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Kernel function based quantum algorithms for finite temperature quantum simulation
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Computing finite temperature properties of a quantum many-body system is key to describing a broad range of
correlated quantum many-body physics from quantum chemistry and condensed matter to thermal quantum field
theories. Quantum computing, which has seen rapid developments in recent years, has a huge potential to impact
the computation of quantum thermodynamics. To fulfill these potential impacts, it is crucial to design quantum
algorithms that utilize the computation power of quantum computing devices. Here, we present a quantum kernel
function expansion (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
In this quantum algorithm, the many-body density of states is approximated by a kernel Fourier expansion,
whose expansion moments are obtained by random state sampling and quantum interferometric measurements.
Compared to its classical counterpart, namely, the kernel polynomial method (KPM), QKFE has an exponential
advantage in the cost of both time and memory. In computing low temperature properties, QKFE becomes
inefficient, similar to classical KPM. To resolve this difficulty, we further construct a thermal ensemble iteration
(THEI) protocol which starts from the trivial limit of an infinite temperature ensemble and approaches the low
temperature regime step by step. For quantum Hamiltonians, whose ground states are preparable with polynomial
quantum circuits, THEI has an overall polynomial complexity. We demonstrate its efficiency with applications
to one- and two-dimensional quantum spin models and a fermionic lattice. With our analysis of the realization
with digital and analog quantum devices, we believe the quantum algorithm is accessible to current quantum
technology.
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I. INTRODUCTION

The computation of thermodynamic quantities of quantum
Hamiltonians is at the core of simulating correlated electrons
in quantum materials and complex molecules [1,2]. The ex-
ponential complexity in treating a large number of entangled
degrees of freedom on a classical computer prevents accu-
rate determination of macroscopic physics [3,4], causing a
generic challenge to our quantitative description of a broad
range of strongly correlated quantum phases, from quantum
magnetism [5] and high Tc superconductivity [6] to neutron
star matters [7].

With controllable quantum systems, one method that has
been carried out is to synthesize analog Hamiltonian models
and extract thermodynamic properties by preparing exper-
imental systems at thermal equilibrium [8–10]. Strongly
correlated physics, such as the Mott-superfluid transition
[11,12], unitary Fermi gas [13], and antiferromagnetism
[14–16], has been accomplished with cold atoms. With
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rapid advancement of programmable quantum devices in the
last several years, such as superconducting qubits [17–20],
trapped ions [21,22], entangled photons [23–27], and Rydberg
atoms [28–31], research interest in developing algorithmic ap-
proaches for quantum simulations has been growing [32–37].
Much progress has been made in relation to determining
ground states considering variants of quantum phase es-
timation [38,39], adiabatic Hamiltonian evolution [40,41],
and variational quantum circuits [1,2,42,43]. Quantum al-
gorithms for finite temperature quantum simulations have
also been proposed using generalized Metropolis sampling
[32,36,44,45], quantum Lanczos methods [34], and varia-
tional thermofield double-state algorithms [46–48]. However,
until now, finite temperature quantum simulation algorithms
have been relatively scarce compared to ground state com-
putations. Efficient computation methods for free energy and
thermal entropy, which are crucial for determining thermody-
namics, are particularly lacking and in great demand.

In this work, we introduce a quantum kernel function ex-
pansion (QKFE) algorithm in which the energy dependence
of observables and many-body density of states (DOS) are
represented by Fourier series. We show that the expansion
moments can be measured by quantum circuits with polyno-
mial cost, achieving an exponential quantum advantage over
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the classical analog, namely, the kernel polynomial method
(KPM) [49]. The QKFE quantum circuit is fully deterministic,
i.e., free of variational optimization, in sharp contrast to vari-
ational quantum algorithms [46–48] and quantum Lanczos
methods [34,50–52]. The infamous barren plateau problem
[53,54] is thus completely absent with QKFE. The overall
complexity of QKFE is exponential in approaching the low
temperature properties of a generic Hamiltonian. This is a
corollary of Hamiltonian QMA completeness, a complexity
class of languages that can be probabilistically verified by
a quantum verifier in polynomial time [55–57]. We further
develop a thermal ensemble iteration protocol based on QKFE
with Hamiltonian evolutions which computes thermodynamic
quantities such as local observables, free energy, and thermal
entropy with polynomial complexity, provided that the ground
state of the Hamiltonian can be prepared at a polynomial cost.

II. QUANTUM KERNEL FUNCTION EXPANSION

Our QKFE algorithm is inspired by the classical KPM.
Considering a many-body system with Hamiltonian Ĥ , a
physical quantity that is natural for the KPM to compute is the
DOS [49], which is defined as ρ(E ) = 1

D

∑
i δ(E − Ei ), with

Ei being the eigenvalues and D being the Hilbert space di-
mension. For convenience in theoretical treatment, the energy
spectra are assumed to be bounded between Emin and Emax. A
dimensionless energy

ε ≡ (E − Emin)/(Ew + 0+) ∈ (0, 1) (1)

is introduced accordingly, with Ew being Emax − Emin. We
then have a rescaled Hamiltonian, Ĥ = (Ĥ − Emin1)/(Ew +
0+). This rescaling can always be performed for a lattice
Hamiltonian with a finite Hilbert space dimension. In the clas-
sical KPM, the DOS is expanded in terms of the Chebyshev
polynomial Tn(ε), that is,

ρ(ε) =
[
μ0 + 2

N∑
n=1

μnTn(ε)

]/
(π

√
1 − ε2).

