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Jordan-Wigner fermionization of quantum spin systems on arbitrary two-dimensional lattices:
A mutual Chern-Simons approach
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A variety of analytical approaches have been developed for the study of quantum spin systems in two
dimensions, the notable ones being spin-waves, slave boson/fermion parton constructions, and for lattices
with one-to-one local correspondence of faces and vertices, the two-dimensional (2D) Jordan-Wigner (JW)
fermionization. Field-theoretically, JW fermionization is implemented through Chern-Simons (CS) flux attach-
ment. For a correct fermionization of lattice quantum spin-1/2 magnets, it is necessary that the fermions obey
mutual bosonic (anyonic) statistics under exchange—this is not possible to implement on arbitrary 2D lattices
if fermionic matter couples only to the lattice gauge fields. Enlarging the gauge degrees of freedom to include
the dual lattice allows the construction of consistent mutual Chern-Simons field theories. Here we propose a
mutual CS theory where the microscopic (spin) degrees of freedom are represented as lattice fermionic matter
additionally coupled to specific combinations of dual lattice gauge fields that depend on the local geometry. We
illustrate the use of this method for understanding the properties of a honeycomb Kitaev model subjected to a
strong Zeeman field in the z-direction. Our CS gauge theory framework provides an understanding of why the
topological phase is degraded at lower (higher) critical fields for the ferromagnetic (antiferromagnetic) Kitaev
interaction. Additionally, we observe an effectively one-dimensional character of the low excitations at higher
fields in the z-direction, which we also confirm by spin-wave calculations.

DOI: 10.1103/PhysRevB.108.085110

I. INTRODUCTION

The Jordan-Wigner (JW) approach is very attractive for
studying quantum spin-1/2 systems in two dimensions. Un-
like the Holstein-Primakoff [1] (or interacting spin-wave)
approaches, it does not generate highly nonlinear many-body
interactions. Compared to parton-based approaches, it does
not require enlarging the Hilbert space, which then must
be projected to the physical space [2–5]. Moreover, the JW
fermions naturally interpolate between magnons and spinons,
as is evident in the study of a simpler one-dimensional
(1D) system—the transverse field Ising model—and read-
ily describe fractionalized quasiparticles in different phases
[6,7]. JW fermionization, from the outset, gives a topologi-
cal [Chern-Simons (CS)] field theory [8–10], where CS flux
attachment generates the interaction of the JW fermions.
Chern-Simons field theories provide a natural language [11]
for describing topological phases and their emergent excita-
tions [12–15]. CS flux attachment is easy to implement on
lattices where a local association of every lattice site (vertex)
with a unique face [16] exists. In arbitrary 2D lattices L where
local face-vertex correspondence may not always be there,
consistent CS field theories may still be constructed by includ-
ing gauge fields on dual lattice (L∗) sites and links. The result
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is a mutual Chern-Simons theory [12,17,18], where every
lattice site is locally associated with the (unique) face dual to
the site. A complicating factor is that the mutual CS theory de-
scribes the mutual anyonic statistics of particles respectively
living on L and L∗. For the JW fermions to describe quantum
spins, we require an implementation of bosonic statistics for
the exchange of fermionic matter on L, although in general
the CS theory describes anyons. Here we propose a mutual
CS theory where the microscopic spin degrees of freedom on
L are represented as lattice fermions living on L attached to a
certain local combination of dual lattice gauge fields living on
L∗ such that the desired anyonic statistics is realized.

The Chern-Simons formulation for spin lattices with
face-vertex correspondence nevertheless suffers from some
limitations. Even in the absence of, say, an external magnetic
field, these CS theories are not parity and time-reversal in-
variant, unlike the original microscopic models [19]. Besides,
quantizing the field theory requires a careful handling of the
lattice analog of the Levi-Civita symbol [16]. Likewise, there
is ambiguity in the commutation relation of two Wilson loops,
one of which ends on the path of the other, unless one in-
troduces a dual curve [16]. Mutual CS theories do not suffer
from these shortcomings. They can even be formulated for
arbitrary 2D lattices. For the special case of lattices with face-
vertex correspondence, it was shown in Ref. [19] that anyons
may be represented in the mutual CS theory as extended
(dumb-bell) fermionic fields whose ends live respectively on
L and nearest dual lattice L∗ sites. The continuum limit of
this lattice theory describes pointlike anyons. An alternate
proposal made recently [20,21] involves starting with a mutual
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CS theory but imposing an additional constraint on the lattice
(link) gauge fields that they should be equal to the average
of gauge fields on the nearby dual links. The idea is to avoid
the problems in the formulation of Ref. [16], although when
applied to hexagonal or triangular lattices, the formalism gives
unphysical fractional values for the linking numbers of Wilson
loops. In contrast to field-theory approaches based on Chern-
Simons flux attachment, Hamiltonian approaches using the
2D Jordan-Wigner transformation have also been used for
lattices including those lacking face-vertex correspondence
[22,23]; however, long-range interactions are generated in
this process, and it is also unclear if large gauge fluctuations
necessary for charge quantization are accounted for.

As an illustration of our proposed technique, we study the
honeycomb Kitaev model in a strong Zeeman field (h) in the
z-direction. At low fields, the model is known to describe a
deconfined phase with long-range topological order charac-
terized by a fourfold-degenerate ground state on the torus,
and fractionalized excitations in the form of free Majorana
fermions and gapped Z2 visons. For the ferromagnetic sign
of the Kitaev interaction, the topological order is quite frag-
ile, vanishing at Zeeman fields a few percent of the Kitaev
interaction [24]. For antiferromagnetic Kitaev interactions,
topological order persists to larger Zeeman fields, around a
fifth of the Kitaev interaction. Recently, there is great inter-
est in understanding if fractionalization and other signatures
of topological order such as a half-quantized thermal Hall
conductivity can reemerge at sufficiently high fields in Ki-
taev materials whose ground state otherwise has long-range
magnetic order [25,26]. Even if strictly speaking topological
order may not be present at such fields, it is important to
understand how much of the properties could be understood
from the point of view of gauge field fluctuations coupling
to fractionalized matter. At very high fields, the ground state
is a fully polarized paramagnet, and it would normally make
sense to approach this regime using the Holstein-Primakoff
transformation (spin-wave theory). However, as the field is
decreased, it is known that interactions of the spin waves
become rapidly very important, and spin waves do not provide
a good description at lower fields where topological order
is about to get restored. This encourages us to take the CS
approach and check its advantages and limitations.

We obtain an effective mutual Maxwell-Chern-Simons
field theory coupled to a superfluid order parameter field, i.e.,
a gauged superfluid. We show how the parameters in this
theory can be systematically obtained from the underlying mi-
croscopic ones. Starting from the high-field side, which in our
formalism corresponds to a confined phase, we progressively
decrease the field, identifying the onset of local superfluidity
and eventually the establishment of a global superfluid phase
through the suppression of vison fluctuations. This represents
the transition to the topologically ordered phase. Our pertur-
bative approach in the inverse of the field strength prevents us
from accessing the low-field Kitaev dominated regime. Near
to the topological transition, we also study the possibility of
vison dispersion [27], and we make a comparison with under-
standing obtained from perturbative studies from the low-field
side [28].

The rest of the paper is organized as follows. In Sec. II we
introduce the lattice version of mutual CS gauge theory for

lattices lacking local face-vertex correspondence, focusing on
the example of a honeycomb lattice. We propose in Sec. III
a way of realizing the required anyonic exchange statistics
of the JW fermions by attaching a certain combination of
dual lattice gauge fields to fermionic matter on the lattice
sites. Section IV illustrates an application of this mutual CS
formulation for the honeycomb Kitaev model in a finite Zee-
man field in the z-direction. Here we describe phases of the
Kitaev model in the lattice gauge theory language, starting
from the high-field limit. We develop an understanding of the
evolution of parameters in the effective field theory in terms
of the original microscopic parameters. We conclude with a
summary of our findings and a discussion in Sec. V.

