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The kinetic energy of electrons in a magnetic field is quenched resulting in a discrete set of highly degenerate
Landau levels (LLs) which gives rise to fascinating phenomena such as the de Haas–van Alphen effect (dHvAe)
or the integer and fractional quantum Hall effects. The latter is a result of interactions partially lifting the
degeneracy within a given LL while inter-LL interactions are usually assumed to be unimportant. Here, we study
the LL spectrum of the Hatsugai-Kohmoto model, a Hubbard-like model which is exactly soluble on account of
infinite-range interactions. For the doped Mott insulator phase in a magnetic field we find that the degeneracy
of LLs is preserved but inter-LL interactions are important leading to a nonmonotonous reconstruction of the
spectrum. As a result, strong LL repulsion leads to aperiodic quantum oscillations of the dHvAe in contrast
to Onsager’s famous relation connecting oscillation frequencies with the Fermi surface areas at zero field. In
addition, we find unconventional temperature dependencies of quantum oscillations with interaction-induced
effective mass renormalizations. We discuss the general importance of inter-LL interactions for understanding
doped Mott insulators in magnetic fields.
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I. INTRODUCTION

The most remarkable aspect of Landau level (LL) for-
mation of electrons in a magnetic field is the quenching of
kinetic energy from a continuous spectrum to a set of discrete
values. The resulting macroscopically large degeneracy lies
at the heart of prominent effects such as the integer quan-
tum Hall effect (IQHE) [1], discovered in 1980, as well as
the dHvAe already measured 50 years earlier [2]. There, the
discreteness of the LL spectrum leads to quantum oscillations
(QOs) of thermodynamic and transport properties periodic in
the inverse applied field [3]. A natural and persistent research
question then addresses the role of electron interactions in the
stability of the LL degeneracies and in physical observables.

The study of strong electron-electron correlations in orbital
magnetic fields typically focuses on the single-LL limit [4,5]
because in the high-magnetic-field regime the spacing be-
tween LLs, i.e., the cyclotron frequency ωc, is large compared
with the energy scale of the interactions. Prominently, it is
well known that interactions in low LLs lead to a partial lifting
of the LL degeneracy giving rise to the fractional quantum
Hall effect (FQHE) [6,7] in two dimensions. However, the
effect of LL formation is not constrained to two-dimensional
systems or to high magnetic fields where only very few LLs
are occupied. For instance, QOs are routinely observed at
much smaller fields in a huge variety of two- and three-
dimensional materials, from weakly [3] to strongly interacting
ones [8], which calls for an investigation of strong correlation
effects beyond the few-LL limit.

The effect of weak interactions on LLs is well understood
within Fermi liquid theory and the semiclassical descrip-
tion of electron motion. At zero magnetic field, effective
single-particle theories emerge as low-energy descriptions

with renormalized parameters. In 1952, Onsager shaped our
understanding of Fermi liquids in magnetic fields by a semi-
classical picture [9]: The electrons perform quantized orbital
motion with the cyclotron frequency ωc, constrained by their
energy-momentum dispersion εk perpendicular to the mag-
netic field. This leads to Onsager’s famous relation: The area
of the extremal orbits around the Fermi surface equals the QO
frequency. Note that these also determine the critical fields of
the IQHE transitions in two dimensions. The standard theory
of QOs was then completed by Lifshitz and Kosevich, who
connected the cyclotron frequency, which is determined by the
effective mass ωc = eB/m, to the universal temperature decay
of the QO amplitude [10].

It is surprising that the canonical Onsager and Lifshitz-
Kosevich (LK) theory, which is essentially a single-particle
theory, can be applied routinely even to strongly correlated
systems such as heavy-fermion systems [11] or cuprate high-
temperature superconductors [8,12]. Nevertheless, in recent
years, numerous experimental findings [13–20] have shown
deviations to the standard theory of QOs. However, despite
there being a number of effective [21–28] and perturbative
[29–31] theories available, a controlled calculation including
strong correlations is missing.

Exactly soluble models have played an important role
in understanding the physics of strongly correlated systems.
Many phenomena, for example, LL physics or gapless quan-
tum spin liquid phases, only emerge for large system sizes,
which are challenging for numerical methods. However, in
certain soluble limits, rigorous progress can be made albeit
with the trade-off of a fine-tuned set of parameters [32,33]
or unphysical interactions [34,35]. Important developments
for understanding correlated electrons have been the dynam-
ical mean field theory (DMFT), which is exact in infinite
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dimensions, or the strongly coupled Sachdev-Ye-Kitaev mod-
els, which achieve exact solubility by random all-to-all
couplings [36–38]. Both limits have recently been extended
to orbital magnetic field regimes and feature anomalous QOs
[26,39–41].

Here, we concentrate on the Hatsugai-Kohmoto (HK)
model, which is exactly soluble due to all-to-all scattering
with a center-of-mass constraint. It was initially introduced
as a soluble example of a correlated metal to Mott insulator
transition at half filling [42]. Recently, it has received renewed
interest shedding light on superconductivity in doped Mott
insulators [43–46]. Furthermore, HK-type interactions have
been used for studying interaction effects in the Haldane
model [47], the Kondo effect [48], the periodic Anderson
model [49], the gapping of Weyl nodes [50], or nonequilib-
rium physics [51]. It has been argued that the metal-insulator
transition in the tractable HK model and the intractable Hub-
bard model are controlled by the same fixed point [52].

In this paper we study the LL spectrum of the doped HK
model and the resulting anomalous QOs. At finite magnetic
field the solubility is only partially lost. Remarkably, the LL
degeneracy is retained exactly, but different LLs are strongly
interacting. Hence we can study the little-explored effect of
LL mixing and repulsion on LL spectra and QOs. Due to the
HK interaction the effective degrees of freedom are simplified
enormously. We find an exact functional form of the interac-
tion vertex which allows for an efficient numerical treatment
in the thermodynamic limit as well as further approximation to
a classical Hamiltonian amenable to Monte Carlo simulations.
As a result, we find that strong LL repulsion leads to aperiodic
QOs at odds with Onsager’s relation. In addition, we discover
unconventional temperature dependencies of QO amplitudes
and effective mass renormalizations beyond LK theory. Fi-
nally, we show that the inter-LL components of the standard
Hubbard interaction lead to a similar phenomenology, which
highlights the general relevance of LL repulsion for interpret-
ing QO spectra of strongly correlated quantum materials.

The paper is organized as follows. In Sec. II we summarize
our main findings. Section III introduces the HK model and
the continuum version for calculating the exact LL spectrum.
In Sec. IV we show how to solve the model in the LL basis,
discuss analytical results of the interaction vertex, and use ex-
act diagonalization and Monte Carlo simulations to calculate
QOs. In Sec. V we show that the LL repulsion arising from
the standard local Hubbard interaction gives rise to anomalous
QOs that are similar to those in the HK model. We discuss
our findings in Sec. VI and close with explaining the broader
implications of our work in Sec. VII.

II. OVERVIEW

The HK model is an exactly solvable Hubbard-like model
in which integrability is achieved by an infinite-ranged inter-
action [42] leading to a block-diagonalized Hamiltonian

H =
∑

k

εk(nk,↑ + nk,↓) + Unk,↑nk,↓. (1)

At each momentum, the local Hilbert space is four dimen-
sional, consisting of the states |0k〉, |↑k〉, |↓k〉, and |↑↓k〉
with energies 0, εk, and 2εk + U . One can then minimize the

FIG. 1. Schematic image of the density of states (DOS) and
QO of the singly and doubly occupied GS energies E1 and E2. In
the HK model at B = 0, momentum states are doubly occupied up
to μ2(0) = μ − U and singly occupied from μ2(0) to μ1(0) = μ,
where μ is the Fermi energy in the noninteracting limit; see inset
and rightmost section of the main panel. In the main panel we
plot the entire energetic region where the LLs are doubly (singly,
not) occupied in blue (red, white), neglecting the LL substructure.
The effective pseudo Fermi energies μi(B) (dashed curves) depend
on the magnetic field and lead to QOs of the GS energy E1 + E2

whose frequencies are set by μi(B). Different regimes emerge for
increasing magnetic field going from right to left: In the semiclassical
regime for sufficiently low B, two QO frequencies can be observed,
each associated with the pseudo Fermi seas Si at B = 0. For higher
magnetic fields the semiclassical behavior breaks down: The LLs
interact and transitions between them are allowed. This interaction
leads to a B-field dependence of the effective pseudo Fermi energies
μi(B) which set the QO frequencies. The QOs become aperiodic.
For high magnetic fields the LLs are strongly localized at odds with
the center-of-mass constraint, such that the effective interaction U ′ is
reduced to 0.

energy for each momentum, and the ground state (GS) is a
simple product state thereof.

