simultaneously admit non-
trivial values, leading to both edge and corner states that may
be degenerate with each other and/or with the bulk bands.
However, their associated counting mismatch remains robust.

IV. DESIGN AND CHARACTERIZATION OF 2D
TOPOLOGICAL PHOTONIC CRYSTALS

In the previous sections, we exhaustively built the topolog-
ical classifications in class A and AI. We also identified the
indices that correspond to OAL phases via the induction of
the band representations from the symmetry representation
of the Wannier functions and the Wyckoff positions of their
Wannier centers. This classification forms a linear-algebraic
structure, such that when two sets of bands of a Cn-symmetric
system, in phases χ1 and χ2 respectively, are combined, they
are in phase χ1 + χ2. This observation forms the basis of a
strategy we now propose to diagnose and design topological
PhCs.

Given a PhC, our starting point is the calculation of the Cn-
symmetry representations at HSPs for N bands to determine
ρ (n) (here, ρ (n) = χ

(n)
T for TR-symmetric systems). ρ (n) can

always be expressed as the following linear combination:

ρ (n) =
∑

p

αp ρ (n)
p , (24)

where ρ (n)
p correspond to the indices of atomic limits in

Tables I–IV. Since the ρ (n)
p for different site-symmetry rep-

resentations for the same Wannier center configuration are
linearly dependent, the linear combination in Eq. (24) is
nonunique, and all possible linear combinations must be ex-
amined to obtain the correct topological characterization.

The topology of this set of N bands can then be determined
by the following set of rules [63,99]: (i) If the bands are in
an OAL phase, there exists a linear combination such that the
coefficients {αp} are all positive integers (the converse is not
true). (ii) If a linear combination with positive integer {αp}
is impossible and at least one negative integer coefficient is
required, the bands are in a fragile topological phase. (iii)
If a linear combination with integer {αp} is not possible, the
bands are either gapless under TRS, in which case we have a
Dirac semimetal phase, or are gapped and have a nonvanishing
Chern number under broken TRS.

In the following sections, we provide examples that illus-
trate these cases.

A. Example 1: OAL phases with fourfold rotation in class AI

We now show an example of an OAL phase and its as-
sociated boundary signatures in a 2D PhC. Similar OAL
phases have been widely implemented in PhCs [39–44,49,50].
Consider two PhCs with unit cells shown in the inset of
Fig. 4(a), which consist of four dielectric square pillars in
a C4v-symmetric configuration with ε = 12. These two unit-
cell choices, referred to as “expanded” and “contracted”, are
related by a half-lattice-constant shift along the x and y di-
rections. We will consider the first four TM bands for the
following analysis.

The symmetry-indicator invariants can be computed
using the relevant rotation eigenvalues of the elec-
tromagnetic eigenmodes at the HSPs �, X, and M
for both unit-cell types; the rotation eigenvalues are
shown in Fig. 4(a). For the expanded unit-cell type,
band 1 has the following rotation eigenvalues: �(C4 :
+1,C2 : +1), X(C2 : −1), M(C4 : −1,C2 : +1). From this,
we calculate the symmetry-indicator invariants, [X (2)

1 ] =
#X(2)

1 − #�
(2)
1 = 0 − 1 = −1, [M (4)

1 ] = #M(4)
1 − #�

(4)
1 = 0 −

1 = −1, and [M (4)
2 ] = #M(4)

2 − #�
(4)
2 = 0 − 0 = 0. Thus, the

index for band 1 is χ
(4)
T = (−1,−1, 0; 1). Similarly, the index

for the pair of degenerate bands 2 + 3 is χ
(4)
T = (2, 0, 0; 2)

and the index for band 4 is χ
(4)
T = (−1,+1, 0; 1). Examining

these indices in Table III, we see that they each correspond
to Wannier centers at the 1b Wyckoff position in the 2D
unit cell [Fig. 3(b)]. From Eqs. (20) and (22), we find that
these indices lead to P(4) = (1/2, 1/2) and Q(4)

corner,T = 1/4

for bands 1 and 4 and P(4) = 0 and Q(4)
corner,T = 1/2 for bands

2 + 3. In contrast, for the contracted unit cell, bands 1 and
4 have the index χ

(4)
T = (0, 0, 0; 1) and bands 2 + 3 have the

index χ
(4)
T = (0, 0, 0; 2). These indices correspond to Wannier

centers located at the 1a Wyckoff position with vanishing P(4)

and Q(4)
corner,T .

The Wannierizable nature of these atomic limit bands can
also be established by examining the Wilson loops as shown
in Fig. 4(b). Here, the Wilson loop eigenvalues for each band
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(a)

(d) (e) (f)

(b) (c)

FIG. 4. (a) TM-polarized band structure of a C4v-symmetric PhC with ε = 12. The two possible types of C4-symmetric unit cells are
shown in the insets along with the 2D BZ. C4 eigenvalues at � and M, C2 eigenvalues at X are shown for the first four bands. (b) Wilson loop
eigenvaluesWy(Wx ) for bands 1, 2 + 3, and 4 along kx (ky ) for both types of unit cells. (c) Edge spectrum consisting of a total of 25 unit cells
of the two types in a strip configuration (shown on the right). An odd-integer counting mismatch per band leads to the presence of edge states
in the first and second TM bandgaps. (d) The dielectric and Ez mode profile of one of the four corner modes in a finite system of size 15 × 15
unit cells consisting of the two types of unit cells in a core-cladding configuration. (e) A tiling of the unit cells with Wannier centers (solid
circles) for one band of the inner core of size 7 × 7. Additional Wannier centers from other bands (hollow circles) are required to maintain
C4 symmetry. Counting the Wannier centers along the boundary sites, we see that 24 edge and four corner states are expected in this finite
configuration. (f) A schematic of the DoS for the structure in (d). A counting mismatch of states for bands 1 to 4 leads to four degenerate
corner states in the first TM bandgap. The counting mismatch for the edge states depends on the system size for such a finite configuration.

are calculated by integrating the Berry connection along one
momentum direction and plotting it as a function of the other
momentum. This indicates the locations of the hybrid Wannier
centers that are exponentially localized in one spatial direction
but delocalized in the other spatial direction. The observed
shifts in the Wilson loop eigenvalues between the contracted
and expanded unit cells are consistent with the real space
shifts that relate the two unit-cell types where the Wannier
centers reside at the 1a and 1b positions, respectively.

To illustrate that the nonzero dipole moments P(4) lead
to edge states, we simulate a finite system consisting of the
expanded and contracted unit cells in a strip geometry. The
strip geometry is a large supercell along one direction, con-
sisting of an inner domain with the expanded unit cell and
an outer domain with the contracted unit cell with periodic
boundaries along both directions, as shown in Fig. 4(c). Here,
the outer domain simply serves as a trivial cladding material
that provides an overlapping bandgap with the inner nontrivial

domain. We consider a supercell of size 25 × 1 unit cells, and
therefore expect the spectrum to contain 25 states per band.
However, due to the nonzero dipole moments, bands 1 and 4
have a counting mismatch of one missing state (= 12) each. In
contrast, bands 2 + 3, which have a vanishing dipole moment,
exhibit a counting mismatch of two missing states (= 02) as
shown in the edge spectrum in Fig. 4(c). These missing states
reside in the bandgap as edge states that are confined to the
two interfaces between the domains.

To examine the corner states in this system due to nonzero
Q(4)

corner,T , we next simulate a finite C4-symmetric system in a
core-cladding configuration as shown in Fig. 4(d). This finite
system has four symmetry-related sectors with four corners
and has a size of 15 × 15 = 225 unit cells. Therefore, each
band is expected to contribute 225 states to the spectrum of the
finite system. However, the nonzero dipole moment of bands
of the inner core region leads to edge states on all edges, as we
have discussed previously and shown in Fig. 4(c). In the finite
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system, these edge states now have a size-dependent counting
mismatch. If we consider a finite tiling of size 7 × 7 unit cells
that represent the inner core in Fig. 4(d), each with a Wannier
center at 1b, we observe that additional Wannier centers from
other bands are required to maintain C4 symmetry, as shown in
Fig. 4(e). Counting the Wannier centers that live on the entire
boundary between the core and cladding, we can predict the
appearance of 24 edge states and four corner states.