II. MUTUAL CHERN-SIMONS GAUGE THEORY ON
LATTICES LACKING FACE-VERTEX CORRESPONDENCE

Consistent formulation of Chern-Simons (CS) theories on
the lattice requires that every vertex is attached to the flux
through a unique plaquette, which is evidently possible when
there is a local face-vertex correspondence [16]. In such cases,
the Euclidean time CS action has the form

S = − iκ

2π

∫
dτ

[
AvMv, f φ f − 1

2
AeKe,e′ Ȧe′

]
. (1)

Here the repeated indices are summed over. The indices v, f , e
run over all vertices, faces, and edges, respectively. Av and
Ae are, respectively, the temporal and spatial components of
the gauge fields, with the former associated with the sites and
the latter with the links. φ f is the flux through the face f
associated with the vertex v via face-vertex correspondence.
The detailed description of the matrices Mv, f and Ke,e′ are
not important for the purposes of this paper, and they can be
found in Ref. [16]. Mv, f dictates the flux attachment, and Ke,e′

is the lattice analog of the Levi-Civita symbol. The canonical
commutation relation is

[Ae, Ae′ ] = −2π i

κ
K−1

e,e′ . (2)

The Ke,e′ matrix in Eq. (2) is in general quite complicated
and involves both forward and backward (spatial) differences
[29]. It is also not very local in the sense that e and e′ merely
need to be associated with the same face. In the case of
lattices without face-vertex correspondence, this Ke,e′ matrix
is singular and the CS theory is no longer consistent [16].
These difficulties are not due to some fundamental obstruction
to defining lattice CS theories on arbitrary cellulations, since
it should be possible to recover the continuum CS theory as
a limiting case of any lattice. For quantum spin-1/2 lattice
systems that we are ultimately interested in, we note that
the Hamiltonian equivalent of CS theory—the 2D Jordan-
Wigner transformations—do not have any requirement that
the lattice must have local face-vertex correspondence. Such
an approach has been taken, for example, for the XY model
on the honeycomb lattice [23].

Later in this paper, we will study as an example the hon-
eycomb Kitaev model whose lattice evidently does not satisfy
local face-vertex correspondence. The dual lattice is triangu-
lar, so the combined system has an equal number of vertices
and faces, and moreover has local face-vertex correspondence.
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FIG. 1. Honeycomb lattice (L) and its dual triangular lattice (L∗).
The faces of the triangular lattice are dual to the honeycomb lattice
vertices, and likewise the hexagonal plaquettes are dual to the ver-
tices of the triangular lattice. The dual of a link on L is the link on L∗

crossing perpendicularly the relevant link on L.

It is easily seen that such local face vertex correspondence
exists for arbitrary polygonal cellulations of 2D space. Fig-
ure 1 shows a honeycomb lattice (green) and its dual triangular
(blue) lattice. We now describe a mutual CS theory consisting
of gauge fields on both honeycomb L and triangular L∗. De-
note the temporal and spatial components of the gauge field
on L by Av and Ae, respectively, and on L∗ by a∗

v∗ and a∗
e∗ ,

respectively. Analogously to Eq. (1), we associate the scalar
potential at any vertex (whether on L or L∗) with the flux
through the dual plaquette corresponding to the vertex. The
U (1) gauge-invariant Lagrangian [16] satisfying the above
flux attachment rules is given by

LCS = κ

4π
[ξ ∗

f ∗e∗a∗
e∗Avδ f ∗v + D∗

v∗e∗a∗
v∗Aeδee∗ − ∂0a∗

e∗Aeδee∗ ]

− κ

4π
[ξ f eAea∗

v∗δ f v∗ + DveAva∗
e∗δee∗ − ∂0Aea∗

e∗δee∗ ].

(3)

The ξ f e and Dve are, respectively, the lattice analogs of curl
and gradient [16] operations. The δ-functions are defined as
follows: δe,e∗ = 1 if e and e∗ are links dual to each other,
and zero otherwise, and similarly for δ f v∗ , etc. The canonical
equal-time commutation relations are

[Ae, a∗
e∗ ] = i

2π

κ
δe,e∗ × sgn( �ne × �ne∗ ),

[Ae, Ae′ ] = [a∗
e∗ , a∗

e′∗ ] = 0. (4)

Unlike the earlier formulation, there are no difficulties with
the lattice version of the Levi-Civita term since Ke,e′∗ =
δe,e′∗ × sgn( �ne × �ne∗ ), and Ae and a∗

e∗ are perpendicular to
each other as in continuum case. Furthermore, it can be shown
that such a mutual Chern-Simons gauge theory has parity
and time-reversal symmetry [30]. Commutation relations of
chains follow from the canonical commutation relations in
Eq. (4) and the Baker-Hausdorff-Campbell formula:[∫

C
Ae,

∫
C∗

a∗
e∗

]
= i

2π

κ
ν[C, C∗], (5)

where ν[C, C∗] is the difference of right-handed and left-
handed intersections of chains C and C∗. Correspondingly, the
relation between the respective Wilson lines will be

WCWC∗ = e−i 2π
κ

ν[C,C∗]WC∗WC . (6)

If source terms coupling the gauge fields to charge and current
are now introduced, varying the action with respect to the
temporal components of the gauge fields gives us the flux
attachment constraints for physical states:

ξ ∗
f ∗e∗a∗

e∗ ≡ 
 f ∗ = 4π

κ
Qv,

ξ f eAe ≡ 
 f = 4π

κ
Qv∗ . (7)

Here 
 f ( f ∗ ) is the flux associated with the face f ( f ∗), and
Qv(v∗ ) is the vertex charge in L(L∗).

If the system is subjected to toroidal boundary conditions,
the spatial manifold has two holes that can be enclosed by
noncontractible loops. The only nontrivial commutators are
between pairs of (dual) noncontractible loops, drawn along
two independent polar directions of the torus. In particular for
κ = 2, the zero-energy state can be labeled by the eigenvalues
(W = ±1), one for each independent noncontractible loop
along the two polar directions, i.e., this state has a nontriv-
ial fourfold degeneracy associated with these nonlocal string
operators.

III. QUANTUM SPIN-1/2 PARTICLES
ON THE HONEYCOMB AND TRIANGULAR LATTICE

The 2D Jordan-Wigner (JW) transformation expresses the
spin-raising (-lowering) operators in terms of fermion cre-
ation (annihilation) operators attached to an infinite string,
essentially a disorder operator, that implements bosonic com-
mutation relations between spins at different spatial sites by
ensuring odd values of the paths’ linking number ν[C, C∗]
when they are exchanged using arbitrary paths. The 2D
disorder operator, unlike its 1D counterpart, is not unique
[8–10,31], and the only purpose is to implement the spin
statistics. However, it is readily constructed for arbitrary
polygonal cellulations of the 2D space. For a path integral
(CS) formulation, one needs suitable disorder operators de-
fined in terms of the gauge fields on the links, which are
attached to the fermion (matter) fields, and it is also very
desirable for computational simplicity that the Hamiltonian
involves only local combinations of the link fields. For ex-
ample, in the widely studied XY spin models on lattices
with face-vertex correspondence (e.g., square or kagome), the
gauge fields coupling to the hopping fermions are simply the
Wilson lines associated with the corresponding links [32,33].

