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Light-induced half-quantized Hall effect and axion insulator
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Motivated by the recent experimental realization of the half-quantized Hall effect phase in a three-dimensional
(3D) semimagnetic topological insulator [M. Mogi et al., Nat. Phys. 18, 390 (2022)], we propose a scheme
for realizing the half-quantized Hall effect and axion insulator in experimentally mature 3D topological
insulator heterostructures. Our approach involves optically pumping and/or magnetically doping the topological
insulator surface, such as to break time reversal and gap out the Dirac cones. By toggling between left and right
circularly polarized optical pumping, the sign of the half-integer Hall conductance from each of the surface
Dirac cones can be controlled, such as to yield half-quantized (0 + 1/2), axion (−1/2 + 1/2 = 0), and Chern
(1/2 + 1/2 = 1) insulator phases. We substantiate our results based on detailed band structure and Berry cur-
vature numerics on the Floquet Hamiltonian in the high-frequency limit. Our paper showcases how topological
phases can be obtained through mature experimental approaches such as magnetic layer doping and circularly
polarized laser pumping and opens up potential device applications such as a polarization chirality-controlled
topological transistor.
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I. INTRODUCTION

The Hall conductance is a paradigmatic example of a
directly measurable topological invariant [1]. Taking only in-
teger values in purely (two-dimensional) 2D band insulators,
it can interestingly assume half-integer values when the 2D
system is a surface of a 3D topological insulator, such as
(Bi, Sb)2Te3 [2–4] and Bi2Se3 [2]. Lately, this has attracted a
lot of attention in the context of magnetically doped [3,5–10]
and intrinsic antiferromagnetic topological insulators [11–14],
where local time-reversal symmetry breaking [1,15–20] opens
up a gap in the surface Dirac cone and gives rise to a half-
quantized surface Hall conductance [4–8,21–36].

In a key recent experiment, half-quantized Hall conduc-
tance has been observed in a 3D semimagnetic topological
insulator [4], where one surface state is gapped by magnetic
doping and the opposite surface is nonmagnetic and gapless.
By physically gapping the Dirac cone in a 3D topological
insulator, this mechanism for the half-quantized Hall effect is
not just a vivid manifestation of the parity anomaly [4,29–33],
but also provides a route towards other coveted and closely
related topological phases, such as the axion insulator and
the Chern insulator. The axion insulator phase, characterized
by a zero Hall plateau [6–8] accompanied by a quan-
tized topological magnetoelectric effect [37–43], has been
realized in a 3D sandwich heterostructure involving mag-
netic topological insulator layers. The Chern insulator, also
known as the quantum anomalous Hall insulator [1,3,44–48],
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has also been realized in an intrinsic magnetic topologi-
cal insulator [3] in the absence of an external magnetic
field.

Transitions between these topological phases are crucially
controlled by the gap of the surface Dirac cones of the 3D
topological insulators. One extremely versatile avenue for
selectively inducing gaps in surface Dirac cones is via Flo-
quet driving with circularly polarized light, an established
approach already known for driving a variety of topologi-
cal transitions [49–64]. Indeed, it has been experimentally
demonstrated that circularly polarized light can gap out the
helical Dirac cones of 3D topological insulators [65,66] by
breaking time-reversal symmetry. This light-induced anoma-
lous Hall effect has also been experimentally observed in
graphene [67]. So far, the existing literature has only focused
on how circularly polarized light can induce a Chern insula-
tor phase in a 3D topological insulator—whether it can also
induce the half-quantized Hall effect phase and the axion
insulator remains an open question.

Below, with close reference to Fig. 1, we provide a peda-
gogical summary of these closely-related topological phases,
such that the precise roles of optical driving and magnetic
doping in this paper are made clear. Note that the total
Hall conductivity is directly related to the number of gapped
surface Dirac cones: Every Dirac cone contributes a Hall
conductivity of ± e2

4π h̄ , depending on the chirality of the gap
[4,15–19,38,68].

