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Nodal-line transition induced Landau gap in strained lattices
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In topological semimetals, the bands can cross at points or lines with different dimensionality and connectivity
in momentum space. For graphene and other systems hosting zero-dimensional band touching points, inhomo-
geneous strain is used to shift the nodal points to mimic gauge fields, whereas the one-dimensional nodal lines
can transit between topologically distinct structures in strain fields. Such a nodal-line transition can provide a
powerful way to engineer the electronic properties. Here we study the strain-induced Landau quantization for
diamond lattices, where nodal chains split into separate lines. The nodal-line transition opens a finite Landau gap
for the critical chain point with a vanishing Fermi velocity, which is impossible to be opened in the scenario of
magnetic fields or nodal-point systems. Besides the unconventional energy quantization near the chain point, the
strained diamond lattices exhibit perfect flat bands in three dimensions with a

√
n-scaling (n is an integer). We

also investigate the associated edge states and the line-dependent Hall response. Our work provides an avenue
towards understanding the profound roles of nodal-line transition in topological matter and paves the way to
study the interplay between strain and higher-dimensional nodal manifolds in arbitrary dimensions.

DOI: 10.1103/PhysRevB.108.085113

I. INTRODUCTION

The graphene [1,2] and Dirac/Weyl semimetals [3–12]
host nodal point degeneracy between Bloch bands. The low-
energy excitations not only provide a platform to simulate the
long-sought models in particle theory, but also open a new
era of quantum materials [13–15]. However, the quasiparti-
cles of solid state systems are not limited by the models in
high-energy physics [16–19], which significantly enriches the
family of topological matter [20–23]. Among those exotic
models, the nodal line (NL) [24,25] is a high-dimensional
generalization, which can be viewed as a set of nodal points
in its transverse plane perpendicular to the line.

NLs are classified as the same structural class [26–28] if
they can be continuously transformed into each other without
breaking or crossing. A NL can form a closed ring [29–37] or
twist with itself to form a knot [38–40]. With more NLs being
involved, they can link with each other [41–46] or intersect at
a chain point as nodal chains [47–51]. Such complexity is the
origin of many exotic properties of NLs, but is rarely explored
in the strain engineering so far [36,37]. Initially proposed in
graphene, spatially varying the hopping strengths by straining
lattices is used to shift the nodal points in momentum space
[52–54], which has a similar effect of a vector potential.
Such a pseudovector potential (PVP) can lead to a uniform
pseudomagnetic field (PMF) and Landau levels in nodal-point
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systems [55–75]. Since the lattice parameter and symmetry
[20–23] are essential for the stability of NLs, inhomogeneous
strain can lift the line degeneracy, e.g., reducing the Kramers
nodal lines [76] to Weyl points [19] or induce the transition
between different NL classes, e.g., breaking a chain into two
separate lines [26,49–51], as schematically shown in Fig. 1.
The consequence of the latter transition, which is referred to
nodal-line transition (NLT), remains elusive.

Here we study the strain engineering of a three-
dimensional (3D) diamond lattice hosting nodal chains
[77,78], where the strain-induced NLT plays a key role in
forming completely flat Landau levels in three dimensions.
The same Landau gap is opened for the whole chain, even
at the chain point with a zero Fermi velocity, which has no
counterpart for magnetic fields or strained nodal-point sys-
tems [47,79]. Besides the chain point, we show the PMF
preserves the time-reversal symmetry for the nodal chain, thus
the associated Hall response can be considered as a general-
ization of the valley Hall response in strained graphene [55].
Furthermore, we discuss a systematic approach to investigate
the strain-induced nodal-manifold transition in hyperdiamond
lattices in arbitrary dimensions [80,81].