The GS for any interaction strength can be understood eas-
ily from the noninteracting limit. For U = 0 all states below
the Fermi energy μ are doubly occupied, leading to an ordi-
nary Fermi sea. When turning on repulsive interactions U >

0, doubly occupied momentum states pay an energy penalty
U . Hence states close to the original Fermi energy avoid
double occupancy giving rise to states with a single spin-up or
spin-down electron. As a result, a singly occupied region S1

forms which includes all states with energy μ − U < εk < μ,
whereas in the region S2 with states fulfilling εk < μ − U
momenta remain doubly occupied; see inset of Fig. 1. At
half filling and for large repulsion U a Mott insulating state
emerges with a fully singly occupied band.

In the doped Mott insulator regime the occupation regions
Si can be understood as pseudo Fermi seas. We refer to the
occupation edges as pseudo Fermi surfaces (pFSs) associ-
ated with the effective pseudo Fermi energies μi(0), where
μ1(0) = μ and μ2(0) = μ − U . While at first glance the
metallic regime of the HK model seems to be analogous to
a two-band metal, the interacting nature is manifest in the
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unconventional excitations [43] and thermodynamic proper-
ties [42] as detailed below.

Remarkably, we find that the application of an orbital mag-
netic field, which introduces the new length scale �B = 1√

eB
,

conserves the full LL degeneracy with interesting implica-
tions. First, it simplifies the many-body problem enormously
by simplifying the degrees of freedom (e.g., only the LL index
of the wave functions is relevant), which offers the opportu-
nity to study solely the effects of LL mixing and repulsion.
Second, we can directly work in the thermodynamic limit,
which allows us to derive the interaction vertex analytically.
The resulting many-body problem can be efficiently solved
numerically.

A direct application of Onsager’s semiclassical theory to
the HK model would lead to two distinct QO frequencies
for each of the two pseudo Fermi surfaces (pFSs) μi with
conventional LK behavior [53]. As one of our main results,
we show that Onsager’s relation is only correct in the semi-
classical regime at small magnetic fields where the size of the
semiclassical orbit, i.e., the characteristic size of the LLs at the
Fermi energy

√
2l��B, with the highest occupied LL l� ≈ μ/ωc,

is the dominant length scale of the system.
The reason for the appearance of a “semiclassical” regime

in interacting metals is very generic. For low magnetic field,
i.e., large �B, multiple LLs are occupied. Inside the region
�B

√
l/5, which can be of macroscopic size, they resemble

plane waves. Hence any interaction has the same influence
on high LLs at small magnetic fields as on momentum eigen-
states. Therefore the assumptions of Onsager’s and LK theory,
where the properties of the oscillations can be connected
to electronic properties of the metal in zero magnetic field,
remain true. However, we show that even in the semiclassical
regime of the HK model, QOs can have a temperature-
dependent frequency drift because of the non-Fermi-Dirac
distribution of excitations; see Sec. IV B.

Beyond the semiclassical regime, LL repulsion becomes
important. Surprisingly, we observe numerically that a simple
scenario of individual LLs persists. Concretely, the ground
state (GS) remains close to a state with an integer occupation
of each LL [see Fig. 3(b)]. Qualitatively similar to the B = 0
case, a doubly occupied region forms at low energies, and
a singly occupied one forms for higher energies. However,
as our main result we find that the size of the regions now
depends on the magnetic field μi = μi(B) (see Fig. 1), which
leads to a breakdown of Onsager’s relation with aperiodic
QOs. A detailed study of the QOs in the strongly correlated
non-Onsager regime (see Figs. 4–6) shows that nontrivial
sum and combination frequencies appear in the QO spectrum.
Finally, while all frequencies show a LK temperature depen-
dence, they feature unusual effective mass renormalization at
odds with the canonical LK theory.

A. A word of caution

As with any fine-tuned exactly soluble Hamiltonian, the
HK model should not be considered a microscopic descrip-
tion of (doped) Mott insulating materials. Nevertheless, it
can show generic physics which needs to be separated from
artificial behavior originating from the infinite-ranged inter-
actions. Concretely, the strength of the interaction between

LLs is governed by two different effects. First, the deviation
of the LL wave functions compared with plane waves leads
to a very natural change in the repulsion between LLs with
opposite spin. It reduces the doubly occupied region S2 for
multiple occupied LLs more strongly than for higher magnetic
fields where fewer LLs are occupied. Secondly, there is an
artificial reduction in the effective interaction U ′ = �B

L U be-
tween LLs: With increasing magnetic field, LLs become more
localized, eventually decreasing the possibility for center-of-
mass-conserving scattering events, and hence the effective
interaction approaches an artificial noninteracting limit in the
high-field regime.

In order to discuss the effect of LL repulsion beyond the
HK limit, we note that the HK interaction is essentially the
q = 0, k = k′ part of the standard Hubbard interaction in mo-
mentum space Ũ

∑
k,k′,q c†

k−q,↑ck,↑c†
k′+q,↓ck′,↓. One can then

study the effect of LL repulsion by projecting the Hubbard
term into the LL basis and then keeping only inter-LL in-
teractions but ignoring LL-degeneracy-lifting contributions.
Remarkably, in Sec. V we show that we find similar aperiodic
QO beyond the Onsager and LK paradigm (see Fig. 7).

Overall, we argue that breaking Onsager’s relation is a
generic effect of strongly interacting metals with strong LL
repulsion. In practice this might occur as an additional effect
on top of LL-degeneracy-lifting effects. Our work focuses
solely on the influence of interactions on LL mixing, which
can be studied in a controlled way in the HK limit. It should
therefore be seen as the opposite limit to standard treatments
of interactions in quantum Hall physics, where LL mixing is
only treated perturbatively and interactions are projected into
individual LLs.

III. RECAP OF THE HATSUGAI-KOHMOTO MODEL

The HK model [42] is described by the Hamiltonian

H = − t
∑

〈r,r′〉,σ
c†

r,σ cr′,σ

+ U

L2

∑
r1,r2,r3,r4

δr1+r3,r2+r4 c†
r1,↑cr2,↑c†

r3,↓cr4,↓, (2)

where L is the linear length of the system. We measure all
length scales in terms of the dimensionless lattice constant
a = 1. The interaction is of infinite range and may be inter-
preted as center-of-mass scattering: A pair of a spin-up and
spin-down electrons is scattered to a different location, but
their center-of-mass coordinate is conserved. The HK model
can be block-diagonalized to Eq. (1) by Fourier transforma-
tion; see Appendix A.

Initially, Hatsugai and Kohmoto [42] introduced the model
as a simplified yet soluble version for an interaction-driven
metal-insulator transition at half filling. Away from the Mott
insulating half-filling limit the model is metallic. However,
it is not a simple Fermi liquid but features, for a nonzero
interaction U , singly occupied S1, doubly occupied S2, and
nonoccupied S0 regions in the Brillouin zone with pFSs sep-
arating them. It is then a natural question to ask, Do these
pFSs give rise to QOs that are similar to those of an ordinary
metal?
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The GS of the HK model is highly degenerate. Each
momentum state in S1 can be either occupied by a spin-up
electron or a spin-down electron. However, this degeneracy is
artificial; that is, it is unstable against perturbations. Projecting
a local Hubbard term Ũnr↑nr↓ into the GS manifold results in
an effective ferromagnetic interaction implying that the spins
of the electrons inside S1 point all in the same direction [53].
Henceforth, we take

|GSσ 〉 =
∏

k1∈S1

c†
k1σ

∏
k2∈S2

c†
k2↑c†

k2↓ |0〉 (3)

as the robust GS.
All finite-temperature thermodynamic properties of the HK

model can be calculated exactly [42]. Here we only show
the distribution function because it already offers a glimpse
into the interacting nature of the doped Mott insulator. The
partition function

Z = Tre−β(H−μN ) (4)

=
∏

k

(
1 + 2e−β(εk−μ) + e−2β(εk−μ)−βU

)
(5)

leads to the non-Fermi-Dirac distribution function fHK(ε −
μ, T ) for the occupation number 〈n↑ + n↓〉, where

fHK(ε, T ) = 2
e−βε + e−2βε−βU

1 + 2e−βε + e−2βε−βU
; (6)

see Fig. 2. For T � U all details of the interaction are es-
sentially washed out by temperature, and the thermodynamic
properties resemble those of an ordinary metal. The interest-
ing limiting case is T 
 U , where

fHK(ε, T ) →[ f (ε + U + T ln 2, T ) + 1]

× f (ε − T ln 2, T ) (7)

is the combination of two Fermi-Dirac distribution func-
tions f . Each occupation edge in the HK model broadens
in a Fermi-Dirac fashion with temperature; however, an
asymmetry of the excitations leads to a slight temperature shift
of the pseudo Fermi energies (see Fig. 2).

