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Entanglement entropy of typical quantum states, also known as the Page curve, plays an important role
in quantum many-body systems and quantum gravity. However, little has hitherto been understood about the
role of symmetry in quantum entanglement. Here, we establish the comprehensive classification of typical
quantum entanglement for free fermions, or equivalently the quadratic Sachdev-Ye-Kitaev model with symmetry,
on the basis of the tenfold fundamental symmetry classes of time reversal, charge conjugation, and chiral
transformation. Through both analytical and numerical calculations of random matrix theory, we show that
the volume-law contribution to average entanglement entropy is robust and remains unaffected by symmetry.
Conversely, we uncover that the constant terms of the average and variance of entanglement entropy yield tenfold
universal values unique to each symmetry class. These constant terms originate from the combination of a global
scaling of the entanglement spectrum due to time-reversal symmetry and a singular peak at the center of the
entanglement spectrum due to chiral or particle-hole symmetry. Our work elucidates the interplay of symmetry
and entanglement in quantum physics and provides a characterization of symmetry-enriched quantum chaos.
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I. INTRODUCTION

Quantum entanglement lies at the heart of quantum physics
[1–4]. It provides fundamental characterizations of quan-
tum phases of matter, such as critical phenomena [5–8] and
topological phases [9–14]. Moreover, quantum entanglement
provides insight into thermalization of isolated quantum sys-
tems or lack thereof [15–17]. In fact, entanglement entropy of
typical states in quantum chaotic systems is maximal and pro-
portional to the volume of the subsystem (i.e., volume law),
resulting in thermalization and thereby validating thermody-
namics and statistical physics [18–24]. Such typical quantum
entanglement entropy also holds significant importance in
black hole physics [25,26]. Recently, researchers have also
studied quantum entanglement of typical Gaussian states in
free fermions and found a signature of thermalization [27–34].
Correspondingly, the single-particle quantum chaos of free
fermions has attracted growing interest [35–39].

An important signature of quantum chaos manifests in
spectral statistics [40,41]. It is widely believed that the
spectrum of a nonintegrable quantum system exhibits random-
matrix statistics [42] whereas that of an integrable system
obeys Poisson statistics [43]. The universality classes of
random matrices are determined solely by the fundamental
tenfold symmetry classes of time reversal, charge conjugation,
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and chiral transformation, known as the Altland-Zirnbauer
(AZ) symmetry classes [44]. As a prime example of quantum
chaotic many-body systems, the Sachdev-Ye-Kitaev (SYK)
model [45–48] is classified by these tenfold symmetry classes
and exhibits tenfold quantum chaotic behavior [49–56].
Furthermore, the AZ symmetry determines the universal-
ity classes of Anderson transitions [57,58] and topological
insulators and superconductors [59–63]. However, perhaps
surprisingly, little has been understood about the role of sym-
metry in entanglement theory.

In this work, we establish the classification of typi-
cal quantum entanglement in free fermions on the basis
of the tenfold fundamental symmetry classes. We show
that the volume-law term of average entanglement entropy
is invariant in all the classes. Conversely, we find that
the constant terms of the average and variance of entan-
glement entropy depend on symmetry and yield tenfold
universal values unique to each symmetry class (Table I
and Fig. 1). In addition to numerical calculations, we an-
alytically derive these tenfold universal values of typical
entanglement, introducing the symmetry-enriched versions
of Weingarten calculus [64–68]. Our findings elucidate
the interplay of symmetry and entanglement in quantum
physics.

The rest of this work is organized as follows. In Sec. II,
we develop the tenfold symmetry classification of typical
quantum entanglement in free fermions (Table I and Fig. 1).
In Sec. III, we analytically derive the typical quantum entan-
glement on the basis of the Weingarten calculus. In Sec. IV,
we obtain typical quantum entanglement for small systems
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TABLE I. Tenfold classification of typical entanglement entropy based on the Altland-Zirnbauer (AZ) symmetry classes. The AZ symmetry
classes consist of time-reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral symmetry (CS). For TRS and PHS, the entries “±1”
mean the presence of symmetry and its sign, and the entries “0” mean the absence of symmetry. For CS, the entries “1” and “0” mean the
presence and absence of symmetry, respectively. Each class is characterized by the classifying space and the random-matrix indices (α, β ).
The constant terms of the average 〈S0〉 and variance 〈(�S)2〉 of entanglement entropy are shown with σ 2

0 := 3/4 − ln 2. All the results of
entanglement entropy are calculated for particle-number-conserving free fermions with the half bipartition and half filling. For Bogoliubov-de
Gennes Hamiltonians that do not conserve the particle number, the average is one half and the variance is one quarter in each symmetry class.

AZ class TRS PHS CS Classifying space β α 〈S0〉 〈(�S)2〉
A 0 0 0 C0 U(2N )/U(N ) × U(N ) 2 N/A 0 σ 2

0

AIII 0 0 1 C1 U(N ) 2 1 0 2σ 2
0

AI +1 0 0 R0 O(2N )/O(N ) × O(N ) 1 N/A −(ln 2 − 1/2) 2σ 2
0

BDI +1 +1 1 R1 O(N ) 1 0 −((3/2) ln 2 − 1) 4σ 2
0

D 0 +1 0 R2 O(2N )/U(N ) 2 0 (1 − ln 2)/2 2σ 2
0

DIII −1 +1 1 R3 U(2N )/Sp(N ) 4 1 (ln 2)/4 σ 2
0

AII −1 0 0 R4 Sp(2N )/Sp(N ) × Sp(N ) 4 N/A (ln 2 − 1/2)/2 σ 2
0 /2

CII −1 −1 1 R5 Sp(N ) 4 3 ((3/2) ln 2 − 1)/2 σ 2
0

C 0 −1 0 R6 Sp(N )/U(N ) 2 2 −(1 − ln 2)/2 2σ 2
0

CI +1 −1 1 R7 U(N )/O(N ) 1 1 −(ln 2)/2 4σ 2
0

(Table II), in the same spirit as the Wigner surmise. In
Sec. V, we conclude this work with several outlooks. In
Appendices A and B, we explain details on typical entan-
glement entropy for particle-number-conserving free fermions
and particle-number-nonconserving free fermions (i.e., BdG
Hamiltonians), respectively. In Appendix C, we provide
details on analytical derivations of typical quantum entan-
glement based on the Weingarten calculus. In Appendix D,
we provide details on the Wigner surmise of typical quantum
entanglement.

FIG. 1. Typical entanglement entropy in the tenfold Altland-
Zirnbauer symmetry classes. All the results are numerically cal-
culated for particle-number-conserving free fermions at half filling
and for half the degrees of freedom. Each datum is averaged over
105 disorder realizations. (a) Average entanglement entropy 〈S〉 with
respect to the volume-law term sN as functions of the inverse of the
total system size N without internal degrees of freedom [s = ln 2 −
1/2 in the standard classes and s = 2(ln 2 − 1/2) in the chiral and
Bogoliubov-de Gennes (BdG) classes]. (b) Variance of entanglement
entropy, 〈(�S)2〉, as functions of N . The black dashed lines are the
analytical results 〈(�S)2〉 = 2(3/4 − ln 2)/β in the standard classes
and 〈(�S)2〉 = 4(3/4 − ln 2)/β in the chiral and BdG classes with
the Dyson index β = 1, 2, and 4.

II. SYMMETRY CLASSIFICATION OF TYPICAL
QUANTUM ENTANGLEMENT

We develop the tenfold classification of typical quantum
entanglement in free fermions based on the AZ symmetry
classes, as summarized in Table I and Fig. 1. In Sec. II A,
we begin with reviewing the AZ symmetry classification and
explain calculations of typical entanglement entropy for free
fermions. Then, we provide typical entanglement entropy in
the standard classes (Sec. II B), chiral classes (Sec. II C), and
Bogoliubov-de Gennes (BdG) classes (Sec. II D). In Appen-
dices A and B, we explain details on calculations of typical
entanglement entropy for particle-number-conserving free
fermions and particle-number-nonconserving free fermions
(i.e., BdG Hamiltonians), respectively.

A. Altland-Zirnbauer (AZ) symmetry

We consider a generic free fermionic system

Ĥ =
∑

i j

ĉ†
i Hi j ĉ j, (1)

where ĉi’s (i = 1, 2, . . . , N) are complex fermion opera-
tors, and H is an N × N single-particle Hamiltonian. Since
physical disorder breaks spatial symmetry, we focus on in-
ternal symmetry. In general, H is classified according to the
fundamental internal symmetries of time reversal, charge con-
jugation, and chiral transformation:

T −1H∗T = H, T ∗T = ±1, (2)

C−1H∗C = −H, C∗C = ±1, (3)

S−1HS = −H, S2 = +1, (4)

where T , C, and S are unitary operators. Fermions include
the spin (particle-hole) degree of freedom in the presence
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TABLE II. Wigner surmise of typical quantum entanglement. The tenfold Altland-Zirnbauer (AZ) symmetry classes consist of time-
reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral symmetry (CS). For TRS and PHS, the entries “±1” mean the presence of
symmetry and its sign, and the entries “0” mean the absence of symmetry. For CS, the entries “1” and “0” mean the presence and absence of
symmetry, respectively. The average and variance of entanglement entropy are calculated both analytically and numerically for N = 2. In the
numerical calculations, each datum is averaged over 108 ensembles. All the results of entanglement entropy are calculated for particle-number-
conserving free fermions with the half bipartition and the half filling.

AZ class TRS PHS CS 〈S〉analytical 〈S〉numerical 〈(�S)2〉analytical 〈(�S)2〉numerical

A 0 0 0 1/2 0.5000 (21 − 2π 2)/36 0.0350
AIII 0 0 1 (2 ln 2 + 1)/3 0.7954 (3 − 8 ln 2 + 8(ln 2)2)/9 0.1443
AI +1 0 0 2 ln 2 − 1 0.3863 5π 2/24 − 2 0.0562
BDI +1 +1 1 2(2 ln 2 − 1) 0.7726 5π 2/6 − 8 0.2247
D 0 +1 0 1 1.0000 (21 − 2π 2)/9 0.1401
DIII −1 +1 1 1.013604 . . . [Eq. (D32)] 1.0136 0.0818924 . . . [Eq. (D33)] 0.0819
AII −1 0 0 7/12 0.5833 97/144 − π 2/15 0.0156
CII −1 −1 1 (79 + 132 ln 2)/210 0.8119 (16021 − 44160 ln 2 + 38016(ln 2)2)/44100 0.0834
C 0 −1 0 2/3 0.6666 0.128497 . . . [Eq. (D36)] 0.1285
CI +1 −1 1 0.554363 . . . [Eq. (D39)] 0.5543 0.177858 . . . [Eq. (D40)] 0.1779

of time-reversal symmetry with sign T ∗T = −1 (chiral or
particle-hole symmetry). Time-reversal symmetry T gives the
threefold Wigner-Dyson symmetry classes [69,70], and its
combination with particle-hole symmetry C and chiral sym-
metry S gives the tenfold AZ symmetry classes [44]. The
tenfold classifying spaces in Table I provide all the possible
symmetric spaces for free fermionic systems. Spectral proper-
ties of Hermitian random matrices are universally determined
by their symmetry [40,71,72], characterized by the random-
matrix indices (α, β ).

Depending on the symmetry classes, we randomly choose
single-particle eigenstates by the Haar measure from differ-
ent classifying spaces and calculate entanglement entropy
of a subsystem with half the size for half-filled many-body
eigenstates (see Appendix A for details). Thereby, we study
the quantum chaotic behavior of typical thermal eigenstates,
instead of special eigenstates such as ground states at zero
temperature. Notably, our random free fermionic Hamil-
tonians are equivalent to the two-body SYK model with
complex fermions [45–48], whose entanglement entropy was
studied in the absence of symmetry (i.e., class A) [28,32].
Below, we demonstrate that additional symmetry changes
the constant terms of the average and variance of entangle-
ment entropy and yields tenfold universal values unique to
each symmetry class. The AZ symmetry classification does
not include unitary symmetry that commutes with Hamil-
tonians, the effect of which can be studied in subspaces
of fixed conserved charge [33,73]. By contrast, we show
that the AZ symmetries cannot be captured in such a man-
ner and play a more fundamental role in typical quantum
entanglement.

B. Standard (Wigner-Dyson) classes

The threefold standard classes are concerned only with
time-reversal symmetry in Eq. (2) [69,70]. The symmetry
class without any symmetry is called class A, and the sym-
metry class with time-reversal symmetry having sign +1 (−1)
is called class AI (AII). In class AII, time-reversal symmetry

leads to the Kramers degeneracy, and we calculate entangle-
ment entropy only from half of the entanglement spectrum.
While the single-particle eigenstates generally form the uni-
tary group U(N ) in class A, time-reversal symmetry makes
them belong to the orthogonal group O(N ) and the symplectic
group Sp(N ) in classes AI and AII, respectively. Taking the
eigenstates Haar-randomly from these classifying spaces, we
obtain the average entanglement entropy

〈S〉 =
(

ln 2 − 1

2

)(
N + 1 − 2

β

)
+ o(1) (5)

with the Dyson index β = 1 (class AI), β = 2 (class A), and
β = 4 (class AII). In class A, the constant term

〈S0〉 =
(

1 − 2

β

)(
ln 2 − 1

2

)
(6)

of the average entanglement entropy vanishes, consistent with
Refs. [28,32]. Even in the presence of time-reversal sym-
metry, the leading term proportional to N does not change.
However, time-reversal symmetry gives rise to the nonzero
constant term 〈S0〉, which is negative (positive) for class AI
(AII). Equation (5) may be understood as one particle being
effectively removed in class AI and half of a particle being
effectively added in class AII.

We also obtain the variance of entanglement entropy as

〈(�S)2〉 = 2

β

(
3

4
− ln 2

)
+ o(1). (7)

The nonvanishing variance 〈(�S)2〉 is a feature unique to
free fermions [30,32]. For many-body chaotic systems, the
entanglement entropy is highly self-averaging, with variance
suppressed by a power of the Hilbert space dimension. No-
tably, 〈(�S)2〉 is twice larger in class AI (T ∗T = +1, β = 1)
than in class A and reduces by half in class AII (T ∗T = −1,
β = 4). This is consistent with the universal spectral statis-
tics of random matrices and quantum chaotic systems where
level repulsion is suppressed in class AI and enhanced in
class AII [40,71,72], which results in the larger and smaller
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variances. In contrast to the average, the variance of entangle-
ment entropy is universally determined solely by time-reversal
symmetry and the Dyson index β even in the presence of
chiral and particle-hole symmetries.

C. Chiral classes

In the presence of chiral symmetry in Eq. (4), single-
particle Hamiltonians H generally take the form

H =
(

0 h
h† 0

)
, (8)

with h ∈ U(N ), O(N ), and Sp(N ) in classes AIII, BDI, and
CII, respectively. Even in the presence of chiral symmetry,
the volume-law term of the average entanglement entropy is
invariant. By contrast, we find that the chiral structure leads to
the constant terms

〈S0〉 =
(

1 − 2

β

)(
3

2
ln 2 − 1

)
, (9)

with the Dyson index β = 1 (class BDI), β = 2 (class AIII),
and β = 4 (class CII). Similarly to class A, 〈S0〉 vanishes
in the absence of time-reversal symmetry. Additional time-
reversal symmetry with sign T ∗T = +1 (T ∗T = −1) gives
rise to negative (positive) 〈S0〉, which is roughly one fifth of
〈S0〉 in the standard classes. Furthermore, because of the chiral
structure in Eq. (8), the variance of entanglement entropy is
twice larger than Eq. (7):

〈(�S)2〉 = 4

β

(
3

4
− ln 2

)
+ o(1). (10)

Still, it is determined solely by the Dyson index β, which
signals the underlying universality.