Consider now spin-1/2 models on a lattice lacking face
vertex correspondence—we take the honeycomb lattice first
for concreteness. For simplicity, we are interested in models
with only local couplings of fermions and gauge fields. One
way to ensure this is by restricting ourselves to local Hamil-
tonians and preserving fermion number parity. In Fig. 2, we
show a schematic of a fermion bilinear sharing a link (iA, jB)
and attached to a local combination of lattice gauge fields,

�
†
iA
� jB eiBe eiAe , (8)
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FIG. 2. Anyonic (bosonic) exchange statistics of JW fermions
on L sharing link e = iA → jB is implemented in the mutual CS
formulation (see text for details) by attaching the fermionic bilinear
to a holonomy eiBe , where Be is proportional to the sum of the four
dual link potentials on L∗. Here i, j are unit cells of the honeycomb
lattice.

where Be is a suitable local combination of the dual lattice
gauge fields that we want to obtain. Such a term arises, for
example, in two-body interaction of spins sharing a link. The
choice of sign of the link gauge fields is chosen such that
the holonomy eiAe is associated for a hopping from site jB to
site iA. We also need to give an orientation to our (directed)
links—for our hexagonal lattice, the links are oriented from
the A to the B sublattice. The dual triangular lattice is not
bipartite, but here the orientation of the dual link is chosen
such that the sign of ( �ne × �ne∗ ) is positive. Since the process
in Eq. (8) conserves fermion number, Ae can be in general
U (1).

It is important to note that since we have a mutual CS
theory, the link fields Ae are not responsible for anyonic
(bosonic) statistics of exchange of spins on different lattice
sites, and such statistics comes entirely from attaching our
lattice fermion fields to the dual lattice gauge fields. The
choice of Be is not unique. We propose (see Fig. 2)

Be = N (a∗
e1∗ + a∗

e2∗ + a∗
e3∗ + a∗

e4∗ ) (9)

to be the sum of the four fields in the rhombus enclosing the
link up to some normalization constant N. For our lattice,
we argue that the normalization N = κ

4 ensures the desired
statistics.

Let us first take a spin-1/2 particle around the elementary
hexagonal plaquette on the honeycomb lattice [see Fig. 3(a)],
which results in one 2π winding of the hexagonal void, and a
double winding of the dual lattice links enclosing the vertices
of the hexagon. On the dual lattice path, the accumulated
phase is

2Nξ ∗
f ∗e∗a∗

e∗ = 8Nπ

κ

∑
v

Qv. (10)

Since there are no lattice charges enclosed by the dual lattice
path in this case, the phase is zero, and N cannot be fixed
here. Now let us take the spin-1/2 particle around the simplest
(3-hexagon) path that encloses a vertex [see Fig. 3(b)]. Here

FIG. 3. Schematic of lattice and dual loops traversed upon taking
a spin-1/2 particle around two different loops on the honeycomb
lattice, denoted by the boundaries of the shaded regions. The arrows
represent the number of times the corresponding edge is traversed.
Note that each dual loop makes two windings, which in turn deter-
mines the normalization of Be.

the phase accumulated by the dual curve is

3 × 2Nξ ∗
f ∗e∗a∗

e∗ = 24NπQv

κ
, (11)

with Qv = 1. Correct spin statistics requires an odd multiple
of 2π accumulated by the dual loops; the simplest choice at
first glance appears to be N = κ/12. However, with such a
choice, it is known [20] that intersecting Wilson loops have
unphysical 1/3 (fractional) linking number. This is also evi-
dent from the dual path in Fig. 3(a), where

∑
v Qv = 2, which

is equivalent to
∑

v Qv = 0, results in a fractional phase of
2π/3 per particle, instead of 2π. The problem is that the dual
curve in the left figure has one 4π winding, while the one
on the right has three 4π windings. Thus the correct values
for N are N = (2m+1)

4 κ, where m is an integer. Without loss
of generality, we choose m = 0, i.e., N = κ/4. The vortex
charges Q∗

v do not depend on the normalization. Note that the
lattice Wilson loops square to unity; accordingly, the vortex
charges are integer multiples of κ/4.

Now we use the same procedure for a triangular lattice
where Ae and a∗

e∗ live on the direct triangular lattice edge and
the dual honeycomb lattice edge, respectively. Here the choice
of Be is (see Fig. 4)

Be = N
(
a∗

e∗
a
+ a∗

e∗
b
+ a∗

e∗
c
+ a∗

e∗
d

)
. (12)

Taking a spin- 1
2 particle around a lattice loop in Figs. 5(a) or

5(b), in both cases the phase accumulated by the dual curve is

2Nξ ∗
f ∗e∗a∗

e∗ = 8Nπ

κ

∑
v

Qv, (13)

with Qv = 1. This causes the normalization N for the trian-
gular lattice to be N = (2m+1)

4 κ , the same as the honeycomb
lattice. Note that for the case of the honeycomb lattice, the
above choice of Be is not unique. If we take all eight con-
tributing links (instead of taking only four links, making the
rhombus in Fig. 2) that connect the two ends of the dual
link(e∗) of any given link(e), the normalization can be shown
to be κ

2 . For a lattice such as kagome, we found that the choice
is unique. As we have discussed above, the role of the Be
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FIG. 4. Arrangement of dual lattice gauge fields for a triangu-
lar lattice for implementing bosonic exchange statistics for the JW
fermions sharing the link e = r2 → r1. This lattice also lacks one-to-
one face-vertex correspondence.

fields on the dual links is to implement bosonic statistics for
exchange of spins. From Eq. (7) it is clear that the dual fluxes
can only take values 0 or 4π since Qv can take values 0 or 1.
We choose these dual gauge fields to satisfy U (1) symmetry,
although other choices such as Z2 can also be made.

We now discuss gauging another kind of fermion bilin-
ear corresponding to a link Cooper pair (�†

iA
�

†
jB

) that also
appears in numerous spin models such as Ising or Kitaev,
where Sz is not a conserved quantity. This process creates
a fermion pair sharing a link. Such terms couple to a pair
of lattice Wilson lines that terminate at the end points of
the links, i.e., �

†
iA
�

†
jB

WCiA
WCjB

e−iBe . The Wilson line WCiA
=

exp[−i
∑

e′∈CiA
Ae′] on the lattice transports a fermion from the

boundary at infinity to site iA along the string CiA , and similarly
for WCjB

. For periodic boundary conditions, the lines emanate
from a fermion pair annihilation on a link, and end at the pair
creation link. These gauge fields are U (1) in general. If the
lattice fermions are strongly gapped, such as when there is a
large Zeeman field, the effective gauge theory obtained after

(a)

(b)

FIG. 5. Schematic of lattice (blue) and dual (green) loops tra-
versed upon taking a spin-1/2 particle around two different loops
(boundary of the shaded regions) on the triangular lattice.

integrating out the fermions will not involve long strings, in
which case we will get a local effective U (1) gauge theory. If,
however, the Ae are Z2, the product WCiA

WCjB
further reduces

to the holonomy e−iAe on the link,

WCiA
WCjB

≡ e−iAe , Ae ∈ Z2. (14)

IV. APPLICATION TO THE KITAEV MODEL
IN A LARGE ZEEMAN FIELD

Having described the construction of our CS theory (with
fermionic matter) for quantum spin systems on lattices that
lack face-vertex correspondence, we apply our ideas to the
ferromagnetic Kitaev model on the honeycomb lattice sub-
jected to a large magnetic field along the z-direction such that
the Kitaev interactions can be regarded as a perturbation. The
Hamiltonian is given by [7]

H = H0 + H1

= h
∑

p

σ z
p −

∑
〈pq〉∈γ -links

Jγ σ γ
p σγ

q , (15)

where H0,1, respectively, refer to the Zeeman and Kitaev
terms, the σ are Pauli matrices, p, q are the vertices asso-
ciated with the corresponding link γ , with γ = x, y, or z,
and h is the strength of applied field. The ground state of
the unperturbed (purely Zeeman) model is trivially a fully
polarized paramagnet, and we set κ = 1. As the Zeeman field
is progressively decreased, the system ultimately transitions
into a deconfined state with fractionalized excitations and
long-range topological order. The fact that relatively small
field values (h/J < 1) suffice to degrade the topological order
motivates us to approach the problem from the high-field side.
Our approach is also an alternative to the spin-wave approxi-
mation often employed for studies of the Kitaev model at high
fields [1,34,35].