In Fig. 4(f), we show a schematic of the calculated DoS of
the full 15 × 15 finite system, up to the frequency range of
the first four TM bands and identify the number of bulk, edge,
and corner states from their localization and mode profiles.
The state counting in Fig. 4(f) confirms the predicted 24 edge
states and four corner states. The counting mismatch due to
the corners is size-independent and is identified in Fig. 4(f)
as equal to one missing state (= 14) each for bands 1 and
4 and two missing states for bands 2 + 3 (= 24), accounting
for the expected number of corner states and consistent with
the corner charges of the bands. We point out that even if a
C4-preserving perturbation to the corners pushes the four cor-
ner states into any of the bulk bands, the counting mismatch
remains. For example, if the four corner states were pushed
into band 1, the counting mismatch for this band would go
from one missing state to three additional states, both of which
are equal modulo 4 (−34 = 14).

B. Example 2: Dirac semimetal in class AI

Next, we show the topological characterization of a PhC
with Dirac points in class AI. We do this via three distinct
perspectives: (1) examining the symmetry-indicator invariants
of 1D subsystems, (2) computing the Wilson loops, and (3)
constructing the indices of the 2D bands of the system.

Consider the C2-symmetric PhC in the inset of Fig. 5(a),
which consists of an elliptical disk (ε = 12) with its semi-
major and semiminor axes oriented along the diagonals of a
square unit cell. This PhC’s TM spectrum exhibits two pairs
of Dirac points along the � − M direction, one between bands
2 and 3, and one between bands 3 and 4, as shown in Fig. 5(a).

We first examine the topology of the gapped phases of 1D
subsystems that are obtained by fixing one of the momenta,
say ky. In this example, bands 2 and 4 have different C2

eigenvalues (and hence I eigenvalues in the 1D subsystem)
at the � and X points, which yields a 1D topological phase
at the ky = 0 cut with [X1] = 1 [or equivalently, θ = π from
Eq. (7)]. On the other hand, these bands have the same C2

eigenvalues at the Y and M points, which yields a trivial phase
at the ky = π/a cut with [X1] = 0 (or equivalently, θ = 0).
These Dirac points are thus the required transition points
that separate trivial and topological gapped phases of the 1D
subsystems.

This change in the topology of the one-dimensional sub-
system at the Dirac points can also be seen from the
Wilson loop spectrum. The Wilson loop eigenvalues plotted
in Fig. 5(b) exhibit jump discontinuities from 0 to π at the
momenta of the Dirac points, which correspond to a switch
in the value of [X1] from 0 to 1. Consequently, edge states
only appear in the portion of the 1D edge Brillouin zone that
is topologically nontrivial. Figure 5(c) shows the edge spec-

(a) (b)

(d)
(c)

FIG. 5. (a) TM-polarized band structure of a C2v-symmetric PhC
whose unit cell is shown in the inset. C2 eigenvalues at �, X, Y, and
M are shown for the first four bands. (b) Wilson loop eigenvalues
Wy for the bands 2, 3, and 4 plotted as a function of kx . The discon-
tinuities indicate the presence of Dirac points. (c) Edge spectrum of
this PhC showing edge states (marked with arrows) whose dispersion
terminates at Dirac points (marked with circles) on the left (red) and
right (light red) edges. (d) Dirac points are gap-closing points that
separate 1D topological phases with different Berry phases. They can
also be thought of as sources of π Berry phase.

trum for the PhC with open boundaries along x and periodic
boundaries along y.

The Wilson loop can also help diagnose generic Dirac
points that may be present in the interior of the Brillouin zone.
In the current example, there are two additional pairs of jump
discontinuities in the Wilson loop spectrum for band 4, which
are due to such generic Dirac points between bands 4 and 5.

Since the bands 2, 3, and 4 are nondegenerate at all
HSPs, we can classify them by constructing the 2D in-
dices under TRS from Table I, which are respectively χ

(2)
T =

(−1,−1,−1; 1), χ
(2)
T = (0, 0, 0; 1), and χ

(2)
T = (1, 1, 1; 1).

The indices for bands 2 and 4 are not found in Table I, and
expanding these in a linear combination of OALs results in
fractional coefficients {αp}. Therefore, these are stable topo-
logical bands and must contain gapless points in the BZ under
TRS. In this example, the PhC has Dirac points on high-
symmetry lines as seen in Fig. 5(a). Band 3 is an example
of a situation where stable topological bands could have the
same indices as atomic limit bands.

Relevant to PhC design, these invariants can be useful for
finding spectrally-isolated Dirac points for applications such
as creating cavity states that are algebraically localized to
embedded point defects [31–34,100] or enabling large-area
single-mode lasing [101,102].
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(a)

(c)

(b)

FIG. 6. (a) TM-polarized band structure of a C2v-symmetric gy-
romagnetic PhC whose unit cell is shown in the inset. The Chern
numbers for the first four bands are also shown. (b) Wilson loop
eigenvaluesWy for the bands 2, 3, and 4 plotted as a function of kx .
The winding of the eigenvalues indicates the non-Wannierizability
of the bands, and the winding number is equal to the Chern number
of the band. (c) Edge spectrum showing projected bulk bands (blue)
and chiral edge states (red and light red).

C. Example 3: Chern insulator in class A

Consider the PhC introduced in the previous section. We
break TRS for this PhC by introducing nondiagonal terms in
the permeability tensor, which correspond to a response of
a gyromagnetic material under a magnetic field applied in
the z direction. Specifically, we set the permeability tensor
to

μ =
⎡
⎣ μ iκ 0

−iκ μ 0
0 0 μ0

⎤
⎦, (25)

where μ = μ0 is the vacuum permeability and κ = 0.25μ0.
The Dirac points that were previously protected by a combi-
nation of inversion and TRS are now gapped, and bands 2,
3, and 4 are nondegenerate and have the invariants χ (2) =
(−1 | − 1,−1,−1; 1), χ (2) = (+2 | 0, 0, 0; 1), and χ (2) =
(+1 | 1, 1, 1; 1), respectively. The first invariant of the listed
tuples is the Chern number, which is equal to the winding
number of the Wilson loop spectrum in Fig. 6(b). The wind-
ing numbers agree with the symmetry-imposed constraints in
Eq. (19).

The Chern number leads to chiral edge states at the bound-
ary of a finite system as shown in Fig. 6(c). These edge states
exhibit unidirectional transport and have been observed in gy-
romagnetic PhCs at microwave frequencies [19,22]. Proposed

(a)

(b)

FIG. 7. (a) TE-polarized band structure of a C4v-symmetric PhC
with lattice constant a, whose unit cell is shown in the inset. This unit
cell consists of dielectric discs of ε1 = 1 (white) with r1 = 0.2a and
ε2 = 16 (black) with r2 = 0.225a in a background material of ε3 = 4
(gray). C4 eigenvalues at � and M, C2 eigenvalues at X are shown for
bands 8 and 9. (b) Wilson loop eigenvaluesWy for the bands 8 + 9,
plotted as a function of kx . The opposite winding of the eigenvalues
indicates the non-Wannierizability of the bands, particularly that the
bands are fragile.

applications for these edge states include optical isolators and
slow-light devices that could significantly outperform their
conventional counterparts [103–105].

D. Example 4: Fragile phase in class AI

Fragile phases have bands that exhibit a symmetry-
protected winding in their Wilson loop spectrum, indicating
that the bands cannot form a symmetry-preserving Wannier
representation. However, when considered as a set along with
additional atomic limit bands, the full set becomes Wannieriz-
able, and accordingly, the Wilson loop winding is lost [48,63–
65]. They are characterized by indices that must be written as
a linear combination of the invariants in Tables I–IV with at
least one negative integer coefficient.

We now present a novel PhC design with fragile bands
in a C4v-symmetry setting whose unit cell is shown in the
inset of Fig. 7(a). The PhC is composed of three materials,
ε1 = 1 (white), ε2 = 16 (black), and ε3 = 4 (gray). We con-
sider the two isolated and degenerate bands, bands 8 + 9 in the
TE-polarized band structure of this PhC shown in Fig. 7(a).
Using the relevant rotation eigenvalues of the electromagnetic
eigenmodes at the HSPs, we compute the invariant for these
bands to be χ

(4)
T = (0, 2,−1; 2). Since this invariant is not

found in Table III, we express it as the following linear com-
bination of OALs from Table III: χ

(4)
T = (0, 0,−1; 2) = 1 ×

(1, 1,−1; 2) + 1 × (−1,−1, 0; 1) + (−1) × (0, 0, 0; 1). The
requirement of a negative integer coefficient in this expansion
indicates that this set of two bands is fragile. The non-
Wannierizable nature of these bands is also evident from the
Wilson loop spectrum in Fig. 7(b), which shows opposite
winding of the two eigenvalues.