D. Bogoliubov-de Gennes (BdG) classes

In the BdG classes, where particle-hole symmetry in
Eq. (3) is respected, the volume-law term of the average
entanglement entropy is invariant. However, the constant term
〈S0〉 exhibits distinctive values unique to the BdG classes. In
classes D and C, single-particle eigenstates are respectively
characterized by O(2N )/U(N ) and Sp(N )/U(N ), and the av-
erage entanglement entropy is obtained as

〈S0〉 = 1

2
(1 − α)(1 − ln 2). (11)

Here, the random-matrix index α = 0 (class D) and α = 2
(class C) controls the spectral statistics around the zero eigen-
value in contrast with the Dyson index β that controls the
spectral statistics for generic eigenvalues [40,44]. Notably,
〈S0〉 is different despite the same Dyson index β = 2 in classes
D and C. On the other hand, in classes DIII and CI, both
time-reversal and particle-hole symmetries are relevant, and
single-particle Hamiltonians H are given by Eq. (8) with h in
the circular symplectic and orthogonal ensembles [40,71,72],
respectively, leading to

〈S0〉 = 1

2

(
1 − 2

β

)
ln 2 (12)

with the Dyson index β = 1 (class CI) and β = 4 (class DIII).
Similarly to the chiral classes, the variance of entanglement
entropy is twice larger than Eq. (7) [i.e., Eq. (10)].

While we have hitherto focused on free fermions that
conserve the particle number, we also investigate typical en-
tanglement entropy in particle-number-nonconserving BdG
Hamiltonians

Ĥ = �̂†H �̂ (13)

with the Nambu spinor �̂ := (ĉ1 · · · ĉN ĉ†
1 · · · ĉ†

N )T that
consists of both annihilation and creation operators (see Ap-
pendix B for details). We find that the average 〈S0〉 is one half
and the variance 〈(�S)2〉 is one quarter in BdG Hamiltonians
in comparison with their particle-number-conserving cousins
in the same symmetry classes. This is consistent with the ana-
lytical results of BdG Hamiltonians in class D [30]. While the
fundamental constituents of particle-number-conserving free
fermions are complex fermions, those of BdG Hamiltonians
are Majorana fermions. Majorana fermions effectively have
half the degree of freedom compared with complex fermions,
which results in the half average and quarter variance of en-
tanglement entropy. While the particle-number conservation
was previously considered important [28,30,32], our results
show that the AZ symmetries play a more fundamental role in
the free-fermion Page curve.

III. WEINGARTEN CALCULUS

Now, we analytically derive the typical entanglement
entropy. Since it is not straightforward to generalize the an-
alytical approaches in Refs. [28,30,32] in the presence of
symmetry, we introduce the symmetry-enriched versions of
Weingarten calculus [64–68]. As a special feature of free
fermions, the entanglement entropy is obtained from the
single-particle correlation matrix C constrained on the sub-
system [74,75], defined as

Ci j := 〈�|ĉ†
i ĉ j |�〉 (14)

with a many-body eigenstate |�〉. Let λi’s (0 � λi � 1) be the
eigenspectrum of C (i.e., single-particle entanglement spec-
trum). Then, the average entanglement entropy reads

〈S〉 =
∫ 1

0
dλ s(λ) 〈D(λ)〉 , (15)

with

s(λ) := −λ ln λ − (1 − λ) ln (1 − λ) (16)

and the density of the entanglement spectrum,

D(λ) :=
∑

i

δ(λ − λi). (17)

The bracket denotes the average over the Haar measure on
each classifying space. From the standard procedure of the
resolvent method, the average density is obtained as

〈D(λ)〉 = − 1

π
Im lim

ε→0+
〈R(λ + iε)〉 (18)

with the resolvent

R(z) := Tr

(
I

zI − C

)
= Tr

(
I

z

)
+

∞∑
n=1

Tr Cn

zn+1
. (19)
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Thus the calculations of the typical entanglement entropy in
Eq. (15) reduce to 〈Tr Cn〉, which can be constructed from
random unitary matrices and hence systematically carried out
by the Weingarten calculus [64–68] (see Appendix C for de-
tails). Depending on different classifying spaces in different
symmetry classes, different types of the Weingarten functions
are relevant, which leads to the tenfold typical entanglement
entropy.

From the aforementioned Weingarten calculus in the stan-
dard classes, we obtain (see Appendix C 2 for derivations)

〈D(λ)〉 = N + 1 − 2/β

2π
√

λ(1 − λ)
1[0,1] + O(1/N ), (20)

which leads to Eq. (5). Here, we define 1[0,1] to be 1 (0)
for 0 � λ � 1 (otherwise) and neglect the additional delta
functions at λ = 0, 1 irrelevant to entanglement entropy. The
overall difference in the entanglement spectrum, which origi-
nates from the different Weingarten functions for U(N ), O(N ),
and Sp(N ), results in the different constant terms of the typical
entanglement entropy in Eq. (5). In the chiral and BdG classes,
by contrast, an additional delta function appears at the center
λ = 1/2 of the entanglement spectrum. In the chiral classes,
we have (see Appendix C 3 for derivations)

〈D(λ)〉 = N + 1 − 2/β

π
√

λ(1 − λ)
1[0,1] + 1

2

(
1 − 2

β

)
δ

(
λ − 1

2

)

+ O(1/N ). (21)

In the BdG classes, we have (see Appendix C 4 for deriva-
tions)

〈D(λ)〉 = N − (1 − α)/2

π
√

λ(1 − λ)
1[0,1] −

(
1 − α

2
− 1

β

)
δ

(
λ − 1

2

)

+ O(1/N ). (22)

These additional delta functions also contribute to the con-
stant terms of the average entanglement entropy, leading to
Eqs. (9), (11), and (12). Notably, the two types of constant
terms originate from different origins and behave in a dif-
ferent manner. While the density of states is generally less
universal than the higher-order correlation functions (e.g.,
level-spacing statistics), that around the chiral-symmetric
or particle-hole-symmetric point is known to be universal
[40,44]. Consequently, the delta functions at the center of
the entanglement spectrum should be more universal than the
other constant contributions.

We also numerically calculate the average density 〈D(λ)〉
of the single-particle entanglement spectrum for the quadratic
SYK model with Majorana fermions (Fig. 2). The delta-
function peaks or dips are resolved for finite N , their smooth
signatures appearing at the center λ = 1/2 of the entan-
glement spectrum, consistent with the analytical results for
infinite N → ∞. Different symmetry leads to distinctive
behavior at λ = 1/2, characterizing symmetry-enriched quan-
tum chaos of the SYK model.

The variance in entanglement entropy is evaluated as

〈(�S)2〉 =
∫ 1

0
dλ1

∫ 1

0
dλ2 s(λ1)s(λ2)D2(λ1, λ2) (23)

FIG. 2. Average density of the single-particle entanglement
spectrum for the quadratic Sachdev-Ye-Kitaev model enriched by
symmetry, or equivalently, random Bogoliubov-de Gennes Hamil-
tonians in (a) classes D (orange curve), C (blue curve), (b) DIII
(purple curve), and CI (yellow curve). Each datum is averaged over
105 disorder realizations for N = 100. The black dashed curves are
the volume-law term 〈D〉 /N = 1/2π

√
λ(1 − λ). The singular peaks

or dips appear at λ = 1/2, consistent with the analytical results
(1 − α/2 − 1/β )δ(λ − 1/2).

with the two-point correlation function

D2(λ1, λ2) :=
〈∑

i j

δ(λ1 − λi )δ(λ2 − λ j )

〉
− 〈D(λ1)〉〈D(λ2)〉.

(24)

It is known that D2(λ1, λ2) for large N has the universal 1/β

dependence for general matrix potentials [40,57,71,72], which
explains the universal 1/β dependence in Eq. (7). Further-
more, we can fix the multiplicative factor σ 2

0 := 3/4 − ln 2
in the standard classes, using the known analytical result for
class A [32]. We have strong numerical evidence that this
holds for all the AZ symmetry classes [Fig. 1(b)].

IV. WIGNER SURMISE

In addition to the large-N results, we analytically derive
the average 〈S〉 and variance 〈(�S)2〉 of the entanglement
entropy for small systems N = 2, in the same spirit as the
Wigner surmise [69] (Table II; see Appendix D for details).
In contrast with the large-N results, there is no way to differ-
entiate between the volume-law and constant terms. Still, the
qualitative differences between different symmetry classes are
found even for N = 2. Notably, ten different values of 〈(�S)2〉
appear, which contrast with the large-N results that depend
solely on the Dyson index β. This implies that the quantized
variance of entanglement entropy in Eq. (7) originates from
the many-level effect. Similarly, the singular peak of 〈D(λ)〉
at the symmetric point λ = 1/2, universal feature in the chiral
and BdG classes for large N , does not appear for N = 2.

V. DISCUSSIONS

Symmetry plays a pivotal role throughout physics. The
fundamental tenfold internal symmetries, AZ symmetries, de-
termine the universality classes of quantum chaos and the
physics of free fermions. However, the role of symmetry in
quantum entanglement has remained largely unclear. In this
work, we developed the symmetry classification of typical
quantum entanglement in free fermions. We demonstrated that
while the volume-law term of average entanglement entropy is
unaffected by symmetry, the constant terms of the average and
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variance of entanglement entropy yield the tenfold universal
values unique to each symmetry class.

Importantly, typical quantum entanglement underlies ther-
malization of isolated quantum systems and validates ther-
modynamics and statistical physics [15–17]. Our findings
should be useful in understanding the role of symmetry in
quantum chaos and thermalization. While we focused on
random-matrix models in this work, our results should be
relevant to the symmetry-enriched quantum chaos even in
finite-dimensional systems without disorder. On the other
hand, different entanglement properties appear at Anderson
transitions [58], which merit further study. It is also note-
worthy that additional topological contributions can manifest
themselves in the typical entanglement spectra.

Remarkably, our findings of typical quantum entanglement
have a similarity to mesoscopic transport phenomena [76,77].
For example, the sign of the quantum corrections to the con-
ductance in disordered electronic systems depends on the sign
of time-reversal symmetry [58,78–81] in a similar manner to
the average entanglement entropy in Eq. (5). Furthermore, the
conductance fluctuations in the diffusive regime are univer-
sally given as 〈(�G)2〉 ∝ 1/β [57,82], akin to the fluctuations
of entanglement entropy in Eq. (7). Here, the transmission
probability holds a parallel role to the single-particle entan-
glement spectrum. These mesoscopic transport phenomena
are universally described by field theory of nonlinear sigma
model, with target manifolds classified by the AZ symmetries
[41]. Similarly, it would be significant to develop field theory
for typical quantum entanglement.
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APPENDIX A: TYPICAL ENTANGLEMENT ENTROPY
IN THE ALTLAND-ZIRNBAUER (AZ) SYMMETRY

CLASSIFICATION

We obtain the typical quantum entanglement entropy for
all the ten AZ symmetry classes [44,57,58,63]. We consider
particle-number-conserving free fermions

Ĥ =
∑
mn

ĉ†
mHmnĉn, (A1)

where ĉn (ĉ†
n) annihilates (creates) a fermion, and H =

(Hmn)m,n is a single-particle Hamiltonian subject to certain
symmetry. Each symmetry class is characterized by the clas-

sifying space, summarized in Table III. To obtain the typical
quantum entanglement, we consider eigenstates constructed
from the Haar-random matrices in these classifying spaces.
For clarity, we focus on the entanglement entropy for the half
bipartition and the half filling. The numerical results are also
summarized in Table III.

1. Standard (Wigner-Dyson) class (classes A, AI, and AII)

In the standard (Wigner-Dyson) class (classes A, AI, and
AII), Hamiltonians are only concerned with time-reversal
symmetry. In the many-body Hilbert (Fock) space, time-
reversal symmetry is described by the antiunitary operation

T̂ ĉmT̂ −1 =
∑

n

Tmnĉn, ∀ z ∈ C T̂ zT̂ −1 = z∗. (A2)

Here, T̂ is an antiunitary operator that acts on the many-
body fermionic Fock space while T = (Tmn)m,n is a unitary
matrix in the single-particle Hilbert space. A system respects
time-reversal invariance if the Hamiltonian Ĥ satisfies

T̂ Ĥ T̂ −1 = Ĥ . (A3)

In fact, if this relation is satisfied, we have T̂ Ô(t )T̂ −1 =
Ô(−t ), where Ô(t ) = eiĤt Ôe−iĤt is the time-evolved operator
of an arbitrary operator Ô. In terms of the single-particle
Hamiltonian H , time-reversal invariance is equivalent to

T −1H∗T = H. (A4)

Because of antiunitarity of time-reversal symmetry, the sym-
metry operators are required to satisfy

T̂ 2 = (±1)N̂ , T ∗T = ±1 (A5)

with the number operator N̂ :=∑n ĉ†
nĉn. Then, the standard

(Wigner-Dyson) classes—classes A, AI, and AII—are defined
as follows.

(i) In the absence of time-reversal symmetry (and any
other internal symmetry), Hamiltonians are defined to belong
to the unitary class (class A).

(ii) In the presence of time-reversal symmetry with the
sign T ∗T = +1, Hamiltonians are defined to belong to the
orthogonal class (class AI).

(iii) In the presence of time-reversal symmetry with the
sign T ∗T = −1, Hamiltonians are defined to belong to the
symplectic class (class AII). An important feature of symplec-
tic time-reversal symmetry is the Kramers degeneracy.

In the following, suppose the total system size is N , the
subsystem size is NA, and the particle number is M for classes
A and AI. For class AII, on the other hand, the degree of
freedom is double because of the Kramers degeneracy; the
total system size is 2N , the subsystem size is 2NA, and the par-
ticle number is 2M. Importantly, depending on time-reversal
symmetry, generic single-particle Hamiltonians H are diag-
onalized by the matrix U that belongs to the unitary group
U(N ), orthogonal group O(N ), and symplectic group Sp(N ):

U ∈
⎧⎨
⎩

U(N ) (class A);
O(N ) (class AI);
Sp(N ) (class AII).

(A6)
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TABLE III. Tenfold classification of typical quantum entanglement based on the Altland-Zirnbauer (AZ) symmetry classes. The AZ
symmetry classes consist of time-reversal symmetry (TRS), particle-hole symmetry (PHS), and chiral symmetry (CS). For TRS and PHS,
the entries “±1” mean the presence of symmetry and its sign, and the entries “0” mean the absence of symmetry. For CS, the entries “1”
and “0” mean the presence and absence of symmetry, respectively. The ten AZ classes are divided into two complex classes that only involve
unitary symmetry (i.e., CS) and the eight real classes that involve antiunitary symmetry (i.e., TRS and PHS). Each class is characterized
by the classifying space and the random-matrix indices (α, β ). The numerical fitting results of the average entanglement entropy by 〈S〉 =
S1N + S0 + S−1/N , as well as those of the variance of entanglement entropy by 〈(�S)2〉 = σ 2

0 + σ 2
−/N , are shown [S1 = ln 2 − 1/2 for the

standard classes (classes A, AI, and AII) and S1 = 2(ln 2 − 1/2) for the chiral classes (classes AIII, BDI, and CII) and Bogoliubov-de Gennes
classes (classes D, DIII, C, and CI)]. All the results of entanglement entropy are calculated for particle-number-conserving free fermions with
the half bipartition and the half filling.

AZ class TRS PHS CS Classifying space β α S0 S−1 σ 2
0 σ 2

−1

A 0 0 0 C0 U(2N )/U(N ) × U(N ) 2 N/A 2 × 10−5 0.245 0.057 0.023
AIII 0 0 1 C1 U(N ) 2 1 −1 × 10−4 0.056 0.114 0.0082
AI +1 0 0 R0 O(2N )/O(N ) × O(N ) 1 N/A −0.192 0.587 0.113 −0.142
BDI +1 +1 1 R1 O(N ) 1 0 −0.0392 0.118 0.227 −0.168
D 0 +1 0 R2 O(2N )/U(N ) 2 0 0.154 0.107 0.113 0.028
DIII −1 +1 1 R3 U(2N )/Sp(N ) 4 1 0.173 0.123 0.057 0.037
AII −1 0 0 R4 Sp(2N )/Sp(N ) × Sp(N ) 4 N/A 0.0964 0.219 0.028 0.044
CII −1 −1 1 R5 Sp(N ) 4 3 0.0198 0.045 0.057 0.039
C 0 −1 0 R6 Sp(N )/U(N ) 2 2 −0.154 0.118 0.114 0.0027
CI +1 −1 1 R7 U(N )/O(N ) 1 1 −0.346 0.389 0.227 −0.177

These groups are called classifying spaces and characterize
each symmetry class (Table III).