The expansion moment μn = Tr[Tn(Ĥ)] can be evaluated
stochastically via a small number R of random states |r0〉:

μn ≈ 1

R

R∑
r=1

〈r0|rn〉,

where |rn〉 = Tn(Ĥ)|r0〉 is determined by the recursion rela-
tion |rn〉 = 2Ĥ|rn−1〉 − |rn−2〉. This approach has been used
in classical computing for finite energy properties of large
matrices and has led to great success in solving noninteracting
Anderson localization problems [49]. Nonetheless, the Hamil-
tonian multiplication has a cost linear to the Hilbert space
dimension D = 2L for a system of L qubits. Therefore, the
required time and memory both scale exponentially with the
number of spins, which has limited its application in simulat-
ing more complex quantum many-body systems.

In this section, we present an efficient quantum algorithm
for computing the expansion moments that has an exponential
quantum speedup over the classical KPM.

A. QKFE algorithm

Instead of Chebyshev polynomial expansion as used in the
classical KPM, in our QKFE algorithm we perform a Fourier
expansion for the DOS,

ρ(ε) = c0 + 2
N−1∑
n=1

cn cos(nπε), (2)

because the Fourier moments are more convenient to use
quantum computing than the Chebyshev polynomial ex-
pansion. We introduced a large-moment cutoff N for the
expansion. By writing the Fourier moments in the form of

cn = 1

D
Re{Tr[e−inπĤ]}, (3)

we find these moments can be obtained efficiently with a
quantum circuit, as shown in Fig. 1(a), which contains L
physical qubits and one ancilla qubit. The step of averaging
Tr[· · · ]/D is performed by sampling Haar random states,
whose computation efficiency relies on quantum typicality
[59–61]. Despite the difficulty in preparing exact Haar ran-
domness, it can be approximated by relatively shallow circuits
[58,62–65]. It has been shown that the required circuit depth
to converge to unitary-t designs scales polynomially with the
number of qubits [53].

The procedure for measuring cn involves three steps. The
first step is to choose R random product states as the circuit
input and scramble these states by performing local random
unitary operations Ûs, following the strategy in Ref. [58].
Here, Ûs consists of individual cycles, with each cycle com-
posed of local one- and two-qubit gates, following the strategy
in Ref. [58]. The second step is to apply a control unitary
operation,

|0〉〈0| ⊗ I + |1〉〈1| ⊗ e−inπĤ, (4)

across the ancilla qubit and the system. We then take measure-
ments. The measurement outcomes of σ̂x on the ancilla qubit
average to the cn moment. Since the results of quantum mea-
surement following the quantum circuit are directly related
to the Fourier moments, instead of to the trace, estimating the
Fourier moments does not require exponential precision of the
quantum measurement (for more details see Sec. II C).

In addition to the DOS, the energy dependence of the local
observables can be obtained efficiently using the same quan-
tum circuit [Fig. 1(a)]. We consider a general local observable
Â, which, for example, could represent spin polarization
or correlation functions. Its energy dependence is given by
α(ε) = 〈ε|Â|ε〉, with |ε〉 being an eigenstate of Ĥ with energy
ε. The Fourier expansion reads

α(ε)ρ(ε) = d0 + 2
N−1∑
n=1

dn cos(nπε), (5)

with the moments

dn = 1

D
Re{Tr[Âe−inπĤ]}. (6)

This implies the dn moments can be measured by the same
quantum circuit as cn. The measurement outcome of the tensor
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FIG. 1. The quantum kernel function expansion algorithm. (a) An illustration of quantum circuits for measuring Fourier expansion
moments. The random circuits in blue are constructed following Ref. [58] using 40 cycles, with each cycle consisting of one layer of random
single-qubit gates and one layer of CZ gates. (b) The convergence of one typical expansion moment, c3, with an increasing number of random
states R. (c) The convergence of the partition function with an increasing expansion cutoff N . The blue, red, and orange lines correspond to
the results of the 1D-XXZ [Eq. (14)], 2D-XXZ [Eq. (15)], and t-V [Eq. (16)] models, respectively. In (b) and (c), the QKFE results of the
expansion moment c3 and the partition function Z (cQKFE

3 and ZQKFE) are normalized by their exact values. Here, we choose L = 18 for the 1D
model and a square lattice with 4 × 4 geometry for the 2D models. The temperature is fixed at T = 3.

product of σ̂x (ancilla) and Â (local observables) in the final
state of the quantum circuit averages to the dn moments.

Having the Fourier moments cn and dn computed by the
quantum circuit, we reconstruct the functions ρ(ε) and α(ε).
With the energy dependence of the DOS and local observables
computed, the partition function Z (β ) = Tr[e−βĤ ] as a func-
tion of the inverse temperature β and the canonical ensemble
average A(β ) = Tr[Âe−βĤ ]/Z (β ) are then given by

Z (β ) =
∫ 1

0
e−βEwερ(ε)dε, (7)

A(β ) = 1

Z (β )

∫ 1

0
e−βEwεα(ε)ρ(ε)dε. (8)

With the partition function, all thermodynamic quantities such
as free energy and thermal entropy can then be obtained [66].