II. MODEL

The tight-binding Hamiltonian of a diamond lattice is [82]

H =
∑

r

4∑

j=1

t ja
†
r br+δ j

+ H.c., (1)
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FIG. 1. (a) A nodal point shifts. (b) A nodal ring deforms without
NLT. (c) A nodal chain splits into two separate curves at the chain
(white) point with NLT.

where t j ( j = 1, 2, 3, 4) is the hopping strength between an a-
sublattice site at position r to its nearest-neighbor b-sublattice
site at position r + δ j where δ1 = 1/2(1,−1,−1), δ2 =
1/2(−1, 1,−1), δ3 = 1/2(−1,−1, 1), and δ4 = 1/2(1, 1, 1).
The Bloch wave vectors of the zero-energy states are obtained
according to the condition

4∑

j=1

t je
−iδ j ·k = 0. (2)

For the unstrained lattice (t j = t), the energy gap closes along
equal-energy lines connecting high symmetry points on the
boundary of the Brillouin zone in Fig. 2(a). The topological
invariant of NLs is the Berry phase along the path encircling
them, which is π for the path around one NL (the dashed
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FIG. 2. Nodal chains and quantized energy spectrum. (a) The
first Brillouin zone of the diamond lattice and the surface Brillouin
zone projected along the z-axis. The zero-energy nodal lines are
plotted in red lines connecting high symmetry points. X (0, 0, π ),
W (0, π/2, π ), and W ′(0,−π/2, π ). (b) The Fermi velocities along
X -W . Insets: The (an)isotropic energy dispersion. (c) The schematic
deformation of the a tetrahedral diamond lattice upon a tetrax-
ial strain field. (d) Numerically computed density of states of a
strained tetrahedon diamond lattice (3311 sites) exhibits

√
n-scaling

energy quantization (red solid line) compared with the unstrained
one (purple dashed line). We set the maximum strain constant α (see
definition in text) such that all coupling strengths are nonnegative.

circle) and 0 for the path around the chain point enclosing two
NLs (the solid circle) [22,49]. Focusing on the plane kz = π ,
the low-energy effective Hamiltonian H1(2) for the NLs along
ky(x) are

H1(ky) = v(ky)σ2qx + w(ky)σ1qz,

H2(kx ) = v(kx )σ2qy + w(kx )σ1qz, (3)

where σ1,2 are Pauli matrices; v(k) = 2t sin(k/2) [w(k) =
2t cos(k/2)] is the in-plane (out-of-plane) Fermi velocity; and
qx = kx, qy = ky, and qz = kz − π are the relative lattice mo-
menta measured from the nodal point in its transverse plane.

The Fermi velocities are anisotropic (v �= w) except at the
W point [Fig. 2(b)]. At the X point, the in-plane Fermi veloc-
ity v vanishes, which can be viewed as an extremely squeezed
Dirac cone. To avoid confusion, we need to emphasize that the
anisotropy is an intrinsic property of the unstrained diamond
lattice, instead of being induced by strain fields [83]. Since the
Landau levels of H1 in a magnetic field By along the y-axis is
determined by Fermi velocities [84]

E±n = ±√
2n|Byvw|, (4)

with
√|vw| ∝ √| sin(ky)|, one may anticipate that the energy

spectra always collapse at the chain point ky = 0 [47] (similar
for H2 in a magnetic field along the x-axis). However, as we
demonstrate in the following, the Landau gap can be revived
owing to the strain-induced NLT.

III. STRAIN-INDUCED PVP AND PMF

Inspired by the quantum topology of light [77,85], we find
that a tetraxial strain u ∝ −(yz, zx, xy) (see the Appendix and
an alternative derivation in Ref. [78]) can lead to

√
n-scaling

discrete energy spectrum in Figs. 2(c) and 2(d), which is the
hallmark of Landau quantization of Dirac cones.

Combining Eq. (4) and the quantized energy spectrum, we
conclude that the PMF for the NL along ky is proportional
to

√
1/| sin(ky)|, which compensates the anisotropic factor of

the Fermi velocities |vw| for different points of the NL. In
particular, the PMF has to be divergent approaching the chain
point X , in stark contrast to nodal-point systems, where the
PMF always takes a finite value owing to the constraint of
Lifshitz transition [54].

To understand the mechanism of the divergent PMF and
associated unconventional quantization, we incorporate the
effect of strain field into Hamiltonian in Eq. (1) by modifying
the hopping amplitudes [86,87]

t j → t + δt j = t (1 + αr · δ j ), (5)

which linearly depends on the position r in the weak strain
limit αr � 1. Here α is a strain constant to denote the cou-
pling variation with respect to the position, and we take the
assumption that hopping strength correction δt j varies much
more slowly than the lattice constant. Equation (5) can be
obtained from a Fock-space quantum optics model owing to
the mathematical equivalence (see the Appendix) or directly
derived by applying the finite element method to the solid
deformation [88]).