Using the eigenstate matrix U introduced above, we calcu-
late entanglement entropy [74,75]. The truncated correlation
matrix is given as

CA = V †V, (A7)

where V is an M × NA matrix satisfying

U =
(

V V ′
W W ′

)T

. (A8)

The entanglement entropy is obtained as

S = −
∑

i

[λi ln λi + (1 − λi ) ln (1 − λi)], (A9)

where λi’s (i = 1, 2, . . . , NA) are the eigenvalues of CA. In
class AII, V is a 2M × 2NA matrix, and the number of eigen-
values of CA is 2NA. The spectrum of the correlation matrix
CA is twofold degenerate because of time-reversal symmetry
with the sign −1, and we calculate the entanglement entropy
only from half of the entanglement spectrum.

To obtain the typical entanglement entropy for the standard
classes, we numerically calculate the entanglement entropy
for U Haar-randomly distributed in the classifying spaces in
Eq. (A6). In Ref. [32], the average and variance of such typical
entanglement entropy without symmetry (i.e., class A) were
analytically derived as

〈S〉 =
(

ln 2 − 1

2

)
N + 1

4N
+ O(1/N3)

= (0.193147 . . . )N + 1

4N
+ O
(
1/N3), (A10)

〈(�S)2〉 = 3

4
− ln 2 + o(1) = 0.0568528 · · · + o(1) (A11)

for the half bipartition and the half filling. However, no ana-
lytical or numerical results have been obtained in the presence

of time-reversal symmetry (i.e., classes AI and AII). Below,
we numerically calculate the average and variance of typi-
cal entanglement entropy and show that the O(1) constant
terms of the average and the variance crucially depend on
time-reversal symmetry. In Appendix C, we also derive these
results analytically.

As shown in Fig. 3(a), the average 〈S〉 of entanglement
entropy grows almost linearly with respect to the system size
N for all the three symmetry classes. It is also consistent with
the analytical result for class A in Eq. (A10). Then, we fit the
numerical results by [Fig. 3(b)]

〈S〉 =
(

ln 2 − 1

2

)
N + S0 + S−1

N
+ o(1/N ). (A12)

The fitting results for all the three symmetry classes are sum-
marized in Table III. The tiny O(1) term S0 � 2 × 10−5 and
O(1/N ) term S−1 � 0.245 for class A are compatible with the
analytical result in Eq. (A10). In contrast to class A, the O(1)
constant terms are present in classes AI and AII. They are
negative for class AI and positive for class AII. On the basis of
ln 2 − 1/2 = 0.193147 . . . , the average entanglement entropy
is supposed to be

〈S〉 =
(

ln 2 − 1

2

)(
N + 1 − 2

β

)
+ o(1) (A13)

with the Dyson index β = 1 (class AI), β = 2 (class A), and
β = 4 (class AII). We analytically demonstrate this result in
Appendix C. We speculate that this result implies that one
particle is effectively removed in class AI and one half of
particle is added in class AII in comparison with class A.

Figure 3(c) shows the variance 〈(�S)2〉 of entanglement
entropy for the three symmetry classes. Clearly, each symme-
try class is characterized by the different values of 〈(�S)2〉;
in comparison with class A, 〈(�S)2〉 increases in class AI and
decreases in class AII. In general, level repulsion of random
matrices is suppressed (enhanced) in class AI (AII), which
is also compatible with the larger (smaller) value of 〈(�S)2〉
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FIG. 3. Typical quantum entanglement entropy in the standard (Wigner-Dyson) classes with the half bipartition and half filling for classes
A (red dots), AI (blue dots), and AII (green dots). Each datum is averaged over 105 ensembles. (a) Average 〈S〉 of entanglement entropy as
functions of the system size N . The black dashed line is the analytical result 〈S〉 � (ln 2 − 1/2)N . (b) Deviation of 〈S〉 from the volume-law
term (ln 2 − 1/2)N as functions of 1/N . (c) Variance 〈(�S)2〉 of entanglement entropy as functions of N . The black dashed lines are the
analytical results 〈(�S)2〉 = 2(3/4 − ln 2)/β with the Dyson index β = 1 (class AI), β = 2 (class A), and β = 4 (class AII). (d) Variance
〈(�S)2〉 as functions of 1/N .

in class AI (AII) [40,71,72]. We fit the numerical results of
〈(�S)2〉 by [Fig. 3(d)]

〈(�S)2〉 = σ 2
0 + σ 2

−1

N
+ o(1/N ), (A14)

which are summarized in Table III. Here, the numerically
obtained variance σ 2

0 � 0.057 in class A is compatible with
the analytical result in Eq. (A11). The variance σ 2

0 in class AI
is almost twice larger than that in class A while that in class
AII is almost half of that in class A. These numerical results
are

〈(�S)2〉 = 2

β

(
3

4
− ln 2

)
+ o(1) (A15)

with the Dyson index β = 1 (class AI), β = 2 (class A),
and β = 4 (class AII). This behavior of the variance of en-
tanglement entropy reminds us of the universal conductance
fluctuations, which are one of the important applications of
random matrix theory in condensed matter physics [57,82]. In
fact, in the diffusive regime of mesoscopic wires, the variance
of conductance universally behaves as ∝ 1/β, similar to the
variance of entanglement entropy in our work.

2. Chiral class (classes AIII, BDI, and CII)

In the chiral classes (classes AIII, BDI, and CII), Hamilto-
nians are concerned with chiral symmetry. In the many-body
Fock space, chiral symmetry (or equivalently, sublattice sym-
metry) is defined by the antiunitary operation

Ŝ ĉmŜ−1 =
∑

n

Smnĉ†
n, (A16)

where Ŝ is an antiunitary operator on the many-body
fermionic Fock space, and S = (Smn)m,n is a unitary matrix on
the single-particle Hilbert space. In contrast to time-reversal
symmetry, this operation mixes fermion annihilation and cre-
ation operators. In the simultaneous presence of time-reversal
symmetry and particle-hole symmetry, chiral symmetry ap-
pears as a combination of the two symmetries. Even in the
absence of time-reversal symmetry and particle-hole symme-
try, chiral symmetry can be respected, for example, in bipartite
hopping models. The system respects chiral symmetry if the

many-body Hamiltonian satisfies

ŜĤ Ŝ−1 = Ĥ , (A17)

which leads to Tr H = 0 and

S−1HS = −H. (A18)

The matrix S can be chosen to be Hermitian and satisfy S2 = 1
without loss of generality. In the presence of chiral sym-
metry, single-particle eigenenergies appear in opposite-sign
pairs (E ,−E ), and zero-energy modes are subject to a special
constraint. According to the combination of chiral symmetry
and time-reversal symmetry, the chiral classes—classes AIII,
BDI, and CII—are defined as follows.

(i) In the absence of time-reversal symmetry, chiral-
symmetric Hamiltonians are defined to belong to the chiral
unitary class (class AIII).

(ii) In the presence of time-reversal symmetry with the
sign T ∗T = +1, chiral-symmetric Hamiltonians are defined
to belong to the chiral orthogonal class (class BDI).

(iii) In the presence of time-reversal symmetry with the
sign T ∗T = −1, chiral-symmetric Hamiltonians are defined
to belong to the chiral symplectic class (class CII). Because
of symplectic time-reversal symmetry, Hamiltonians in class
CII generally exhibit the Kramers degeneracy.
In classes BDI and CII, time-reversal symmetry is imposed so
that it will commute with chiral symmetry.

We obtain the typical quantum entanglement entropy in the
chiral classes. Suppose the total system size is 2N (4N), the
subsystem size is NA (2NA), and the particle number is M
(2M) in classes AIII and BDI (class CII). Here, N denotes
the number of the unit cell. Because of chiral symmetry, the
single-particle Hamiltonian can be expressed as

H =
(

0 h
h† 0

)
, (A19)

where h is an N × N (2N × 2N) matrix in classes AIII and
BDI (class CII). In this representation, the chiral-symmetry
operator is chosen as S = σz ⊗ IN (2N ), where IN (2N ) is the
N × N (2N × 2N) identity matrix. In the following, we as-
sume the absence of zero modes. The same assumption was
imposed also in Refs. [28,30,32] for BdG Hamiltonians in
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FIG. 4. Typical quantum entanglement entropy in the chiral classes with the half bipartition and half filling for classes AIII (red dots),
BDI (blue dots), and CII (green dots). Each datum is averaged over 105 ensembles. (a) Average 〈S〉 of entanglement entropy as functions
of the system size N . The black dashed line is the analytical result 〈S〉 � 2(ln 2 − 1/2)N . (b) Deviation of 〈S〉 from the volume-law term
2(ln 2 − 1/2)N as functions of 1/N . (c) Variance 〈(�S)2〉 of entanglement entropy as functions of N . The black dashed lines are the analytical
results 〈(�S)2〉 = 4(3/4 − ln 2)/β with the Dyson index β = 1 (class BDI), β = 2 (class AIII), and β = 4 (class CII). (d) Variance 〈(�S)2〉
as functions of 1/N .

class D. We are interested only in the entanglement properties
of eigenstates; we can flatten the spectrum of the Hamiltonian
to ±1 and deform the matrix h so that it will be unitary.
Depending on additional time-reversal symmetry, the matrix
h belongs to the unitary group U(N ), orthogonal group O(N ),
and symplectic group Sp(N ):

h ∈
⎧⎨
⎩

U(N ) (class AIII);
O(N ) (class BDI);
Sp(N ) (class CII).

(A20)

These groups give the classifying spaces in the chiral
classes and characterize eigenstates and their entanglement
(Table III).

A generic normalized single-particle eigenstates of H in
Eq. (A19) is given as

|ui〉 = 1√
2

( |ni〉
εh† |ni〉

)
, (A21)

where ε ∈ {±1} is the flattened single-particle eigenenergy
(i.e., H |ui〉 = ε |ui〉), and |ni〉 is the N-dimensional (2N-
dimensional) orthonormal basis in classes AIII and BDI (class
CII) that satisfies |ni〉 j = δi j . Then, the 2N × 2N (4N × 4N)
unitary matrix U collecting all the 2N (4N) eigenstates in
classes AIII and BDI (class CII) is given as

U = 1√
2

(
IN (2N ) IN (2N )

h† −h†

)
. (A22)

From this eigenstate matrix U , the truncated correlation ma-
trix CA is given as Eq. (A7), and the entanglement entropy
is obtained as Eq. (A9). Because of chiral symmetry, the
eigenvalues of CA come in (λ, 1 − λ) pairs. We numerically
calculate the average and variance of entanglement entropy in
the chiral classes by Haar-randomly choosing h in each clas-
sifying space in Eq. (A20). Here, we focus on the half-filled
many-body eigenstates constructed from all the single-particle
eigenstates with negative eigenenergies. Similarly to class
AII, the spectrum of the correlation matrix CA is twofold
degenerate in class CII, and we calculate the entanglement
entropy only from half of the entanglement spectrum.

In a similar manner to the standard classes, the average
〈S〉 of entanglement entropy grows almost linearly with re-

spect to the system size N for all the three symmetry classes
[Fig. 4(a)]. Then, we fit the numerical results by [Fig. 4(b)]

〈S〉 = 2

(
ln 2 − 1

2

)
N + S0 + S−1

N
+ o(1/N ). (A23)

We note that the total number of sites is chosen to be 2N in
the chiral classes. The fitting results for all the three symmetry
classes are summarized in Table III. In class AIII, the O(1)
term S0 � −1 × 10−4 is tiny, similar to class A. On the other
hand, the O(1/N ) term S1 � 0.056 in class AIII is much
smaller than that in class A. Time-reversal symmetry with
the sign +1 gives rise to the negative O(1) term S0 � −0.039
in class BDI while time-reversal symmetry with the sign −1
gives rise to the positive O(1) term S0 � 0.020 in class CII,
both of which are much smaller than the O(1) terms in classes
AI and AII. In Appendix C, we analytically show

〈S〉 = 2

(
ln 2 − 1

2

)
N +

(
1 − 2

β

)(
3

2
ln 2 − 1

)
+ o(1)

(A24)

with the Dyson index β = 1 (class BDI), β = 2 (class AIII),
and β = 4 (class CII), which are consistent with the numerical
results.

Figure 4(c) shows the variance 〈(�S)2〉 of entanglement
entropy for the chiral classes. Each symmetry class is charac-
terized by the different values of 〈(�S)2〉. In comparison with
class AIII, 〈(�S)2〉 increases in class BDI and decreases in
class CII, which is similar to the standard classes. We fit the
numerical results of 〈(�S)2〉 by Eq. (A14), as summarized in
Fig. 4(d) and Table III. Notably, these numerical results are

〈(�S)2〉 = 4

β

(
3

4
− ln 2

)
+ o(1) (A25)

with the Dyson index β = 1 (class BDI), β = 2 (class AIII),
and β = 4 (class CII). This is twice larger than the variance in
the standard classes [i.e., Eq. (A15)].

3. Bogoliubov-de Gennes (BdG) class
(classes D, DIII, C, and CI)

The BdG classes (classes, D, C, DIII, and CI) are con-
cerned with particle-hole symmetry. Particle-hole symmetry
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(or equivalently, charge-conjugation symmetry) is described
by the unitary operation defined by

ĈĉmĈ−1 =
∑

n

C∗
mnĉ†

n, (A26)

where Ĉ and C = (Cmn)m,n are unitary many-body opera-
tors and single-particle matrices, respectively. It describes the
transformation between particles and holes, and flips the sign
of the electron charge with respect to the charge neutral point
ĈQ̂Ĉ−1 = −Q̂ with Q̂ := N̂ − N/2. The many-body Hamilto-
nian is particle-hole symmetric if it satisfies

ĈĤ Ĉ−1 = Ĥ , (A27)

which leads to Tr H = 0 and

C−1HT C = −H. (A28)

Thus particle-hole symmetry acts as unitary symmetry on
the many-body fermionic Fock space but acts as antiunitary
symmetry on the single-particle Hilbert space. Similarly to
time-reversal symmetry, the symmetry operator and matrix are
required to satisfy

Ĉ2 = (±1)N̂ , C∗C = ±1. (A29)

In the presence of particle-hole symmetry, single-particle
eigenenergies appear in opposite-sign pairs (E ,−E ), and
zero-energy modes are subject to a special constraint. Ac-
cording to the combination of particle-hole symmetry and
time-reversal symmetry, the BdG classes—classes D, C, DIII,
and CI—are defined as follows.

(i) In the sole presence of particle-hole symmetry with the
sign C∗C = +1, particle-hole-symmetric Hamiltonians are
defined to belong to class D. In the additional presence of
time-reversal symmetry with the sign T ∗T = −1, Hamiltoni-
ans are defined to belong to class DIII.

(ii) In the sole presence of particle-hole symmetry with
the sign C∗C = −1, particle-hole-symmetric Hamiltonians
are defined to belong to class C. In the additional presence
of time-reversal symmetry with the sign T ∗T = +1, Hamilto-
nians are defined to belong to class CI.
In classes DIII and CI, the combination of time-reversal
symmetry and particle-hole symmetry gives rise to chiral sym-
metry, which anticommutes with time-reversal symmetry and
particle-hole symmetry.

We obtain the typical quantum entanglement entropy in
the BdG classes. Similarly to the chiral classes, we assume
the absence of zero modes and flatten the spectrum to be
{±1}. First, 2N × 2N single-particle Hamiltonians H in class
D respect particle-hole symmetry

H∗ = −H, (A30)

where the particle-hole-symmetry operator is chosen as C =
I2N . If we define A by H =: iA, A is a real antisymmetric
matrix. Then, we diagonalize A with a proper basis as

A = O

(
0 IN

−IN 0

)
O−1, (A31)

where O is a 2N × 2N orthogonal matrix

O ∈ O(2N ). (A32)

This orthogonal matrix O contains all information about
single-particle eigenstates, and the orthogonal group O ∈
O(2N ) gives the classifying space in class D (Table III). In
fact, from this orthogonal matrix O, a generic normalized
eigenstate of H is given as

|ui〉 = O√
2

( |ni〉
−iε |ni〉

)
, (A33)

where ε ∈ {±1} is the flattened eigenenergy (i.e., H |ui〉 =
ε |ui〉), and |ni〉 is the N-dimensional orthonormal basis that
satisfies |ni〉 j = δi j . Then, the 2N × 2N unitary matrix U col-
lecting all the 2N eigenstates is given as

U = O√
2

(
IN IN

−i × IN i × IN

)
, (A34)

where IN is the N × N identify matrix. From this uni-
tary matrix U , the truncated correlation matrix CA is given
as Eq. (A7), and the entanglement entropy is obtained as
Eq. (A9). Because of particle-hole symmetry, the eigenvalues
of CA come in (λ, 1 − λ) pairs. We numerically calculate
the average and variance of entanglement entropy in class
D by Haar-randomly choosing O in the classifying space in
Eq. (A32). Similarly to the chiral classes, we focus on the
half-filled many-body eigenstates constructed from all the
single-particle eigenstates with negative eigenenergies.