A different PhC realization of a fragile phase with C6

symmetry was previously reported in [48]. Similar to OAL
phases, fragile PhCs may host corner states resulting from the
total corner charge of all Wannierizable components in their
decomposition [66,106].
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V. OTHER TOPOLOGICAL PHASES

Finally, we discuss a selection of other topological phases
where crystalline symmetries play a crucial role, but whose
realization may not be directly inferred from the topological
indices presented so far.

A. Quantum spin-Hall analogs

The electronic quantum spin Hall effect (QSHE) can be
thought of as being deformable to two Chern insulators with
opposite Chern numbers stacked on top of each other, one for
each spin degree of freedom [107–109]. This creates spin-
polarized “helical” edge states on the boundary of a finite
sample, which are protected against back-scattering due to the
Kramers’ degeneracy at time-reversal invariant momenta.

Since the bosonic TR operator squares to +1, photons
lack the Kramers degeneracy enjoyed by their fermionic
counterparts (whose TR operator squares to −1). A pho-
tonic counterpart to the QSHE consequently necessitates a
replacement for Kramers degeneracy. This can be achieved by
incorporating spatial symmetries, particularly C6v symmetry,
to construct a pseudo-TR operator [23]. It can be shown that
the bulk topology of such a PhC is identical to that of the
QSHE by explicit calculation of the pseudospin polarized
Wilson loop spectrum [110], where an opposite winding of
the two eigenvalues is observed. However, since this winding
is enforced by a crystalline symmetry, it is more appropriate to
classify these PhCs as fragile phases than as true QSH systems
[110,111]. Nevertheless, such PhCs have bulk states with a
well-defined pseudospin, analogous to the spin of electrons
[23–27] and exhibit helical edge states, similar to the QSHE,
as shown in Fig. 8(a). The presence of an edge necessarily
breaks the C6v symmetry of the bulk and therefore also the
pseudo-TR symmetry allowing for the hybridization of the
edge states. This opens a gap in the edge spectrum as shown in
Fig. 8(a) and allows for the backscattering of the edge states
in the vicinity of the gap.

B. Valley-Hall phases

As shown previously, Dirac points can be gapped by
breaking TRS, thereby creating bands with a nonzero Chern
number. Breaking inversion symmetry (i.e., twofold rotation
in a 2D system) can also gap Dirac points and introduce local
Berry curvature with boundary manifestations. For example,
reducing C6 symmetry to C3 gaps the Dirac points that gener-
ically exist at the K (K′) points of the BZ. This causes the
Berry curvature to peak at the “valleys” formed at the K (K′)
points [35–37]. Due to TRS, the total Berry curvature and
the Chern number are identically zero. However, the nonzero
local Berry curvature at the K (K′) valleys can be used to
define valley Chern numbers such that CK = −CK′ .

In this case, the bulk-boundary correspondence is only
well defined at the boundary between two such systems, one
spatially inverted with respect to the other. The edge states
that thus emerge have a dispersion as shown in Fig. 8(b)
and can generally backscatter, unlike the chiral edge states
of a Chern insulator. Certain types of edge geometries and
symmetry-preserving perturbations are known to suppress
intervalley scattering, leading to nearly perfect (but inciden-

(a) (b)

(c)

FIG. 8. (a) Pseudo-spin polarized helical edge states of a quan-
tum spin Hall analog PhC. Note the gap at the crossing point of the
edge states. This gap opens as a result of pseudo-TR breaking due
to the edge. (b) Edge states of a valley-Hall PhC. (c) Schematic of
a PhC quadrupole insulator with vanishing bulk dipole moment and
nonzero bulk quadrupole moment.

tal) backscatter-free transport in the absence of structural
imperfections [36]. However, in the presence of random disor-
der, typically introduced by fabrication imperfections, it was
recently shown that these valley-Hall edge states may not
perform better than conventional edge states for practical light
transport [38]. Valley-Hall edge states have been observed
in PhC designs spanning orders of magnitude in frequency
[35–38].

C. Quadrupole and octupole topological insulators

Quadrupole and octupole topological insulators (QTIs
and OTIs, respectively) are a final example of crystalline
symmetry-protected topological phases, which host fractional
corner charges, similar to, but ultimately distinct from, OAL
insulators [112] [Fig. 8(c)]. They are Z2 classified, with
fractional corner charges quantized to {0, 1/2} mod 1. The
prototypical model is C4v symmetric [113]. Under C4 sym-
metry, the QTI phase is bulk obstructed and therefore an
atomic limit. However, relaxing C4v down to only reflection
symmetries also protects the quantization of corner charge,
although their symmetry-indicator invariants due to reflection
symmetry vanish. Thus, the protection due to reflection sym-
metries is more subtle than for OALs; they exhibit a gapped
Wilson loop spectrum, not pinned by symmetries, and the
change in topology here is accompanied by a gap closing in
the Wilson loop spectrum, which implies a gap closing in the
edge spectrum, instead of in the bulk spectrum.

QTI and OTI phases require a set of anticommuting spatial
symmetries that can be achieved by threading a π flux in sim-
ple tight-binding models. However, PhCs cannot be accurately

085116-12



TOPOLOGICAL PHASES OF PHOTONIC CRYSTALS UNDER … PHYSICAL REVIEW B 108, 085116 (2023)

described by such models. Instead, a quadrupole phase can be
achieved by breaking time-reversal symmetry while preserv-
ing the product of mirror and time-reversal symmetries [45].
Alternatively, QTI phases can also be realized in PhCs with
anticommuting glide symmetries [46]. Topological indices
that diagnose the QTI and OTI topologies have been recently
demonstrated [114,115], and follow the natural extension of
the index for dipole moments [116]. Such indices have also
recently been used to show that QTIs can also be protected
solely by chiral symmetry [117–119], which has allowed the
introduction of a Z classification of higher-order topological
insulators in 2D and 3D [120].

VI. DISCUSSION

The past decade has seen the uncovering of a wide range
of topological phenomena in PhCs [3–5,17–19], validating the
notion that topological band theory is a wave phenomenon,
transcending the existence of bound orbital states present
in electronic systems. Motivated by these recent develop-
ments, we have here extended the use of symmetry-indicator
invariants to classify one- and two-dimensional PhCs with
crystalline symmetries, with and without time-reversal sym-
metry. Through various examples, we have also demonstrated
that the bulk-boundary correspondence of topological band
theory carries over to these systems as well.

In solids, the atomic ions form potentials that bind elec-
tronic orbitals. The electrons in the crystal hop between these
orbitals, giving rise to Bloch energy bands that can often
be described by simplified tight-binding models, where the
hopping terms in the Hamiltonian are given by the overlap
integrals between different orbitals. Photonic analogs of solid-
state lattices have been achieved in periodic arrays of coupled
waveguides, where each waveguide supports a guided mode
so that the extended array can be thought of as having in-
terorbital hoppings that also lead to tight-binding descriptions
[121]. As a result, the electronic theory of noninteracting
topological phases carries over directly to this case. In con-
trast, the PhCs studied in this work are not well described by
simple tight-binding models; instead, they necessarily require
a continuum description based on the full-wave solution of
Maxwell’s equations.

A further crucial difference between PhCs and solids is
that PhCs host bosonic waves unlike electrons, which are
fermionic and described by a quantum wave function. For
topological band theory, this has two consequences. First,
there is no Kramers’ degeneracy for electromagnetic waves,
and thus there is no protection of helical edge states as in the
QSHE phase of electronic systems. As discussed in Sec. V, the
edge states in the PhC versions of the QSHE phase are not rig-
orously protected, in contrast to their electronic counterpart.
Second, PhCs lack a notion of band filling and consequently
require a subtler interpretation of the filling anomaly, in-
volving instead the fractional quantization of electromagnetic
mode density instead of charges [73]. We have demonstrated
that this fractionalization comes from a counting mismatch of
states and that the boundary-localized states associated with
it are the consequence of the conservation of the number of
degrees of freedom in the system, and do not require a fixed
band filling (i.e., Fermi level). We have further demonstrated

(a) (b)

FIG. 9. Two Wannier center configurations in a finite 1D lattice
with no boundaries. Blue rectangles represent unit cells, black circles
represent Wannier centers. (a) Wannier centers in the 1a trivial phase.
(b) Wannier centers in the 1b OAL phase. In both cases, the boundary
is opened at the dotted line.

how the topological invariants based on symmetry indicators
relate to the presence of counting mismatches and their bound-
ary states. Finally, we have presented a C4v-symmetric PhC
design hosting fragile bands.