It is instructive to locally study the NLs at different
positions. Depicting the modified coupling strengths and cor-
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FIG. 3. PVP and PMF for nodal chains. The nodal chain at kz = π (a) splits when r is along the z-axis and (b) preserves when r is along
the x-axis. Insets: The hopping strength correction is indicated by the bond width. Blue (red) lines denote the strained (original) zero-energy
NLs. (c) The chiral PVP distribution for the nodal points at ky = −π/4 [green cones in (b)] and π/2 [orange cones in (b)]. (d) The PMF, Fermi
velocity anisotropicity, and the Landau gap for the NL along ky (W ′-W ).

responding NLs, we notice that the nodal chain at kz = π

splits when r is along the z-axis [Fig. 3(a)], while the same
nodal chain preserves when r is along x-axis [Fig. 3(b)]
and y-axis (not shown). To be specific, the bonds δ1,2 are
stretched while the bonds δ3,4 are squeezed when r = rẑ with
r = |r| and î being the unit vector along i-axis. We substitute
the coupling strength correction δt3,4 = −δt1,2 = αz/2 into
Eqs. (2) and (5), and obtain two open curves, i.e., the NLT
happens [49,51]. One the contrary, the bonds δ2,3 are stretched
while the bonds δ1,4 are squeezed when r = rx̂. The resultant
coupling strength correction δt1,4 = −δt2,3 = αx/2 slightly
deforms and rotates the nodal chain with respect to the x-axis,
and preserves the chain point. When r is along the y-axis,
the nodal chain similarly rotates with respect to the y-axis.
To summerize, we conclude that the chain point at ki = π

(i = x, y, z) only splits when r is along the i-axis.
The strain effect to the NLs can be considered as each orig-

inal nodal point being coupled to a PVP A ≡ (Ax, Ay, Az ) in its
transverse plane, as schematically illustrated by the cones at
ky = π/2 (orange) and ky = −π/4 (green). For the NL along
ky, we obtain the PVP as a function of r for each nodal point
to the first order of αr [88],

Ax = αz cot(ky/2), Az = −αx tan(ky/2), (6)

and Ay = 0. The PVPs at ky = π/2 and ky = −π/4 with
opposite chiralities are plotted in Fig. 3(c), enabling us to
calculate the PMF B ≡ (Bx, By, Bz ),

By(ky) = ∂Ax

∂z
− ∂Az

∂x
= 2α

sin(ky)
, (7)

and Bx = Bz = 0 for the NL along ky in Fig. 3(d). Such a
divergence is unique for NLT because the chain point split-
ting cannot be described in a smooth way. The associated

Landau level energies read E±n = ±√
nε, with ε = 2

√
2αt

being independent of momentum ky. Similarly, we can obtain
the PMF for the NL along kx as Bx(kx ) = −2α/ sin(kx ) and
By = Bz = 0 [88].

IV. BAND SPECTRA AND SURFACE STATES

To highlight the physics of NLT, we introduce the stretch
types in Fig. 3(a) to the diamond lattice as a uniaxial modu-
lation of the hopping strengths [schematic in Fig. 4(a)]. Since
the periodicity in the x-y plane is preserved in such a z-axis
modulation, it enables us to obtain the band spectra of the
projected surface Brillouin zone Fig. 1(a). Such a uniaxial
variation is commonly used to study valley Hall effect and
edge states [90–97] in strained graphene.

The PMF for the uniaxially modulated lattices can be ob-
tained by keeping the Ax component in Eq. (6), which fully
captures the NLT

B′
y(ky) = α cot(ky/2), (8)

for the NL along ky and B′
x(kx ) = −α cot(kx/2) for the NL

along kx. The Landau levels for each NL is [Fig. 4(b)]

E ′
±n(ky(x) ) = ±√

nε′, (9)

with ε′ = | cos(ky(x) )|ε. We notice that the Landau gaps are
momentum-dependent with ε′ = ε at the X point, indicating
the unconventional Landau quantization of the chain point X
is solely contributed by the NLT.