Next, 2N × 2N single-particle Hamiltonians H in class C
respect particle-hole symmetry

σyH∗σy = −H, (A35)

where the particle-hole-symmetry operator is chosen as C =
σy ⊗ IN . If we define A by H =: iA, A satisfies A† = −A and
σyA∗σy = A. Then, we diagonalize A with a proper basis as

A = U

(
0 IN

−IN 0

)
U −1, (A36)

where U is a 2N × 2N symplectic matrix

U ∈ Sp(N ). (A37)

Using this symplectic matrix U instead of the orthogonal
matrix O in Eq. (A32), we obtain entanglement entropy in a
similar manner to class D.

In class DIII, chiral symmetry is present as a combina-
tion of time-reversal symmetry and particle-hole symmetry.
Owing to chiral symmetry, 4N × 4N single-particle Hamilto-
nians in class DIII are generally written as Eq. (A19) with
h ∈ U(2N ), where the chiral-symmetry operator is chosen
as S := σz ⊗ I2N . In addition, we choose the time-reversal-
symmetry operator as T = σx ⊗ iσy ⊗ IN . Then, time-reversal
symmetry T −1H∗T = H imposes

(σy ⊗ IN )hT (σy ⊗ IN ) = h, (A38)

leading to the general representation

h = f T (σy ⊗ IN ) f (σy ⊗ IN ), f ∈ U(2N ). (A39)

Thus f ∈ U(2N ) contains all information about the single-
particle eigenstates, and the unitary group U(2N ) gives the
classifying space in class DIII (Table III). In other words,
h belongs to the circular symplectic ensemble. Similarly to
classes AII and CII, the spectrum of the correlation matrix
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FIG. 5. Typical quantum entanglement entropy in the Bogoliubov-de Gennes (BdG) classes with the half bipartition and half filling for
classes D (orange dots), DIII (purple dots), C (light-blue dots), and CI (yellow dots). Each datum is averaged over 105 ensembles. (a) Average
〈S〉 of entanglement entropy as functions of the system size N . The black dashed line is the analytical result 〈S〉 � 2(ln 2 − 1/2)N . (b) Deviation
of 〈S〉 from the volume-law term 2(ln 2 − 1/2)N as functions of 1/N . (c) Variance 〈(�S)2〉 of entanglement entropy as functions of N . The
black dashed lines are the analytical results 〈(�S)2〉 = 4(3/4 − ln 2)/β with the Dyson index β = 1 (class CI), β = 2 (classes D and C), and
β = 4 (class DIII). (d) Variance 〈(�S)2〉 as functions of 1/N .

CA is twofold degenerate in class DIII, and we calculate the
entanglement entropy only from half of the entanglement
spectrum.

In class CI, 2N × 2N single-particle Hamiltonians also re-
spect chiral symmetry and are generally written as Eq. (A19)
with h ∈ U(N ), where the chiral-symmetry operator is chosen
as S := σz ⊗ IN . Then, we choose the time-reversal-symmetry
operator as T = σx ⊗ IN . Time-reversal symmetry imposes

hT = h, (A40)

leading to the general representation

h = f T f , f ∈ U(N ). (A41)

Using this general representation of h, we calculate entan-
glement entropy in a similar manner to class DIII. Here, h
belongs to the circular orthogonal ensemble.

In passing, we note that the random matrices in Eqs. (A32),
(A37), (A39), and (A41) have gauge ambiguity. For example,
in class D, the orthogonal matrix O in Eq. (A32) obeys the
gauge transformation O → OÕ satisfying

Õ

(
0 IN

−IN 0

)
Õ−1 =

(
0 IN

−IN 0

)
, Õ ∈ O(2N ). (A42)

If we introduce a matrix G that rotates σz ⊗ IN to σy ⊗ IN , i.e.,

σy ⊗ IN = G(σz ⊗ IN )G−1, (A43)

G := 1√
2

(
IN −i × IN

i × IN IN

)
, (A44)

the above gauge transformation reduces to

(G−1ÕG)

(
IN 0
0 −IN

)
(G−1ÕG)−1 =

(
IN 0
0 −IN

)
. (A45)

Hence, the allowed gauge transformation is generally given
by

Õ = G

(
Wn 0
0 W ∗

n

)
G−1, Wn ∈ U(N ). (A46)

Thus O in Eq. (A31) belongs to O(2N )/U(N ), which precisely
gives the classifying space in class D. Such gauge ambiguity
is also summarized in Table III for all the symmetry classes.
In our calculations of typical quantum entanglement entropy,

the gauge ambiguity of the classifying spaces is irrelevant,
although it is relevant, for example, to Anderson localization
[58] and topological insulators and superconductors [63].

From the above representations, we calculate the average
and variance of entanglement entropy in the BdG classes
(classes D, DIII, C, and CI), as summarized in Fig. 5. Sim-
ilarly to the other symmetry classes, the average 〈S〉 of
entanglement entropy grows almost linearly with respect to
the system size N for all the four symmetry classes [Fig. 5(a)].
Then, we fit the numerical results by Eq. (A23) [Fig. 5(b)].
The fitting results for all the four symmetry classes are sum-
marized in Table III. The O(1) term of 〈S〉 in class D is
positive, and that in class C is negative, both of which have
almost the same absolute value. In Appendix C, we analyti-
cally show

〈S〉 = 2

(
ln 2 − 1

2

)
N + 1

2
(1 − α)(1 − ln 2) + o(1) (A47)

with the index α = 0 (class D) and α = 2 (class C) [40,44].
On the other hand, the O(1) term of 〈S〉 in class CI is twice
larger than that in class DIII, the signs of which are opposite
to each other. This behavior is similar to the average entangle-
ment in classes AI and AII, as well as that in classes BDI and
CII. In Appendix C, we analytically show

〈S〉 = 2

(
ln 2 − 1

2

)
N + 1

2

(
1 − 2

β

)
ln 2 + o(1) (A48)

with the Dyson index β = 1 (class CI) and β = 4 (class DIII),
which are consistent with the numerical results.

Figure 5(c) shows the variance 〈(�S)2〉 of entanglement
entropy for the BdG classes. The variance 〈(�S)2〉 of entan-
glement entropy coincides with each other in classes D and
C, and 〈(�S)2〉 in classes DIII and CI is twice larger and
smaller than that, respectively. We fit the numerical results
of 〈(�S)2〉 by Eq. (A14), as summarized in Fig. 5(d) and
Table III. Notably, these numerical results follow Eq. (A25)
with the Dyson index β = 1 (class CI), β = 2 (classes D
and C), and β = 4 (class DIII). This is twice larger than the
variances in the standard classes [i.e., Eq. (A15)] and the same
as those in the chiral classes.
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TABLE IV. Typical quantum entanglement entropy of particle-number-nonconserving Bogoliubov-de Gennes (BdG) Hamiltonians in
classes D, DIII, C, and CI. The Altland-Zirnbauer (AZ) symmetry classes consist of time-reversal symmetry (TRS), particle-hole symmetry
(PHS), and chiral symmetry (CS). For TRS and PHS, the entries “±1” mean the presence of symmetry and its sign, and the entries “0”
mean the absence of symmetry. For CS, the entries “1” and “0” mean the presence and absence of symmetry, respectively. Each class is
characterized by the classifying space and the random-matrix indices (α, β ). The numerical fitting results of the average entanglement entropy
by 〈S〉 = (ln 2 − 1/2)N + S0 + S−1/N , as well as those of the variance of entanglement entropy by 〈(�S)2〉 = σ 2

0 + σ 2
−/N , are shown. All the

results of entanglement entropy are calculated for particle-number-nonconserving BdG Hamiltonians with the half bipartition.

AZ class TRS PHS CS Classifying space β α S0 S−1 σ 2
0 σ 2

−1

D 0 +1 0 R2 O(2N )/U(N ) 2 0 0.077 0.064 0.028 0.004
DIII −1 +1 1 R3 U(2N )/Sp(N ) 4 1 0.087 0.059 0.014 0.009
C 0 −1 0 R6 Sp(N )/U(N ) 2 2 −0.077 0.070 0.028 0.003
CI +1 −1 1 R7 U(N )/O(N ) 1 1 −0.173 0.182 0.057 −0.042

APPENDIX B: TYPICAL ENTANGLEMENT ENTROPY
OF BOGOLIUBOV-DE GENNES (BDG) HAMILTONIANS

We obtain typical quantum entanglement entropy of BdG
Hamiltonians that violate the conservation of the particle
number. In general, BdG Hamiltonians read

Ĥ = �̂†H �̂, (B1)

where �̂ is the Nambu spinor that consists of both annihi-
lation and creation operators, and H is the single-particle
BdG Hamiltonian. For the BdG classes (i.e., classes D, DIII,
C, and CI), we calculate the average and variance of entan-
glement entropy for eigenstates Haar-randomly chosen from
the corresponding classifying spaces (see below for details).
The results are summarized in Table IV and Fig. 6. No-
tably, the average entanglement entropy is half as large as
that of particle-number-conserving free fermions in the corre-
sponding symmetry classes, and the variance of entanglement
entropy is quarter as large as that of particle-number-
conserving free fermions in the corresponding symmetry
classes (compare Table III with Table IV). In particular, the
variance of entanglement entropy is

〈(�S)2〉 = 1

β

(
3

4
− ln 2

)
+ o(1) (B2)

with the Dyson index β = 1 (class CI), β = 2 (classes D
and C), and β = 4 (class DIII). While the fundamental

constituents of particle-number-conserving free fermions are
complex fermions, those of BdG Hamiltonians are Majorana
fermions. Majorana fermions effectively have half the degree
of freedom in comparison with complex fermions, which re-
sults in the half average and quarter variance of entanglement
entropy. In the rest of this section, we describe how to cal-
culate entanglement entropy of BdG Hamiltonians in each
symmetry class.

1. Class D

In class D, generic BdG Hamiltonians read Eq. (B1)
with the spinless Nambu spinor �̂ := (ĉ1 · · · ĉN ĉ†

1 · · · ĉ†
N )T .

Here, the number of fermions is denoted by N , and H is a
2N × 2N matrix. Notably, �̂ and �̂† are not independent but
are related to each other by

[(τx ⊗ IN )�̂]T = �̂†, [�̂†(τx ⊗ IN )]T = �̂. (B3)

Because of this constraint, the BdG Hamiltonian satisfies

Ĥ = [(τx ⊗ IN )�̂]T H[�̂†(τx ⊗ IN )]T

= −�̂†[(τx ⊗ IN )HT (τx ⊗ IN )]�̂ + Tr H, (B4)

leading to the particle-hole constraints Tr H = 0 and

(τx ⊗ IN )HT (τx ⊗ IN ) = −H. (B5)

FIG. 6. Typical quantum entanglement entropy of particle-number-nonconserving Bogoliubov-de Gennes (BdG) Hamiltonians with the
half bipartition for classes D (orange dots), DIII (purple dots), C (light-blue dots), and CI (yellow dots). Each datum is averaged over 105

ensembles. (a) Average 〈S〉 of entanglement entropy as functions of the system size N . The black dashed line is the analytical result 〈S〉 �
(ln 2 − 1/2)N . (b) Deviation of 〈S〉 from the volume-law term (ln 2 − 1/2)N as functions of 1/N . (c) Variance 〈(�S)2〉 of entanglement entropy
as functions of N . The black dashed lines are the analytical results 〈(�S)2〉 = (3/4 − ln 2)/β with the Dyson index β = 1 (class CI), β = 2
(classes D and C), and β = 4 (class DIII). (d) Variance 〈(�S)2〉 as functions of 1/N .
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Hence, the single-particle BdG Hamiltonian H belongs to
class D.

In class D, it is useful to introduce the Majorana basis.
We define the Majorana fermion operators âi and b̂i (i =
1, 2, . . . , N) by

âi := ĉi + ĉ†
i , b̂i := −i (ĉi − ĉ†

i ). (B6)

Then, the BdG Hamiltonian is rewritten as

Ĥ = 1

2

(
â1 b̂1 · · · âN b̂N

)
H̃

⎛
⎜⎜⎜⎜⎜⎝

â1

b̂1
...

âN

b̂N

⎞
⎟⎟⎟⎟⎟⎠, (B7)

with the single-particle Hamiltonian

H̃ = V HV †, V := 1√
2

(
1 1
−i i

)
⊗ IN . (B8)

This is equivalent to the two-body (q = 2) SYK Hamiltonian
[28]. In the Majorana basis, the particle-hole constraint in
Eq. (B5) reduces to H̃T = −H̃ . Then, similarly to Eq. (A31),
H̃ is diagonalized by

H̃ = iO

(
0 IN

−IN 0

)
OT , O ∈ O(2N ). (B9)

Here, we assume the absence of zero-energy modes and flatten
the single-particle spectrum. Introducing

ˆ̃� :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ˆ̃c1
...

ˆ̃cN
ˆ̃c†
1
...

ˆ̃c†
N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

:= V †

√
2

⎛
⎜⎜⎜⎜⎜⎝

ˆ̃a1
ˆ̃b1
...

ˆ̃aN
ˆ̃bN

⎞
⎟⎟⎟⎟⎟⎠ := V †OT

√
2

⎛
⎜⎜⎜⎜⎜⎝

â1

b̂1
...

âN

b̂N

⎞
⎟⎟⎟⎟⎟⎠

= (V †OT V
)
�̂, (B10)

we have

Ĥ =
N∑

i=1

i ˆ̃ai
ˆ̃bi = 2

N∑
i=1

(
c̃†

i c̃i − 1

2

)
. (B11)

Therefore the ground state |�〉 is given as the state annihilated
by all ˆ̃ci’s (i.e., ∀ i ˆ̃ci |�〉 = 0).

We obtain typical quantum entanglement entropy for the
BdG Hamiltonians in class D by calculating the entangle-
ment entropy of |�〉 for O Haar-randomly chosen from the
classifying space O(2N ). In a similar manner to the particle-
number-conserving case, the entanglement entropy of BdG
Hamiltonians is obtained from the correlation matrix, which
reads

C := 〈� | �̂�̂† | �〉
= (V †OV ) 〈� | ˆ̃� ˆ̃�† | �〉 (V †OT V )

= (V †OV )

(
IN 0
0 0

)
(V †OT V ). (B12)

Then, the entanglement entropy is obtained as [74,75]

S = −1

2

∑
i

[λi ln λi + (1 − λi ) ln (1 − λi)], (B13)

where λi’s (i = 1, 2, . . . , 2NA) are the eigenvalues of the
correlation matrix C constrained to the subsystem. Here,
the eigenvalues of C come in (λ, 1 − λ) pairs because of
particle-hole symmetry. The coefficient 1/2 comes from the
particle-number-nonconserving nature of BdG Hamiltonians.

According to the numerical results in Table IV and Fig. 6,
the average entanglement entropy of BdG Hamiltonians in
class D is

〈S〉 =
(

ln 2 − 1

2

)
N + 1

4
(1 − α)(1 − ln 2) + o(1) (B14)

with the index α = 0 (class D), and the variance of entangle-
ment entropy is obtained as Eq. (B2). In Ref. [30], the average
and the variance of the subsystem entanglement entropy were
analytically obtained as

〈S〉 =
(

ln 2 − 1

2

)
N + 1 − ln 2

4
+ O(1/N )

= (0.193147 . . . )N + 0.0767132 · · · + O(1/N ), (B15)

〈(�S)2〉 = 1

2

(
3

4
− ln 2

)
+ o(1) = 0.0284264 · · · + o(1),

(B16)

for the half bipartition, which are consistent with our results.