In the physical implementation of our QKFE algorithm, the
quantum circuit in Fig. 1(a) can be further decomposed into
local quantum gates by considering Trotterization, for which
the circuit depth for extracting the Fourier moments cn and
dn scales as O(nδ−1

t ), with δt being the Trotterization step.
One specific example is provided in Sec. IV A. In comparison
with the classical analog, namely, the classical KPM, our
QKFE algorithm has an exponential speedup in computing
the expansion moments—the time cost for the classical KPM
is exponential, whereas it is polynomial in QKFE. We em-
phasize here that the QKFE algorithm is free of variational
optimization as its quantum circuit is fully deterministic. This
makes the QKFE algorithm rather unique in comparison with
variational quantum algorithms [46,47] and quantum Lanczos
methods [34,50–52], for which the variational optimization
could be costly in practical computation and sometimes en-
counters the infamous barren plateau problem [53,54]. Since
the QKFE algorithm involves a block of control unitaries as
in deterministic quantum computation with one clean qubit
(DQC1), whose quantum advantage has been established
[67,68], it is worth extending the computation complexity

analysis for DQC1 to QFKE, which we expect to provide a
computation theoretic foundation for the quantum advantage
for QKFE. This is left for future investigation.

B. Uniform convergence by kernel function expansion

In reconstructing the functions ρ(ε) and α(ε), we need
to correct the moments by multiplying the Jackson kernel
in order to damp out the cutoff-induced Gibbs oscillations.
It is well known that to approximate an analytic func-
tion F (ε), the N th-order Fourier series expansion FN (ε) =
c0 + 2

∑N−1
n cn cos(nπε) has a norm convergence. However,

uniform convergence is required here for computing the en-
ergy dependence of the local observables and the DOS.
We apply kernel functions to the Fourier expansion. For
a continuous function f (x) with x ∈ (−1, 1), it has been
shown in classical KPM analysis [49] that the kernel func-
tion corrected N th-order Chebyshev expansion fN (x) = c̃0 +
2

∑N−1
n=1 c̃nTn(x) has a uniform convergence to f (x), with

c̃n = hn

∫ 1

−1

f (x)Tn(x)

π
√

1 − x2
dx,

hn = 1

N + 1

[
(N − n + 1) cos

πn

N + 1

+ sin
πn

N + 1
cot

π

N + 1

]
,

Tn = cos[n arccos(x)],

where hn is the Jackson kernel [69]. Approximating f (x) by
fN (x) has an error [49] || f (x) − fN (x)||∞ ∼ w f (1/N ), with
w f (δ) = max| f (x) − f (y)||x−y|�δ . This can be interpreted as
an error on the order of O(1/N ).

The Fourier expansion used in our work is related to the
Chebyshev expansion by taking x = cos(πε), and F (ε) =
f ( cos(πε)). For ε ∈ (0, 1), we have Tn(x) = cos(nπε). It
follows immediately that

||F (ε) − FN (ε)||∞ ∼ w f (1/N ), (9)
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with the expansion moments cn corrected by the Jackson
kernel, i.e.,

cn → c̃n = cnhn. (10)

We thus conclude that the kernel Fourier series expansion
has uniform convergence with error O(1/N ). This correction
applies in the same way to the expansion of the DOS and local
observables.

C. Measurement cost of the expansion moments

In the QKFE algorithm, the Fourier moments cn are
obtained from R instances of random state sampling. The
number of quantum projective measurements to perform for
each Fourier moment is denoted as K . We denote the noise
in the single-shot measurement of cn as ηn. The noise ηn is a
random variable that fluctuates in different quantum projec-
tive measurements or for different sampled random states. Its
mean is zero, and its variance is order 1, as it corresponds to
the fluctuation of measuring a Pauli σ̂x operator [Fig. 1(a)].
The induced noise for the density of states is

E (ε) = 2
N−1∑
n=1

ηnhn cos(nπε). (11)

This represents the error of estimating the density of states
based on one single projective measurement on each Fourier
moment cn. Its statistical variance is

Var[E (ε)] = 4
N−1∑
n=1

Var(ηn)[hn cos(nπε)]2. (12)

Since both Var(ηn) and hn are bounded, the variance of
E scales as Var(E ) ∼ N . This scaling is independent of
ε, despite the ε dependence of E (ε). Averaging K times,
the measurement precision of the density of states is then
O(

√
N/K ) because different quantum projective measure-

ments are completely independent of each other. Since the
truncation error in the Fourier expansion is O(1/N ), as dis-
cussed above, it is reasonable to demand the same scaling for
the measurement precision, which then implies a requirement
for the number of repeated projective measurements

K ∼ N3. (13)

In calculating other observables, the requirement for the mea-
surement cost is the same as the density of states, according
to the expansion in Eq. (5).