Finally, note that the dispersion of the band εk can be of
any type, depending on the form of the noninteracting part
of the Hamiltonian. Throughout this paper we fix εk = k2

2m

corresponding to the continuous real-space term −c†(r) ∇2

2m c(r)
in order to calculate the exact LL spectrum. Formally, the
continuous approximation applies only for low fillings of a
typical band, but we expect our findings to be generic for
doped Mott insulators because the qualitative feature of two
pFSs with singly and doubly occupied states persist. Note
that by introducing an unbounded band structure, we lose
the concept of bandwidth which is responsible for the Mott
transition. This could be artificially restored by introducing a
UV cutoff.

IV. LANDAU LEVEL INTERACTIONS

A. Transformation to LL eigenstates

We apply a magnetic field in the z direction which is
perpendicular to the HK model lying in the x-y plane and use
standard minimal coupling −i∇ → −i∇ − eA in the Landau

FIG. 2. The HK model features at T = 0 regions Si in the Bril-
louin zone in which 〈nk〉 = i. S2 (S1) is bound by its pseudo Fermi
energies μ2 (μ1) in blue (red). At finite temperature the occupation
steps broaden asymmetrically (see zoom-in), with the distribution
function fHK (black solid curve) due to excitations which can be
excited from S2 directly to S0; see schematic above the plot. At
high temperatures T � U the details of the interaction are washed
out (dashed curve). In the figure, a base 10 logarithm is used.

gauge A = (−By, 0, 0)T. Note that the interaction does not
couple to the magnetic field.

We transform to the LL basis

cl,kx,σ =
∑
x,y

	l,kx (x, y)c(x,y),σ (8)

with the LL wave function

	l,kx (x, y) = e−ikxx

√
L�B

ψl

(
y

�B
+ kx�B

)
, (9)

where

ψl (ξ ) = 1√
2l l!

√
π

e− 1
2 ξ 2

Hl (ξ ) (10)

are the normalized wave functions of the quantum harmonic
oscillator and Hl are the (physicist’s) Hermite polynomials.
The above transformation diagonalizes the noninteracting part
of the Hamiltonian and gives the well-known LL Hamiltonian
where each LL state labeled by l is (N	 = 2πL2

�2
B

)-fold degen-
erate in the quantum number kx.

One of the key simplifications of the HK interaction is
that the LL transformation makes it block diagonal: The
interaction only couples states with different LLs li but
the same momenta, giving rise to an interaction vertex
VL/(2�B )

l1l2l3l4
(kx ). In general, the vertex VL/(2�B )

l1l2l3l4
(kx ) is, for a finite-

sized system, a difficult three-dimensional integral which
needs to be carefully solved numerically (as detailed in Ap-
pendix A and benchmarked in Fig. 8). Remarkably, we find
that in the thermodynamic limit L → ∞ all integrals of the
vertex V∞

l1l2l3l4
(kx ) = Vl1l2l3l4 can be solved analytically; see
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Appendix C. The full interacting Hamiltonian then reads

H =
∑

l,kx,σ

ωc

(
l + 1

2

)
c†

l,kx,σ
cl,kx,σ

+ U
�B

L

∑
kx,l1,l2,l3,l4

Vl1l2l3l4 c†
l1,kx,↑cl2,kx,↑c†

l3,kx,↓cl4,kx,↓ (11)

and is diagonal in kx. Note that the prefactor �B/L = √
2π/N	

normalizes the multiple sums of the interaction and hence the
interaction cannot be treated perturbatively in the thermody-
namic limit.

We have simulated the above Hamiltonian for up to ten
LLs with exact diagonalization (ED). We emphasize that the
required lattice size for a real-space calculation would be
beyond any numerical capabilities. The reason why the HK
model can be efficiently simulated in an orbital magnetic field
has its origin in the center-of-mass-preserving interaction,
which does not mix different momenta and thus retains the
full LL degeneracy. Note that this is the opposite limit of most
studies of the FQHE, which usually ignore LL mixing and
only treat interactions projected to individual LLs.

B. The semiclassical regime

Before studying generic field strengths, we discuss the
limit of small orbital magnetic fields, dubbed the semiclassical
regime. The application of a magnetic field introduces a new
length scale, the magnetic length �B, which may be interpreted
as the size of a flux quantum 	0 = 1/2πe. The cyclotron
orbits, i.e., the characteristic size of the highest occupied
LL, are much larger with a radius of �B

√
2l [3]. For small

magnetic fields only a few fluxes are inserted into the system,
and the semiclassical cyclotron orbits are of macroscopic size
approaching L. In this limit the semiclassical theory always
remains valid, independent of the form of the interaction.

A quantum mechanical argument for the validity of the
semiclassical theory is that inside the real-space region |y| <

�B
√

l/5, LLs with index l resemble plane waves

ψ∞
l (ξ ) =

(
2

π2l

) 1
4

cos
(√

2lξ − l
π

2

)
; (12)

see Appendix B 1. For low magnetic fields, leading to LLs
with a large LL index l at the Fermi energy, this region is
of macroscopic size. Hence high LLs interact with exactly the
same interaction as momentum states interact at zero magnetic
field. Our semiclassical intuition carries over, and Onsager’s
theorem remains valid.

The above statement applies for any metal, and we now
focus on the specific case of the HK model. Using the asymp-
totic form of the wave functions ψ∞

l , we evaluate the vertex
VL/�B

l1l2l3l4
; see Appendix B 2. Remarkably, we find that for suf-

ficiently high LLs the vertex becomes diagonal in each LL
leading to a “LL-HK” Hamiltonian

Hsc =
∑
l,kx

ωc

(
l + 1

2

)(
nl,kx,↑ + nl,kx,↓

) + U ′nl,kx,↑nl,kx,↓,

(13)
which is exactly the same as in zero magnetic field, but for
quantum numbers l, kx. All known concepts from B = 0 carry
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FIG. 3. (a) The occupation of different LLs (doubly occupied,
transparent blue; singly occupied, transparent red) is shown for
inverse magnetic field μ/ωc ∝ 1/B. The red (blue) curve shows the
energy of the highest singly (doubly) occupied LL εl�1

(εl�2
). The

dispersion of the LLs εl = ωc(l + 1
2 ) is shown as gray dotted curves.

Jumps occur when l�
1 and l�

2 change and are also visible in the
orbital magnetization (black curve) M = −∂E/∂B, where E is the
GS energy. The data are obtained from ED with L = 10 LLs and
U ′
/μ = √

μ/ωcL. (b) The many-body participation ratio P(GS) of the
GS on a log scale (left axis, dark gray curve) is shown as well as the
overlap with the closest Fock state maxα∈H(|〈α|GS〉|2) (right axis,
light gray curve).

over exactly: LLs with εl < μ − U ′ are doubly occupied, LLs
with εl < μ are singly occupied, and higher energetic LLs are
not occupied. The occupation edges at μ and μ − U ′ lead at
T = 0 to QO with frequencies μ

ωc
and μ−U ′

ωc
, which are indeed

the areas of the pFSs.
Nevertheless, the non-Fermi-Dirac distribution function of

the HK model leads to unconventional behavior at nonzero
temperature T > 0. We focus on the limit T 
 U ′; otherwise
the effects of the interaction are washed out by temperature.
Hence we can make use of the approximate representation of
fHK in terms of the Fermi-Dirac distribution function equa-
tion (7) and follow earlier work (e.g., Ref. [54]) to derive the
characteristic form of the QOs of an observable X (i.e., the
magnetization or resistance)

X ∝
∑
k>0

cos

(
2πk

μ + T ln 2

ωc

)
RT (m)

+ cos

(
2πk

μ − U ′ − T ln 2

ωc

)
RT (m), (14)

where RT (m) = 2π2m�2
BT

sinh(2π2m�2
BT )

is the usual LK temperature de-
pendence. Remarkably, the only effect of the non-Fermi-Dirac
distribution function in the HK model is a temperature shift of
the frequencies.