We fermionize our model using the dual CS formalism
described in Sec. III. Specifically, we will obtain an effective
field theory in the limit of a large Zeeman field, h 
 Jγ treat-
ing the Kitaev interactions as a perturbation. In this high-field
limit, the effective field theory is U (1) gauge-invariant. In
the opposite limit of large Kitaev interactions, the fermion
number is not conserved but the fermion number parity is—
implying that U (1) gauge symmetry will break down to Z2.

After fermionization, the Kitaev Hamiltonian takes the
form

H = Hx + Hy + Hz + h
∑

p

[2�†
p�p − 1], (16)

where

Hx = −Jx

∑
x-links(e)

[
�†

pe−i(Ae+Be )�†
q + �†

pei(Ae+Be )�q + H.c.
]
,

Hy = −Jy

∑
y-links(e)

[− �†
pe−i(Ae+Be )�†

q +�†
pei(Ae+Be )�q + H.c.

]
,

Hz = −Jz

∑
z-links(e)

[2�†
p�p − 1][2�†

q�q − 1]. (17)

Since the fermionic matter is gauged only under the lattice
gauge fields, and there is no vortex matter at the dual sites, Hx
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and Hy are not invariant under U (1) gauge transformations of
the dual lattice gauge fields Be. However, we may regard the
above coupling of Be to the fermionic matter as an interaction
in which the dynamics of Be is governed by the CS term—
in this way, Be is an external dynamical field coupling to the
fermions for the purpose of satisfying correct spin statistics,
and gauge invariance is not necessary.

Unlike the magnetization (or fermion number), which is
a conserved quantity at high fields, the vortex charge is not.
However, in the Kitaev limit h/J → 0, the vortex charge is
conserved. The role of a small Zeeman perturbation is to
create pairs of vortices along the z-bonds in each order of the
perturbation—thus at high fields where the vortex number is
ill-defined, the vortex number parity is still conserved. This
makes us choose Ae in the rest of the paper to be Z2 and not
U (1), although the analysis can be performed equally well
with Ae ∈ U (1).

For our bipartite lattice, the vertices carry two labels,
namely the unit cell (i, j), and the sublattice (A, B). Motivated
by the fact that in the Kitaev limit the model is equivalent
to a topological superconductor, we choose to decouple the
four-fermion interaction in the Cooper channel,

Hz = −Jz

∑
z-links

{
1 − 2�

†
iA
�iA − 2�

†
iB
�iB − 4|�i|2

+ 4�∗
i �iA�iB − 4�i�

†
iA
�

†
iB

}
, (18)

where �i = 〈�iA�iB〉 is the order parameter. An alternate
choice of decoupling in the density channel was not pursued
guided by the fact that the order parameter will be large in
the presence of large Zeeman fields, which is undesirable in a
perturbative expansion for the free energy.

We consider the Euclidean time action for this model,

S[�p,�] =
∑

p

∫ β

0
dτ [�†

p(∂τ + iAp)�p − iLCS + H],

(19)
where H is the Hamiltonian after mean-field decoupling of
the z-link interactions. Now at a high magnetic field, charges
np, i.e., �†

p�p, have only small fluctuations, and consequently
Ap can have large fluctuations. It is convenient to perform a
gauge transformation to eliminate the strongly fluctuating po-
tential fields that appear in the fermionic determinant through
a gauge transformation of the fermionic fields,

�iA → �iA eiχiA , (20)

and choosing AiA = −∂τχiA . The fermionic partition function
is given by

Z =
∫

D(fields)e−S; S = S0 + Sc + S′ + S∗. Here

S0 =
∑

p

∫
τ

�†
p(∂τ + ξp)�p, ξp = 2h + 2Jz,

Sc = −
∫

τ

[
iLCS − 4Jz

∑
i

|�i|2
]
. (21)

The remaining terms are Nambu off-diagonal, number-
nonconserving,

S∗ =
∫

τ

T0 =
∑

i

∫
τ

T i
0 and S′ =

∫
τ

T, (22)

where T0 and T are defined below,

T = −Jx

∑
x-links

[
�

†
iA

e−iϕx
1 �

†
jB

+ �
†
iA

eiϕx
2 � jB + H.c.

]

− Jy

∑
y-links

[− �
†
iA

e−iϕy
1 �

†
jB

+ �
†
iA

eiϕy
2 � jB + H.c.

]
, (23)

where iA → jB is an x-bond or a y-bond of the honeycomb
Kitaev model, and

ϕ1 = Ae + Be + χiA + χ jB and

ϕ2 = Ae + Be − χiA + χ jB . (24)

The superscripts (x, y) on ϕ1,2 in Eq. (23) refer to the type of
link (x or y.). The fermionic part of the action takes the form

SF = S0 + S∗ + S′ = �†G−1�, (25)

where the inverse Green function is G−1 = G−1
0 + T0 + T .

Here � is a 4N component spinor in the Nambu notation
(N is the number of unit cells in the honeycomb lattice)

with �
†
i = [�iA �

†
iA

�iB �
†
iB

]
†
. Gi

0
−1 and T i

0 are shown
below,

Gi
0
−1 = 1

2

⎡
⎢⎢⎣

∂τ + ξiA 0 0 0
0 ∂τ − ξiA 0 0
0 0 ∂τ + ξiB 0
0 0 0 ∂τ − ξiB

⎤
⎥⎥⎦,

T i
0 = 2Jz

⎡
⎢⎢⎢⎣

0 0 0 �ie−iϕi
1

0 0 −�∗
i eiϕi

1 0
0 −�ie−iϕi

1 0 0
�∗

i eiϕi
1 0 0 0

⎤
⎥⎥⎥⎦,

(26)

where ϕi
1 = χiA + χiB . The superscript i in ϕi

1 runs over a unit
cell, i.e., z-bond. We now formally integrate out the fermions
(which are gapped in the presence of the strong Zeeman field),

S = Sc − tr ln(G−1),

ln G−1 = ln G−1
0 + ln[1 + G0(T0 + T )],

and expand the logarithm in the small parameters J/h. We also
drop ln G−1

0 as it does not involve any dynamical fields. In
the expansion, the leading terms tr(G0T ) and tr(G0T0) vanish
because G0 is site-diagonal and T , T0 are site-off-diagonal.
There are two types of terms that appear in the resulting
effective field theory: link and loop terms, the leading contri-
butions, respectively, appearing at the second and sixth order.
Details of the derivation of the effective action are presented
in the Appendix. Using these results, we present our effective
action,

S = Sc +
∫

τ

⎡
⎣∑

x-links

Lx
2 +

∑
y-links

Ly
2 +

∑
z-links

Lz
2 +

∑
� L6

⎤
⎦.

(27)
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The leading contributions to the link terms at low tempera-
tures (βh 
 1) are

Lx
2 = J2

x

64h3

(
∂ϕx

1

∂τ
− 2ih

)2

,

Ly
2 = J2

y

64h3

(
∂ϕ

y
1

∂τ
− 2ih

)2

, (28)

Lz
2 = −J2

z

2h3

[
16h2|�i|2−4h�∗

i

(
∂τ − iϕ̇i

1

)
�i−|(∂τ − iϕ̇i

1

)
�i|2

]
.