2. Class DIII

While class D is concerned with spinless BdG Hamiltoni-
ans, class DIII is concerned with spinful BdG Hamiltonians
respecting time-reversal symmetry. Generic BdG Hamil-
tonians in class DIII read Eq. (B1), where the Nambu
spinor is given as �̂ := (ĉ1↑ · · · ĉN↑ ĉ1↓ · · · ĉN↓ ĉ†

1↑ · · ·
ĉ†

N↑ ĉ†
1↓ · · · ĉ†

N↓)T , and the 4N × 4N single-particle BdG
Hamiltonian H respects time-reversal symmetry

(σy ⊗ τx ⊗ IN )H∗(σy ⊗ τx ⊗ IN ) = H (B17)

and chiral symmetry

(σz ⊗ I2N )H (σz ⊗ I2N ) = −H. (B18)

Owing to chiral symmetry, the single-particle BdG Hamil-
tonian H can be written as the off-diagonal form in
Eq. (A19). In this representation, time-reversal symmetry im-
poses Eq. (A38) on the 2N × 2N matrix h, by which h can be
generally represented as Eq. (A39). Then, the single-particle
BdG Hamiltonian H is diagonalized as

H = U (σz ⊗ I2N )U †, U := 1√
2

(
I2N I2N

h† −h†

)
, (B19)

leading to

Ĥ = �̂†U (σz ⊗ I2N )U †�̂ = 2
N∑

i=1

( ˆ̃c†
i↑ ˆ̃ci↑ + ˆ̃c†

i↓ ˆ̃ci↓ − 1)

(B20)
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with the Nambu spinor ˆ̃� := ( ˆ̃c1↑ · · · ˆ̃cN↑ ˆ̃c1↓ · · · ˆ̃cN↓ ˆ̃c†
1↑

· · · ˆ̃c†
N↑ ˆ̃c†

1↓ · · · ˆ̃c†
N↓)T := U †�̂. Then, the ground state is ob-

tained as the state annihilated by all ˆ̃ci↑’s and ˆ̃ci↓’s (i.e.,
∀ i ˆ̃ci↑ |�〉 = ˆ̃ci↓ |�〉 = 0). For this ground state, the corre-
lation matrix reads

C = 〈� | �̂�̂† | �〉 = U 〈� | ˆ̃� ˆ̃�† | �〉U † = U

(
I2N 0
0 0

)
U †,

(B21)

from which we calculate entanglement entropy by Eq. (B13).
The eigenvalues of the correlation matrix C are twofold de-
generate because of time-reversal symmetry and come in
(λ, 1 − λ) pairs because of particle-hole symmetry.

3. Class C

Generic BdG Hamiltonians in class C read Eq. (B1),
where the Nambu spinor is given as �̂ := (ĉ1↑ · · · ĉN↑ ĉ†

1↓
· · · ĉ†

N↓)T , and the 2N × 2N single-particle BdG Hamiltonian
H respects

(τy ⊗ IN )HT (τy ⊗ IN ) = −H. (B22)

Similarly to Eq. (A36), the single-particle BdG Hamiltonian
H is diagonalized as

H = iU

(
0 IN

−IN 0

)
U †, U ∈ Sp(N ), (B23)

where we assume the absence of zero-energy modes and flat-
ten the single-particle spectrum. Then, with the Nambu spinor

ˆ̃� :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ˆ̃c1↑
...

ˆ̃cN↑
ˆ̃c†
1↓
...

ˆ̃c†
N↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

:= V †U †

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ĉ1↑
...

ĉN↑
ĉ†

1↓
...

ĉ†
N↓

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= V †U †�̂, (B24)

V := 1√
2

(
1 1
−i i

)
⊗ IN , (B25)

the BdG Hamiltonian reduces to

Ĥ =
N∑

i=1

( ˆ̃c†
i↑ ˆ̃ci↑ + ˆ̃c†

i↓ ˆ̃ci↓ − 1). (B26)

Thus the ground state |�〉 is obtained as the state annihilated
by all ˆ̃ci↑’s and ˆ̃ci↓’s (i.e., ∀ i ˆ̃ci↑ |�〉 = ˆ̃ci↓ |�〉 = 0). For this
ground state, the correlation matrix reads

C = 〈� | �̂�̂† | �〉 = UV 〈� | ˆ̃� ˆ̃�† | �〉V †U †

= UV

(
IN 0
0 0

)
V †U †, (B27)

from which we calculate entanglement entropy by Eq. (B13).

4. Class CI

Generic BdG Hamiltonians in class CI read Eq. (B1),
where the Nambu spinor is given as �̂ := (ĉ1↑ · · · ĉN↑ ĉ†

1↓
· · · ĉ†

N↓)T , and the 2N × 2N single-particle BdG Hamiltonian

H respects time-reversal symmetry

(τx ⊗ IN )H∗(τx ⊗ IN ) = H (B28)

and chiral symmetry

(τz ⊗ IN )H (τz ⊗ IN ) = −H. (B29)

Owing to chiral symmetry, the single-particle BdG Hamil-
tonian H can be written as the off-diagonal form in
Eq. (A19). In this representation, time-reversal symmetry im-
poses Eq. (A40) on the N × N matrix h, by which h can be
generally represented as Eq. (A41). Then, the single-particle
BdG Hamiltonian H is diagonalized as

H = U (τz ⊗ IN )U †, U := 1√
2

(
IN IN

h† −h†

)
, (B30)

leading to

Ĥ = �̂†U (τz ⊗ IN )U †�̂ =
N∑

i=1

( ˆ̃c†
i↑ ˆ̃ci↑ + ˆ̃c†

i↓ ˆ̃ci↓ − 1) (B31)

with the Nambu spinor ˆ̃� := ( ˆ̃c1↑ · · · ˆ̃cN↑ ˆ̃c†
1↓ · · · ˆ̃c†

N↓)T :=
U †�̂. Then, the ground state is obtained as the state annihi-
lated by all ˆ̃ci↑’s and ˆ̃ci↓’s (i.e., ∀ i ˆ̃ci↑ |�〉 = ˆ̃ci↓ |�〉 = 0). For
this ground state, the correlation matrix reads

C = 〈� | �̂�̂† | �〉 = U 〈� | ˆ̃� ˆ̃�† | �〉U † = U

(
IN 0
0 0

)
U †,

(B32)

from which we calculate entanglement entropy by Eq. (B13).

APPENDIX C: ANALYTICAL CALCULATION
OF TYPICAL QUANTUM ENTANGLEMENT

We analytically derive the typical entanglement entropy of
free fermions in the tenfold AZ symmetry classes. While the
calculations can be performed by various methods, we here
adopt the resolvent method and Weingarten calculus. Using
these methods, we analytically show that while the leading
O(N ) term is unchanged even in the presence of AZ symme-
tries, the subleading O(1) term receives different contributions
depending on symmetry classes. These analytical calculations
agree with our numerical results in Appendix A.

1. Resolvent method

Let us first review the basic ingredients of the resolvent
method, which is a powerful method to compute the spectral
density from the moments. As described in Appendix A,
in free fermions, entanglement entropy is computed by the
truncated correlation matrix CA supported on a subregion A.
Let D(λ) :=∑i δ(λ − λi ) be the spectral density of CA and
〈D(λ)〉 be its ensemble average. The average entanglement
entropy of the subregion A is

〈S〉 =
∫ 1

0
dλ[−λ ln λ − (1 − λ) ln(1 − λ)]〈D(λ)〉. (C1)

To obtain the spectral density, we introduce the resolvent R(z)
of CA by

R(z) := Tr

(
I

zI − CA

)
(C2)
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for z ∈ C and the identify matrix I . The spectral density D(λ)
is obtained from the resolvent R(z) by

D(λ) :=
∑

i

δ(λ − λi )

= − 1

π
Im lim

ε→0+
Tr

(
I

(λ + iε)I − CA

)

= − 1

π
Im lim

ε→0+
R(λ + iε), (C3)

where we use limε→0+ 1/(x + iε) = P (1/x) − iπδ(x) for x ∈
R. To evaluate the resolvent, let us expand it at z → ∞ by

R(z) = Tr

(
I

z

)
+

∞∑
n=1

Tr Cn
A

zn+1
. (C4)

Thus, for random free fermions, the trace of moments of the
truncated correlation matrix, Tr Cn

A, allows us to obtain the

spectral density of CA and consequently the average entangle-
ment entropy.

2. Standard class

We apply the resolvent method to derive the typical en-
tanglement entropy of the threefold standard (Wigner-Dyson)
classes (i.e., classes A, AI, and AII), where Hamiltonians are
concerned only with time-reversal symmetry. As discussed
in Appendix A, when the total system size is N (2N for
class AII), a single-particle Hamiltonian is diagonalized by
a matrix U that belongs to the unitary group U(N ), orthog-
onal group O(N ), and symplectic group Sp(N ), respectively.
Consequently, the trace of moments, Tr Cn

A, is evaluated by the
Weingarten calculus for U(N ), O(N ), and Sp(N ), respectively
[67]. We show that the O(N ) term of average entanglement
entropy is the same for all the symmetry classes while the
O(1) term depends on the symmetry classes. In the following,
we consider the half filling and half bipartition for clarity,
namely, NA = N/2 and M = N/2.

a. Class A

For class A, the trace of moments is expressed by the submatrix V of the unitary matrix U in Eq. (A8):

〈
TrCn

A

〉 = 〈Tr(V †V )n〉 =
⎛
⎝N/2∑

i1=1

· · ·
N/2∑

i2n=1

⎞
⎠∫ dUU ∗

i2i1Ui2i3U
∗
i4i3Ui4i5 · · ·U ∗

i2ni2n−1
Ui2ni1

=
N/2∑

{ik ,i′k , jk , j′k}=1

∫
dUUi1 j1 · · ·Uin jnU

∗
i′1 j′1

· · ·U ∗
i′n j′n

δi′1i1 · · · δi′ninδ j′2 j1 · · · δ j′n jn−1δ j′1 jn , (C5)

where the curly bracket {ik, i′k, jk, j′k} under the summation includes all ik, i′k, jk, j′k appearing in the integrand
Ui1 j1 · · ·Uin jnU

∗
i′1 j′1

· · ·U ∗
i′n j′n

. The integral (average) over N × N unitary random matrices U with the Haar measure (namely, the
circular unitary ensemble) is evaluated by the Weingarten formula, summing over elements σ, τ in the permutation group Sn:∫

dUUi1 j1 · · ·Uin jnU
∗
i′1 j′1

· · ·U ∗
i′n j′n

=
∑

σ,τ∈Sn

δi1,i′σ (1)
· · · δin,i′σ (n)

δ j1, j′τ (1)
· · · δ jn, j′τ (n)

WgU(N, σ τ−1). (C6)

Here, WgU(N, σ ) is the Weingarten function for the unitary group U(N ) as a function of the size N of the unitary matrix and the
permutation group element σ ∈ Sn. In our convention, the product of two permutations is performed from the right to the left;
note that some software, such as MATHEMATICA, uses different conventions. From the Weingarten formula, the trace of moments
reduces to

〈
TrCn

A

〉 = N/2∑
{ik ,i′k , jk , j′k}=1

δi′1i1 · · · δi′ninδ j′2 j1 · · · δ j′n jn−1δ j′1 jn

∑
σ,τ∈Sn

δi1,i′σ (1)
· · · δin,i′σ (n)

δ j1, j′τ (1)
· · · δ jn, j′τ (n)

WgU(N, σ τ−1)

=
∑

σ,τ∈Sn

WgU(N, σ τ−1)
N/2∑

{ik , jk}=1

δi1iσ (1) · · · δiniσ (n)δ j2 jτ (1) · · · δ j1 jτ (n) =
∑

σ,τ∈Sn

WgU(N, σ τ−1)

(
N

2

)C(σ )+C(τη−1 )

, (C7)

where C(σ ) is the number of cycles in the permutation σ , and η denotes the shift permutation η(i) = i + 1.
Since we are interested in the large-N limit, we need to expand the Weingarten function WgU(N, σ ) in terms of N . The

permutation σ can be written in terms of the product of cycles Ci of length |Ci|, and the expansion of the Weingarten function
takes the following form:

WgU(N, σ ) = N−n−|σ |∏
i

(−1)|Ci|−1c|Ci|−1 + O(N−n−|σ |−2), (C8)

where |σ | denotes the number of transposition of σ , and cn := (2n)!/n!(n + 1)! is the Catalan number. The Weingarten function
for the unitary group is special, in the sense that the leading term and the subleading term in the large-N expansion differ only
by order 1/N2; there is no O(1/N ) contribution in WgU(N, σ ). Consequently, we see in the following that there is no O(1) term
in the typical entanglement entropy for class A.
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Now, we plug the leading term of Eq. (C8) into Eq. (C7) and list the values of 〈TrCn
A〉 for n = 1, 2, . . . , 6 up to the O(1) term:

n 1 2 3 4 5 6〈
TrCn

A

〉 1

4
N

3

16
N

5

32
N

35

256
N

63

512
N

231

2048
N

(C9)

From these values, we conjecture

〈
TrCn

A

〉 = 1

22n

(
2n − 1

n

)
N + O(N−1) (n � 1). (C10)

Then, the average resolvent of CA is

〈R(z)〉 = N

2z
+

∞∑
n=1

〈
TrCn

A

〉
zn+1

= N

2z
+ N

2z

∞∑
n=1

(2n − 1)!

2n2n−1(n − 1)!

1

n!zn
+ O(N−1) = N

2

1√
z(z − 1)

+ O(N−1). (C11)

Taking the discontinuity across the real axis, we obtain the spectral density of CA as

〈D(λ)〉 = − 1

π
Im lim

ε→0
R(λ + iε) = N

2π
√

λ(1 − λ)
1[0,1] + O(N−1), (C12)

where 1[0,1] is defined to be 1 in the interval [0,1] and 0 otherwise. We integrate it to find the average entanglement entropy

〈S〉 =
∫ 1

0
dλ[−λ ln λ − (1 − λ) ln(1 − λ)]〈D(λ)〉 =

(
ln 2 − 1

2

)
N + O(N−1), (C13)

which agrees with our numerical calculations in Appendix A and the previous results in Refs. [28,32] at half filling and half
bipartition. As mentioned before, there is no O(1) term in the average entanglement entropy for class A.

b. Class AI

The treatment for class AI runs parallel to that for class A, and the difference lies in the Weingarten formula for the orthogonal
group. Recall that in class AI, Hamiltonians respect time-reversal symmetry with the sign T ∗T = +1 and are diagonalized by
matrices O that belong to the orthogonal group O(N ). Therefore the trace of moments is expressed by the submatrix V of the
orthogonal matrix O:

〈
TrCn

A

〉 = 〈Tr(V †V )n〉 =
N/2∑
ik=1

∫
dOOi2i1 Oi2i3 Oi4i3 Oi4i5 · · · Oi2ni2n−1 Oi2ni1

=
N/2∑

{ik ,i′k , jk , j′k}=1

∫
dOOi1 j1 · · · Oin jn Oi′1 j′1 · · · Oi′n j′nδi′1i1 · · · δi′ninδ j′2 j1 · · · δ j′n jn−1δ j′1 jn

=
N/2∑

{ik , jk}=1

∫
dOOi1 j1 · · · Oin jn Oin+1 jn+1 · · · Oi2n j2nδin+1i1 · · · δi2ninδ jn+2 j1 · · · δ j2n jn−1δ jn+1 jn . (C14)

To perform the integral (average) over the N × N random orthogonal matrix O, the average is evaluated by the Weingarten
formula for the orthogonal group [67]. Let M2n be the set of all pair partitions on {1, 2, . . . , 2n}. Each pair partition σ ∈ M2n is
uniquely expressed by

{{σ (1), σ (2)}, {σ (3), σ (4)}, . . . , {σ (2n − 1), σ (2n)}}, (C15)

with σ (2i − 1) < σ (2i) for 1 � i � n and with σ (1) < σ (3) < · · · < σ (2n − 1). As a simple example for n = 2, the set M4

consists of three elements σ1 = {{1, 2}, {3, 4}}, σ2 = {{1, 3}, {2, 4}}, σ3 = {{1, 4}, {2, 3}}. Now, the Weingarten formula for the
orthogonal group is expressed by the summation over elements σ, τ in the set of pair partitions M2n:∫

dOOi1 j1 · · · Oi2n j2n =
∑

σ,τ∈M2n

WgO(N ; σ, τ )
n∏

k=1

δiσ (2k−1)iσ (2k)δ jτ (2k−1) jτ (2k) . (C16)

Here, WgO(N ; σ, τ ) is the Weingarten function for the orthogonal group, which is an element of the Weingarten matrix.
By definition, the Weingarten matrix is the pseudoinverse matrix of the Gram matrix, which is determined by the graph

constructed from σ and τ . For example, for n = 2, one can derive from the definition

WgO(N ; σi, σ j ) =

⎧⎪⎪⎨
⎪⎪⎩

N + 1

N (N + 2)(N − 1)
(i = j);

− 1

N (N + 2)(N − 1)
(i �= j),

(C17)
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with i, j = 1, 2, 3. An immediate observation is that for the large-N expansion of WgO(N ; σi, σ j ), the leading term and the
subleading term differ by 1/N , rather than 1/N2 in the large-N expansion of WgU. This suggests the appearance of O(1) term
in typical entanglement entropy for class AI, as shown below. In practice, the Weingarten function for the orthogonal group
is evaluated by the zonal spherical functions of the Gelfand pair; see, for example, Ref. [66] for the explicit expressions up to
n = 6.