C. The non-Onsager regime: Exact treatment

We now focus on the regime �B 
 L such that all inte-
gration boundaries can be extended to infinity. In this limit
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non-inter-
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FIG. 4. The occupation of different LLs (doubly occupied, transparent blue; singly occupied, transparent red), obtained from zeroth-order
Monte Carlo simulations at temperatures T 
 ωc, shown for inverse magnetic field μ/ωc ∝ 1/B. The dispersion of the LLs εl = ωc(l + 1

2 ) is
shown as gray dotted curves. The plot should be compared with Fig. 3, but here we simulated L = 50 LLs (U ′

/μ = √
μ/ωcL). The semiclassical,

non-Onsager, and noninteracting regimes are clearly distinguishable. The orbital magnetization M experiences drops when the LL occupations
change, consistent with the ED result. Additional noise in the magnetization is due to a numerical derivative of the MC data.

the vertex of the LL interaction can be computed analytically,
with details relegated to Appendix C. Due to the degeneracy
in kx, we drop the momentum index kx from here on and work
with completely filled LLs, which corresponds to working at
fixed chemical potential. We measure the filling nl of a LL in
units of the LL degeneracy N	. Although all matrix elements
of the vertex Vi jkl can be found exactly, the resulting model
remains too complex to be solved analytically. The vertex
Vi jkl is dense and has off-diagonal and diagonal elements with
no apparent substructure. Nevertheless, the transformation to
the LL basis has simplified the problem enormously: First,
it reduced the initial long-range interacting two-dimensional
(2D) model to a 1D long-range interacting model. Secondly,
the transformation made use of the infinite system size, such
that we are actually working in the thermodynamic limit and
are only constrained by the number of LLs we can simulate.
Overall, we can study interacting LLs with ED far beyond any
real-space numerical calculation.

The first remarkable result of the ED study is that even
though the vertex Vi jkl has nonperturbative off-diagonal com-
ponents, the exact eigenstates of the system remain close to
Fock states in the LL basis. This becomes apparent from the
fact that deviations to integer filling of each LL are small,
as well as from the fact that the many-body participation
ratio P−1(ψ ) = dim(H)

∑
α | 〈α|ψ〉 |4 of the GS is small. The

many-body participation ratio measures how many Fock states
|α〉 contribute to a many-body state |ψ〉. At the minimal value
P = ( dim(H))−1 only a single basis state contributes (i.e., the
state is a single Fock state), whereas P takes its maximal value
of 1 for a maximally superpositioned state, e.g.,

∑
α |α〉.

The above results allow for a simple, perturbative under-
standing of the complicated vertex Vi jkl : The density-density
interactions Vii j j may be understood as ferromagnetic inter-
actions between the LLs i and j, because the state c†

i↑c†
j↓ |0〉

has a density-density interaction energy >0, whereas the state
c†

i↑c†
j↑ |0〉 has no interaction energy. Hence the density-density

interaction reduces double occupancy and aligns the electron
spins of different LLs. On the other hand, the off-diagonal
elements of the vertex, i.e., i �= j or k �= l , stabilize antiferro-

magnetic LL occupations and hence also double occupancy.
This contribution diagonal in LL occupation states arises as
a perturbative effect via an enormous number of virtual in-
termediate states coupled by the off-diagonal elements of the
vertex. In summary, even though the repulsive density-density
interaction always wins, it is significantly reduced by the latter
effect; see Sec. IV D.

The second important result is that the electrons keep form-
ing pseudo Fermi seas, i.e., energetic regions which are for LL
index l � l�

2 doubly occupied and for LL index l�
2 < l � l�

1
singly occupied. A Fock state with these properties, which is
not the exact GS but close to it, is

|l�
1 , l�

2 〉 =
∏

l1�l�1 ,l2�l�2

c†
l1↑c†

l2↓ |0〉 . (15)

We evaluate l�
1,2 from the exact GS by calculating

l�
2 =

∑
l

min({〈nl↑〉, 〈nl↓〉}) − 1, (16)

l�
1 =

∑
l

max({〈nl↑〉, 〈nl↓〉}) − 1. (17)

As stated before, it is impossible to describe the semiclas-
sical low-field regime correctly when extending the system
size to infinity, which is required to evaluate the vertex analyt-
ically. However, for U � μ no doubly occupied pseudo Fermi
sea S2 exists, and the semiclassical regime and the low-field
behavior for infinite system size coincide accidentally. We
focus our numerical analysis for simplicity on U = μ.

In Fig. 3(a) the energy dispersion of the highest singly
(doubly) occupied LL εl�1 (εl�2 ) is shown, as well as the orbital
magnetization obtained from the GS energy as a function of
μ/ωc ∝ 1/B. All quantities are calculated from ED. For small
magnetic fields, i.e., large μ/ωc, the number of occupied LLs
drops periodically at μ/ωc = Z + 1/2, i.e., when the energy of
the highest occupied LL becomes larger than the chemical po-
tential μ. These periodic QOs appear in the magnetization in
accordance with Onsager’s relation. However, at sufficiently
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strong magnetic fields the system can minimize its energy by
occupying the lowest singly occupied LL with a spin-down
electron and a spin-up electron; l�

2 increases by 1. Similarly,
it might be energetically preferable to keep the lowest doubly
occupied LL and instead depopulate the highest singly occu-
pied LL; l�

1 decreases by 1. Both processes lead to jumps in
the magnetization. Importantly, these jumps are aperiodic, and
the critical magnetic field values where they appear depend
on the details of the vertex and the interaction strength. The
main conclusion is that the resulting QOs become aperiodic,
breaking Onsager’s relation!

Henceforth, we can understand the effect of interactions
in terms of effective chemical potentials μi(B) for the doubly
and singly occupied states, which is analogous to the B = 0
HK model where μ1(0) = μ and μ2(0) = μ − U .

D. Qualitative results for many LLs: A Monte Carlo study

1. Zero temperature

The simple results from the ED simulations suggest that a
perturbative picture where LLs remain the exact eigenstates
might be sufficient to understand the underlying physics. In
this picture the off-diagonal matrix elements, i.e., Vi jkl for
i �= j and k �= l , are treated as perturbations to the classical
Hamiltonian

H0 =
∑
l,σ

ωc

(
l + 1

2

)
nl,σ + U ′ ∑

l,l ′
Vlll ′l ′nl,↑nl ′,↓. (18)

The eigenstates of H0 are known exactly, since [nl,σ , H0] = 0.
These are the Fock states in the LL basis |n0,↑, n0,↓; n1,↑, · · ·〉.
In principle, the energy of each eigenstate can be computed
efficiently; however, finding the GS by a direct calculation
of all eigenstates is numerically costly. In the following,
we show that an efficient way to find the GS and obtain
the finite-temperature dynamics with respect to H0 is to
use Monte Carlo (MC) sampling employing the Metropolis
algorithm.

In principle it is possible to include perturbations of second
or higher order (the first order vanishes), but in practice the
dense form of the off-diagonal vertex requires that one sums
over a large fraction of states of the entire Hilbert space
such that the second-order correction of the eigenstate energy
cannot be computed efficiently. By a careful comparison be-
tween ED and MC results, we have shown that even in the
presence of off-diagonal interactions, states remain close to
LL Fock states. Thus we can conclude that the zeroth-order
approximation is sufficient for a correct qualitative pic-
ture. Higher-order perturbations will decrease the strength of
the diagonal elements Vlll ′l ′ , and therefore we observe that the
zeroth-order MC simulation overestimates the strength of the
interaction U .

Figure 4 shows the results of the MC simulation of Eq. (18)
in the same style as Fig. 3 for ED. The MC simulation allows
us to access many more LLs and hence more oscillations. We
have subsequently decreased the temperature to obtain the GS
occupation.

Importantly, the MC simulations provide numerical evi-
dence for the schematic image sketched in Fig. 1: The number
of doubly and singly occupied LLs sets the QO frequencies.
For Fig. 5 we have collected data of 200 LLs at effectively
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FIG. 5. (a) A STFT of the particle number N for a MC data
set like the one shown in Fig. 4, but for 200 LLs at effective low
temperatures. Here, we show N because it is numerically more
stable than M, which requires a derivative. However, the oscillating
properties of M and N are the same. Inside the semiclassical regime
the Fourier spectrum shows peaks at multiples of the area of the
Fermi surface. In the non-Onsager regime a plethora of peaks which
are dispersive in μ/ωc arise. (b) We extracted the peak positions of
(a) (open circles). We overlaid the data points with the expected
peak positions for frequencies associated with sum combinations
of the effective pseudo Fermi energies p1μ1 + p2μ2. Note that in a
STFT plot, frequency peaks do not appear at the actual frequencies;
however, the peak frequencies can be calculated from the actual
frequencies (see Appendix D). Several higher orders of (p1, p2) are
visible; for clarity we focused only on the ones indicated in the
legend. Here, freq., frequency; fft, fast Fourier transform.

zero temperature. Due to the fact that the QO frequencies
depend on the magnetic field, we perform a short-time Fourier
transformation (STFT) as μ/ωc changes. In the STFT, small,
consecutive windows of the complete data are Fourier trans-
formed, allowing us to study the magnetic field dependence
of the peak frequencies (for details of the STFT method, see
Appendix D).