The framework presented here is readily generalizable
to three-dimensional PhCs under crystalline symmetries
[89,122]. Such three-dimensional PhCs, now a subject of
active experimental exploration [123–127], exhibit several
unique topological phases with associated bulk and boundary
signatures. Beyond its appeal as a platform for exploring
the new, fundamental physics of topology in a controllable
setting, the merger of topology and PhCs hold substantial
promise for the development of new technologies and device
design strategies. We expect that the algebraic structure of the
presented classification will be useful in this pursuit.
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APPENDIX A: STATE COUNTING MISMATCH

Consider a 1D lattice under periodic boundary conditions.
The lattice is gapped and the lowest band can exist in two
phases, a trivial phase and an OAL phase, both protected by
inversion symmetry (I). In Fig. 9(a), the Wannier centers
are at the middle of their unit cells (Wyckoff position 1a).
In this case, irrespective of the site symmetry representation,
all Wannier states except the one that lies at the inversion
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(a) (b) (c) (d)

FIG. 10. The Brillouin zones of crystals with (a) C2, (b) C3,
(c) C4, and (d) C6 symmetries. Each Brillouin zone is divided into
copies of a fundamental domain over which an integral of the Berry
connection is considered. The dark yellow loops indicate the reduced
integral paths of Eq. (B2).

center can be paired around the inversion center to span both
representations, {+1,−1}, of I. The Wannier state that lies
at the inversion center simply transforms according to its
site-symmetry representation. If we open a boundary at the
location indicated by the dotted line in Fig. 9(a), the Wannier
states remain consistently paired about the inversion center.

Now consider the situation shown in Fig. 9(b), where the
Wannier centers are located between unit cells (Wyckoff po-
sition 1b). All but one Wannier states can be paired around
the inversion center to span both representations, {+1,−1},
of I. However, we are faced with a conundrum when we
open a boundary at the location indicated by the dotted line
in Fig. 9(b): Since the boundary passes through a Wannier
center, the corresponding state must be relocated to either
the newly formed left edge or the right edge of the system.
However, it cannot be moved to either edge since doing so
would break inversion symmetry. The only possible resolution
of this scenario comes about when the Wannier centers of a
different band are in a similar (obstructed) situation. In this
case, the two leftover Wannier states, one from each band, can
reside at the two boundaries of the system and form a pair to
span both representations of I.

The crucial observation here is that since I maps the
boundary states to each other, any perturbation to the bound-
ary that preserves I must affect both states similarly. This
implies that counting states in the spectrum within the fre-
quency range (or bandwidth) of a single band will always
lead to either at least one missing state or one additional
state. In general, for an OAL band with inversion symmetry,
this counting mismatch is equal to 12 states (where 12 is any
integer congruent to 1 mod 2). For Cn-symmetric systems in
2D, this counting mismatch is defined modulo n. If these n
states lie within a bandgap, they are localized to the n corners
of the finite system.

APPENDIX B: RELATION BETWEEN CHERN NUMBER
AND ROTATION INVARIANTS

In this section, we derive relations between the Chern num-
ber and the rotation invariants at high-symmetry points of the
BZ of Cn symmetric crystals. We provide the guidelines for
such derivations; more detailed accounts of these calculations
can be found in Ref. [91].

Consider the BZs of Cn symmetric crystals shown in
Fig. 10. A nonzero Chern number represents an obstruction
to choosing a smooth gauge for the electronic wave functions
across the entire BZ. However, the BZs have a fundamental

domain U0 over which a smooth gauge will be chosen; any
discontinuities in the gauge are thus pushed to the boundaries
between symmetry-related fundamental domains. The entire
Berry flux that gives rise to the Chern invariant can then be
broken into n identical contributions,

C = i

2π

∫
BZ

Tr(F ) = i

2π

∑
i

∫
Ui

Tr(F )

= i

2π

∑
i

∫
∂Ui

Tr(Ai). (B1)

That is, the Chern number can be calculated by computing the
line integrals of the Berry connection along the boundaries,
∂Ui, of each domain Ui. Since the Chern number implies an
obstruction to choosing a smooth gauge over the entire BZ,
the line integrals along each domain do not cancel each other;
instead, they are related by a gauge transformation. Using the
fact that the contribution to the Chern number of each domain
is equal, we have

C(2) = 2
i

2π

∫
−→
X�∪−−→

YM
(Tr(A0) − Tr(A1))dk (C2 symmetry),

C(3) = 3
i

2π

∫
−→
K�∪−−→

KK′
(Tr(A0) − Tr(A1))dk (C3 symmetry),

C(4) = 4
i

2π

∫
−→
X�∪−−→

X′M
(Tr(A0) − Tr(A1))dk (C4 symmetry),

C(6) = 6
i

2π

[∫
−−→
K′�

(Tr(A0) − Tr(A1))dk

+
∫

−−→
KM

(Tr(A0) − Tr(A3))dk
]

(C6 symmetry).

(B2)

The line integral paths in Eq. (B2) are shown in red in Fig. 10.
Notice that these line integrals contain the difference be-

tween two Berry connections at different domains, which
results in the term∫ �1

�0

(Tr(Ai ) − Tr(A j )) =
∫ �1

�0

Tr(g†
i j )dgi j = ln det gi j |�1

�0
,

(B3)

where gi j is the gauge-transformation matrix between Berry
connections at domains Ui and Uj . When evaluated at a high-
symmetry point �, they are equal to the rotation operator
projected into the subspace of bands of interest,

[gi j (�)]αβ = 〈uα (�)|rn|uβ (�)〉 ≡ [rn(�)]αβ. (B4)

At these HSPs, the projected rotation operator can be diago-
nalized into

rn(�) =
n⊕

p=1


pI#
p×#
p, (B5)

where #
p indicates the number of states at HSP � with
rotation eigenvalue 
p.

It will be useful to define the quantity

δn(�) = n

2π i
ln det rn(�) =

n∑
p=1

(p − 1)#
p. (B6)

085116-14



TOPOLOGICAL PHASES OF PHOTONIC CRYSTALS UNDER … PHYSICAL REVIEW B 108, 085116 (2023)

The integrals in Eq. (B2) then imply the following relations:

C(2) = −δ2(�) + δ2(X) − δ2(M) + δ2(Y) (mod 2),

C(3) = −δ3(�) + 2δ3(K) − δ3(K′) (mod 3),

C(4) = −δ4(�) − δ4(M) + 2δ2(X) (mod 4),

C(6) = −δ6(�) + 4δ3(K) − 3δ2(M) (mod 6),
(B7)

or, in terms of the invariants in Eq (17),

C(2) = −[
X (2)

1

] − [
Y (2)

1

] − [
M (2)

1

]
(mod 2),

C(3) = −[K1] − 2[K2] + 2[K ′
1] + [K ′

2] (mod 3),

C(4) = 2
[
M (4)

1

] + [
M (4)

2

] − [
M (4)

4

] − 2
[
X (2)

1

]
(mod 4),

C(6) = −8[K1] − 4[K2] + 3[M1] (mod 6).
(B8)

APPENDIX C: INVARIANTS FROM INDUCTION
OF REPRESENTATIONS IN 1D

The maximal Wyckoff positions in a 1D I-symmetric unit
cell are 1a and 1b, as shown in Fig. 1(c) of the main text. The
classification is given by the invariant [X1].

The values of this invariant can be enumerated exhaus-
tively by working out the inverse problem, i.e., we start
from the set of Wannier functions and derive the band rep-
resentations at HSPs that such a set leads to. This inverse
problem of band topology has been used to classify topologi-
cal phases in insulators and is known variously as topological
quantum chemistry [61] or symmetry indicators [67,69]. To
induce band representations, it is necessary to specify (i) a
Wannier center configuration and (ii) the symmetry represen-
tations of the Wannier functions, otherwise referred to as the
“site-symmetry representations” [70]. For a 1D system with
inversion symmetry, the band representations at momentum
kx with Wannier centers at Wyckoff positions 1a and 1b are
respectively

ρ
kx
G (I) = ρ(I) (from 1a),

ρ
kx
G (I) = eikxaρ(I) (from 1b), (C1)

where a is the lattice constant and ρ(I) is the site-symmetry
representation, which under I, admits the values ±1. We
note that the Wyckoff position 1b is invariant not under I
but under I followed by a full lattice constant translation.
This translation results in a phase factor of eikxa for the band
representation in momentum space in Eq. (C1).