D. Numerical demonstration on spin and fermion models

To benchmark the overall performance of our QKFE, we
apply this algorithm to three lattice models, including a one-
dimensional (1D) spin-1/2 XXZ chain,

Ĥ1D-XXZ = 1

2

∑
j

σ̂ x
j σ̂

x
j+1 + σ̂

y
j σ̂

y
j+1 + 
σ̂ z

j σ̂
z
j+1, (14)

a two-dimensional (2D) XXZ model,

Ĥ2D-XXZ =
∑
〈i, j〉

σ̂ x
i σ̂ x

j + σ̂
y
i σ̂

y
j + 
′σ̂ z

i σ̂ z
j , (15)

and a 2D t-V model of spinless fermions,

ĤtV = −
∑
〈i, j〉

ĉ†
i ĉ j + ĉ†

j ĉi + V
∑
〈i, j〉

n̂in̂ j, (16)

with the periodical boundary condition being adopted. The
energy units were specified by introducing the Hamiltonian
models. The unit of temperature is defined correspondingly
since we take the Boltzmann constant as a unit. We choose
L = 18 for the 1D model and a 4 × 4 square lattice for the 2D
models. We emphasize that our QKFE algorithm is generic
for performing finite temperature quantum simulations—it is
not restricted to solving these three models. We deliberately
choose both spin and fermion models here for benchmarking
in order to confirm QKFE indeed applies generically to differ-
ent quantum Hamiltonian systems.

In the numerical tests, we choose 
 = −0.9, 
′ = −0.5,
and V = 2. For local observables, we examine C1D-XXZ ≡
σ̂ z

1 σ̂ z
2 , C2D-XXZ ≡ σ̂ z

11σ̂
z
22, and CtV ≡ n̂11n̂22 + n̂11n̂33 + n̂11n̂44

for the 1D-XXZ, 2D-XXZ, and t-V models, respectively. We
also checked other observables and found behavior similar
to that presented here. The QKFE results (colored lines) are
compared to the exact values (circles) in a broad temperature
range in Fig. 2, with the Boltzmann constant taken as a unit.
The surrounding shading represents the statistical errors eval-
uated with the standard bootstrap resampling approach [70].
Convergence is observed at R → 20, and N → 100 for the
1D-XXZ and 2D t-V models. For the 2D-XXZ model, a larger
number, R = 400, is required. The 2D-XXZ model has U(1)
symmetry and exhibits a Kosterlitz-Thouless transition and
a region with a critical algebraic superfluid phase at finite
temperature. For such physics, the physical observables as
a function of energy density are more nonanalytic than the
transverse field Ising model. Approximating more nonanalytic
functions in the QKFE algorithm requires the expansion order
to be larger and the Fourier moments to be more precise.

From the results shown in Fig. 2, it is apparent that the
quantum algorithm performs well in the high temperature
regime for all three models. In the low temperature regime,
QKFE is no longer reliable, producing substantial computa-
tion errors. The large sampling error implies a large number of
R are required at low temperature. The sizable discrepancy be-
tween the QKFE and exact calculation indicates a larger cutoff
N is also needed to approximate the functions in Eqs. (3) and
(6) at low temperature.

The inefficiency of QKFE at low temperature can be at-
tributed to two aspects. First, the low energy states of the
many-body Hamiltonian make only an exponentially small
contribution to the expansion moments. Consequently, it is
inevitable to sample an exponential number (R) of random
states because exponential precision would be required for
the moments. Second, the DOS at low energy is exponen-
tially smaller than that at high energy. This makes it difficult
for the Fourier expansion to approximate the entire energy
window. The exponential cost in the low energy regime was
also observed in other finite temperature algorithms evaluat-
ing partition functions [71,72]. Nonetheless, the exponential
speedup in QKFE for computing the moments compared with
the classical KPM remains valid because these two aspects are
also present in the classical KPM when simulating low-energy
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FIG. 2. Finite temperature correlations with the QKFE algorithm. The three panels from left to right correspond to the 1D-XXZ, 2D-XXZ,
and t-V models. For the 1D-XXZ and t-V models, we choose R = 20 in sampling random states, and for the 2D-XXZ model, we choose
R = 400. The lines represent the numerical results using QKFE. The colored shading surrounding these lines shows sampling errors. The
circles show the exact values for comparison. Here, we choose L = 18 for the 1D model and a square lattice with 4 × 4 geometry for the 2D
models.

many-body physics. In fact, the exponential time cost for
generic low temperature quantum simulations is a corollary
of Hamiltonian QMA completeness [32,44,45].

III. THERMAL ENSEMBLE ITERATION

We further develop a polynomial quantum algorithm for a
restricted class of Hamiltonians assuming that its ground state
determination belongs to BQP [56,73]. An efficient scheme
is provided for the preparation of an excited state with finite
energy density. We construct a thermal ensemble iteration pro-
tocol and show that the thermodynamic quantities, such as free
energy and thermal entropy, can be obtained with polynomial
cost by applying our QKFE algorithm iteratively to the finite
energy quantum states. We emphasize that the thermal ensem-
ble iteration (THEI) protocol provides a quantum algorithm
for generic quantum Hamiltonian models, even for those not
belonging to BQP. It is an efficient quantum algorithm for
Hamiltonian models whose ground states are preparable with
quantum circuits at polynomial cost.

A. Preparation of finite energy quantum states

For a Hamiltonian in BQP ĤBQP, it is guaranteed that
the ground state can be reached by polynomial-depth quan-
tum circuits that involve one- and two-qubit gates [56]. We
choose a random product state to be the initial state of this
quantum circuit, whose energy typically matches the infinite
temperature ensemble, i.e., E (β = 0). Here, E (β ) is the ther-
mal ensemble average with respect to ĤBQP. This type of
product state can be efficiently achieved due to the exponen-
tial dominance of infinite temperature states in the quantum
many-body Hilbert space. The output of the quantum circuit
is the ground state of ĤBQP with energy E (β = ∞). We split
the quantum circuit into multiple steps, with each step con-
taining only one single-qubit or two-qubit gate. The gate in
the pth step is denoted as Ûp, and the quantum state in this
step is |α(p)〉. The energy in the pth step is given by Ep =
〈α(p)|ĤBQP|α(p)〉. By physical intuition, it is reasonable to
assume that the energy disturbance produced in each step, for
instance, |Ep − Ep−1| from step (p − 1) to step p, is upper
bounded by a constant 
Eub independent of the system size.