Strikingly, Fig. 5 shows that the observed frequencies
match with the effective pseudo Fermi energies μ1(B) =
ε̄l�1 +1/2 [μ2(B) = ε̄l�2 +1/2] of the singly (doubly) occupied LLs;
see the red (blue) solid curve in Fig. 5(b). Note that in a STFT
the frequencies F (μ/ωc ) are not observed directly, but due to

the consecutive Fourier transformations only F (t ) + t dF
dt (t ),

where ·(t ) denotes the average over the window with midpoint
t ; see Appendix D.

The most prominent features in Fig. 5(a) are not the ba-
sis frequencies, but the combination frequencies p1εl�1 +1/2 +
p2εl�2 +1/2 with integers p1, p2. Our two main observations are
as follows: (i) In the canonical theory of QOs only multiples of
the basis frequencies are allowed, i.e., p1εl�1 +1/2 and p2εl�2 +1/2,
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whereas we observe sum combinations of these basis frequen-
cies, which is highly unusual. (ii) The higher orders come
with anomalous amplitudes. The sum frequency is clearly
dominant in the non-Onsager regime, but the canonical higher
orders (p1, 0) and (0, p2) with p1, p2 > 1 are absent.

The observed QOs in Fig. 5 show a clear breakdown of On-
sager’s relation, which would predict frequencies set by μi(0)
with i = 1, 2 and higher harmonics thereof. Nevertheless, os-
cillations remain visible, and they are set by the effective
pseudo Fermi energies εl�1,2+1/2 which are determined from the
interaction. The oscillatory part of a thermodynamic quantity
Xosc reads

Xosc ∝
∑

p1,p2>0

A(p1,p2 ) cos

(
2π

p1εl�1 +1/2 + p2εl�2 +1/2

ωc

)
, (19)

and some amplitudes A(p1,p2 ) are not observed in our numerics.

2. Finite temperature

A further advantage of the MC simulation is that it allows
for an efficient computation of finite-temperature properties.
Figure 6 shows the temperature dependence of the ampli-
tudes of the strongest peaks of Fig. 5 for different windows
centered around μ/ω̄c. We chose windows in the semiclassi-
cal regime [Fig. 6(a)] as well as in the non-Onsager regime
[Figs. 6(b) and 6(c)]. Strikingly, we find for all frequencies
and all windows a clear LK dependence of the amplitudes
which can be traced back to the underlying Fermi-Dirac-
like distribution of excitation energies. However, fitting the
amplitudes with the LK factor RT (m∗) to obtain the ef-
fective mass m∗ of each frequency shows a breakdown of
the LK theory. In the semiclassical regime the higher har-
monics are damped with an effective mass being integer
multiples of the bare charge carrier mass m, as expected; see
Fig. 6(a). In contrast, in the non-Onsager regime the sum
frequency μ1 + μ2 has the lowest effective mass m∗ ≈ 1.8m,
whereas the basis frequencies decay faster in temperature
with m∗ ≈ 2 to 3m.

Note that we do not find a clear indication of temperature
drifts of the frequencies as in the semiclassical regime.

V. LANDAU LEVEL REPULSION IN THE HUBBARD
MODEL

The HK model provides a good starting point to explore the
LL spectrum of interacting metals because its physics at zero
magnetic field is well understood due to its exact solubility.
However, we argue that our findings about LL repulsion lead-
ing to anomalous QOs are generic and not a pure artifact of the
infinite-ranged HK interaction. In this section we show that we
obtain similar results for the Hubbard model as summarized in
Fig. 7.

We project the standard Hubbard interaction Ũ
∑

r nr,↑nr,↓
into the kx-momentum states; that is, we only take LL mixing
into account and ignore contributions lifting the LL degener-
acy, e.g., its kx-momentum dependence. Analogously to the
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FIG. 6. (a)–(c) Temperature dependence of the main peak fre-
quencies of Fig. 5 (open symbols). The temperature dependence is
extracted for three different windows, each with the range [μ/ω̄c −
10, μ/ω̄c + 10]. The data are fitted with the LK factor RT (m∗) to
obtain the effective mass (solid curves). The color coding of the
frequencies is in accordance with Fig. 5(b). Note that very low
temperatures are not accessible due to freezing of the MC simulation.

HK model, we obtain

H̃ =
∑

l,kx,σ

ωc

(
l + 1

2

)
c†

l,kx,σ
cl,kx,σ

+ Ũ
1

�B

∑
kx,l1,l2,l3,l4

Ṽl1l2l3l4 c†
l1,kx,↑cl2,kx,↑c†

l3,kx,↓cl4,kx,↓, (20)

where Hubbard quantities are marked by a tilde. The LL ver-
tex Ṽi jkl for the Hubbard model can also be computed exactly
(see Appendix E) and is similarly dense and unstructured.
The main difference between this model and the HK model is
that the effective interaction Ũ/�B increases for high magnetic
fields, causing the artificial noninteracting regime of the HK
model to disappear.

We have solved Eq. (20) for up to ten LLs by ED; see
Fig. 7. Remarkably, the results for the Hubbard model closely
resemble the results of the HK model; Fig. 3. Concretely, LLs
with B-field-dependent effective pseudo Fermi energies re-
main a good description of the system leading to a breakdown
of Onsager’s relation for QOs.

085106-8



QUANTUM OSCILLATIONS IN A DOPED MOTT … PHYSICAL REVIEW B 108, 085106 (2023)

0.0

0.2

0.4

0.6

0.8

1.0

E
/
μ

εl�1

εl�2

εl

M

M
=

−
∂

E
∂

B

0

1

m
a
x
.

o
v
er

la
p

2 4 6 8 10

μ/ωc

4−L
4−9

4−8

P
(G

S
)

(a)

(b)

FIG. 7. (a) The occupation of different LLs in the Hubbard
model (doubly occupied, transparent blue; singly occupied, transpar-
ent red) is shown for inverse magnetic field μ/ωc ∝ 1/B. The dispersion
of the LLs εl = ωc(l + 1

2 ) is shown as gray dotted curves. The
red (blue) curve shows the energy of the highest singly (doubly)
occupied LL εl�1

(εl�2
). Jumps occur when l�

1 and l�
2 change and are

also visible in the orbital magnetization (black curve). The data
are obtained from ED with ten LLs and Ũ ′

/μ = 5/
√

μ/ωc. (b) The
many-body participation ratio P(GS) of the GS on a log scale (left
axis, dark gray curve) as well as the overlap with the closest Fock
state maxα∈H(|〈α|GS〉|2) (right axis, light gray curve).

VI. DISCUSSION

Our approach to study QOs in a doped Mott insulator is
based on the HK interaction and an exact transformation to
the LL basis in the thermodynamic limit. We showed that
the resulting LL vertex retains the LL degeneracy even for
strong interactions. However, the interactions lead to magnetic
field-dependent pseudo Fermi energies due to strong repulsion
between different LLs. As a result, we find QOs beyond On-
sager’s relation with unusual properties. The aperiodic QOs
can be understood by magnetic field-dependent pseudo Fermi
energies with three notable exceptions: (i) the emergence of
new QO frequencies which are the sum of pFSs μ1 and μ2;
(ii) the anomalous amplitudes of the different harmonics (e.g.,
the sum frequencies are strong, whereas ordinary second- or
higher-order harmonics are absent); and (iii) the unusual ef-
fective masses extracted from the LK temperature dependence
of the different harmonics.