For ρ(I) = +1 and at the HSPs � (kx = 0) and X (kx =
π/a), the band representations are

ρ�
G(I) = +1, ρX

G (I) = +1 (from 1a),

ρ�
G(I) = +1, ρX

G (I) = −1 (from 1b). (C2)

As a result of this the trivial phase (1a) has [X1] = 0 and the
topological phase (1b) has [X1] = −1.

Similarly, for ρ(I) = −1 and at the HSPs � and X, the
band representations are

ρ�
G(I) = −1, ρX

G (I) = −1 (from 1a),

ρ�
G(I) = −1, ρX

G (I) = +1 (from 1b). (C3)

TABLE V. Inversion symmetry: Invariants induced from Wyck-
off positions for different site symmetry representations.

Wannier center Site symm. ρ�
G(I) ρX

G (I) [X1]

1a ρ(I) = +1 +1 +1 0
1a ρ(I) = −1 −1 −1 0
1b ρ(I) = +1 +1 −1 −1
1b ρ(I) = −1 −1 +1 +1

As before, we note that the trivial phase associated with the
1a-induced band representation has [X1] = 0 while the topo-
logical phase associated with 1b has [X1] = +1.

The results are tabulated in Table V. Since all possible
combinations of +1/ − 1 are exhausted in Table V, all bands
in 1D are atomic limits.

A single band in the trivial phase (1a) has [X1] = 0, while
in the topological phase (1b), has [X1] = +1 or −1. A group
of bands can also be characterized by [X1] since this invariant
is linear under the composition of bands, i.e., the indices [X1]1

and [X1]2 of bands 1 and 2 result in the index [X1]1 + [X1]2 for
the composed system of bands 1 and 2 taken together. This
linear property of [X1] allows for the following possibility:
Consider a set of two bands that are independently nontrivial
with their individual Wannier centers at position 1b having
[X1] = +1 and −1 respectively. Taken together, these bands
result in a trivial phase with [X1] = 0. In such a case, the Wan-
nier centers of the combined system of two bands are not each
fixed to the maximal Wyckoff position 1b, but are generally
separated away from 1b, consistent with inversion symmetry.
This separation can smoothly interpolate between the two
maximal Wyckoff positions, 1a and 1b, without closing a
bandgap anywhere in the system or breaking the symmetry,
and thus such a configuration of two bands is topologically
identical to a trivial system. In contrast, consider two bands
with Wannier centers located at 1b and [X1]1 = [X1]2 = 1.
The combined system has [X1]1 + [X1]2 = 2, and the two
Wannier centers remain pinned to 1b.

In general, we refer to bands that have Wannier centers
fixed to positions away from the 1a position as obstructed
atomic limits (OALs) and bands that have Wannier centers at
the 1a position or movable Wannier centers that can be adia-
batically brought to the 1a position as trivial atomic limits.

APPENDIX D: INVARIANTS FROM INDUCTION
OF REPRESENTATIONS IN 2D

In this section, we use the procedure developed in [70]
to determine the band representations induced from Wannier
centers located at all possible Wyckoff positions and all site
symmetry representations in 2D for class AI and class A.
From them, we determine the classification indices χ

(n)
T and

χ (n) specified in Tables I–IV of the main text. Since all such
bands, even in class A, are Wannierizable by definition, their
Chern number is 0.

When the Chern number vanishes, the topological class
given by χ

(n)
T or χ (n) indicates both the Wyckoff position

of the Wannier centers and the Cn symmetry representa-
tion of the Wannier function itself (i.e., the site symmetry
representation). The converse is also true. Therefore, the
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TABLE VI. C2 symmetry: Invariants induced from the maximal Wyckoff positions for different site symmetry representations.

Wyckoff pos. Site symm. ρ(C2) ρ�
G(C2) ρX

G (C2) ρY
G (C2) ρM

G (C2) χ
(2)
T χ (2)

1c +1 #�
(2)
1 = 1 #X (2)

1 = 0 #Y (2)
1 = 1 #M (2)

1 = 0 (−1, 0, −1; 1) (0 | − 1, 0,−1; 1)
#�

(2)
2 = 0 #X (2)

2 = 1 #Y (2)
2 = 0 #M (2)

1 = 1
−1 #�

(2)
1 = 0 #X (2)

1 = 1 #Y (2)
1 = 0 #M (2)

1 = 1 (1, 0, 1; 1) (0 | 1, 0, 1; 1)
#�

(2)
2 = 1 #X (2)

2 = 0 #Y (2)
2 = 1 #M (2)

1 = 0
1d +1 #�

(2)
1 = 1 #X (2)

1 = 1 #Y (2)
1 = 0 #M (2)

1 = 0 (0, −1, −1; 1) (0 | 0, −1, −1; 1)
#�

(2)
2 = 0 #X (2)

2 = 0 #Y (2)
2 = 1 #M (2)

1 = 1
−1 #�

(2)
1 = 0 #X (2)

1 = 0 #Y (2)
1 = 1 #M (2)

1 = 1 (0, 1, 1; 1) (0 | 0, 1, 1; 1)
#�

(2)
2 = 1 #X (2)

2 = 1 #Y (2)
2 = 0 #M (2)

1 = 0
1b +1 #�

(2)
1 = 1 #X (2)

1 = 0 #Y (2)
1 = 0 #M (2)

1 = 1 (−1, −1, 0; 1) (0 | − 1, −1, 0; 1)
#�

(2)
2 = 0 #X (2)

2 = 1 #Y (2)
2 = 1 #M (2)

1 = 0
−1 #�

(2)
1 = 0 #X (2)

1 = 1 #Y (2)
1 = 1 #M (2)

1 = 0 (1, 1, 0; 1) (0 | 1, 1, 0; 1)
#�

(2)
2 = 1 #X (2)

2 = 0 #Y (2)
2 = 0 #M (2)

1 = 1

Tables VI–XII and Tables I–IV in the main text show the
correspondence between Wannier centers, site symmetry rep-
resentations, and topological indices.

1. C2 symmetry

The maximal Wyckoff positions in a C2-symmetric unit
cell are 1a, 1b, 1c, and 1d as shown in Fig. 3 of the main text.
The classification is given by χ

(2)
T = ([X (2)

1 ], [Y (2)
1 ], [M (2)

1 ]; N )
(for TR-symmetric) and χ (2) = (C | [X (2)

1 ], [Y (2)
1 ], [M (2)

1 ]; N )
(for TR-broken).

The band representations induced from all maximal Wyck-
off positions are given by

ρk
G(C2) = eik·a1ρ(C2) (from 1c),

ρk
G(C2) = eik·a2ρ(C2) (from 1d), (D1)

ρk
G(C2) = eik·(a1+a2 )ρ(C2) (from 1b).

Using Eqs. (D1), we calculate the rotation eigenvalues for all
site symmetries when the Wannier centers are at 1b, 1c, and
1d in Table VI.

2. C3 symmetry

The maximal Wyckoff positions in a C3-symmetric unit
cell are 1a, 1b, and 1c as shown in Fig. 3 of the main text. The

classification is given by χ
(3)
T = ([K (3)

1 ], [K (3)
2 ]; N ) (for TR-

symmetric) and χ (3) = (C | [K (3)
1 ], [K (3)

2 ], [K ′(3)
1 ], [K ′(3)

2 ]; N )
(for TR-broken). For both C6 and C3 symmetries, we use the
following primitive vectors a1 = (1, 0), a2,3 = (± 1

2 ,
√

3
2 ).

The band representations for Wannier centers at Wyckoff
position 1b are given by

ρk
G(C3) = eik·a2ρ(C3). (D2)

Using Eq. (D2), we calculate the rotation eigenvalues for
all site symmetries when the Wannier centers are at 1b in
Table VII.

The band representations for Wannier centers at Wyckoff
position 1c are given by

ρk
G(C3) = eik·a1ρ(C3). (D3)

Using Eq. (D3), we calculate the rotation eigenvalues for
all site symmetries when the Wannier centers are at 1c in
Table VIII.

3. C4 symmetry

The maximal Wyckoff positions in a C4-symmetric
unit cell are 1a, 1b, and 2c, as shown in Fig. 3 of
the main text. The classification is given by χ

(4)
T =

TABLE VII. C3 symmetry: Invariants induced from Wyckoff position 1b with different site symmetry representations.