Contributions corresponding to ϕ
x(y)
2 are associated with

particle-hole hopping and are proportional to nF (−ξiA)nF (ξ jB)
(see the Appendix), which is negligible at high fields in the
ground-state sector (all sites completely empty or completely
full), whereas ϕ

x(y)
1 terms are associated with particle-particle

creation or annihilation on a link, and they are proportional to
nF (−ξiA)nF (−ξ jB). Here nF (ξiA/ξ jB) is the Fermi-Dirac dis-
tribution. Physically, the leading (second order in tunneling)
particle-hole contribution to the effective action is forbidden
by the Pauli exclusion. Particle-hole processes are relevant in
higher-energy sectors.

Consider now the definition of the phases ϕ
x(y)
1 in Eq. (24).

Since the phases χ appearing in the definition of ϕ
x(y)
1 are

Z2 (i.e., taking values only 0 or π ), we can absorb them
in a redefinition of Ae, which is equivalent to choosing a
gauge where Av = 0. Thus the first two terms in Eq. (28) are
reminiscent of the electric field terms in a Maxwell theory.
The i2h terms appearing with the electric field correspond to
the Zeeman cost of flipping a spin.

The loop term (that we refer to as a Josephson term because
of its tendency to suppress the phase fluctuations) appears first
only at the sixth order,

L6 = −8

3

∫ β

0
dτ

J2
x J2

y J2
z

(2h)5

{
� j�

∗
l ei[

∫
C

�A· �dl+∫C’
�a∗
2 · �dl] + H.c.

}
,

(29)

where C and C′ shown in Fig. 3 are, respectively, the hexag-
onal loop (with a single winding) on the lattice links, and
the dual loop (with a double winding) that encloses this
hexagon—both generated while taking a spin around the el-
ementary hexagon. Since there is no fermion on the hexagon
(Qv = 0), the dual flux is zero, and without loss of generality,
hereinafter we take the order parameter fields to be real and its
phase (i.e., sign) fluctuations are shifted to the gauge fields.
As we have discussed earlier, the flux in C can take values
0 or π. Fixing the signs of the order parameter fields to be
the same, the energy associated with the plaquette terms is
evidently minimized for

∫
C

�A · �dl = 
 f = 0. Equation (27)
describes a Z2 gauged superfluid in which the dynamics of the
gauge fields is governed by a mutual Maxwell-Chern-Simons
theory. The Wilson loop term, Eq. (29), determines the cost of
a π -flux change in a plaquette (vison gap)—the cost clearly
vanishes in the absence of superfluid order (i.e., when � = 0).

To simplify our further discussion, we limit ourselves to the
isotropic Kitaev case, i.e., Jx = Jy = Jz = J. Upon reducing
the field, the sign of the coefficient of the quadratic term

ultimately turns negative, i.e.,

4J − 8
J2

h
< 0 or h < 2J, (30)

resulting in nonzero expectation values for local order param-
eter fields �i. For the ferromagnetic Kitaev couplings (J > 0
in our model), a sufficiently small magnetic field is required
for the �i to develop a nonzero expectation. The situation is
very different for the antiferromagnetic counterpart (J < 0),
where clearly �i �= 0 even at large Zeeman fields. This does
not necessarily mean a superfluid phase for which, apart from
a nonvanishing expectation for the local order parameter �,
we also need establishment of global phase coherence. Re-
turning to our effective model, we note that the coupling
constants for the Maxwell terms are EC = 16h3/J2 for the
electric part and EJ = J6|�|2/12h5 for the magnetic part:

L = 1

4EC

∑
e∈x,y links

(
∂τϕ

e
1 − 2ih

)2 − EJ

∑
� cos

(∮
�A · �dl

)
.

(31)

The model has a dimensionless coupling constant, g =
EJ/EC ∼ (J/h)8 × (|�|2/192). When g � 1, the phase fluc-
tuations of the �i are suppressed resulting in the superfluid
state. The superfluid phase here is associated with a broken Z2

symmetry and not U (1). This critical field from this criterion,

g � 1 or h ≈ 0.518J|�(h)|1/4, (32)

is smaller compared to the field at which the local Cooper
pairs are first formed.

Consider now a large Wilson loop WL of perimeter L
that encloses a number M 
 1 of elementary hexagonal pla-
quettes. At large magnetic field (g � 1), we perturbatively
expand the exponential with the magnetic term and perform
the average over the gauge field configurations. By Elitzur’s
theorem, only gauge-invariant terms survive the averaging,
and we get

WL ∼
(

EJ

EC

)M

, (33)

where the angular brackets denote averaging over the order
parameter field. Since |�|2 = 0, we have WL ≡ 0, essentially
a vortex superfluid that strongly confines the charges. Physi-
cally, the large magnetic field suppresses spin flips or fermion
number fluctuations. Conversely, large Wilson loops WL∗ on
the dual lattice are O(1). Next, we reduce the magnetic field
until |�|2 �= 0 develops locally. If the local order parameter is
small, we can still expand the exponential with the magnetic
term. Clearly, the Wilson loop now follows a “volume” law,

WL ∼ exp

(
−M ln

[
EJ

EC

])
, (34)

still indicating a confined phase. As our perturbative approach
is valid only for (h/J )8 > |�|2/192, we are unable to provide
a complete description of the low-field phase in the Kitaev
limit.

Figure 6 shows a numerical calculation of Wp for the fer-
romagnetic (J > 0) and antiferromagnetic (J < 0) cases as a
function of (h/|J|) using the finite MPS DMRG technique.
The maximum truncation error is 10−10, and the calculation is
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FIG. 6. The expectation value of plaquette flux (Wp) for the
Kitaev model with a Zeeman field in the z direction is shown for
ferromagnetic (J = 1, solid circles) and antiferromagnetic (J = −1,
solid squares) cases using the finite MPS DMRG technique. The field
at the transition for the AFM case is approximately 0.6|J|.

for a system size of N = 20 × 8. Wp for the antiferromagnetic
case sharply falls from Wp = 1 expected for the Kitaev phase
at low fields at h/|J| ≈ 0.6. This is to be compared with our
prediction of h/|J| ≈ 0.52 from Eq. (32). For the ferromag-
netic case, the critical field is smaller, consistent with our
prediction, but we do not have a quantitative estimate because
our perturbation treatment does not work at low fields.

Another important feature of our analysis is the effective
dimensional reduction of the excitations at high fields. In this
regime, we can neglect the EJ term, as a result of which
the Maxwell term, now consisting only of the electric field
contribution, lives only on the x-y link backbone, and the z
links drop out. This implies that the excitations at high fields
do not disperse along the z-direction. Observe that in the
effective action for the phase degrees of freedom in Eq. (27),
the link fields are all decoupled when the Josephson term is
discarded in the high-field limit. The phase excitations would
correspond to a flat band. To obtain the dispersion, we need to
consider higher-order time derivative contributions at O(J2),
and the leading contribution at O(J4). The latter includes
terms involving neighboring x and y links. We refer to the Ap-
pendix for details of the higher-order expansion. These terms
contribute the following to the effective action in Eq. (27):

J2

(4h)5

{(
∂2ϕx

1

∂τ 2

)2

+
(

∂2ϕ
y
1

∂τ 2

)2

+ 3

2
J2 ∂ϕx

1

∂τ

∂ϕ
y
1

∂τ

}
. (35)