From the Weingarten formula and Eq. (C14), the trace of moments of CA reduces to

〈
TrCn

A

〉 = ∑
σ,τ∈M2n

WgO(N ; σ, τ )

⎡
⎣ N/2∑

{ik}=1

n∏
k=1

δik in+k

n∏
k=1

δiσ (2k−1)iσ (2k)

⎤
⎦
⎡
⎣ N/2∑

{ jk}=1

n∏
k=1

δ jk jn+1+(k mod n)

n∏
k=1

δ jτ (2k−1) jτ (2k)

⎤
⎦. (C18)

The terms in the square brackets can be evaluated graphically. For the first square bracket, given σ ∈ M2n, one can define a graph
consisting of vertices {1, 2, · · · 2n} and the edge set consisting of (k, n + k) and (σ (2k − 1), σ (2k)). Namely, each delta function
is regarded as an edge. Let us denote L(σ, 0) as the number of loops in this graph, and the first square bracket takes the value
(N/2)L(σ,0). Similar treatment can be applied to the second square bracket, where the edge set consists of (k, n + 1 + (k mod n))
and (τ (2k − 1), τ (2k)), and we denote the number of loops as L(τ, 1). These graphical evaluations lead to

〈
TrCn

A

〉 = ∑
σ,τ∈M2n

WgO(N ; σ, τ )

(
N

2

)L(σ,0)(N

2

)L(τ,1)

. (C19)

From the explicit forms of WgO, we obtain 〈TrCn
A〉; we list 〈TrCn

A〉 below for n = 1, 2, . . . , 5 up to O(1):

n 1 2 3 4 5〈
TrCn

A

〉 1

4
N

3

16
N + 1

16

5

32
N + 3

32

35

256
N + 29

256

63

512
N + 65

512

(C20)

Based of these values, we conjecture the closed form formula:

〈
TrCn

A

〉 = 1

22n

(
2n − 1

n

)
N + 1

4
− 1

22n

(
2n − 1

n

)
+ O(N−1) (n � 1). (C21)

Then, the average resolvent for CA in class AI is

〈R(z)〉 = N

2z
+

∞∑
n=1

〈
TrCn

A

〉
zn+1

= N

2
√

z(z − 1)
+ 1

4

(
1

z
+ 1

z − 1

)
− 1

2
√

z(z − 1)
+ O(N−1), (C22)

and the corresponding spectral density of CA is

〈D(λ)〉 = N − 1

2π
√

λ(1 − λ)
1[0,1] + 1

4
δ(λ) + 1

4
δ(λ − 1) + O(N−1). (C23)

As a consistency check, one can verify
∫ 1

0 dλ〈D(λ)〉 = N/2, which is the number of filled particles. The two delta functions

δ(λ), δ(λ − 1) do not contribute to the entanglement entropy but are needed to ensure
∫ 1

0 dλ〈D(λ)〉 = N/2. Finally, the average
entanglement entropy is

〈S〉 =
∫ 1

0
dλ[−λ ln λ − (1 − λ) ln(1 − λ)]〈D(λ)〉 =

(
ln 2 − 1

2

)
(N − 1) + O(N−1). (C24)

Indeed, the Weingarten function for the orthogonal group leads to the O(1) term in the average entanglement entropy, which
effectively removes one fermion.

c. Class AII

The treatment for class AII is also similar to classes A and AI. In class AII, single-particle Hamiltonians respect time-reversal
symmetry with the sign T ∗T = −1 and are diagonalized by matrices U that belong to the symplectic group Sp(N ). Therefore
the trace of moments can be expressed by a submatrix V of a 2N × 2N unitary symplectic matrix. Note that the size of the matrix
is twice larger than classes AI and AII because of the Kramers degeneracy. For a fair comparison of entanglement, we divide the
final typical entanglement entropy by two. Specifically, a unitary symplectic matrix U satisfies

U † = (IN ⊗ σy)U T (IN ⊗ σy), (C25)

where the time-reversal operator is chosen to be T = IN ⊗ σy with the Pauli matrix σy. Let us define the exchange function p
and parity function s by

p(i) :=
{

i + 1 (i is odd);
i − 1 (i is even), s(i) :=

{
1 (i is odd);
−1 (i is even). (C26)
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Using them, we write Eq. (C25) in the component form as

U †
i j = s(i)s( j)Up( j)p(i). (C27)

Then, the trace of moments of CA is

〈
TrCn

A

〉 = 〈Tr(V †V )n〉 =
N∑

{ik}=1

∫
dUU †

i1i2
Ui2i3U

†
i3i4

Ui4i5 · · ·U †
i2n−1i2n

Ui2ni1

=
N∑

{ik}=1

∫
dU

[
2n∏

k=1

s(ik )

]
Up(i2 )p(i1 )Ui2i3Up(i4 )p(i3 )Ui4i5 · · ·Up(i2n )p(i2n−1 )Ui2ni1

=
N∑

{ik , jk}=1

∫
dU

[
2n∏

k=1

s(ik )

]
Ui1 j1Ui2 j2 · · ·Uin jnUin+1 jn+1 · · ·Ui2n j2n

× δi1,p(in+1 ) · · · δin,p(i2n )δ j1,p( jn+2 ) · · · δ jn−1,p( j2n )δ jn,p( jn+1 ). (C28)

To perform the integral (average) over the 2N × 2N random unitary symplectic matrix U , we use the following Weingarten
formula for the symplectic group:∫

dUUi1 j1Ui2 j2 · · ·Ui2n, j2n =
∑

σ,τ∈M2n

n∏
k=1

〈iσ (2k−1), iσ (2k)〉
n∏

k=1

〈 jτ (2k−1), jτ (2k)〉WgSp(N ; σ, τ ), (C29)

where WgSp(N ; σ, τ ) is the Weingarten function for the symplectic group, and 〈i, j〉 is defined by

〈i, j〉 := s(i)δi,p( j) =
{
δi, j−1 (i is odd);
−δi, j+1 (i is even). (C30)

From the Weingarten formula and Eq. (C28), the trace of moments of CA is simplified to

〈
TrCn

A

〉 = ∑
σ,τ∈M2n

WgSp(N ; σ, τ )

⎡
⎣ N∑

{ik}=1

n∏
k=1

〈ik, in+k〉
n∏

k=1

〈iσ (2k−1), iσ (2k)〉
⎤
⎦
⎡
⎣ N∑

{ jk}=1

n∏
k=1

〈 jk, jn+1+(k mod n)〉
n∏

k=1

〈 jτ (2k−1), jτ (2k)〉
⎤
⎦.

(C31)
Similar to class AI, the terms in the square brackets can be evaluated graphically. The graph and edges are defined in the same
manner as class AI, with a possible minus sign from 〈, 〉 that we denote as S(σ, 0) and S(τ, 1) for the first and second square
brackets. More specifically, given a graph with directed edges (putting arrows on the edges), we count the number of reversed
arrow A(l ) of every loop l in the graph and the length of loop |l|. The sign function is given as S(σ, 0) =∏l (−1)A(l )(−1)|l|/2, and
same for S(τ, 1). Thus the first square bracket takes the value S(σ, 0)NL(σ,0), and the second bracket takes the value S(τ, 1)NL(τ,1).
These graphical evaluations lead to〈

TrCn
A

〉 = ∑
σ,τ∈M2n

WgSp(N ; σ, τ )S(σ, 0)S(τ, 1)NL(σ,0)NL(τ,1). (C32)

The Weingarten function for the symplectic group, WgSp(N ; σ, τ ), is computed by the relation to WgO(N ; σ, τ ),

WgSp(N ; σ, τ ) = (−1)nε(σ−1τ )WgO(−2N ; σ, τ ), (C33)

where ε(σ ) is the signature of the permutation σ . We embed the set M2n in the permutation group S2n so that σ−1τ will be well
defined. Based on the values of 〈TrCn

A〉 for n = 1, 2, . . . , 5 up to the O(1) contribution,

n 1 2 3 4 5〈
TrCn

A

〉 1

2
N

3

8
N − 1

16

5

16
N − 3

32

35

128
N − 29

256

63

256
N − 65

512

(C34)

we conjecture the closed form formula

〈
TrCn

A

〉 = 1

22n−1

(
2n − 1

n

)
N − 1

4
+ 1

22n

(
2n − 1

n

)
+ O(N−1) (n � 1). (C35)

From the resolvent method, the average entanglement entropy is obtained as

〈S〉 =
(

ln 2 − 1

2

)(
N + 1

2

)
+ O(N−1). (C36)

Here, the single-particle entanglement spectrum exhibits the Kramers degeneracy due to time-reversal symmetry, and we
calculate entanglement entropy only from half of the entanglement spectrum. We see that time-reversal symmetry in class AII

085109-18



SYMMETRY CLASSIFICATION OF TYPICAL QUANTUM … PHYSICAL REVIEW B 108, 085109 (2023)

effectively increases half of a fermion, which also agrees with our numerical results in Appendix A. This completes the proof of
Eq. (A13) in the standard classes.

3. Chiral class

a. Volume-law term of entanglement entropy

Let us now move on to the typical entanglement entropy in the chiral classes (classes AIII, BDI, and CII). Hamiltonians
in classes AIII and BDI (class CII) with N unit cells can be diagonalized by the 2N × 2N (4N × 4N) unitary matrix U in
Eq. (A22), where h belongs to U(N ), O(N ), and Sp(N ) for classes AIII, BDI, and CII, respectively. For later convenience, we
write the N × N (2N × 2N) matrix −h† as

−h† =:
(

A B
C D

)
, (C37)

where A, B, C, D are N/2 × N/2 (N × N) matrices. Now, for the case of half filling and half bipartition, namely, NA = M = N
for classes AIII and BDI or NA = M = 2N for class CII, the NA × M submatrix V takes the form of

V = 1√
2

(
IN/2(N ) 0

A B

)T

, (C38)

from which the truncated correlation matrix is constructed as

CA,Ch = V †V = 1

2

(
IN/2(N ) AT

A∗ A∗AT + B∗BT

)
= 1

2

(
IN/2(N ) AT

A∗ IN/2(N )

)
. (C39)

Hence, the trace of moments of CA,Ch can be expressed by A∗ and AT . Specifically, TrCn
A,Ch is the summation of Tr(AT A∗)m,

which reduces to 〈TrCm
A 〉 for classes A, AI, and AII, respectively. Since the leading O(N ) term of 〈TrCm

A 〉 is the same for the
three standard classes, the leading O(N ) term of 〈TrCn

A,Ch〉 should also be the same for the three chiral classes. In the following,
we list the first several 〈TrCn

A,Ch〉:

〈TrCA,Ch〉 = 〈TrI〉 = N

2
,

〈
TrC2

A,Ch

〉 = 1

2
〈Tr(I + AT A∗)〉 = 3

8
N,

〈
TrC3

A,Ch

〉 = 1

4
〈Tr(I + 3AT A∗)〉 = 5

16
N,

(C40)〈
TrC4

A,Ch

〉 = 1

8
〈Tr(I + 6AT A∗ + (AT A∗)2)〉 = 35

128
N + O(1),

〈
TrC5

A,Ch

〉 = 1

16
〈Tr(I + 10AT A∗ + 5(AT A∗)2)〉 = 63

256
N + O(1),

〈
TrC6

A,Ch

〉 = 1

32
〈Tr(I + 15(AT A∗) + 15(AT A∗)2 + (AT A∗)3)〉 = 231

1024
N + O(1).

We conjecture that the O(N ) term in 〈TrCn
A,Ch〉 for the chiral classes is

〈
TrCn

A,Ch

〉 = 1

22n−1

(
2n − 1

n

)
N + O(1). (C41)

From the resolvent method, the O(N ) term of the average entanglement entropy is

〈S〉 = (2 ln 2 − 1)N + O(1), (C42)

which agrees with our numerical calculations in Appendix A.

b. Constant terms of entanglement entropy

We next focus on the O(1) contribution to the typical entanglement entropy. From Eq. (C40), an immediate consequence is
that the O(1) terms of 〈TrCn

A,Ch〉 and 〈S〉 are zero for class AIII because the O(1) term in 〈TrCm
A 〉 is zero for class A. This again

agrees with our numerical calculations in Appendix A. Another direct consequence is that the O(1) contribution to 〈S〉 in class
CII equals (−1/2) times that in class BDI owing to the relationship between classes AI and AII. Thus we only need to evaluate
the O(1) term in 〈S〉 for class BDI.
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Let us evaluate the O(1) term in 〈TrCn
A,Ch〉 for class BDI. Formally, Eq. (C40) can be written as

TrCn
A,Ch = 1

2n−1

∞∑
m=0

g(n)
m Tr(AT A∗)m (C43)

with
∑∞

m=0 g(n)
m = 2n−1 and g(n)

0 = 1. From the previous results of TrCm
A in class AI, we have 〈Tr(AT A∗)m〉 = 〈TrCm

A 〉 = fmN +
( 1

4 − fm) + O(N−1) with fm := 1
22m

(2m−1
m

)
for m � 1. We also introduce f0 = 1

2 , satisfying 〈Tr(AT A∗)0〉 = 〈TrC0
A〉 = f0N . Then,

from the O(N ) calculations above, we have
∑∞

m=0 fmg(n)
m = 1

2n

(2n−1
n

)
. From these relations, the O(1) term in 〈TrCn

A,Ch〉 for class
BDI is obtained as

〈
TrCn

A,Ch,O(1)

〉 = 1

2n−1

∞∑
m=1

g(n)
m

(
1

4
− fm

)
= 1

4
+ 1

2n+1
− 1

22n−1

(
2n − 1

n

)
. (C44)

Including back the O(N ) term, we have

〈
Tr
(
Cn

A,Ch

)〉 = 1

22n−1

(
2n − 1

n

)
(N − 1) + 1

4
+ 1

2n+1
+ O(N−1). (C45)

Then, the average resolvent for CA,Ch is

〈R(z)〉 = N

z
+

∞∑
n=1

〈
TrCn

A,Ch

〉
zn+1

= N − 1√
z(z − 1)

+ 1

4

(
1

z
+ 1

z − 1

)
+ 1

2z − 1
+ O(N−1), (C46)

leading to the spectral density

〈D(λ)〉 = N − 1

π
√

λ(1 − λ)
1[0,1] + 1

4
δ(λ − 1) + 1

4
δ(λ) + 1

2
δ

(
λ − 1

2

)
+ O(N−1). (C47)

One can verify
∫ 1

0 dλ〈D(λ)〉 = N , as expected from NA = N . It is notable that 〈D(λ)〉 contains the delta function (1/2)δ(λ − 1/2)
at λ = 1/2, which corresponds to the “zero mode” in the single-particle entanglement spectrum. This term contributes to the
entanglement entropy by (1/2) ln 2. After integration, the average entanglement entropy is

〈S〉 = (2 ln 2 − 1)(N − 1) + 1

2
ln 2 + O(N−1) = (2 ln 2 − 1)N −

(
3

2
ln 2 − 1

)
+ O(N−1), (C48)

which agrees with the numerical results in Appendix A. This completes the proof of Eq. (A24) in the chiral classes.