(i) Figure 1(a): 3D Z2 topological insulator phase, i.e.,
when the 3D topological insulator (Bi, Sb)2Te3 or Bi2Se3 is
without Cr doping and light pumping, the top and bottom
surfaces possess opposite Dirac cones of opposite chirality
due to time-reversal symmetry, and they together contribute
zero Hall conductance.
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FIG. 1. Schematic of various topological phases that result when
a 3D topological insulator (Bi, Sb)2Te3 or Bi2Se3 is optically driven
from above, and/or doped with magnetic Cr in its bottom layers.
(a) Ordinary 3D Z2 topological insulator without Cr doping and
optical pumping, with two opposite gapless surface Dirac cones.
(b) When irradiated with light that penetrates only the top layer
(orange), the top surface Dirac cone becomes gapped due to time-
reversal breaking, resulting in a semi-Floquet topological insulator
(Floquet-induced half-quantized Hall effect). (c) Floquet-induced
Chern phase, where the radiation penetrates both layers (orange) and
gaps out both Dirac cones. (d) When optical driving is absent, but
Cr doping (blue) breaks time reversal in the bottom layers, gapping
out its Dirac cone, a semimagnetic topological insulator (magnetic
doping-induced half-quantized Hall effect) results. [(e),(f)] When
there is optical driving upon one surface and Cr-doping in the other,
both surfaces have Dirac cones gapped out, but their chiralities can be
controlled. Depending on whether left-handed (e) or right-handed (f)
circularly polarized light (purple circular arrow) is used, we obtain
either (e) an axion insulator with zero net Chern number or (f) an
effective Chern phase with nonzero Hall conductivity.

(ii) Figure 1(b): Semi-Floquet topological insulator phase
(Floquet-induced half-quantized Hall effect), i.e., when the
Dirac cone gap is opened by optical driving at the top but
not the bottom surface, resulting in a half-quantized Hall
conductance. This can happen when the topological insulator
is subjected to optical pumping at a sufficiently weak intensity
such that only the top surface is irradiated (orange), while the
bottom surface is shielded by the skin effect [69,70].

(iii) Figure 1(c): Floquet-induced Chern topological insu-
lator phase, i.e., when the Dirac cones at both top and bottom
surfaces are gapped by the time-reversal breaking from circu-
larly polarized light (purple circular arrow), resulting in an
integer-quantized total Hall conductance, such that the two
surfaces together constitute a Chern insulator. This occurs
when the radiation is sufficiently strong such that it passes
through the sample (orange), reaching the bottom surface.

(iv) Figure 1(d): Semimagnetic topological insulator
phase [4] (magnetic doping induced half-quantized Hall effect
phase), i.e., when (magnetic) Cr doping (blue) is selectively
introduced only in the bottom layers of the sample, such that
the Dirac cone becomes gapped only in the bottom surface
due to broken time-reversal symmetry The unpaired, gapped
Dirac cone contributes a half-quantized Hall conductance.

(v) Figure 1(e): Axion insulator phase [6–8,71] (semimag-
netic Floquet axion insulator phase), examined in detail in

this paper. The topological insulator is both radiated with left-
handed circularly polarized light that only penetrates the top
layers (orange), and is Cr-doped in the bottom layers (blue).
This can gap the Dirac cones in both the top and bottom
surfaces, albeit with opposite chiralities, resulting in a zero
total quantum Hall conductance.

(vi) Figure 1(f): We dub this the semimagnetic Floquet
Chern topological insulator phase, which is examined in detail
in this paper. Like in Fig. 1(e), we subject the topological
insulator to optical pumping in the top layer (orange) and Cr
doping (blue) in the bottom layer, but with the optical polar-
ization being right-handed instead of left handed (clockwise
purple circular arrow). This produces Dirac cones with the
same chirality in both top and bottom layers and gaps them
out to result in half-quantized Hall conductance contributions
of the same sign. The top and bottom surfaces thus combine
to form a Chern insulator.

In this paper, we provide a quantitative study of how the
combination of optical driving and Cr magnetic doping can
induce all of the above-mentioned phases in realistic thin
samples of (Bi, Sb)2Te3 and Bi2Se3, particularly the semi-
Floquet topological insulator and the axion insulator. The
main results are as follows: First, by adjusting the intensity of
the circularly polarized pumped light, the penetration depth
can be adjusted such that either one or both surfaces of the
topological insulator are irradiated, an approach not studied in
previous papers on Floquet driving with topological insulators
[49–62,65,66]. Second, our approach lends a way to easily
switch between the axion (zero Hall plateau) and the Chern
insulator (quantized Hall plateau) phases by reversing the op-
tical polarization, thus complementing existing experimental
efforts in realizing the semimagnetic, axion [6–8], and Chern
[3,44,48,67] topological insulator phases as well as suggesting
potential technological applications such as chirality-selective
topological transistors [72].