Site symm. ρ(C3) ρ�
G(C3) ρK

G (C3) ρK′
G (C3) χ

(3)
T χ (3)

#�
(3)
1 = 1 #K (3)

1 = 0 #K ′(3)
1 = 0

1 #�
(3)
2 = 0 #K (3)

2 = 1 #K ′(3)
2 = 0 (−1, 1; 1) (0 | − 1, 1, −1, 0; 1)

#�
(3)
3 = 0 #K (3)

3 = 0 #K ′(3)
3 = 1

#�
(3)
1 = 0 #K (3)

1 = 1 #K ′(3)
1 = 1

ei 2π
3 σz #�

(3)
2 = 1 #K (3)

2 = 0 #K ′(3)
2 = 1 (1, −1; 2) (0 | 1, −1, 1, 0; 2)

#�
(3)
3 = 1 #K (3)

3 = 1 #K ′(3)
3 = 0

#�
(3)
1 = 0 #K (3)

1 = 0 #K ′(3)
1 = 1

ei 2π
3 #�

(3)
2 = 1 #K (3)

2 = 0 #K ′(3)
2 = 0 (0 | 0, −1, 1, −1; 1)

#�
(3)
3 = 0 #K (3)

3 = 1 #K ′(3)
3 = 0

#�
(3)
1 = 0 #K (3)

1 = 1 #K ′(3)
1 = 0

ei 4π
3 #�

(3)
2 = 0 #K (3)

2 = 0 #K ′(3)
2 = 1 (0 | 1, 0, 0, 1; 1)

#�
(3)
3 = 1 #K (3)

3 = 0 #K ′(3)
3 = 0
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TABLE VIII. C3 symmetry: Invariants induced from Wyckoff position 1c with different site symmetry representations.

Site symm. ρ(C3) ρ�
G(C3) ρK

G (C3) ρK′
G (C3) χ

(3)
T χ (3)

#�
(3)
1 = 1 #K (3)

1 = 0 #K ′(3)
1 = 0

1 #�
(3)
2 = 0 #K (3)

2 = 0 #K ′(3)
2 = 1 (−1, 0; 1) (0 | − 1, 0, −1, 1; 1)

#�
(3)
3 = 0 #K (3)

3 = 1 #K ′(3)
3 = 0

#�
(3)
1 = 0 #K (3)

1 = 1 #K ′(3)
1 = 1

ei 2π
3 σz #�

(3)
2 = 1 #K (3)

2 = 1 #K ′(3)
2 = 0 (1, 0; 2) (0 | 1, 0, 1, −1; 2)

#�
(3)
3 = 1 #K (3)

3 = 0 #K ′(3)
3 = 1

#�
(3)
1 = 0 #K (3)

1 = 1 #K ′(3)
1 = 0

ei 2π
3 #�

(3)
2 = 1 #K (3)

2 = 0 #K ′(3)
2 = 0 (0 | 1, −1, 0, −1; 1)

#�
(3)
3 = 0 #K (3)

3 = 0 #K ′(3)
3 = 1

#�
(3)
1 = 0 #K (3)

1 = 0 #K ′(3)
1 = 1

ei 4π
3 #�

(3)
2 = 0 #K (3)

2 = 1 #K ′(3)
2 = 0 (0 | 0, 1, 1, 0; 1)

#�
(3)
3 = 1 #K (3)

3 = 0 #K ′(3)
3 = 0

([X (2)
1 ], [M (4)

1 ], [M (4)
2 ]; N ) (for TR-symmetric) and χ (4) =

(C | [X (2)
1 ], [M (4)

1 ], [M (4)
2 ], [M (4)

4 ]; N ) (for TR-broken).
The band representations for Wannier centers at Wyckoff

position 2c are given by

ρk
G(C4) =

(
0 eik·a1ρ(C2)
1 0

)
,

ρk
G(C2) =

(
eik·a1 0

0 eik·a2

)
ρ(C2). (D4)

Using Eq. (D4), we calculate the rotation eigenvalues for
all site symmetries when the Wannier centers are at 2c in
Table IX.

The band representations for Wannier centers at Wyckoff
position 1b are given by

ρk
G(C4) = eik·a1ρ(C4), ρk

G(C2) = eik·(a1+a2 )ρ(C2). (D5)

Using Eq. (D5), we calculate the rotation eigenvalues for
all site symmetries when the Wannier centers are at 1b in
Table X.

4. C6 symmetry

The maximal Wyckoff positions in a C6-symmetric unit
cell are 1a, 2b, and 3c as shown in Fig. 3 of the main text.
The classification is given by χ

(6)
T = ([M (2)

1 ], [K (3)
1 ]; N ) (for

TR-symmetric) and χ (6) = (C | [M (2)
1 ], [K (3)

1 ], [K (3)
2 ]; N ) (for

TR-broken). For both C6 and C3 symmetries, we use the fol-
lowing primitive vectors a1 = (1, 0), a2,3 = (± 1

2 ,
√

3
2 ).

The band representations for Wannier centers at Wyckoff
position 2b are given by

ρk
G(C3) =

(
eik·a1 0

0 e−ik·a1

)
ρ(C3),

ρk
G(C2) =

(
0 −1
1 0

)
. (D6)

Since the C2 band representation ρk
G(C2) is independent of k,

the invariant [M (2)
1 ] vanishes. Using Eq. (D6), we calculate the

rotation eigenvalues for all site symmetries when the Wannier
centers are at 2b in Table XI.

The band representations for Wannier centers at Wyckoff
position 3c are given by

ρk
G(C3) =

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠,

ρk
G(C2) =

⎛
⎝eik·a2 0

0 e−ik·a1 0
0 0 e−ik·a3

⎞
⎠ρ(C2). (D7)

Since the C3 band representation ρk
G(C3) is independent of k,

the invariants [K (3)
1 ] and [K (3)

2 ] vanish. Using Eq. (D7), we
calculate the rotation eigenvalues for all site symmetries when
the Wannier centers are at 2b in Table XII.

TABLE IX. C4 symmetry: Invariants induced from Wyckoff position 2c for different site symmetry representations.

Site symm. ρ(C2) ρ�
G(C4) ρX

G (C2) ρM
G (C4) χ

(4)
T χ (4)

#�
(4)
1 = 1 #X (2)

1 = 1 #M (4)
1 = 0

+1 #�
(4)
2 = 0 #X (2)

2 = 1 #M (4)
2 = 1 (−1, −1, 1; 2) (0 | − 1, −1, 1, 1; 2)

#�
(4)
3 = 1 #M (4)

3 = 0
#�

(4)
4 = 0 #M (4)

4 = 1
#�

(4)
1 = 0 #X (2)

1 = 1 #M (4)
1 = 1

−1 #�
(4)
2 = 1 #X (2)

2 = 1 #M (4)
2 = 0 (1, 1, −1; 2) (0 | 1, 1, −1, −1; 2)

#�
(4)
3 = 0 #M (4)

3 = 1
#�

(4)
4 = 1 #M (4)

4 = 0
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TABLE X. C4 symmetry: Invariants induced from Wyckoff position 1b for different site symmetry representations.

Site symm. ρ(C4) ρ�
G(C4) ρX

G (C2) ρM
G (C4) χ

(4)
T χ (4)

#�
(4)
1 = 1 #X (2)

1 = 0 #M (4)
1 = 0

1 #�
(4)
2 = 0 #X (2)

2 = 1 #M (4)
2 = 0 (−1, −1, 0; 1) (0 | − 1, −1, 0, 0; 1)

#�
(4)
3 = 0 #M (4)

3 = 1
#�

(4)
4 = 0 #M (4)

4 = 0
#�

(4)
1 = 0 #X (2)

1 = 0 #M (4)
1 = 1

−1 #�
(4)
2 = 0 #X (2)

2 = 1 #M (4)
2 = 0 (−1, 1, 0; 1) (0 | − 1, 1, 0, 0; 1)

#�
(4)
3 = 1 #M (4)

3 = 0
#�

(4)
4 = 0 #M (4)

4 = 0
#�

(4)
1 = 0 #X (2)

1 = 2 #M (4)
1 = 0

iσz #�
(4)
2 = 1 #X (2)

2 = 0 #M (4)
2 = 1 (2, 0, 0; 2) (0 | 2, 0, 0, 0; 2)

#�
(4)
3 = 0 #M (4)

3 = 0
#�

(4)
4 = 1 #M (4)

4 = 1
#�

(4)
1 = 0 #X (2)

1 = 1 #M (4)
1 = 0

i #�
(4)
2 = 1 #X (2)

2 = 0 #M (4)
2 = 0 (0 | 1, 0, −1, 1; 1)

#�
(4)
3 = 0 #M (4)

3 = 0
#�

(4)
4 = 0 #M (4)

4 = 1
#�

(4)
1 = 0 #X (2)

1 = 1 #M (4)
1 = 0

−i #�
(4)
2 = 0 #X (2)

2 = 0 #M (4)
2 = 1 (0 | 1, 0, 1, −1; 1)

#�
(4)
3 = 0 #M (4)

3 = 0
#�

(4)
4 = 1 #M (4)

4 = 0

APPENDIX E: CALCULATION OF CORNER CHARGES

The corner charges (Q(n)
corner) can be determined by consid-

ering finite tilings of unit cells with Cn symmetry for each
Wannier center configuration. The formula for Q(n)

corner in terms
of the symmetry-indicator invariants can then be determined
by the procedure described below. In this procedure, a choice
of a set of linearly independent χ indices is made and it
is important to note that the corner charge formulae are not
unique and depend on this choice. However, the corner charge
itself is a physical quantity and is independent of this choice.