4. Bogoliubov-de Gennes (BdG) class

Finally, we consider the BdG classes (classes D, C, DIII, and CI), where Hamiltonians are subject to particle-hole symmetry.
In class D, the average entanglement entropy was analytically obtained for particle-number-nonconserving BdG Hamiltonians
[30]. In addition, while the classifying space for class D is O(2N )/U(N ), that for class C is Sp(N )/U(N ). Thus the O(1) constant
term of the average entanglement entropy for class C should have the opposite sign to that for class D, similar to the standard
and chiral classes. Based on these facts, the average density of the single-particle entanglement spectrum should be

〈D(λ)〉 = N − (1 − α)/2

π
√

λ(1 − λ)
+ 1 − α

2
δ

(
λ − 1

2

)
+ O(N−1) (C49)

with α = 0 (class D) and α = 2 (class C), which leads to the average entanglement entropy in Eq. (A47). Below, we also confirm
Eq. (C49) by the Weingarten calculus. In classes DIII and CI, on the other hand, the simultaneous presence of time-reversal
symmetry leads to chiral symmetry, and we derive the typical entanglement entropy by the formalism in the chiral classes in
Appendix C 3.

a. Classes D and C

In class D, 2N × 2N single-particle Hamiltonians respect particle-hole symmetry H∗ = −H and can be diagonalized by
unitary matrices U in Eq. (A34). We write the 2N × 2N orthogonal matrix O in Eq. (A34) as

O =:
(

A B
C D

)
, (C50)

where A, B, C, D are N × N matrices. For the case of half filling, the correlation matrix is

CD = 1

2
O

(
IN i × IN

−i × IN IN

)
OT = 1

2

[
I2N + O

(
0 i × IN

−i × IN 0

)
OT

]
. (C51)
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When choosing the subsystem as the first N fermions, the truncated correlation matrix is

CA,D = 1

2
[IN + i(ABT − BAT )] =:

1

2
[I2N + JA], (C52)

where we introduce JA := i(ABT − BAT ). To obtain the moments Tr Cn
A,D, we need to compute Tr Jm

A . One can see Tr Jm
A = 0 for

odd m since JA is an antisymmetric matrix. In the following, we describe the procedure for computing Tr Jm
A for even m.

As an example, we calculate Tr J2
A for m = 2; the generalization to larger even m � 4 is straightforward. For m = 2, the

average trace of moments of JA is〈
Tr J2

A

〉 = −〈Tr(ABT ABT − ABT BAT − BAT ABT + BAT BAT )〉 = −2 〈Tr(ABT ABT − ABT BAT )〉 . (C53)

From the Weingarten formula for the orthogonal group, the first term 〈Tr ABT ABT 〉 is calculated as

〈Tr ABT ABT 〉 =
N∑

i1,i2,i3,i4=1

∫
dOOi1i2 Oi3i2+N Oi3i4 Oi1i4+N =

N∑
{ik , jk}=1

∫
dOOi1 j1 Oi2, j2+N Oi3 j3 Oi4, j4+Nδi1i4δi2i3δ j1 j2δ j3 j4

=
∑

σ∈M4,τ∈M ′
4

WgO(2N ; σ, τ )

⎡
⎣ N∑

{ik}=1

δiσ (1)iσ (2)δiσ (3)iσ (4)δi1i4δi2i3

⎤
⎦
⎡
⎣ N∑

{ jk}=1

δ jτ (1) jτ (2)δ jτ (3) jτ (4)δ j1 j2δ j3 j4

⎤
⎦. (C54)

Here, σ takes values from the set of pair partitions M4, and τ is only allowed to take values from a subset M ′
4 := {{1, 3}, {2, 4}} ∈

M4. Then, we evaluate 〈Tr ABT ABT 〉 graphically by counting the number of loops in each square bracket, similar to the treatment
in class AI. The second term 〈Tr ABT BAT 〉 can also be evaluated in a similar manner by taking M ′

4 as M ′
4 = {{1, 4}, {2, 3}}.

Assembling the above results, we obtain 〈TrJ2
A〉 = N

2 − 1
4 + O(N−1). Similarly, for m = 4, we obtain 〈TrJ4

A〉 = 3N
8 − 3

16 +
O(N−1). From 〈TrJm

A 〉, we compute 〈Tr Cn
A,D〉 and show the values up to n = 5 and O(N−1):

n 1 2 3 4 5〈
Tr Cn

A,D

〉 N

2

3N

8
− 1

16

5N

16
− 3

32

35N

128
− 27

256

63N

256
− 55

512

(C55)

Based on these results, we conjecture

〈
Tr Cn

A,D

〉 = 1

22n

(
2n − 1

n

)
(2N − 1) + 1

2n+1
+ O(N−1). (C56)

From the resolvent method, the corresponding spectral density of CA,D is obtained as Eq. (C49) with α = 0. The treatment for
class C runs parallel to class D by replacing the orthogonal matrix with the unitary symplectic matrix, and the average density
of the single-particle entanglement spectrum is obtained as Eq. (C49) with α = 2.

b. Class CI

In class CI, we choose chiral symmetry as S = σz ⊗ IN and time-reversal symmetry as T = σx ⊗ IN , the combination of which
leads to particle-hole symmetry C = iσy ⊗ IN with C∗C = −1. This is to be distinguished from class BDI, where particle-hole
symmetry satisfies C∗C = +1. Because of chiral symmetry, a 2N × 2N Hamiltonian can be diagonalized by a 2N × 2N unitary
matrix U in Eq. (A22). As discussed in Eq. (A40), time-reversal symmetry imposes hT = h, and h is drawn from the circular
orthogonal ensemble. Then, h can be expressed by

−h† = f T f , f ∈ U(N ), (C57)

which indicates that we may use the Weingarten calculus for the unitary group to calculate typical entanglement entropy.
As in Eq. (C37), we decompose −h† into four blocks A, B,C, D. Let us denote the corresponding truncated correlation matrix

in class CI as CA,CI = V †V , where V is defined as Eq. (C38). From the discussions in the chiral classes, 〈TrCn
A,CI〉 is obtained

from 〈Tr(AT A∗)m〉. To obtain 〈Tr(AT A∗)m〉, we write the N × N matrix f as

f =
(

a b
c d

)
, f ∈ U(N ), (C58)

where a, b, c, d are N/2 × N/2 matrices. In particular, the components of a and c are related to those of f via ai j = fi j and
ci j = fi+N/2, j . Using these submatrices of f , we express the matrix A and its component as

A = aT a + cT c, Ai j =
N/2∑
k=1

fki fk j + fk+N/2,i fk+N/2, j . (C59)

Applying the Weingarten formula for the unitary group to the components of f , we compute 〈Tr(AT A∗)m〉. To shed light on the
calculations, we below outline the steps explicitly for m = 3, which can be readily generalized to arbitrary m.
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For m = 3, we compute

〈Tr(AT A∗)3〉 = 〈Tr[(aT a + cT c)(a†a∗ + c†c∗)(aT a + cT c)(a†a∗ + c†c∗)(aT a + cT c)(a†a∗ + c†c∗)]〉. (C60)

While this includes 64 terms, not all of them contribute to the average entanglement entropy due to the delta symbols in the
Weingarten formula. To have a nonzero contribution, the number of cT c should match the number of c†c∗. In the case of m = 3,
the number of {cT c, c†c∗} pairs can be 0,1,2,3, and the number of terms of each type is 1, 9, 9, 1, respectively. Only 20 terms out
of the 64 terms have nonzero contributions. Due to the symmetry between a and c, we only need to consider the first two cases
where there is no {cT c, c†c∗} pair and one {cT c, c†c∗} pair, and multiply the final result by two. Let us first focus on the case
with no {cT c, c†c∗} pair:

〈Tr(aT aa†a∗aT aa†a∗aT aa†a∗)〉

=
N/2∑

{ik , jk ,i′k , j′k}=1

δi1i2δi3i4δi5i6δi′1i′2δi′3i′4δi′5i′6

(
δ j2 j′1δ j3 j′2 · · · δ j6 j′5δ j1 j′6

)[∫
df fi1 j1 · · · fi6 j6 f ∗

i′1 j′1
· · · f ∗

i′6 j′6

]

=
N/2∑

{ik , jk ,i′k , j′k}=1

(
m∏

k=1

δi2k−1i2k δi′2k−1i′2k

)(
2m∏

k=1

δ jk j′k−1

)⎡⎣ ∑
σ,τ∈S2m

(
2m∏

k=1

δik ,i′σ (k)
δ jk , j′

τ (k)

)
WgU(N, σ τ−1)

⎤
⎦

=
∑

σ,τ∈S2m

WgU(N, σ τ−1)

⎡
⎣ N/2∑

{ik ,i′k}=1

(
m∏

k=1

δi2k−1i2k δi′2k−1i′2k

)(
2m∏

k=1

δik ,i′σ (k)

)⎤⎦
⎡
⎣ N/2∑

{ jk , j′k}=1

(
2m∏

k=1

δ jk j′k−1

)(
2m∏

k=1

δ jk , j′
τ (k)

)⎤⎦. (C61)

From the second to the third line, we apply the Weingarten formula for the unitary group to the terms in the square bracket.
The above result is applicable to arbitrary m. Similar to the previous cases, the terms in the square brackets of the last line can
be evaluated graphically by counting the number of loops in the corresponding graph. Next, let us consider the case with one
{cT c, c†c∗} pair. There are such 9 terms; we write down one of them explicitly as

〈Tr(aT ac†c∗cT ca†a∗aT aa†a∗)〉 =
N/2∑

{ik , jk ,i′k , j′k}=1

δi1i2δi3i4δi5i6δi′1i′2δi′3i′4δi′5i′6

(
δ j2 j′1δ j3 j′2 · · · δ j6 j′5δ j1 j′6

)

×
[∫

df
(

fi1 j1 fi2 j2 fi3+N/2, j3 fi4+N/2, j4 fi5, j5 fi6 j6

)(
f ∗
i′1+N/2, j′1

f ∗
i′2+N/2, j′2

f ∗
i′3 j′4

f ∗
i′4 j′4

f ∗
i′5 j′5

f ∗
i′6 j′6

)]
.

(C62)

When applying the Weingarten formula, τ can still take all permutations in S6 while valid σ is restricted. In particular, to
obtain a nonzero contribution, σ needs to be in the subgroup: Perm[3, 4] Perm[1, 2, 5, 6] ∈ S6, i.e., σ (1), σ (2) ∈ {3, 4}, and
σ (3), σ (4), σ (5), σ (6) ∈ {1, 2, 5, 6}. For example, {3, 4, 1, 5, 2, 6} is an element in this subgroup. Thus the last line of Eq. (C61)
is still applicable as long as we replace the summation

∑
σ∈S2m

by the summation of elements in the subgroup. Each one of the
nine terms corresponds to a summation of a different subgroup. Assembling everything, we obtain 〈Tr(AT A∗)3〉.

Using the above formalism, we calculate 〈Tr(AT A∗)m〉. The first three values for m = 1, 2, and 3 are N
4 + 1

4 + O(N−1),
3N
16 + 1

4 + O(N−1), and 5N
32 + 1

4 + O(N−1), respectively. From these values and Eq. (C40), the first seven values of 〈TrCn
A,CI〉 are

up to O(1)

n 1 2 3 4 5 6 7〈
TrCn

A,CI

〉 1

2
N

3

8
N + 1

8

5

16
N + 3

16

35

128
N + 7

32

63

256
N + 15

64

231N

1024
+ 31

128

429N

2048
+ 63

256

(C63)

Based of these values, we conjecture the closed form formula,

〈
TrCn

A,CI

〉 = 1

22n−1

(
2n − 1

n

)
N + 1

4
− 1

2n+1
+ O(N−1) (n � 1). (C64)

Then, the resolvent is

〈R(z)〉 = N

z
+

∞∑
n=1

〈
TrCn

A,CI

〉
zn+1

= N√
z(z − 1)

+ 1

4

(
1

z
+ 1

z − 1

)
− 1

2z − 1
+ O(N−1), (C65)

and the corresponding spectral density is

〈D(λ)〉 = N

π
√

λ(1 − λ)
1[0,1] + 1

4
δ(λ − 1) + 1

4
δ(λ) − 1

2
δ

(
λ − 1

2

)
+ O(N−1). (C66)

085109-22



SYMMETRY CLASSIFICATION OF TYPICAL QUANTUM … PHYSICAL REVIEW B 108, 085109 (2023)

One can verify
∫ 1

0 dλ〈D(λ)〉 = N , as expected. The singular term (1/2)δ(λ − 1/2) contributes to the entanglement entropy by
(1/2) ln 2, and the average entanglement entropy is thus

〈S〉 = (2 ln 2 − 1)N − 1

2
ln 2 + O(N−1), (C67)

which agrees with the numerical results in Appendix A.

c. Class DIII

The treatment for class DIII runs parallel to that for class CI with the subtlety that some permutations might contribute a
minus sign, as explained in the following. Specifically, we choose chiral symmetry as S = σz ⊗ I2N and time-reversal symmetry
as T = σx ⊗ IN ⊗ iσy, the combination of which leads to particle-hole symmetry C = σy ⊗ IN ⊗ σy with C∗C = +1. This
is to be distinguished from class CII, where particle-hole symmetry satisfies C∗C = −1. The presence of chiral symmetry
allows us to diagonalize a Hamiltonian by a 4N × 4N unitary matrix U in Eq. (A22). As discussed in Eq. (A38), time-
reversal symmetry imposes (IN ⊗ σy)hT (IN ⊗ σy) = h, and h is drawn from the circular symplectic ensemble. Then, h can be
expressed by

−h† = (IN ⊗ σy) f T (IN ⊗ σy) f , f ∈ U(2N ). (C68)

Similar to class CI, we use the Weingarten calculus for the unitary group to compute typical entanglement entropy for
class DIII.

We again decompose −h† into four blocks A, B,C, D and denote the corresponding truncated correlation ma-
trix in class DIII as CA,DIII = V †V , where V is defined as Eq. (C38). From the discussions in the chiral
classes, 〈TrCn

A,DIII〉 can be obtained from 〈Tr(AT A∗)m〉. To obtain 〈Tr(AT A∗)m〉, we decompose the 2N × 2N matrix
f as

f =
(

a b
c d

)
, f ∈ U(2N ), (C69)

where a, b, c, d are N × N matrices. From Eq. (C68), the matrix A is expressed as

A = (IN/2 ⊗ σy)aT (IN/2 ⊗ σy)a + (IN/2 ⊗ σy)cT (IN/2 ⊗ σy)c. (C70)

For the sake of clarity, we assume that N is an even number. The matrix component of A is explicitly given as

Ai j =
N∑

k=1

s(i)s(k)( fp(k),p(i) fk, j + fp(k)+N,p(i) fk+N, j ), (C71)

where the exchange function p and parity function s are defined in Eq. (C26), as discussed in class AIII. Since 〈Tr(AT A∗)m〉 can
now be expressed by components of f , which is drawn from the random unitary ensemble, it can be readily computed by the
Weingarten formula for the unitary group. The treatment is similar to class CI, with a minor difference that the presence of s(i)
might contribute a minus sign.

To illustrate this difference, let us examine the case of m = 3:

〈Tr(AT A∗)3〉 = 〈Tr(aT (IN/2 ⊗ σy)aa†(IN/2 ⊗ σy)a∗ + aT (IN/2 ⊗ σy)ac†(IN/2 ⊗ σy)c∗

+ cT (IN/2 ⊗ σy)ca†(IN/2 ⊗ σy)a∗ + cT (IN/2 ⊗ σy)cc†(IN/2 ⊗ σy)c∗)3〉. (C72)

As in class CI, there are 64 terms in this expansion, and 20 of them have nonzero contributions, where the number of
{cT (IN/2 ⊗ σy)c, c†(IN/2 ⊗ σy)c∗} pairs can be 0, 1, 2, 3. For the sake of simplicity, let us focus on the first term, which is the case
where with no {cT (IN/2 ⊗ σy)c, c†(IN/2 ⊗ σy)c∗} pair; the generalization to the other cases is straightforward. The first term is
given as

〈Tr(aT (IN/2 ⊗ σy)aa†(IN/2 ⊗ σy)a∗aT (IN/2 ⊗ σy)aa†(IN/2 ⊗ σy)a∗aT (IN/2 ⊗ σy)aa†(IN/2 ⊗ σy)a∗)〉

=
N∑

{ik , jk ,i′k , j′k}=1

s(i1)s(i3)s(i5)s(i′2)s(i′4)s(i′6)δi1 p(i2 )δi3 p(i4 )δi5 p(i6 )δi′1 p(i′2 )δi′3 p(i′4 )δi′5 p(i′6 )
(
δ j2 j′1δ j3 j′2 · · · δ j6 j′5δ j1 j′6

)

×
[∫

df fi1 j1 · · · fi6 j6 f ∗
i′1 j′1

· · · f ∗
i′6 j′6

]
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=
N∑

{ik , jk ,i′k , j′k}=1

(
m∏

k=1

s(i2k−1)s(i′2k )δi2k−1 p(i2k )δi′2k−1 p(i′2k )

)(
2m∏

k=1

δ jk j′k−1

)⎡⎣ ∑
σ,τ∈S2m

(
2m∏

k=1

δik ,i′σ (k)
δ jk , j′

τ (k)

)
WgU(N, σ τ−1)

⎤
⎦

=
∑

σ,τ∈S2m

WgU(N, σ τ−1)

⎡
⎣ N∑

{ik ,i′k}=1

(
m∏

k=1

s(i2k−1)s(i′2k )δi2k−1 p(i2k )δi′2k−1 p(i′2k )

)(
2m∏

k=1

δik ,i′σ (k)

)⎤⎦
⎡
⎣ N∑

{ jk , j′k}=1

(
2m∏

k=1

δ jk j′k−1

)(
2m∏

k=1

δ jk , j′
τ (k)

)⎤⎦.