The energy density difference between two successive steps
is then infinitesimal [O(1/L)] in the thermodynamic limit.
This implies that a quantum state with intermediate energy
(between the ground state and infinite temperature ensemble
average) can be prepared by choosing a proper intermediate
p step in the polynomial-depth quantum circuit preparing the
ground state. The energy density resolution of this scheme for
preparing an excited state with a given energy is 
Eub/L.

Now, we show the energy disturbance caused by one step
of the quantum gate operation indeed has a rigorous upper
bound for a k-local Hamiltonian. The Hamiltonian we con-
sider has the general form ĤBQP = ∑

l Ĥl , which acts on L
qubits. Without loss of generality, we assume Hl is a Pauli
operator of the form Ĥl = Jσ̂i1 · · · σ̂i|hl | , with hl representing
the set of qubits that Ĥl acts on. To proceed, we expand the
quantum state |α(p − 1)〉 at step (p − 1) in the computation
basis |z〉, |α(p − 1)〉 = ∑

z ψz|z〉. It follows that |α(p)〉 =∑
z ψz|z̃〉, with |z̃〉 ≡ Ûp|z〉. Since Ûp represents a one- or

two-qubit gate, the state |z̃〉 is different from |z〉 only within a
local region gp, defined to be the set of qubits that Ûp acts on.
The energy difference 
Ep = Ep − Ep−1 has the form


Ep =
∑

l

∑
z1,z2

ψ∗
z2
ψz1 [〈z̃2|Ĥl |z̃1〉 − 〈z2|Ĥl |z1〉].

The difference in the summation is finite only when hl ∩ gp �=
∅. We then have

|
Ep| �
∑

l
(hl ∩gp �=∅)

∑
z1

∑
z2∈�l,z1

|ψz2 ||ψz1 |

× [|〈z̃2|Ĥl |z̃1〉 − 〈z2|Ĥl |z1〉|].
Here, the set �l,z1 contains all z2 configurations that differ
from z1 only in the local region hl . In the following, the
constrained summation over l , z1, and z2 as restricted by
hl ∩ gp �= ∅ and z2 ∈ �l,z1 is denoted

∑′
l,z1,z2

for brevity.
Summing over l with the restriction hl ∩ gp �= ∅ is corre-
spondingly denoted as

∑′
l . Since the quantity in the brackets

is bounded by |〈z̃2|Ĥl |z̃1〉 − 〈z2|Ĥl |z1〉| � 2|J|, we have

|
Ep| � 2|J|
′∑

l,z1,z2

|ψz1 ||ψz2 |.
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FIG. 3. Free energy and thermal entropy with the THEI protocol. (a) and (b) Schematic illustration of the THEI protocol. (c)–(f) The
computed thermodynamic quantities from the THEI protocol. We study 1D-XXZ, 2D-XXZ, and 2D t-V fermion models to demonstrate the
generic applicability of our quantum algorithm. (c) The energy density dependence of the inverse temperature β(E ). (d)–(f) The free energy
and thermal entropy as a function of energy density, corresponding to the 1D-XXZ, 2D-XXZ, and t-V models, respectively. We choose L = 18
for the 1D model and a square lattice with 4 × 4 geometry for the 2D models. The lines represent the results of THEI, and the circles, diamonds,
and triangles show the exact values for comparison. Here, we choose expansion order N = 100. The difference between the THEI and exact
results is barely noticeable and can be further improved by using a larger expansion order.

Using the inequality

′∑
l,z1,z2

|ψz1 ||ψz2 | �
1

2

′∑
l,z1,z2

|ψz1 |2 + |ψz2 |2 =
′∑
l

2|hl |,

we obtain

|
Ep| � 
Eub = γ |J|, (17)

with the constant γ = ∑′
l 2|hl |+1. The energy disturbance 
Ep

has an upper bound that is independent of the system size L
for a k-local Hamiltonian.

We remark here that the above analysis applies generi-
cally for k-local Hamiltonians, including those not belonging
to BQP. This means the preparation scheme described here
for finite energy quantum states is applicable to all k-local
Hamiltonians. Its polynomial complexity relies on assuming
the ground state is preparable at polynomial cost. Our fi-
nite energy state preparation scheme implies that the finite
temperature quantum simulation is, in general, at most as
complicated as the ground state quantum simulation.

B. The procedure for thermal ensemble iteration

For finite energy quantum states, although the correlation
functions and local observables can be measured directly, it is
still a challenge to determine the thermodynamic quantities,
such as temperature, thermal entropy, and free energy. This
challenge arises broadly for finite temperature quantum sim-
ulations [32,34,36]. Here, we construct a thermal ensemble
iteration protocol and show that those thermodynamic quan-
tities can be efficiently computed by an iterative running of
QKFE algorithms.