This gives two 1D dispersing modes (unit cell consists of two
links),

E (kx ) = ±
√

(4h)2 ± (3/2)J2 cos kx, (36)

at a high energy corresponding to the Zeeman gap. These
modes are associated with the collective motion of fermion
pairs. The spin-waves, which correspond to particle-hole ex-
citations in our treatment, would be associated with the ϕ

x(y)
2

modes. Such processes in our theory would appear at O(J4)
in the electric field terms. Other possible ways to generate the
particle-hole hopping processes at lower order would be to
locally switch off the Zeeman field at one or more sites, or

FIG. 7. The contour plots; (a) and (b) illustrate the spin-wave
dispersion in the Kitaev model for Zeeman fields in the (001) and
(111) direction, respectively (for J = 0.5 and h = 5), using the spin-
wave treatment of Ref. [36]. For (001) oriented Zeeman fields, the
dispersion is one-dimensional along the x-y link backbone. The dis-
persion is two-dimensional for the (111) orientation of the Zeeman
field.

even add a small component to the Zeeman field along the
spin x- or y-directions. This allows particle-hole processes
to act in the ground-state sector. Although neither of these
high-energy collective modes is of interest to us for the effec-
tive low-energy theory (constructed for energy scales much
less than the Zeeman scale), they serve to illustrate the 1D
nature of the physics at high fields. To compare with this
understanding, we have performed a spin-wave calculation
(see Fig. 7) using the analysis of Ref. [36] for the field in
the (001), i.e., z direction. The 1D nature of the spin-wave
excitations is clearly observed. Such dimensional reduction
does not occur [see Fig. 7(b)], for example, for fields h in
the (111) direction upon which most of the existing studies
have focused [36]. We conclude with a count of the degrees of
freedom in our model. The original spin model has 2N states,
where N is the number of spins. There are N/2 hexagons,
each associated with a plaquette Wilson loop of value ±1.

Additionally, the matter fields �i are Z2 degrees of freedom on
every z-link, which accounts for the remaining 2N/2 degrees of
freedom.

V. DISCUSSION

In summary, we have developed a mutual CS formalism
for anyons on lattices lacking face-vertex correspondence.
The spin degrees of freedom were expressed in terms of JW
fermions coupled to the lattice Z2 gauge fields and a certain
local combination of the dual [U (1) or Z2] gauge fields,
which ensured correct spin exchange statistics on arbitrary
2D lattices. In the presence of fermionic matter, the theory
is not invariant under gauge transformations of the dual fields
because of the absence of vortex matter on the dual lattice
sites. Our CS gauge theory for 2D quantum spin systems
qualitatively differs from earlier works (see, e.g., Ref. [16])
where the JW fermions couple only to the lattice gauge fields,
and the CS term involves only one kind of gauge field. In
Ref. [16], although a mutual CS term had appeared as an
intermediate step in transforming the lattice CS theory to a
dual CS theory, the dual CS fields introduced there only serve
the role of a decoupling field for the original CS action, and
they are not central to implementing correct spin statistics.
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Such approaches do not permit construction of consistent
lattice matter-CS theories for spin lattices that lack face-vertex
correspondence.

As an illustration, the formulation was used to obtain an
effective CS field theory of the honeycomb Kitaev model sub-
jected to a strong Zeeman field in the z-direction. The effective
theory is that of a superfluid coupled to fluctuating gauge
fields whose dynamics is governed by a mutual Maxwell-
Chern-Simons theory. The field-tuned topological transition
of the Kitaev model appears as a normal to superfluid phase
transition in our description.

We briefly discuss the excitations in the normal phases
going up to the normal-superfluid transition. At high fields,
EJ/EC ≡ 0 for the FM Kitaev case (since � = 0 at high fields
here) and small for AFM Kitaev (� �= 0 nonzero but small),
which means only the electric part of the Maxwell term is
important, and the gauge fields do not propagate. At low fields
such that EJ/EC > 1, the cosine “Josephson” term can be
expanded in increasing powers of the plaquette flux, and to
quadratic order in the gauge fields, the result is a Maxwell-
Chern-Simons like theory with a massive photon with group
velocity c ∼ √

EJEC ∼ J2|�|/h, and the “mass” of the prop-
agating photon mode is κc. In the vicinity of the transition to
the topologically ordered phase (i.e., g ∼ 1), the photon group
velocity scales as h

√|�|, which agrees with estimates of
the vison hopping scale tvison ∼ h obtained from perturbative
expansion in the Kitaev limit [28,37]. Since for any value of
the field, |�| is generally larger for the AFM Kitaev model,
the vison dispersion persists to higher Zeeman fields in the
AFM Kitaev case [25]. In either case (FM or AFM Kitaev),
vison propagation requires us to be in the superfluid phase
(i.e., g � 1). To validate the effectiveness of our approach, we
have calculated that the expectation value of plaquette flux
Wp (see Fig. 6) using a finite MPS DMRG technique for the
AFM case (J = −1) sharply falls at h/|J| ≈ 0.6, which is
consistent with our estimate of h/|J| ≈ 0.52 [see Eq. (32)].
Although the confined phase (EJ/EC � 1) and deconfined
phase (EJ/EC > 1) resemble the toric code in a Zeeman field
[38–40], the EJ/EC contains an additional factor |�|2 which
is zero for the FM case for sufficiently high fields h > 2J.

The presence of the Higgs field � makes our model different
from a pure gauge theory such as the toric code. There is no
Coulomb phase either, due to the presence of the CS term.
We also identified an interesting dimensional reduction [see
Eq. (36)] at high fields where the Josephson term is negligible,
and the model essentially reduces to disconnected 1D chains
along the xy backbone. We also showed that this quasi-1D
dispersion also appears in a spin-wave analysis of the same
regime (see the Appendix).

Similar Z2 Maxwell-CS gauge theories have also been pro-
posed for quantum critical high-temperature superconductors
[41] where the superconductor-insulator transition is of the
confinement-deconfinement type like ours and associated with
Z2 symmetry breaking. The original problem in that case even
has a larger U (1) gauge symmetry, which turns out not to be
relevant for the superconductor-insulator transition.

Due to the perturbative nature of our treatment, we were
unable to study the properties of the deconfined phase. The
deconfined phase is described by a level-2 mutual Chern-
Simons theory, while at high fields we have a level-1 theory.

Unfortunately, we were not able to identify a route to renor-
malization of the level with decreasing magnetic field up to
the O(J4) perturbation, although we do not rule out the ap-
pearance of such terms at higher order. An alternate route is a
perturbative study from the low-field regime, which is a work
in progress. The idea is to begin with a mutual Chern-Simons
theory of level-2 that corresponds to a fourfold degenerate
ground state of the Kitaev model, and study how with in-
creasing Zeeman and other perturbations, the level of the
Chern-Simons theory would get renormalized to the high-field
value. It is important that in the low-field regime, the bare
Green function has both sublattice diagonal and sublattice
off-diagonal elements.

We finally discuss the cases in which the Zeeman field
has nonzero components in other directions (apart from z),
or more generally, the perturbations involve an odd number of
fermions, and long stringlike excitations cannot be avoided.
This will be taken up in a future study.
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APPENDIX

1. Perturbative expansion for the effective phase action

Here we briefly describe how the leading order link and
loop terms in the effective action in Eq. (27) have been
obtained. The O(J2) contribution is given by expanding
the fermionic determinant tr ln G−1 = tr ln G−1

0 + tr ln[1 +
G0(T0 + T )] to quadratic order in (T0 + T ). For example,

tr(G0T G0T )

=
∫

dτdτ ′ ∑
iA, jB

GiA
0 (τ − τ ′)T iA jB (τ ′)GjB

0 (τ ′ − τ )T jBiA (τ ),

(A1)

where the nonvanishing tunneling matrices T along the x and
y links, respectively, have the form [Eq. (23)]

T iA jB = Jx

2

[−eiϕx
2 −e−iϕx

1

eiϕx
1 e−iϕx

2

]
, T jBiA = Jx

2

[−e−iϕx
2 e−iϕx

1

−eiϕx
1 eiϕx

2

]
,

T kAlB = Jy

2

[−eiϕy
2 e−iϕy

1

−eiϕy
1 e−iϕy

2

]
, T lBkA = Jy

2

[−e−iϕy
2 −e−iϕy

1

eiϕy
1 eiϕy

2

]
.