The particular finite tilings considered here and the cor-
ner charges that they host are shown in Fig. 11 for all Cn

symmetries. It is also important to note that in the case of
C3 symmetry, the corner charges depend on the exact type
of finite tiling considered. The system formed by placing one
Wannier center at 1b hosts a corner charge of 1/3 only in an

inverted triangle tiling, as shown in Fig. 11(d). If instead an
upright triangle tiling is considered, the corner charge would
be 0 (and vice versa for 1c). This subtlety does not arise in
C3-symmetric systems when bands with vanishing P(3) are
being considered.

With these two caveats in mind, we now derive the corner
charge formulas given in the main text for all Cn symmetries,
with and without TRS.

1. C2 symmetry

For both TR-symmetric and TR-broken cases, C2-
symmetric lattices have three symmetry-indicator invariants:
[X (2)

1 ], [Y (2)
1 ], and [M (2)

1 ]. The corner charge is given by a
linear combination of these invariants

Q(2)
corner = λ1

[
X (2)

1

] + λ2
[
Y (2)

1

] + λ3
[
M (2)

1

]
. (E1)

TABLE XI. C6 symmetry: Invariants induced from Wyckoff position 2b with different site symmetry representations.

Site symm. ρ(C3) ρ�
G(C3) ρK

G (C3) χ
(6)
T χ (6)

#�
(3)
1 = 2 #K (3)

1 = 0
1 #�

(3)
2 = 0 #K (3)

2 = 1 (0,−2; 2) (0 | 0, −2, 1; 2)
#�

(3)
3 = 0 #K (3)

3 = 1
#�

(3)
1 = 0 #K (3)

1 = 2
ei 2π

3 σz #�
(3)
2 = 2 #K (3)

2 = 1 (0, 2; 4) (0 | 0, 2,−1; 4)
#�

(3)
3 = 2 #K (3)

3 = 1
#�

(3)
1 = 0 #K (3)

1 = 1
ei 2π

3 #�
(3)
2 = 2 #K (3)

2 = 0 (0 | 0, 1, −2; 2)
#�

(3)
3 = 0 #K (3)

3 = 1
#�

(3)
1 = 0 #K (3)

1 = 1
ei 4π

3 #�
(3)
2 = 0 #K (3)

2 = 1 (0 | 0, 1, 1; 2)
#�

(3)
3 = 2 #K (3)

3 = 0

085116-18



TOPOLOGICAL PHASES OF PHOTONIC CRYSTALS UNDER … PHYSICAL REVIEW B 108, 085116 (2023)

TABLE XII. C6 symmetry: Invariants induced from Wyckoff position 3c with different site symmetry representations.

Site symm. ρ(C2) ρ�
G(C2) ρM

G (C2) χ
(6)
T χ (6)

1 #�
(2)
1 = 3 #M (2)

1 = 1 (−2, 0; 3) (0 | − 2, 0, 0; 3)
#�

(2)
2 = 0 #M (2)

2 = 2
−1 #�

(2)
1 = 0 #M (2)

1 = 2 (2, 0; 3) (0 | 2, 0, 0; 3)
#�

(2)
2 = 3 #M (2)

2 = 1

To determine λ1, λ2, λ3, we solve for Qi = χ
(2)
i j λ j , where Qi

is the corner charge that corresponds to the χ (2) formed by the
ith row of χ

(2)
i j . Since the χ indices for different site symmetry

representations are linearly dependent, we choose the follow-
ing linearly independent set of χ indices that form a basis:
1b : (−1,−1, 0; 1), 1c : (−1, 0,−1; 1), 1d : (0,−1,−1; 1).
By examining the finite systems formed by the tilings of the
C2-symmetric unit cell in Figs. 11(a)–11(c), we see that the
corner charges for 1b, 1c, and 1d are 1/2, 0, and 0 respec-
tively. This implies that⎛

⎝ 1
2
0
0

⎞
⎠ =

⎛
⎝−1 −1 0

−1 0 −1
0 −1 −1

⎞
⎠

⎛
⎝λ1

λ2

λ3

⎞
⎠, (E2)

which gives λ1,2,3 = − 1
4 ,− 1

4 , 1
4 . Therefore,

Q(2)
T ,corner = Q(2)

corner = 1
4

(−[
X (2)

1

] − [
Y (2)

1

] + [
M (2)

1

])
. (E3)

For C2-symmetry, it is possible to find a situation where the
charges at each corner are not quantized. The system shown

in Fig. 11(a) is a valid C2-symmetric configuration where the
corner charges need not be quantized but the corner charge per
C2-symmetric sector is quantized to 1/2.

2. C3 symmetry

For the TR-symmetric case, C3-symmetric lattices have
two symmetry-indicator invariants: [K (3)

1 ] and [K (3)
2 ]. The cor-

ner charge is given by a linear combination of these invariants

Q(3)
T ,corner = λ1

[
K (3)

1

] + λ2
[
K (3)

2

]
. (E4)

We choose the following linearly independent set of χ

indices that form a basis: 1b : (−1, 1; 1), 1c : (−1, 0; 1). By
examining the finite systems formed by the tilings of the
C3-symmetric unit cell in Figs. 11(d) and 11(e), we see that
the corner charges for 1b and 1c are 1/3 and 0 respectively.
This implies that (

1
3
0

)
=

(−1 1
−1 0

)(
λ1

λ2

)
, (E5)

(a)

(f)

(c)

(b)

(g)

(d)

(h)

(e)

(i)

FIG. 11. C2-symmetric tilings of one Wannier center placed at the Wyckoff position (a) 1b, (b) 1d , and (c) 1c. C3-symmetric tilings of one
Wannier center placed at Wyckoff position (d) 1b and (e) 1c. C4-symmetric tilings of (f) one Wannier center placed at Wyckoff position 1b and
(g) two Wannier centers placed at the Wyckoff position 2c. C6-symmetric tilings of (h) two Wannier centers placed at Wyckoff position 2b and
(i) three Wannier centers placed at Wyckoff position 3c. In all figures, some Wannier centers (hollow circles) have been removed to maintain
Cn symmetry. The resultant fractional occupation along the boundaries is labeled, which helps identify the quantization of fractional corner
charges in each case.
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which gives λ1,2 = 0, 1
3 . Therefore,

Q(3)
T ,corner = 1

3

[
K (3)

2

]
. (E6)

For the TR-broken case, C3-symmetric lattices have four
symmetry-indicator invariants: [K (3)

1 ], [K (3)
2 ], [K ′(3)

1 ], [K ′(3)
2 ].

The corner charge is given by a linear combination of these
invariants

Q(3)
corner = λ1

[
K (3)

1

] + λ2
[
K (3)

2

] + λ3
[
K ′(3)

1

] + λ4
[
K ′(3)

2

]
.