Our THEI protocol is based on measuring the Fourier mo-
ments with respect to the canonical ensemble average,

c′
n(ε�) ≡ Re{Tr[�̂the−inπĤBQP ]}, (18)

which can be obtained by performing QKFE on a canonical
ensemble �̂th = e−βĤBQP/Z (β ) (Fig. 3). Here, ε� is the ensem-
ble average energy [rescaled according to Eq. (1)], which can
be measured directly on the quantum circuit. Since the average
of the unitary operator e−inπĤBQP is now performed over the
canonical ensemble instead of random states as in Sec. II, the
Fourier moments c′

n acquire energy ε� dependence, or, equiv-
alently, β dependence. There is a one-to-one correspondence
between ε� and β. This defines the function relation β(ε�), in
spite of the difficulty of inferring this relation directly in the
quantum circuit.

In order to prepare the canonical ensemble, we propose
preparing multiple (M) copies of ĤBQP, which are allowed
to exchange energy only by weak interactions. Each copy is
prepared in an intermediate energy density state following the
protocol described in Sec. III A. It has been proved that the
reduced density matrix of each copy is typically very close
to the canonical ensemble, with a trace distance that decays
exponentially with M [59]. According to the matrix Hölder
inequality [74], the trace distance sets an upper bound for
|c′

n − c̃′
n| (c′

n and c̃′
n are the Fourier moments from the exact

and prepared approximate canonical ensembles, respectively).
This implies the error |c′

n − c̃′
n| converges exponentially to

zero with an increasing the number of copies M. Alternatively,
the canonical ensemble can also be prepared by considering
engineering dissipation such that the steady state is a mixed
state corresponding to the canonical ensemble [75].
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Having the expansion moments [Eq. (18)] measured by
running QKFE with the canonical ensemble as its input, the
energy distribution function ρ(ε)e−β(ε� )εEw/Z (β ) is then ap-
proximated by

G(ε, ε�) = c′
0(ε�) + 2

N−1∑
n=1

c′
n(ε�) cos(nπε). (19)

It is apparent that

ρ(ε)e−β(ε� )εEw

ρ(ε)e−β(ε�+δε� )εEw

eβ(ε� )εEw

eβ(ε�+δε� )εEw

is trivially independent of ε by definition. This simple consid-
eration implies a nontrivial condition on G(ε, ε�): the function

I (ε) ≡ G(ε, ε�)

G(ε, ε� + δε�)

eβ(ε� )εEw

eβ(ε�+δε� )εEw
(20)

should be independent of ε. Suppose β(ε�) is already known;
then the function I (ε) satisfies the ε-independent condition
only if β(ε� + δε�) is correct because otherwise, the incorrect-
ness would produce an artificial exponential ε dependence.
We then determine the correct value for β(ε� + δε�) by mini-
mizing the ε dependence of I (ε),

β(ε� + δε�) ← min

{
1 −

[∫
dεI (ε)

]2/ ∫
dεI2(ε)

}
.

(21)

This defines an iteration from β(ε�) to β(ε� + δε�) and di-
rectly produces the ratio of the partition function, Z (β(ε� +
δε�))/Z (β(ε�)). How close I (ε) is to a constant function in the
actual computation can be used as a self-verification indicator
for whether the canonical ensemble has, indeed, been reached.
The THEI protocol is summarized in Algorithm 1.

Since the inverse temperature β(ε�) is known at the infinite
temperature limit, the function β(ε�) is then obtained by fol-
lowing the iteration from ε� to ε� + δε� step by step [Fig. 3(a)].
Likewise, the partition function at β = 0 is also trivially given,
Z (β = 0) = D. The iteration by Eq. (20) then also produces

Algorithm 1. Thermal ensemble iteration algorithm.

Preparation
Initial product state ψ0〉 with |〈ψ0|ĤBQP|ψ0〉 = E (β = 0).
Ground state circuit U for BQP Hamiltonian.
M copies of ĤBQP that can interact via λ

∑M−1
m=1 V̂ m,m+1.

The target value of simulated inverse temperature βtar .

Procedure
1 Initialize: |ε�〉 = ψ0〉 (β(ε�) = 0), U = Identity, λ = 0.
2 Add single step to the circuit U → UpU and prepare
|ε� + δε�〉 = U |ψ0〉.
3 Turn on λ (λ � 1) slowly and allow the system evolve
for sufficient thermalization, then turn off λ slowly.
4 Perform the QKFE algorithm for each copy to get c′

n, then
construct G(ε, ε�) as Eq. (19) and I (ε) as Eq. (20).
5 Solve β(ε� + δε�) with Eq. (21).
6 If β(ε� + δε�) > βtar , reset ε� → ε� + δε�, β(ε�) → β(ε� + δε�),
then go back to 2. Else, stop.

the partition function Z (β ), from which the free energy is
given by F (β ) = − log Z (β )/β, and the thermal entropy is
given by S(β ) = β[E (β ) − F (β )] with the Boltzmann con-
stant taken as a unit.