(C73)

We can see that the only difference from class CI is in the first square bracket, where the product of s(i) might bring a minus
sign. As in the previous cases, the terms in the square bracket can be evaluated graphically, and the extra minus sign can be taken
care of by introducing directed edges.

Using the above formalism, we calculate the values of 〈Tr(AT A∗)m〉. The first three values for m = 1, 2, 3 are N
2 − 1

4 +
O(N−1), 3N

8 − 1
4 , and 5N

16 − 1
4 , respectively. From these values and Eq. (C40), the first seven values of 〈TrCn

A,DIII〉 are up to O(1)

n 1 2 3 4 5 6 7〈
TrCn

A,DIII

〉
N

3

4
N − 1

8

5

8
N − 3

16

35

64
N − 7

32

63

128
N − 15

64

231N

512
− 31

128

429N

1024
− 63

256

(C74)

Based of these values, we conjecture the closed form formula,

〈
TrCn

A,DIII

〉 = 1

22n−2

(
2n − 1

n

)
N − 1

4
+ 1

2n+1
+ O(N−1) (n � 1). (C75)

Following the resolvent method, we obtain the average entanglement entropy in class DIII as

〈S〉 = (2 ln 2 − 1)N + 1

4
ln 2 + O(N−1). (C76)

We see that the O(1) contribution in class DIII is related to the O(1) contribution in class CI by a factor of −1/2. We have
already seen the same pattern between classes AI and AII, as well as classes BDI and CII. This finishes the proof of Eq. (A48).

APPENDIX D: WIGNER SURMISE OF TYPICAL
QUANTUM ENTANGLEMENT

We analytically and numerically calculate the average and
variance of entanglement entropy for small systems N = 2
in the ten AZ symmetry classes (Table II), similar to the
Wigner surmise. While these results quantitatively deviate
from the large-N results, they are qualitatively similar to the
large-N results. In BdG Hamiltonians that break the conser-
vation of the particle number, the average is one half and
the variance is one quarter in comparison with the results for
particle-number-conserving free fermions (Table V). Notably,
the typical entanglement entropy for N = 2 cannot be well
described by the random-matrix indices (α, β ) in contrast
to the large-N results; the universal values of the typical
entanglement entropy for large N should originate from the
many-level effect.

1. Standard class

In class A, the 2 × 2 unitary matrix U ∈ U(2) in Eq. (A6)
can be parameterized as

U = eiγ /2

(
eiφ1 cos θ eiφ2 sin θ

−e−iφ2 sin θ e−iφ1 cos θ

)
(D1)

with the Haar measure dU = sin(2θ )dθdγ dφ1dφ2/(8π3)
(γ , φ1, φ2 ∈ [0, 2π ], θ ∈ [0, π/2]). Then, the truncated cor-
relation matrix in Eq. (A7) is CA = cos2 θ , and hence the
entanglement entropy for given θ is obtained as

S = −(cos2 θ ) ln(cos2 θ ) − (sin2 θ ) ln(sin2 θ ). (D2)

The average entanglement entropy is given as

〈S〉 =
∫ π/2

0
dθ (sin 2θ )S = 1

2
, (D3)

and the variance of entanglement entropy is given as

〈(�S)2〉 =
∫ π/2

0
dθ (sin 2θ )(S − 〈S〉)2

= 21 − 2π2

36
= 0.035022 . . . (D4)

TABLE V. Wigner surmise of typical quantum entanglement
for particle-number-nonconserving Bogoliubov-de Gennes (BdG)
Hamiltonians in classes D, DIII, C, and CI. The Altland-Zirnbauer
(AZ) symmetry classes consist of time-reversal symmetry (TRS),
particle-hole symmetry (PHS), and chiral symmetry (CS). For TRS
and PHS, the entries “±1” mean the presence of symmetry and its
sign, and the entries “0” mean the absence of symmetry. For CS,
the entries “1” and “0” mean the presence and absence of symmetry,
respectively. The average and variance of entanglement entropy are
calculated numerically for N = 2. In the numerical calculations, each
datum is averaged over 108 ensembles. All the results of entangle-
ment entropy are calculated for particle-number-nonconserving BdG
Hamiltonians with the half bipartition.

AZ class TRS PHS CS 〈S〉numerical 〈(�S)2〉numerical

D 0 +1 0 0.5000 0.0350
DIII −1 +1 1 0.5068 0.0205
C 0 −1 0 0.3333 0.0321
CI +1 −1 1 0.2772 0.0445
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In addition, the average density of the single-particle entan-
glement spectrum is

〈D(λ)〉 = 〈δ(λ − cos2 θ )〉

=
∫ π/2

0
dθ (sin 2θ )δ(λ − cos2 θ ) = 1. (D5)

In class AI, the 2 × 2 orthogonal matrix O ∈ O(2) can be
parameterized as

O =
(

cos θ − sin θ

sin θ cos θ

)
(D6)

with the Haar measure dO = dθ/2π (θ ∈ [0, 2π ]). Then, the
entanglement entropy for given θ is obtained as Eq. (D2). The
average entanglement entropy is

〈S〉 =
∫ 2π

0

dθ

2π
S = 2 ln 2 − 1 = 0.386294 . . . , (D7)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫ 2π

0

dθ

2π
(S − 〈S〉)2

= 5π2

24
− 2 = 0.0561676 . . . . (D8)

The different classifying space and the concomitant different
Haar measure directly lead to the different typical entan-
glement entropy. The average density of the single-particle
entanglement spectrum is

〈D(λ)〉 = 〈δ(λ − cos2 θ )〉

=
∫ 2π

0

dθ

2π
δ(λ − cos2 θ )

= 1

π
√

λ(1 − λ)
, (D9)

which coincides with the large-N results of 〈D(λ)〉 in
Eq. (C23) for N = 3.

In class AII, the 4 × 4 symplectic matrix U ∈ Sp(2) can be
parameterized as [40]

U =
(

eiφ (n·σ ) cos θ − sin θ

sin θ e−iφ (n·σ) cos θ

)
(D10)

with the unit vector n on the sphere S2 and the Haar measure
dU = (3/2) sin3(2θ )dθ (2/π ) sin2 φ dφd2n (φ ∈ [0, π ], θ ∈
[0, π/2]). While this parametrization does not give the most
general 4 × 4 symplectic matrix, it suits the present purpose
of obtaining the typical quantum entanglement entropy. Then,
the entanglement entropy for given θ is obtained as Eq. (D2).
The average entanglement entropy is

〈S〉 =
∫ π/2

0
dθ

(
3

2
sin3 2θ

)
S = 7

12
= 0.583333 . . . ,

(D11)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫ π/2

0
dθ

(
3

2
sin3 2θ

)
(S − 〈S〉)2

= 97

144
− π2

15
= 0.0156375 . . . (D12)

In addition, the average density of the single-particle entan-
glement spectrum is

〈D(λ)〉 = 〈δ(λ − cos2 θ )〉

=
∫ π/2

0
dθ

(
3

2
sin3 2θ

)
δ(λ − cos2 θ )

= 6λ(1 − λ), (D13)

which vanishes at λ = 0, 1 in contrast to 〈D(λ)〉 in class AI.

2. Chiral class

In class AIII, the 2 × 2 unitary matrix h in Eq. (A20) can
be parameterized as Eq. (D1). Then, the truncated correlation
matrix CA in Eq. (A7) is obtained as

CA = 1

2

(
1 −e−i (γ /2+φ1 ) cos θ

−ei (γ /2+φ1 ) cos θ 1

)
, (D14)

whose eigenvalues are {(1 ± cos θ )/2} = {cos2(θ/2),
sin2(θ/2)}. Hence, the entanglement entropy for given θ

is obtained as

S = −2[(cos2(θ/2)) ln(cos2(θ/2))

+ (sin2(θ/2)) ln(sin2(θ/2))]. (D15)

The average entanglement entropy is

〈S〉 =
∫ π/2

0
dθ (sin 2θ )S = 2 ln 2 + 1

3
= 0.795431 . . . ,

(D16)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫ π/2

0
dθ (sin 2θ )(S − 〈S〉)2

= 3 − 8 ln 2 + 8(ln 2)2

9
= 0.144272 . . . (D17)

In addition, the average density of the single-particle entan-
glement spectrum is

〈D(λ)〉 =
∫ π/2

0
dθ (sin 2θ )[δ(λ − cos2(θ/2))

+ δ(λ − sin2(θ/2))] = 4|2λ − 1|, (D18)

which vanishes linearly toward the chiral-symmetric point
λ = 1/2.

In class BDI, the 2 × 2 orthogonal matrix h in Eq. (A20)
can be parameterized as Eq. (D6). Then, the eigenval-
ues of the truncated correlation matrix CA are given as
{cos2(θ/2), sin2(θ/2)}, and hence the entanglement entropy
for given θ is obtained as Eq. (D15). The average entangle-
ment entropy is

〈S〉 =
∫ 2π

0

dθ

2π
S = 2(2 ln 2 − 1) = 0.772589 . . . , (D19)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫ 2π

0

dθ

2π
(S − 〈S〉)2 = 5π2

6
− 8 = 0.22467 . . .

(D20)
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Notably, in comparison with class AI, the average 〈S〉 is twice
larger, and the variance 〈(�S)2〉 is four times larger. The
average density of the single-particle entanglement spectrum
is

〈D(λ)〉 =
∫ 2π

0

dθ

2π
[δ(λ − cos2(θ/2)) + δ(λ − sin2(θ/2))]

= 2

π
√

λ(1 − λ)
, (D21)

which does not vanish even at the chiral-symmetric point λ =
1/2.

In class CII, the 4 × 4 symplectic matrix h in Eq. (A20)
can be parameterized as Eq. (D10). Then, the eigenval-
ues of the truncated correlation matrix CA are given as
{cos2(θ/2), cos2(θ/2), sin2(θ/2), sin2(θ/2)}, and hence the
entanglement entropy for given θ is obtained as Eq. (D15).
The average entanglement entropy is

〈S〉 =
∫ π/2

0
dθ

(
3

2
sin3 2θ

)
S = 79 + 132 ln 2

210

= 0.811883 . . . , (D22)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫ π/2

0
dθ

(
3

2
sin3 2θ

)
(S − 〈S〉)2

= 16021 − 44160 ln 2 + 38016(ln 2)2

44100

= 0.0833679 . . . (D23)

In addition, the average density of the single-particle entan-
glement spectrum is

〈D(λ)〉 =
∫ π/2

0
dθ

(
3

2
sin3 2θ

)
[δ(λ − cos2(θ/2))

+ δ(λ − sin2(θ/2))] = 96λ(1 − λ)|2λ − 1|3,
(D24)

which vanishes cubically toward the chiral-symmetric point
λ = 1/2.

3. Bogoliubov-de Gennes (BdG) class

In class D, the 4 × 4 orthogonal matrix O ∈ O(4) in
Eq. (A32) can be parameterized as

O =

⎛
⎜⎜⎜⎝

cos θ13 − sin θ13 cos θ23 sin θ13 sin θ23 cos θ33 − sin θ13 sin θ23 sin θ33

sin θ13 cos θ13 cos θ23 − cos θ13 sin θ23 cos θ33 cos θ13 sin θ23 sin θ33

0 sin θ23 cos θ23 cos θ33 − cos θ23 sin θ33

0 0 sin θ33 cos θ33

⎞
⎟⎟⎟⎠
(

O3 0

0 1

)
(D25)

with

O3 :=

⎛
⎜⎝

cos θ12 − sin θ12 cos θ22 sin θ12 sin θ22

sin θ12 cos θ12 cos θ12 − cos θ12 sin θ12

0 sin θ22 cos θ22

⎞
⎟⎠
⎛
⎜⎝

cos θ11 − sin θ11 0

sin θ11 cos θ11 0

0 0 1

⎞
⎟⎠ ∈ O(3). (D26)

Here, the six parameters take θ11, θ12, θ13 ∈ [0, 2π ] and θ22, θ23, θ33 ∈ [0, π ], and the Haar measure is given as dO =
(sin θ22)(sin θ23)(sin2 θ33)dθ11dθ12dθ22dθ13dθ23dθ33/(16π4). From this orthogonal matrix O ∈ O(4), the truncated correlation
matrix in Eq. (A7) is obtained as CA = (I2 + δσy)/2 with

δ := − sin θ11[cos(θ12 − θ33) sin θ13 + cos θ13 cos θ23 sin(θ12 − θ33)] + cos θ11[− cos θ13 sin θ22 sin θ23

+ cos θ22 sin θ12(− cos θ33 sin θ13 + cos θ13 cos θ23 sin θ33) + cos θ12 cos θ22(cos θ13 cos θ23 cos θ33 + sin θ13 sin θ33)].
(D27)

Then, the average entanglement entropy is given as

〈S〉 =
∫

dO S = 1, (D28)

and the variance of entanglement entropy is given as

〈(�S)2〉 =
∫

dO(S − 〈S〉)2 = 21 − 2π2

9
= 0.140088 . . .

(D29)

In class DIII, the 4 × 4 unitary matrix h in Eq. (A39)
belongs to the circular symplectic ensemble and hence is
parameterized as

h = e−ia (x1τy+x2τz+x3σxτy+x4σyτy+x5σzτy ) (D30)

with the unit vector x = (x1, x2, x3, x4, x5) on the four-
dimensional sphere S4, and the Haar measure is given as
(8/3π )(sin4 a)dad4x (a ∈ [0, π ]). Then, the truncated corre-
lation matrix is obtained as

CA = 1
2 (I2 + σx cos a − σyx2 sin a) ⊗ I2. (D31)

The average entanglement entropy is

〈S〉 =
∫

d4x
∫ π

0
da

(
8

3π
sin4 a

)
S = 1.013604 . . . , (D32)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫

d4x
∫ π

0
da

(
8

3π
sin4 a

)
(S − 〈S〉)2

= 0.0818924 . . . (D33)
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In class C, the 4 × 4 symplectic matrix U ∈ Sp(2) in
Eq. (A37) can be parameterized as Eq. (D10). Then, the trun-
cated correlation matrix is obtained as

CA = 1
2 (I2 + sin(2θ ) sin φ(n · σT )). (D34)

The average entanglement entropy is

〈S〉 =
∫ π/2

0
dθ

(
3

2
sin3 2θ

)∫ π

0
dφ

(
2

π
sin2 φ

)
S = 2

3
,

(D35)

and the variance of entanglement entropy is

〈(�S)2〉=
∫ π/2

0
dθ

(
3

2
sin3 2θ

)∫ π

0
dφ

(
2

π
sin2 φ

)
(S−〈S〉)2

=0.128497 . . . (D36)

In class CI, the 2 × 2 unitary matrix h in Eq. (A41) belongs
to the circular orthogonal ensemble and hence is parameter-

ized as

h = e−ia (cos θσx+sin θσz ) (D37)

with the Haar measure (1/2) sin ada(dθ/2π ) (a ∈ [0, π ], θ ∈
[0, 2π ]). Then, the truncated correlation matrix is obtained as

CA = 1
2 (I2 + σx cos a + σz sin a sin θ ). (D38)

The average entanglement entropy is

〈S〉 =
∫ 2π

0

dθ

2π

∫ π

0
da

(
sin a

2

)
S = 0.554363 . . . , (D39)

and the variance of entanglement entropy is

〈(�S)2〉 =
∫ 2π

0

dθ

2π

∫ π

0
da

(
sin a

2

)
(S − 〈S〉)2

= 0.177858 . . . (D40)
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