(A2)

So each term in Eq. (A1) is a 2 × 2 matrix. Here iA → jB is
an x bond and kA → lB is a y bond. The ϕ′s are defined in
Eq. (24). The bare Green functions are all local in position
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coordinates and have the form GiA
0

11
(τ − τ ′) = 1

β

∑
ωm

e−iωm (τ−τ ′ )

iωm−ξiA
, where GiA

0
11

is the first diagonal element of GiA
0 . Thus

tr(G0T G0T ) = 4
∫

τ,τ ′

∑
i, j,ω1,ω2

1

β2
×
[

e−iω1(τ−τ ′ )

iω1 − ξiA

e−iω2(τ ′−τ )

iω2 − ξ jB

T jBiA
11 (τ )T iA jB

11 (τ ′) + e−iω1(τ−τ ′ )

iω1 + ξiA

e−iω2(τ ′−τ )

iω2 + ξ jB

T jBiA
22 (τ )T iA jB

22 (τ ′)

+ e−iω1(τ−τ ′ )

iω1 − ξiA

e−iω2(τ ′−τ )

iω2 + ξ jB

T jBiA
21 (τ )T iA jB

12 (τ ′) + e−iω1(τ−τ ′ )

iω1 + ξiA

e−iω2(τ ′−τ )

iω2 − ξ jB

T jBiA
12 (τ )T iA jB

21 (τ ′)

]
, (A3)

where T iA jB
11 and T iA jB

22 are the diagonal components of the 2 × 2 matrix T iA jB ; T iA jB
12 , and T iA jB

21 are off-diagonal; and ξiA = ξ jB ≈ 2h.
It is convenient to work with the Green functions in Euclidean time:

1

β

∑
ω

e−iω(τ−τ ′ )

iω − ξiA

= −[θ (τ − τ ′)nF
(− ξiA

)− θ (τ ′ − τ )nF
(
ξiA

)]
e−ξiA (τ−τ ′ ), (A4)

where nF is Fermi-Dirac distribution and θ (τ − τ ′) is the Heaviside step function with,

θ (τ − τ ′) =
⎧⎨
⎩

1 for τ > τ ′,
0 for τ < τ ′,
1
2 for τ = τ ′.

(A5)

Using these relations, the first two terms of the above trace give

tr(G0T G0T ) =
∫

τ,τ ′

∑
i, j

e−(ξiA −ξ jB )(τ−τ ′ ){[θ (τ − τ ′)nF
(− ξiA

)− θ (τ ′ − τ )nF
(
ξiA

)]× [
θ (τ ′ − τ )nF

(− ξ jB

)− θ (τ − τ ′)nF
(
ξ jB

)]

× T jBiA
11 (τ )T iA jB

11 (τ ′) + [
θ (τ − τ ′)nF

(
ξiA

)− θ (τ ′ − τ )nF
(− ξiA

)]× [
θ (τ ′ − τ )nF

(
ξ jB

)− θ (τ − τ ′)nF
(− ξ jB

)]
× T jBiA

22 (τ )T iA jB
22 (τ ′)

}
. (A6)

This contribution is proportional to nF ( − ξiA )nF (ξiA ), which vanishes at zero temperature. The only nontrivial terms are coming
from the last two terms of Eq. (A3), and tr(G0T G0T ) becomes

tr(G0T G0T ) = −4
∫

dτdτ ′ ∑
i, j

θ (τ − τ ′)nF
(− ξiA

)
nF
(− ξ jB

)× e−(ξiA +ξ jB )(τ−τ ′ )T iA jB
12 (τ ′)T jBiA

21 (τ )

− 4
∫

dτdτ ′ ∑
i, j

θ (τ ′ − τ )nF
(− ξiA

)
nF
(− ξ jB

)× e−(ξiA +ξ jB )(τ ′−τ )T iA jB
21 (τ ′)T jBiA

12 (τ ). (A7)

We now make a change of variables, τ = τc + τr
2 and τ ′ = τc − τr

2 . So

tr(G0T G0T ) = −4
∫ β

0
dτc

∫ β

0
dτ ′

r

∑
i, j

nF
(− ξiA

)
nF
(− ξ jB

)× e−(ξiA +ξ jB )(τr )T iA jB
12

(
τc − τr

2

)
T jBiA

21

(
τc + τr

2

)

− 4
∫ β

0
dτc

∫ 0

−β

dτ ′
r

∑
i, j

nF
(− ξiA

)
nF
(− ξ jB

)× e(ξiA +ξ jB )(τr )T iA jB
21

(
τc − τr

2

)
T jBiA

12

(
τc + τr

2

)
. (A8)

If we change τr → −τr in the second term on the right-hand side (RHS) of Eq. (A8), then we will get exactly same as the first
term on the RHS. The product of two tunneling matrices can be written by Taylor series expansion,

T iA jB
12

(
τc − τr

2

)
T jBiA

21

(
τc + τr

2

)
= J2

x

4
eiϕx

1 (τc+ τr
2 )e−iϕx

1 (τc− τr
2 ) = J2

x

4

[
1 + iτr

∂ϕx
1

∂τc
− τ 2

r

2

(
∂ϕx

1

∂τc

)2

+ · · ·
]
. (A9)

Integrating out τr , the second-order trace in the x bond of the Kitaev honeycomb model takes the form

tr(G0T G0T ) = −2J2
x

∫ β

0
dτ

(iA
e−→ jB )∑

x-links

nF
(− ξiA

)
nF
(− ξ jB

)×
[

I1 + iI2
∂ϕx

1

∂τ
− 1

2
I3

(
∂ϕx

1

∂τ

)2]
with τc ≡ τ and (A10)

I1 = 1(
ξiA + ξ jB

) [1 − e−β(ξiA +ξ jB )
]

and I2 = 1(
ξiA + ξ jB

)2

[
1 − e−β(ξiA +ξ jB ) − β

(
ξiA + ξ jB

)
e−β(ξiA +ξ jB )

]
,

I3 = 2(
ξiA + ξ jB

)3 − e−β(ξiA +ξ jB )

[
β2(

ξiA + ξ jB

) + 2β(
ξiA + ξ jB

)2 + 2(
ξiA + ξ jB

)3

]
. (A11)
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Similarly, the corresponding trace for the y bond leads to

tr(G0T G0T ) = −2J2
y

∫ β

0
dτ

(iA
e−→ jB )∑

y-links

nF
(− ξiA

)
nF
(− ξ jB

)×
[

I1 + iI2
∂ϕx

1

∂τ
− 1

2
I3

(
∂ϕ

y
1

∂τ

)2]
, (A12)

where ϕ
y
1 and ϕ

y
2 are now on the y bond with the same structures with ϕx

1 and ϕx
2, respectively. Following a similar procedure to

that given above, we obtain for the z bond,

tr(G0T0G0T0) = −64J2
z

∫ β

0
dτ

∑
z-bonds

nF
(− ξiA

)
nF
(− ξ jB

)×
{

I1|�i|2 + I2

[
�i

∂�∗
i

∂τ
+ i|�i|2 ∂ϕi

∂τ

]

− 1

2
I3

[
∂�i

∂τ

∂�∗
i

∂τ
− i�i

∂�∗
i

∂τ

∂ϕi

∂τ
+ i�∗

i

∂�i

∂τ

∂ϕi

∂τ
+ |�i|2

(
∂ϕi

∂τ

)2]}
, (A13)

ϕi
1 = χiA + χiB . The Taylor expansion also yields quartic and higher-order derivatives of the phase fields. However, in this

gradient expansion, they are smaller by factors of (ω/4h)2. Likewise, one can expand to higher order in tunneling—successive
higher orders are smaller by factors of (J/4h)2. Such terms are not retained in our leading expansion for the link contribution to
the phase action, but they will become necessary (see below) for a discussion of collective phase modes.