C. Stepping complexity of the THEI protocol

In our THEI protocol, the thermodynamic properties of a
canonical ensemble are obtained by stepping from the infinite
temperature limit to a finite temperature. Here, we analyze the
stepping complexity of the THEI protocol. From the uniform
convergence of the kernel Fourier expansion, the energy distri-
bution function ρ(ε)e−βεEw/Z (β ) is well approximated by the
expansion G(ε, ε�) in the energy window [ε� − σε, ε� + σε],
with σε characterizing the energy fluctuation of the canonical
ensemble (rescaled by Ew in our notation) that scales with
the system size as 1/

√
L [66]. Within this window both the

absolute and relative errors are suppressed by O(1/N ) (see
Sec. II B), whereas outside this energy window, the expanded
function can be exponentially small, and the relative error is
no longer controllable. This sets a requirement for the step-
ping in the THEI protocol: the step in ε�, δε�, should scale
with σε , i.e.,

δε� ∼ 1/
√

L. (22)

Computing a thermodynamic quantity as a function of β using
THEI then involves O(

√
L) runs of QKFE.

In the THEI protocol, the finite energy states have to be
prepared following the scheme in Sec. III A repeatedly. The
number of repeats scales polynomially as O(N4

√
L), with the

measurement cost taken into account (Sec. II C). In order to
reduce the quantum state preparation cost, it is worth consider-
ing further integrating a quantum nondemolition measurement
[76] to our scheme to determine the expansion moments of
Eq. (18), which is expected to improve the efficiency of our
THEI protocol. This is left for future investigation.

D. Numerical demonstration

We apply the THEI protocol to the 1D-XXZ, 2D-XXZ, and
t-V models, which were introduced in Sec. II D, and examine
its performance from high to low temperatures. The results are
shown in Fig. 3. We confirm the computed inverse tempera-
ture, free energy, and thermal entropy by the iteration protocol
matches to the exact values, with errors being barely notice-
able. It is evident this protocol performs well for the entire
temperature range for all three models. The large discrepancy
observed for the original QKFE in Fig. 2 at low temperature
is no longer present with the THEI protocol [Figs. 3(c)–3(f)].
With our numerical demonstration using one fermion and
two spin models, we believe that the THEI protocol with a
polynomial cost for a quantum device is generically appli-
cable to finite temperature quantum simulations of quantum
Hamiltonian models.

IV. EXPERIMENTAL REALIZATION

One key building block for our quantum algorithms includ-
ing QKFE and THEI is the control unitary shown in Fig. 1.
In this section we discuss its physical realization, considering
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FIG. 4. Quantum circuit diagram decomposition of the
controlled-ZZ evolution with one- and two-qubit gates.

both a digital quantum circuit and analog quantum simulation
devices, and analyze the actual implementation cost.

A. Realization with digital quantum circuits

To realize of our quantum algorithms using digital quan-
tum computation, we consider Trotterizing the control unitary
in Eq. (4). One Trotter step is |0〉〈0| ⊗ I + |1〉〈1| ⊗ e−iĤδt ,

with δt controlling the Trotter error. To be concrete, we con-
sider spin models containing one- and two-body interactions.
The control unitary corresponding to the one-body terms
is realized by a control-phase gate [77]. The control uni-
tary corresponding to the two-body terms can be constructed
with three-qubit gates like C-ISWAP gates or Toffoli gates,
as proposed in Ref. [78]. In Fig. 4 we provide an efficient
gate decomposition using only one- and two-qubit gates for
a control unitary corresponding to the two-body terms, the
controlled-ZZ evolution. The controlled-XX or -YY evolution
can be decomposed in a similar way with four additional
single-qubit rotation operations. Taking the 1D-XXZ spin
chain as one example, the Trotter realization of the control
unitary in Eq. (4) involves 15(L − 1)nπδ−1

t two-qubit gates.
The depth of the QKFE circuit then scales as O(δ−1

t N ). The
required number of two-qubit gates will determine the size
of the quantum simulation problem that can be performed on
near-term quantum devices. With the scheme provided here,
performing QKFE on the 1D-XXZ spin chain with L = 4,
N = 3, and δt = 0.2π would require a total of 675 two-qubit
gates. At the same time, we believe that the quantum circuit
realization can be further simplified with recently developed
circuit-depth reduction techniques [79–81], which is left for
future investigation. An experimental demonstration of QKFE
is within reasonable accessibility of superconducting qubit
systems. For the linear scaling of the QKFE circuit depth in
δ−1

t and N , we anticipate that a finite temperature quantum
simulation based on our proposed quantum algorithms could
reach beyond classical simulation capability with near-term
quantum technology.

B. Realization with an atom-based analog quantum simulator

Here, we take the 1D-XXZ model as an example and
provide an experimental realization of the control unitary in
Eq. (4) with an atom-based quantum simulation system. We
consider a system of ultracold atoms confined in a periodic
optical lattice. The atoms are prepared in two hyperfine states
with the Zeeman sublevels representing two spin-1/2 states.
In the Mott insulator regime, the system is described by an
effective XXZ Hamiltonian [82],

Ĥ =
∑
〈i j〉

[
Jxy

(
σ x

i σ x
j + σ

y
i σ

y
j

) + Jzσ
z
i σ z

j

]
, (23)

FIG. 5. Experiment protocol for implementing the QKFE algo-
rithm on an analog quantum simulator based on atoms confined in an
optical lattice and optical tweezers. This setup implements the QKFE
algorithm for the 1D-XXZ model (see the text). Finite temperature
correlations of the 1D-XXZ model C1D-XXZ = 〈σ̂ z

1 σ̂ z
2 〉 with QKFE

(blue line) are shown in the inset and compared to the exact results
(diamonds). The results are calculated with N = 14 and R = 100
using the parameters of the proposed Rydberg atom experiment in
Sec. IV B.

where the spin coupling is mediated by superexchange. We
have Jxy = −t2/U↑↓ and Jz = t2/U↑↓ − (t2/U↑↑ + t2/U↓↓),
with t being the single-particle tunneling across nearby lat-
tice sites and Uσσ ′ being the on-site Hubbard interactions. In
this system, the anisotropy 
 = Jz/Jxy is tunable through the
Feshbach resonance.