For canonical QOs, different mechanisms are known which
could possibly explain the emergence of sum frequencies.
However, most of them are due to processes in experimental
setups, such as magnetic interactions [3], and can therefore
be ruled out. Neither can oscillations of the effective Fermi
energies be the reason for observation (i), since they would
lead to oscillation with sum and difference frequencies. We
suggest that in strongly interacting systems the sum frequen-
cies can be understood as oscillations of the quasiparticle
lifetime [54,55]. In Ref. [54], interband scattering by impu-
rities leads to a coupling of LLs from different bands which
gives rise to QOs of the quasiparticle lifetime. New combi-
nation frequencies of QOs appear in transport properties, but

no difference (only sum) frequencies are observed in ther-
modynamic quantities, similar to the magnetization studied
here. The underlying mechanism in our case is qualitatively
similar; for example, the interaction-driven feedback of the
different QO periods of the two occupation edges leads to
sum combination frequencies in thermodynamic quantities.
Consequently, we expect both sum and difference frequencies
p1μ1 + p2μ2 with p1, p2 ∈ Z to appear in transport proper-
ties.

The interaction-induced appearance of combination fre-
quencies has recently been shown in perturbative calculations
[29], but observation (ii) and the unconventional effec-
tive mass renormalizations [observation (iii)] are beyond
standard perturbative effects of QOs in interacting sys-
tems [3,56]. Especially the small effective mass of the
sum frequency is in stark contrast with known theories of
QOs, where sum combinations μ1 + μ2 have temperature
dependencies RT (m∗

1 + m∗
2 ) or RT (m∗

1 )RT (m∗
2 ) and, hence,

necessarily decay faster in temperature than their basis
frequencies.

So far we have concentrated on the effect of LL repulsion
on QOs, but it is interesting to speculate about other nonper-
turbative effects. For example, LL repulsion can also lead to
an interesting interplay between the IQHE effect and Mott
physics. The Mott insulating state of the HK model without a
magnetic field appears at half filling with U being larger than
the bandwidth � such that the entire Brillouin zone is singly
occupied. In our continuum model this can be artificially
realized by introducing a UV cutoff � = μ1(0). Applying a
magnetic field leads to the formation of doubly occupied LLs
at Bc0 by deoccupying the “highest” LL, analogous to Fig. 3.
Then QOs, the IQHE, or the FQHE would only be visible
for μ1(B) �= μ1(0) = �. The transition between regimes with
singly and doubly occupied LLs would be accompanied by
a re-formation of edge states, one associated with the particle
pocket at the lower Hubbard band and the other one associated
with the hole pocket at the upper Hubbard band. As a result,
a magnetic field-induced transition between a Mott insulator
and a Hall insulating state should occur with a distinct Hall
response.

VII. CONCLUSION

We have studied the LL spectrum of the exactly soluble
HK model and the resulting QOs. The HK interaction does
not break the LL degeneracy but leads to a strong repulsion
between LLs. We found various exact results for the interac-
tion vertex between LLs which allowed efficient numerical
simulation of up to ten LLs. Subsequently, we showed that
the main qualitative effects can already be understood from
density-density interactions between LLs, which allowed us
to perform Monte Carlo simulations for hundreds of LLs. The
most important effect is the emergence of effective pseudo
Fermi energies μi(B) which depend on the magnetic field
strength via the interaction vertex.

The implications of the magnetic field-dependent LL repul-
sion are manifold: The resulting QOs and the critical magnetic
fields of IQHE transitions become aperiodic. Hence QOs are
not connected to the area of the pseudo Fermi energies at zero
field in contrast to Onsager’s seminal relation. Furthermore,
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LL interactions give rise to unusual sum combination frequen-
cies and LK temperature decays of the QO amplitudes with
unusual effective mass renormalizations.

In the future it will be interesting to explore other phys-
ical observables of the (partially) soluble HK model in an
orbital magnetic field. In addition, the fine-tuned limit of
infinite-ranged interactions could be used as a starting point
for including generic perturbations, e.g., those lifting the LL
degeneracy. It would be very worthwhile to look for our ape-
riodic QOs with numerical methods, e.g., recent extensions of
DMFT to include orbital magnetic fields [41]. Similarly, other
exactly soluble models [57] could shed light on interaction
effects and QOs in doped Mott insulators, and nonperturbative
parton descriptions can help to map out the possible phe-
nomenologies [58].

The canonical Onsager and LK theory of QOs, which is
essentially a semiclassical theory of noninteracting electrons,
has been unreasonably successful. Over the last decades, it
has been applied beyond its regime of validity to understand
QO experiments of weakly as well as strongly correlated
systems. In that context our work rationalizes that even
in the strongly interacting HK model we recover canoni-
cal QOs in the semiclassical limit. However, there are by
now several experimental examples of strongly correlated
materials showing QOs beyond the canonical description
[13–20]. Our study indeed provides rigorous calculations
for aperiodic QOs with unusual mass renormalizations, and
we hope it can serve as a stepping stone for exploring
new theoretical scenarios and generalizations of Onsager’s
relation.

Note added. We note that Ref. [59] also considers orbital
magnetic field effects in the HK model. Their result within
the Luttinger approximation seems to be consistent with our
semiclassical regime.

The code and data related to this paper are available on
Zenodo [60] from the corresponding authors upon reasonable
request.
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APPENDIX A: TRANSFORMATION TO THE LANDAU
LEVEL BASIS

Here we show how the HK model becomes block diagonal
by Fourier transformation,

ck = 1

L

∑
r

e−ikrcr, (A1)

i.e., deriving Eq. (1) from Eq. (2), and how the LL vertex
arises, i.e., the derivation of Eq. (11).

We start from the real-space Hamiltonian equation (2)
and transform its interaction to the LL basis. For simplic-
ity we carry out the calculation separately for the x and y
components. We begin with the x component, which is for

our gauge choice of the magnetic field analogous to the HK
model at zero magnetic field:

1

L

∑
x1,x2,x3,x4

δx1+x3,x2+x4 c†
x1,↑cx2,↑c†

x3,↓cx4,↓

= 1

L3

∑
k1,k2,k3,k4

c†
k1,↑ck2,↑c†

k3,↓ck4,↓

×
∑

x1

eix1(k1−k4 )

︸ ︷︷ ︸
Lδk1 ,k4

∑
x2

e−ix2(k2−k4 )

︸ ︷︷ ︸
Lδk2 ,k4

∑
x3

eix3(k3−k4 )

︸ ︷︷ ︸
Lδk3,k4

=
∑

k4

c†
k4,↑ck4,↑c†

k4,↓ck4,↓. (A2)

For the y component at a given momentum kx,
1

L

∑
y1,y2,y3,y4

δy1+y3,y2+y4 c†
y1,↑cy2,↑c†

y3,↓cy4,↓

= 1

L�2
B

∑
l1,l2,l3,l4

c†
l1,↑cl2,↑c†

l3,↓cl4,↓
∫ L/2

−L/2
dy1dy2dy3

× ψl1

(
y1

�B
+ �Bkx

)
ψl2

(
y2

�B
+ �Bkx

)

× ψl3

(
y3

�B
+ �Bkx

)
ψl4

(
y1 − y2 + y3

�B
+ �Bkx

)

= �B

L

∑
l1,l2,l3,l4

VL/(2�B )
l1l2l3l4

(kx )c†
l1,↑cl2,↑c†

l3,↓cl4,↓, (A3)

where the general vertex is

Vν
l1l2l3l4 (q) =

∫ ν

−ν

dξ1dξ2dξ3ψl1 (ξ1 + �Bq)

× ψl2 (ξ2 + �Bq)ψl3 (ξ3 + �Bq)

× ψl4 (ξ1 + ξ3 − ξ2 + �Bq). (A4)

Different matrix elements of the general vertex for q = 0 are
shown in Fig. 8.

APPENDIX B: SEMICLASSICAL LIMIT

This Appendix includes details of calculations in the semi-
classical limit. We derive the asymptotic wave function for
high LLs and derive the semiclassical vertex which is diagonal
in the LL index.

1. Asymptotic wave function for high LLs

In this section we derive Eq. (12) from its definition equa-
tion (10) by making use of the asymptotic form of the Hermite
polynomials Hl (x) [61] inside the region |ξ | <

√
2l

Hl (ξ ) ≈
√√√√ 2√

1 − ξ 2

2l

e
l
2 (ln(2l )−1+ ξ2

2l )

× cos

(√
l

2
ξ

√
1 − ξ 2

2l
+

(
l + 1

2

)

× arcsin

(
ξ√
2l

)
− l

π

2

)
. (B1)

085106-10



QUANTUM OSCILLATIONS IN A DOPED MOTT … PHYSICAL REVIEW B 108, 085106 (2023)

FIG. 8. Dependence of the integral Vν
i jkl (kx = 0) on the integration boundary ν for various indices i, j, k, l (blue dots with error bars). The

numerical integration is done with the built-in “NIntegrate” function of MATHEMATICA 12, which returns the estimated error of the integration.
For ν � 1/2

√
2l̄ + 1 (left gray dashed line in each panel), where l̄ is the mean of the four indices, the vertex can be described by the semiclassical

vertex equation (B3) (red curve). By extending the integration boundaries to infinity the integral can be solved exactly, i.e., Vi jkl = V∞
i jkl [orange

line, Eq. (C13)]. This becomes approximately a good approximation when ν � ξ0(l̄ ) (right gray dashed line in each panel), where ξ0(l ) ≈ 2
√

l
is the value above which the LL wave function is exponentially small, i.e., ξ0(l ) = min{ξ ∈ R: ∀x > ξ |ψl (x)| � 0.05}.