Furthermore, the band spectra enable us to analyze the
direction of PMF. In Fig. 4(c), we numerically compute the
band spectra along the transverse plane of the nodal points
ky = ±π/3 and 2π/3, where the color indicates the expec-
tation value of the z position operator for each eigenstate.
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FIG. 4. Band spectra and surface states. (a) The schematic of a diamond lattice with a uniaxial modulated hopping strengths. The color
and width of the bonds scales the coupling strength correction. (b) The PMF and Landau gap. (c) The exact diagonalization of the band spectra
along the transverse plane of the NL along ky, where the locking between the edge mode dispersion and surface determines the PMF direction.
The dashed lines indicates the unstrained Dirac cones. (d) The numerically computed Landau levels (LLs) near the chain point X . In the
numerical simulation, the lattice contains 201 layers along the z-axis and the maximum coupling strength correction is set to be 0.2t .

For each panel, the flat Landau levels and bending edges
are reminiscent of the integer quantum Hall effect, where the
locking between the band dispersion and top/bottom surface
determines the PMF direction. For example, an excitation at
ky = −π/3 can merge into the edge mode on the bottom
surface when a weak electric field adiabatically increases the
momentum kx. The Hall drift [84] gives the direction of the
PMF

B′ ∝ ẑ × ∇k〈z〉, (10)

which is along the negative y-axis at ky = −π/3. On the con-
trary, the gradient ∂〈z〉/∂kx > 0 for the time-reversal point at
ky = π/3 indicates a PMF in the opposite direction. Remark-
ably, the NL Hall response is an intrinsic 3D phenomenon,
which vanishes in the reduction of the slab thickness.

Finally, the Landau levels at ky = π/3, 2π/3 also confirm
the Landau quantization energy in Eq. (9). In Fig. 4(d), we
numerically compute the band spectra before and after the
uniaxial modulation.

V. HYPERDIAMOND LATTICES
IN ARBITRARY DIMENSIONS

Our results can be generalized to d-dimensional (dD)
hyperdiamond lattices [80,81]. The Hamiltonian Hd =∑

r

∑d+1
j=1 t ja†

r br+δ j
+ H.c., where each a-sublattice site is

connected to d + 1 b-sublattice sites with δi · δ j/(|δi||δ j |) =
−1/d (i �= j). It can be proved that the energy spectra of
the dD hyperdiamond lattices are quantized to form dD
flat levels by introducing Eq. (5) with j = 1, . . . , d +
1, e.g., a five-axial “strain” for four-dimensional (4D)

hyperdiamond lattices. Similar to the derivation in three di-
mensions, such a hopping strength correction is adopted from
the dD Fock-state lattices [77,85,98–100] whose quantized
energy spectra are analytically solved by the (d + 1)-mode
Jaynes-Cummings model. Furthermore, we can obtain the
zero-energy (d − 2)D nodal-manifold in momentum space
according to

∑d+1
j=1 t je−iδ j ·k = 0. By comparing the nodal

manifolds for original and strained lattices, we can investi-
gate the nodal-manifold transition between different structural
classes and resultant manifold-dependent Hall response.

In conclusion, we show that the strain-induced NLT is a
novel and powerful mechanism to design the energy spectra
of nodal-line semimetals. In general, the response of NLs to
strain fields can be viewed as each nodal point being shifted
within the two-dimensional (2D) plane perpendicular to the
line direction, resulting in the PMF with a line-dependent
strength, respectively. For the chain point, its breaking ef-
fectively moves the point to infinity. Therefore, the divergent
PMF can open a finite Landau gap at the critical point, without
analogues in nodal-point systems or magnetic fields. Our re-
sult demonstrates that the an intrinsic 3D Hall response which
cannot be treated as a sum of quasi-two-dimensional con-
tribution [101]. The strain engineering of flat Landau levels
in three dimensions [37] is ready to be generalized to arbi-
trary dimensions, which provides an opportunity for studying
strong correlated topological phases in higher dimensions
[102,103]. The corresponding phenomena are ready to be
tested in higher-dimensional electric circuits [104–106] and
acoustic resonator array [107,108]. In applications, the NL
Hall response can be used to design a momentum filter, which
provides more control knobs beyond valleys [109–113].
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APPENDIX: DERIVATION OF EQ. (5) FROM A QUANTUM
OPTICS MODEL

We start from the four-mode Jaynes-Cummings model (we
set h̄ = 1)