The loop terms appear only at sixth order in the tunneling. This will give us the magnetic field term of the Maxwell theory
shown in Eq. (29). For any hexagonal loop in the Kitaev honeycomb model with high Zeeman field in the z direction, the
sixth-order trace leads to the following result:

−1

6
tr(G0T G0T0G0T G0T G0T0G0T ) = 8

3

∫ β

0
dτ

J2
x J2

y J2
z

(2h)5

{
� j�

∗
l ei

∫�( �A· �dl+�B· �dl ) + H.c.
}
. (A14)

Note that the hexagonal loop contains two z-tunnelings parametrized by T0 and four x-y tunnelings matrices parametrized by
T . Unlike the link terms, since the path in the loop is not retraced, the leading contribution here does not involve any time
derivatives.

Now at high field the above integrals I1, I2, I3 are simplified and the product nF ( − ξiA )nF ( − ξ jB ) is taken to be unity. Using
this, the ultimate action of our theory is given by

S = −
∫ β

0
dτ

[
iLCS −

∑
i

{4Jz�i�
∗
i − Jz − h}

]
− J2

x

∫ β

0
dτ

(iA
e−→ jB )∑

x-links

[
I1 + iI2

∂ϕx
1

∂τ
− 1

2
I3

(
∂ϕx

1

∂τ

)2]

− J2
y

∫ β

0
dτ

(iA
e−→ jB )∑

y-links

[
I1 + iI2

∂ϕ
y
1

∂τ
− 1

2
I3

(
∂ϕ

y
1

∂τ

)2]
− 32J2

z

∫ β

0
dτ

∑
z-bonds

{
I1|�i|2 + I2

[
�i

∂�∗
i

∂τ
+ i|�i|2 ∂ϕi

∂τ

]

− 1

2
I3

[
∂�i

∂τ

∂�∗
i

∂τ
− i�i

∂�∗
i

∂τ

∂ϕi

∂τ
+ i�∗

i

∂�i

∂τ

∂ϕi

∂τ
+ |�i|2

(
∂ϕi

∂τ

)2]}
− 8

3

∫ β

0
dτ

J2
x J2

y J2
z

(2h)5

{
� j�

∗
l ei

∫�( �A· �dl+�B· �dl ) + H.c.
}
.

= −
∫ β

0
dτ

[
iLCS −

∑
i

{4Jz�i�
∗
i − Jz − h}

]
+ J2

x

64h3

∫ β

0
dτ

(iA
e−→ jB )∑

x-links

[(
∂ϕx

1

∂τ
− 2ih

)2

− 12h2

]

+ J2
y

64h3

∫ β

0
dτ

(iA
e−→ jB )∑

y-links

[(
∂ϕ

y
1

∂τ
− 2ih

)2

− 12h2

]
− 32J2

z

∫ β

0
dτ

∑
z-bonds

{
I1|�i|2 − I2[�∗(∂τ − iϕ̇i )�]

− 1

2
I3[|(∂τ − iϕ̇i )�|2]

}
− 8

3

∫ β

0
dτ

J2
x J2

y J2
z

(2h)5

{
� j�

∗
l ei

∫�( �A· �dl+�B· �dl ) + H.c.
}
. (A15)

2. Collective modes

At high fields one can drop the loop terms in comparison to the link terms. The phase model then represents a set of decoupled
rotors along the x-y chains suggesting a one-dimensional character. We now show that these phase modes, although confined at
low energies, ultimately begin to disperse at sufficiently high energies comparable to the Zeeman gap. For this we first need to
consider higher-order time derivatives at O(J2) in Eq. (A9) for x and y links:

T iA jB
12

(
τc − τr

2

)
T jBiA

21

(
τc + τr

2

)
= J2

x

4
eiϕx

1 (τc+ τr
2 )e−iϕx

1 (τc− τr
2 ) = J2

x

4

[
1 + iτr

∂ϕx
1

∂τc
− τ 2

r

2

(
∂ϕx

1

∂τc

)2

+ τr
4

24

(
∂2ϕx

1

∂τ 2

)2

+ · · ·
]
. (A16)
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After the τr, integration, we obtain the following additional contribution to the effective phase action for the same pair of links:

J2

(4h)5

[(
∂2ϕx

1

∂τ 2

)2

+
(

∂2ϕ
y
1

∂τ 2

)2]
, (A17)

where τ = τc. At this point, there is still no dispersion. We next calculate the fourth-order tunneling contribution associated with
a pair of x and y links sharing a vertex:∫

dτ1dτ2dτ3dτ4

∑
jA,iB,kB

GiB
0 (τ1 − τ2)T iB jA (τ2)GjA

0 (τ2 − τ3)T jAkB (τ3)GkB
0 (τ3 − τ4)T kB jA (τ4)GjA

0 (τ4 − τ1)T jAiB (τ1), (A18)

where jA → iB and jA → kB are x-bond and y-bond, respectively. We make a linear transformation on the imaginary-time
coordinates in terms of the average time τc and three relative coordinates τr1 , τr2 , τr3 as shown below,⎡

⎢⎢⎣
τ1

τ2

τ3

τ4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

1 3
4

1
2

1
4

1 − 1
4

1
2

1
4

1 − 1
4 − 1

2
1
4

1 − 1
4 − 1

2 − 3
4

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

τc

τr1

τr2

τr3

⎤
⎥⎥⎦. (A19)

Now using Eqs. (A2) and (A4) above, and making a Taylor expansion of the tunneling terms around τ, and finally integrating
out the relative time coordinates, we obtain the following contribution to the effective Lagrangian at O(J4) for a pair of links on
the xy-chains sharing a vertex:

C
J4

(4h)5

∂ϕx
1

∂τ

∂ϕ
y
1

∂τ
, (A20)

where C = 3/2, an O(1) number. Collecting these additional contributions together with Eq. (27), the Lagrangian for the phase
modes on a pair of neighboring links has the quadratic part,

L[ϕ1] = J2

64h3

[(
∂ϕx

1

∂τ

)2

+
(

∂ϕ
y
1

∂τ

)2

+ 1

(4h)2

{(
∂2ϕx

1

∂τ 2

)2

+
(

∂2ϕ
y
1

∂τ 2

)2

+ 3

2
J2 ∂ϕx

1

∂τ

∂ϕ
y
1

∂τ

}]
, (A21)

which gives us the four 1D dispersing modes whose energies are given by E (kx ) = ±
√

(4h)2 ± (3/2)J2 cos kx.

For the spin-wave dispersion that is associated with ϕ
x/y
2 modes, we have almost the same type of behavior except that the

Zeeman gap is 2h. These ϕ
x/y
2 first appear at O(J4) and we have to go to an even higher sixth order to get the dispersion of these

modes. Physically, the O(J4) contribution here comes from two particle-hole hopping terms associated with the same link—the
total energy of this pair is thus 4h. The collective modes studied here are clearly one-dimensional at high fields.
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