We expand the asymptotic form in ξ 2
/l into harmonic oscilla-

tions to obtain

Hl (ξ ) =
√

2e
l
2 ( ln(2l )−1)e

ξ2

2 cos
(√

2lξ − l
π

2

)
, (B2)

which holds true with a relative error η up to
√

4lη (estimated
from higher orders of the Taylor expansion). We fix η = 5%

such that the asymptotic form equation (12) is valid for |ξ | <√
l/5.

2. Derivation of the semiclassical vertex

We derive the semiclassical vertex, leading to Eq. (13),
by assuming that the asymptotic form of the LLs ψl → ψ∞

l
holds inside the entire integration region of the vertex. A basic
calculation leads to

Vν
i jkl (0) =

∫ ν

−ν

dξ1dξ2dξ3ψ
∞
i (ξ1)ψ∞

j (ξ2)ψ∞
k (ξ3)ψ∞

l (ξ1 − ξ2 + ξ3)

= ν3

8π2(i jkl )1/4

∑
±(i, j,k,l )

e−i π
2 (±i i± j j±kk±l l)

∫ ν

−ν

dξ1dξ2dξ3eiξ1(±i

√
2i±l

√
2l)eiξ2(± j

√
2 j∓l

√
2l)eiξ3(±k

√
2k±l

√
2l)

= π

(i jkl )1/4

∑
±(i, j,k,l )

e−i π
2 (±i i± j j±kk±l l)δ1/ν (±i

√
i/2 ±l

√
l/2)δ1/ν (± j

√
j/2 ∓l

√
l/2)δ1/ν (±k

√
2k ±l

√
2l ) (B3)

i, j,k,l�1≈ 2π

(i jkl )1/4
δ1/ν (

√
2i −

√
2l )δ1/ν (−

√
2 j +

√
2l )δ1/ν (

√
2k −

√
2l ) cos

(
π

2
(i − j + k − l )

)
, (B4)

where

δ1/ν (x) = ν

π

sin(νx)

νx
= 1

2π

∫ ν

−ν

dξeixξ (B5)

and the sum extends over the 16 terms arising from different
combinations of the signs. We refer to Eq. (B3) as the semi-
classical vertex.

In the limit where i, j, k, l � 1 only the sum
combinations (upper, lower, upper, lower) sign and
(lower, upper, lower, upper) sign remain relevant, and
δ1/ν become effectively δ functions. The vertex is hence
diagonal in the LLs Vν

i jkl ∝ δi, j,k,l . When normalizing the
asymptotic wave function inside the integration interval
N 2

l = ∫ ν

−ν
|ψ∞

l (ξ )|2dξ , the entire prefactor for the interaction
�B
L VL/(2�B )

llll (kx )/N 4
l = 1 approaches 1. This leads to an
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effective HK Hamiltonian in the LL basis, i.e., Eq. (13) in the
semiclassical limit.

APPENDIX C: CALCULATION OF THE LL VERTEX Vi jkl

1. Introduction

In the limit L � �B the integral VL/(2�B )
i jkl (kx ) can be solved

exactly for all indices. The only important approximation
for this limit is the extension of the integration boundary to
infinity L/(2�B) → ∞. All dependencies on kx cancel out.

The vertex can be split up into two equivalent integrals

Vi jkl = V∞
i jkl (kx ) =

∫ ∞

−∞
dzIi j (z)Ikl (−z), (C1)

where

Ii j (z) =
∫ ∞

−∞
dxψi(x)ψ j (x + z). (C2)

2. Properties of Ii j

Here, we list some useful properties of Ii j ,

Ii j (0) = δi j, (C3a)

Ii j (z → ∞) = 0, (C3b)

Ii j (−z) = (−1)i+ j Ii j (z), (C3c)

I ji(z) = (−1)i+ j Ii j (z), (C3d)

which can be easily shown by using the properties of ψl . Most
importantly the integral Ii j can be solved exactly; the solution
is

Ii j (z) = e−z2/4z j−i

√
i!

j!2 j−i

(
j

i

)
1F1(−i, 1 + j − i, z2/2)

(C4)
for j � i, where 1F1 is Kummer’s (confluent hypergeometric)
function of the first kind [62]

1F1(α, β, z) =
∞∑

n=0

(α + n − 1)!

(α − 1)!

(β − 1)!

(β + n − 1)!

zn

n!
. (C5)

Whereas this is in general not a helpful representation, we
emphasize that in the above equation 1F1 is a sum over i terms
and hence a polynomial in z.

Equation (C4) is derived below without loss of generality
for j � i [see Eq. (C3d)]:

Ii j (z) =
∫

dyψi(y − z/2)ψ j (y + z/2) (C6)

= e−z2/4√
π2i+ j i! j!

∫
dye−y2

Hi(y − z/2)

× Hj (y + z/2)︸ ︷︷ ︸∑ j
k=0 ( j

k)Hk (y)z j−k

(C7)

= e−z2/4√
π2i+ j i! j!

i, j∑
k,k′=0

(
i

k

)(
j

k′

)
(−z)i−kz j−k′

×
∫

dye−y2
Hk (y)Hk′ (y)︸ ︷︷ ︸

2kk!
√

πδk,k′

(C8)

= e−z2/4√
2i+ j i! j!

2iz j−ii!
i∑

k=0

(−1)k

2kk!

(
j

i − k

)
z2k (C9)

= e−z2/4z j−i

√
i!

j!2 j−i

(
j

i

)
1

× F1(−i, 1 + j − i, z2/2). (C10)

3. Properties of Vi jkl

Here, we list some useful properties of Vi jkl : First, half of
the integrals evaluate to 0 due to an odd integrand

Vi jkl = 0 for i + j + k + l odd. (C11)

The permutative relations

Vjikl = (−1)i+ jVi jkl , (C12a)

Vk jil = Vi jkl , (C12b)

Vl jki = (−1)i+lVi jkl , (C12c)

Vik jl = (−1) j+kVi jkl , (C12d)

Vilk j = Vi jkl , (C12e)

Vi jlk = (−1)k+lVi jkl (C12f)

reduce the number of independent tensor entries.

Most importantly, the integral can be evaluated exactly; the solution is for j � i and l � k

Vi jkl = (−1)k+l

√
i!k!

j!l!

(
j
i

)(
l
k

)
1F1

(
−i, 1 + j − i; − d

dc

)
1F1

(
−k, 1 + l − k; − d

dc

)(
− d

dc

)( j−i+l−k)/2
√

2π

c

∣∣∣∣∣
c=1

=
√

2π (−1)k+l

√
i!k!

j!l!

i,k∑
n,n′=0

(−1)n+n′

n!n′!

(
j

i − n

)(
l

k − n′

)
(2n + 2n′ + j − i + l − k − 1)!!

2n+n′+( j−i+l−k)/2
. (C13)

Note that 1F1 are finite polynomials and that j − i + l − k is even if and only if i + j + k + l is even (if odd, Vi jkl = 0). By
(− d

dc )n we mean (−1)n dn

dcn (the entire differential operator needs to be calculated first), and for calculation we may use that
(−1)n dn

dcn
1√
c

= (2n−1)!!
2n , where the double factorial “!!” denotes a factorial over all numbers with the same parity.
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For some indices, Eq. (C13) evaluates to simpler results. For equal indices, Viikk = √
2πLi(− d

dc )Lk (− d
dc ) 1√

c
|c=1, where Lk (x)

are the Laguerre polynomials. This form simplifies to V00ll = √
2 �(l+1/2)

�(l+1) if one of the indices is 0. This result can be used to

obtain an estimate of the scaling of the long-range interaction between the LLs, since V00ll →
√

2
l for l � 1.