HJC = ω

2
sz +

4∑

j=1

νc†
j c j +

4∑

j=1

[g(c†
j + c j )(s+ + s−) + H.c.],

where s+ = s†
− = |↑〉〈↓ | and sz = s+s− − s−s+ are the rais-

ing and lowering operators and the z-component of the Pauli
matrices of the two atomic levels with the transition frequency
ω, c j (c

†
j ) is the annihilation (creation) operator of the jth

cavity mode with resonance frequency ν, and g is the cou-
pling strength between the atom and the cavities, as shown

in Fig. 5(a). We assume that the frequency of the cavities is
on-resonant with the transition frequency of the atom ν = ω.
With the rotating-wave approximation, the Hamiltonian in the
interaction picture is

HJC = g
4∑

j=1

c†
j s− + H.c.. (A1)

Since the Hamiltonian HJC in Eq. (A1) commutes with the
sum of atomic excitation and photons N =∑

j c†
j c j +|↑〉〈↑ |,

the subspaces with different N are decoupled and can be
studied individually [Fig. 5(b)]

The N-excitation subspace contains (2N + 3)(N + 2)(N +
1)/6 Fock states |↑/↓; n1, n2, n3, n4〉 satisfying q + ∑

j n j =
N , where the nonnegative integer nj is the photon number in
the jth cavity mode, q = 0 for the atomic ground state |↓〉,
and q = 1 for the excited state |↑〉. These Fock states consti-
tute 3D tight-binding diamond lattice, where |↑; n1, n2, n3, n4〉
is coupled to |↓; n1 + 1, n2, n3, n4〉, |↓; n1, n2 + 1, n3, n4〉,
|↓; n1, n2, n3 + 1, n4〉, and |↓; n1, n2, n3, n4 + 1〉 with Rabi
frequency proportional to

√
n1 + 1,

√
n2 + 1,

√
n3 + 1, and√

n4 + 1, respectively. Hence the hopping strength between
two neighboring Fock states is

t j = g
√

n j + 1, (A2)

which is owing to the nature of the bosonic annihilation oper-
ator, i.e., c|p〉 = √

p|p − 1〉.

FIG. 5. (a) Four-mode Jaynes-Cummings model: a two-level atom coupled with four cavity modes. (b) The 3D FSLs with different N .
The empty (filled) balls denote the atomic states |↑〉 (|↓〉). The green, blue, red, and orange bonds between adjacent Fock states describe the
coupling between the cavity mode c j ( j = 1, 2, 3, 4), respectively. The square-root-scaling coupling strengths (Rabi frequencies) are indicated
by the bond widths.
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The eigenstates of the 3D Fock-state lattices [77,85]
(FSL) can be solved analytically by introducing the collective
modes with annihilation operators b j = 1/2

∑4
n=1 cnein jπ/2

( j = 0, 1, 2, 3), respectively. With the collective modes, the
Hamiltonian in Eq. (A1) can be reduced to a single-mode
Jaynes-Cummings (JC) model

HJC = 2gb†
0σ− + H.c.,

where the atom only couples the mode b0. Therefore, the
eigenspectrum

Em = 2g
√

m, (A3)

is quantized with square-root-scaling, where m is the photon
number in b0 mode.

In mapping the Fock space of the JC model to a tight-
binding diamond lattice with tetrahedral boundary, each Fock

state |↓; n1, n2, n3, n4〉 can be assigned to a site with x =
(n1 − n2 − n3 + n4)/2, y = (−n1 + n2 − n3 + n4)/2, and z =
(−n1 − n2 + n3 + n4)/2. Together with the constraint n1 +
n2 + n3 + n4 = N , we obtain the position n j = (r · δ j + N/4).
Therefore, the hopping strength in Eq. (A2) near the center of
the FSL is (we assume nj ≈ N/4 � 1)

t j ≈ g
√

n j ≈ t (1 + αr · δ j ),

with t = g
√

N/2 and α = 2/N . The
√

N-scaling in the map-
ping of the hopping strength has a physical origin. For
real systems, the characteristic energy is determined by the
hopping strength t , which is independent on the system
size. However, the energy spectrum of Fock-state lattices
[Eq. (A3)] is scaled with respect to the total excitation number
∝√

N . Therefore, we need to set g
√

N as a constant in this
mapping.
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