(E7)

We choose the following linearly independent set of χ

indices that form a basis: 1b1 : (0 | − 1, 1,−1, 0; 1),
1b2 : (0 | 1, 0, 0, 1; 1), 1c1 : (0 | − 1, 0,−1, 1; 1), 1c2 :
(0 | 0, 1, 1, 0; 1). By examining the finite systems formed
by the tilings of the C3-symmetric unit cell in Figs. 11(d) and
11(e), we see that the corner charges for 1b1, 1b2, 1c1, and
1c2 are 1/3, 1/3, 0, and 0 respectively. This implies that⎛

⎜⎜⎜⎝
1
3
1
3

0
0

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎝

−1 1 −1 0
1 0 0 1

−1 0 −1 1
0 1 1 0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λ1

λ2

λ3

λ4

⎞
⎟⎟⎠, (E8)

which gives λ1,2,3,4 = 1
3 , 1

3 ,− 1
3 , 0. Therefore,

Q(3)
corner = 1

3

([
K (3)

1

] + [
K (3)

2

] − [
K ′(3)

1

])
. (E9)

3. C4 symmetry

For the TR-symmetric case, C4-symmetric lattices have
three symmetry-indicator invariants: [X (4)

1 ], [M (4)
1 ], and

[M (4)
2 ]. The corner charge is given by a linear combination

of these invariants

Q(4)
T ,corner = λ1

[
X (4)

1

] + λ2
[
M (4)

1

] + λ3[M (4)
2 ]. (E10)

We choose the following linearly independent set of χ indices
that form a basis: 2c : (−1,−1, 1; 2), 1b1 : (−1, 1, 0; 1), 1b2 :
(2, 0, 0; 2). By examining the finite systems formed by the
tilings of the C4-symmetric unit cell in Figs. 11(f) and 11(g),
we see that the corner charges for 2c, 1b1, and 1b2 are 0, 1/4,
and 1/2 respectively [note that 1b2 : (2, 0, 0; 2) is induced by
two bands, each with Wannier centers at 1b. Therefore, the net
corner charge is (2 × 1/4) mod 1 = 1/2]. This implies that⎛

⎜⎝
0
1
4
1
2

⎞
⎟⎠ =

⎛
⎜⎝−1 −1 1

−1 1 0
2 0 0

⎞
⎟⎠

⎛
⎜⎝λ1

λ2

λ3

⎞
⎟⎠, (E11)

which gives λ1,2,3 = 1
4 , 1

2 , 3
4 . Therefore,

Q(4)
T ,corner = 1

4

([
X (2)

1

] + 2
[
M (4)

1

] + 3
[
M (4)

2

])
. (E12)

For the TR-broken case, C4-symmetric lattices have four
symmetry-indicator invariants: [X (4)

1 ], [M (4)
1 ], [M (4)

2 ], and
[M (4)

4 ]. The corner charge is given by a linear combination
of these invariants

Q(4)
corner = λ1

[
X (4)

1

] + λ2
[
M (4)

1

] + λ3
[
M (4)

2

] + λ4
[
M (4)

4

]
.

(E13)

We choose the following linearly independent set of χ in-
dices that form a basis: 2c : (0 | − 1,−1, 1, 1; 2), 1b1 : (0 | −
1, 1, 0, 0; 1), 1b2 : (0 | 1, 0,−1, 1; 1), 1b3 : (0 | 1, 0, 1,−1; 1).
By examining the finite systems formed by the tilings of the
C4-symmetric unit cell in Figs. 11(f) and 11(g), we see that
the corner charges for 2c, 1b1, 1b2, and 1b3 are 0, 1/4, 1/4,
and 1/4 respectively. This implies that⎛
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0
1
4
1
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which gives λ1,2,3,4 = 1
4 , 1

2 , 3
8 , 3

8 . Therefore,

Q(4)
corner = 1
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M (4)
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[
M (4)

4

])
. (E15)

4. C6 symmetry

For the TR-symmetric case, C6-symmetric lattices have
two symmetry-indicator invariants: [M (2)

1 ] and [K (3)
1 ]. The cor-

ner charge is given by a linear combination of these invariants

Q(6)
T ,corner = λ1

[
M (2)

1

] + λ2
[
K (3)

1

]
. (E16)

We choose the following linearly independent set of χ indices
that form a basis: 2b : (0, 2; 4), 3c : (2, 0; 3). By examining
the finite systems formed by the tilings of the C6-symmetric
unit cells in Figs. 11(h) and 11(i), we see that the corner
charges for 2b and 3c are 1/3 and 1/2 respectively (note
that 2b : (0, 2; 4) is induced by four bands, with Wannier
centers of each pair at 2b. The net corner charge is therefore
(2 × 2/3) mod 1 = 1/3). This implies that

(
1
3
1
2

)
=

(
0 2
2 0

)(
λ1

λ2

)
, (E17)

which gives λ1,2 = 1
4 , 1

6 . Therefore,

Q(6)
T ,corner = 1

4

[
M (2)

1
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6

[
K (3)

1

]
. (E18)

For the TR-broken case, C6-symmetric lattices have three
symmetry-indicator invariants: [M (2)

1 ], [K (3)
1 ], and [K (3)

2 ]. The
corner charge is given by a linear combination of these invari-
ants

Q(6)
corner = λ1

[
M (2)

1

] + λ2
[
K (3)

1

] + λ3
[
K (3)

2

]
. (E19)

We choose the following linearly independent set of χ indices
that form a basis: 2b1 : (0 | 0, 1,−2; 2), 2b2 : (0 | 0, 1, 1; 2),
3c : (0 | 2, 0, 0; 3). By examining the finite systems formed by
the tilings of the C6-symmetric unit cells in Figs. 11(h) and
11(i), we see that the corner charges for 2b1, 2b2, and 3c are
2/3, 2/3, and 1/2 respectively. This implies that⎛

⎜⎜⎜⎝
2
3
2
3
1
2

⎞
⎟⎟⎟⎠ =

⎛
⎝0 1 −2

0 1 1
2 0 0

⎞
⎠

⎛
⎝λ1

λ2

λ3

⎞
⎠, (E20)

085116-20



TOPOLOGICAL PHASES OF PHOTONIC CRYSTALS UNDER … PHYSICAL REVIEW B 108, 085116 (2023)

(a)

(c) (d) (e)

(b)

FIG. 12. All possible atomic limits that have (a) one and (b) two Wannier centers with C4- (red) and C2- (blue) symmetric unit cells that
correspond to the same infinite lattice. All possible atomic limits that have (d) one, (e) two, and (f) three Wannier centers with C6- (yellow), C3-
(green), and C2- (blue) symmetric unit cells that correspond to the same infinite lattice. Note that some atomic limits with reduced symmetry
do not have Wannier centers fixed to maximal Wyckoff positions but are instead movable (marked with a ×).

which gives λ1,2,3 = 1
4 , 2

3 , 0. Therefore,

Q(6)
corner = 1

4

[
M (2)

1

] + 2
3

[
K (3)

1

]
. (E21)

APPENDIX F: EFFECT OF UNIT-CELL CHOICES
ON BOUNDARY STATES

For 2D PhCs with OAL bands, a particular choice of unit
cell can affect the relevant symmetries for the topological clas-
sification of the bulk and the presence of boundary states in a
finite tiling of that unit cell. For example, consider all possible
unit-cell choices shown in Fig. 12(a). The unit cells marked
in red are C4 symmetric and correspond to Wannier centers
located at 1a or 1b positions. The same infinite structure is
also consistent with unit cells that have reduced symmetry, in
this case, C2 symmetry, marked in blue. These correspond to
Wannier centers located at the 1a, 1b, 1c, or 1d positions. A fi-
nite tiling of any of these unit cells will result in edge or corner
states depending on the dipole moment and corner charge of

their respective Wannier center configurations. This analysis
is performed diagrammatically for all possible Wannier center
configurations in Fig. 12.

Furthermore, when a choice of the unit cell reduces the
symmetry of the system, the new symmetry-reduced invari-
ants may be found using the following relations: Under
TRS, the C2 invariants of a C4-symmetric PhC obey [X (2)

1 ] =
[Y (2)

1 ] and [M (2)
1 ] = −2[M (4)

2 ], and the C3 invariants of a C6-
symmetric PhC obey [K (3)

1 ] = [K (3)
2 ]. Under broken TRS, the

C2 invariants of a C4-symmetric PhC obey [X (2)
1 ] = [Y (2)

1 ] and
[M (2)

1 ] = −2[M (4)
2 ], and the C3 invariants of a C6-symmetric

PhC obey [K (3)
1 ] = [K ′(3)

1 ] and [K (3)
2 ] = [K ′(3)

2 ].
These considerations are important for PhC design since

a second “cladding” material is often required to confine the
boundary states of the topological “core”. With a different
choice of unit cell made for the cladding material, both the
core and cladding can have identical band structures and
therefore conveniently overlapping bandgaps while having
different topological invariants.
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