From Eq. (C13) each matrix element of Vi jkl can be calculated exactly be evaluating the finite sums. The numerical complexity
increases for increasing indices. In practice, one has to be careful when performing the sums. The summands have different signs,
and each of them is larger (in terms of its absolute value) than the total sum. This renders all summands relevant and requires
arbitrary-precision floating-point operations from the numerical side.

Equation (C13) is derived below without loss of generality for j � i and l � k [see Eqs. (C12a)–(C12f)]:

Vi jkl = (−1)k+l
∫

dzIi j (z)Ikl (z) (C14)

= (−1)k+l

√
i!k!

j!l!

(
j

i

)(
l

k

) ∫ ∞

−∞
dze−z2/2

(
z2

2

) j−i+l−k
2

1F1(−i, 1 + j − i, z2/2)1F1(−k, 1 + l − k, z2/2)︸ ︷︷ ︸
polynomials

(C15)

= (−1)k+l

√
i!k!

j!l!

(
j

i

)(
l

k

)(
− d

dc

) j−i+l−k
2

1F1

(
−i, 1 + j − i,− d

dc

)
1F1

(
−k, 1 + l − k,− d

dc

) ∫ ∞

−∞
dze−cz2/2

∣∣∣∣∣
c=1

(C16)

= (−1)k+l

√
i!k!

j!l!

(
j

i

)(
l

k

)(
− d

dc

) j−i+l−k
2

1F1

(
−i, 1 + j − i,− d

dc

)
1F1

(
−k, 1 + l − k,− d

dc

)√
2π

c

∣∣∣∣∣
c=1

(C17)

(C5)= (−1)k+l

√
i!k!

j!l!

i,k∑
n,n′=0

(−1)n+n′

n!n′!

(
j

i − n

)(
l

k − n′

)(
− d

dc

)n+n′+ j−i+l−k
2

√
2π

c

∣∣∣∣∣
c=1

(C18)

=
√

2π (−1)k+l

√
i!k!

j!l!

i,k∑
n,n′=0

(−1)n+n′

n!n′!

(
j

i − n

)(
l

k − n′

)
(2n + 2n′ + j − i + l − k − 1)!!

2n+n′+( j−i+l−k)/2
. (C19)

APPENDIX D: SHORT-TIME FOURIER
TRANSFORMATION

The STFT is a method from Fourier analysis to determine
phase and frequency information for local sections of a signal
changing over time. The basic idea is to perform several fast
Fourier transformations of consecutive windows in the time
domain to obtain the frequency for a segment in time.

We will explain what typical STFT plots of oscillating
functions with time-dependent frequencies look like by con-
sidering a test function g(t ) = exp (i f (t )t ), where f (t ) is a
slowly varying function with respect to g. We wish to evaluate
the Fourier transform

I (t0, ω) =
∫ ∞

−∞
e−iωt g(t )w(t − t0) (D1)

as a function of frequency ω and time t0, and w(t ) is any
windowing function which for proof of principle we choose to
be a Gaussian wσ (t ) = e−t2/2σ 2

. The windowing function re-
stricts the dominant part of integration region to |t − t0|/σ <

1. The vague statement of f being a slowly varying function
can be formulated in more rigorous terms: First, for |t −
t0|/σ < 1 the Taylor expansion f (t ) = f (t0) + f ′(t0)(t − t0)
holds. Secondly, the oscillations are fast with respect to the
width of the window ω/σ � 1.

Under these assumptions, which are met in our MC data
as well as in possible experimental data, the integral can be
solved exactly by completing the square. The main result
is that I (t0, ω) is exponentially peaked at ωmax = f (t0) +

t0 f ′(t0). Therefore the STFT does not show f (t ) directly but
only its linear approximation inside each segment. This can
be used to efficiently reconstruct f (t ).

APPENDIX E: LL INTERACTIONS IN THE HUBBARD
MODEL

Here, we provide details for the derivation of Eq. (20) and
derive the LL vertex for the Hubbard model Ṽi jkl .

1. Obtaining the vertex

We project the local Hubbard interaction in the LL basis ig-
noring its effects on the LL degeneracy. Hence the calculation
is similar to Appendix A equation (A3). We take L/�B → ∞
directly because the semiclassical limit is not of interest here.
The interaction reads

Ũ
∑

y

c†
y,↑cy,↑c†

y,↓cy,↓ = Ũ

�2
B

∑
l1,l2,l3,l4

c†
l1,↑cl2,↑c†

l3,↓cl4,↓
∫ ∞

−∞
dy

× ψl1

(
y

�B
+ �Bkx

)
ψl2

(
y

�B
+ �Bkx

)

× ψl3

(
y

�B
+ �Bkx

)
ψl4

(
y

�B
+ �Bkx

)

= Ũ

�B

∑
l1,l2,l3,l4

Ṽl1l2l3l4 c†
l1,↑cl2,↑c†

l3,↓cl4,↓,

(E1)
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where the vertex is

Ṽl1l2l3l4 =
∫ ∞

−∞
dξψl1 (ξ )ψl2 (ξ )ψl3 (ξ )ψl4 (ξ ). (E2)

2. Calculation of vertex Ṽi jkl

We evaluate the LL vertex Ṽi jkl for the Hubbard model
equation (E2) exactly. From the properties of ψl it is obvious
that half of the entries are zero,

Ṽi jkl = 0 for i + j + k + l odd, (E3)

similar to the HK model. Furthermore, the vertex is symmetric
in each index pair Ṽi jkl = Ṽjikl = Ṽk jil = · · · .

To solve the integral, we use the series representation of
the Hermite polynomials [63]

Hl (x) = l!
�l/2�∑
n=0

(−1)n

n!(l − 2n)!
(2x)l−2n, (E4)

where �x� is the largest integer � x. For the case where i +
j + k + l is even, the vertex is

non-inter-
acting non-Onsager

semi-
classical HK model

μ1(0)

μ2(0)

�B ∼ L
U ′ � ωc �B � L �B

√
l ∼ L B = 0

1/B

εF

E

U

μ2(B)

μ1(B)

E2

E1

εF (U = 0)

S2 S1

FIG. 9. Schematic image of the DOS and the QO of, e.g., the GS
energy E1 + E2 for fixed particle number in 2D, whereas Fig. 1 is
for fixed chemical potential. In the HK model at B = 0, momentum
states are doubly occupied up to μ2(0) = μ − U and singly occupied
from μ2(0) to μ1(0) = εF , where εF is the Fermi energy in the non-
interacting limit. Due to the constant DOS in 2D the interaction leads
to a symmetric singly occupied region around the Fermi energy; see
inset. At finite magnetic field the pseudo Fermi energies become
magnetic field dependent, but such that the total particle number
is conserved. Due to energetic constraints the drop in μ2(0) in the
non-Onsager regime will be less pronounced.

Ṽi jkl =
∫ ∞

−∞
dξ

1

π
√

2i+ j+k+l i! j!k!l!
e−2ξ 2

Hi(ξ )Hj (ξ )Hk (ξ )Hl (ξ ) (E5)

= 1

π

√
i! j!k!l!

�i/2�,� j/2�,�k/2�,�l/2�∑
n1,n2,n3,n4=0

(−2)−n1−n2−n3−n4

n1!n2!n3!n4!(i − 2n1)!( j − 2n2)!(k − 2n3)!(l − 2n4)!

×
∫ ∞

−∞
dξ (2ξ 2)(i+ j+k+l )/2−n1−n2−n3−n4 e−2ξ 2

(E6)

=
√

i! j!k!l!√
2π

�i/2�,� j/2�,�k/2�,�l/2�∑
n1,n2,n3,n4=0

(−2)−n1−n2−n3−n4

n1!n2!n3!n4!(i − 2n1)!( j − 2n2)!(k − 2n3)!(l − 2n4)!

×
(

− d

dc

)(i+ j+k+l )/2−n1−n2−n3−n4 1√
c

∣∣∣∣∣
c=1

(E7)

= 1√
2π

√
i! j!k!l!

2i+ j+k+l

�i/2�,� j/2�,�k/2�,�l/2�∑
n1,n2,n3,n4=0

(−1)n1+n2+n3+n4 (i + j + k + l − 2[n1 + n2 + n3 + n4] − 1)!!

n1!n2!n3!n4!(i − 2n1)!( j − 2n2)!(k − 2n3)!(l − 2n4)!
, (E8)

which is a series that can be computed exactly.

APPENDIX F: QO IN THE HK MODEL WITH FIXED PARTICLE NUMBER

In the main text, we have concentrated on results for a fixed chemical potential. In Fig. 9 we show the schematic effect of
keeping the particle number fixed, which will introduce small quantitative changes.
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