We introduce a separately controllable atom as the ancilla
qubit confined with optical tweezers in Fig. 5. The ancilla
qubit can be encoded by two hyperfine ground states dressed
with Rydberg excitations. The control unitary corresponding
to the Hamiltonian in Eq. (23) is then realized by combin-
ing Raman-induced tunneling [83,84] and Rydberg blockade
[76,85]. The direct atomic tunnelings should be suppressed by
adding a large enough linear tilt potential to the optical lattice.
The Raman-assisted coupling between neighboring sites is
then enabled by setting the Raman detuning δ resonant with
the energy offset of the nearby lattice sites. By using a Ry-
dberg state as the intermediate state of the Raman transition,
the Raman-assisted tunneling can then be switched on and off
according to the ancilla qubit.

To be more concrete, we consider 87Rb atoms as carriers of
both the control unitary and ancilla qubits. The lattice depth
is set as Vx,Vy = 30ER (ER is the recoil energy) in the x and
y directions and Vz = 3.6ER in the z direction tilted by a spin-
independent linear potential 
L = h × 2.0 kHz per site, with
h being the Planck constant. This setup leads to a 1D tilted
lattice, as shown in Fig. 5. The Raman process is established
via single-photon coupling to the Rydberg state as the inter-
mediate state [86], with a single-photon Rabi frequency �c =
17 kHz and single-photon detuning 
c = 300 kHz. This set
of optimized parameters lies in the Mott insulator regime
and leads to isotropic superexchange interactions Jxy = Jz =
−h × 2.78 Hz in the absence of Feshbach resonance. For the
ancilla qubit encoding, we use the Raman laser to selectively
dress one of the two encoding hyperfine ground states. The
fraction of Rydberg excitations in the dressing scheme is
maintained at a certain level for a sufficiently long lifetime.
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Here, we assume the ancilla qubit is placed properly such
that the bare Rydberg interaction energy 
r−r between lattice
confined atoms and the ancilla qubit satisfies 
r−r � 1 GHz
[87]. Then the ancilla qubit in the Rydberg dressed state will
cause an energy shift 
r−r�

2
a/(4
2

a) � 800 kHz on the Ra-
man intermediate state of each atom in the 1D lattice, which
consequently switches off the Raman-assisted tunneling. The
Raman-assisted tunneling is on for the ancilla in the other
encoding hyperfine state.

We choose Rydberg state 110P with an estimated lifetime
τ0 ≈ 1.7 ms [88,89] for both the Raman intermediate state
and ancilla Rydberg dressing. The lifetime of the compos-
ite system of L = 6 lattice qubits and the ancilla is above
300 ms with our Rydberg dressing scheme. Suppose that
the experimental system is allowed to run for 170 ms, i.e.,
within its lifetime, the QKFE algorithm can be performed to
N = 14 orders for the XXZ model in Eq. (23) with the above
superexchange interaction. With this setup, we calculate the
finite temperature correlation σ̂ z

1 σ̂ z
2 using QKFE by averaging

R = 100 random states and show the results in the inset of
Fig. 5. The QKFE results agree well with the exact results,
having a tiny discrepancy only in the low temperature regime
with T/|Jxy| < 1.

We remark here that the control unitary for the 2D XXZ
model can be realized in a similar way using a 2D square
lattice, where the linear tilt potential should be added along
the diagonal direction of the lattice. The ancilla qubit can be
placed near the lattice plane. In addition, the experimental
proposal can be made even more efficient with 39K atoms
[90] since the superexchange is naturally stronger for lighter
atoms. In the meantime, the coupling strengths have a much
larger degree of tunability using Feshbach resonances of
39K [91].

V. CONCLUSION

We proposed a quantum kernel function expansion algo-
rithm for finite temperature quantum simulations, where the

key is to expand the density of states and energy dependence
of local observables by a Jackson kernel corrected Fourier
series. The QKFE algorithm completely lacks variational
optimization, which is required in other quantum Hamil-
tonian algorithms such as variational quantum eigensolvers
and quantum Lanczos methods. For a generic Hamiltonian,
the QKFE algorithm has an exponential quantum advantage
compared to its classical analog, namely, the classical KPM,
in computing expansion moments. For a BQP Hamiltonian,
we equipped QKFE with a THEI protocol, which constitutes
an efficient finite temperature quantum simulation method
for computing thermodynamic quantities such as free en-
ergy and thermal entropy with a polynomial time cost. For
a more general Hamiltonian beyond BQP, the THEI protocol
remains applicable, and its time cost for performing finite
temperature quantum simulations is comparable to finding
the ground state of the Hamiltonian. In analyzing the ex-
perimental realization considering superconducting qubit and
Rydberg atom quantum simulating platforms, we found the
QKFE algorithm is accessible to current quantum technology.
Whether the quantum advantage persists in the presence of
experimental noise is related to a broader open question of
establishing the quantum advantage of noisy intermediate-
scale quantum devices [92–95], which is left for future
investigation.
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