This paper is organized as follows: In Sec. II, we introduce
the lattice Hamiltonian for our TI heterostructure, as well
as that for the magnetic doping. In Sec. III, we derive the
corresponding Floquet effective Hamiltonian for the optical
driving in the high-frequency limit. In Sec. IV, we present the
energy dispersions and Hall conductance with fixed laser pen-
etration depth by numerically diagonalizing the corresponding
Floquet tight-binding Hamiltonian. In Sec. V, we substantiate
our Hall conductance results by presenting the actual spatial
distributions of the surface Dirac bands as well as their Berry
curvature profiles. In Sec. VI, we further discuss related alter-
native routes for realizing our Floquet axion and Chern phases
without the use of magnetic doping.

II. MODEL

We begin by writing down the tight-binding model Hamil-
tonian for 3D topological insulators (Bi, Sb)2Te3 and Bi2Se3,
which is given by [2,31,35,73,74]

H (0)(k)

=
∑

jz

[
C†

k, jz
h(k)Ck, jz + C†

k, jz
TzCk, jz+1 + C†

k, jz+1T †
z Ck, jz

]
,

(1)
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where

h(k) =
[

m0 − 2tz − 4t||

(
sin2 kxa

2
+ sin2 kya

2

)]
σ0 ⊗ τz

+ λ|| sin(kxa)σx ⊗ τx + λ|| sin(kya)σy ⊗ τx, (2)

Tz = tzσ0 ⊗ τz − i
λz

2
σz ⊗ τx, (3)

where a is the lattice constant along x or y direction, C†
k, jz

and Ck, jz are the four-component creation and annihilation
operators at position jz along z direction with wave vector
k = (kx, ky), σx,y,z and τx,y,z are the Pauli matrices for the spin
and orbital degrees of freedom, respectively, σ0 (τ0) is a 2×2
unit matrix, a is the lattice constant, m0, tz, t||, λz, and λ|| are
model parameters. The basis (|1p+

z ,↑〉, |2p−
z ,↑〉, |1p+

z ,↓〉,
|2p−

z ,↓〉) are the hybridized states of Te or Se pz orbital (1)
and Sb or Bi pz orbital (2), with even (+) and odd (−) parities,
up (↑) and down (↓) spins [44–46]. The material parame-
ters for both (Bi, Sb)2Te3 and Bi2Se3 are similar [2–4,31]:
tz = 0.40 eV, t|| = 0.566 eV, λz = 0.44 eV, λ|| = 0.41 eV, and
m0 = 0.28 eV. The lattice constant is a = 1 nm in the x-y
directions and az = 0.5 nm in the z direction; we have kept the
latter in real-space form so as to implement the top and bottom
surfaces. The detailed derivations for the momentum-space
and real-space tight-binding models Eqs. (2) and (1) can be
found in Appendix A and B respectively.

If we consider Cr doping such as to introduce additional
time-reversal breaking at the bottom layer, the additional ex-
change field Hamiltonian from the magnetic dopants reads
[44,47,56–58,75]

�Hd =
∑

jz

C†
k, jz

[Vz( jz )σz ⊗ τ0]Ck, jz , (4)

where Vz( jz ) is the magnitude of the bulk magnetic moment
[3], which is only nonzero on the lattice sites of the bottom
layers jz = nz − 1, nz where nz is the total number of layers,
i.e., we have Vz( jz ) = Vz = 0.1 eV [3,4,31] at jz = nz − 1, nz

and Vz( jz ) = 0 elsewhere. The corresponding matrix form of
the real-space tight-binding model with Cr doping can be
found in Appendix C.

Explicitly, we see that the magnetic doping Hamilto-
nian (4) breaks time-reversal symmetry from T [H (0)(k) +
�Hd ]T −1 �= [H (0)(−k) + �Hd ], with the time-reversal op-
erator being T = σy ⊗ τ0K [76], K the complex conjugation
operator. The corresponding detailed derivations can be found
in Appendix D.

III. FLOQUET HAMILTONIAN

We next describe the optical driving field and how it
leads to the effective Floquet Hamiltonian, starting from our
model above. The optical driving field propagating along

the z direction in our topological insulator (Bi, Sb)2Te3

or Bi2Se3 can be expressed as E(z, t ) = ∂A(z, t )/∂t =
E (z)( cos(ωt ), cos(ωt + ϕ), 0), where E (z) = E0e−z/δ is the
amplitude of the optical field, z is the position along the z
direction, and δ is the skin penetration depth due to optical ab-

sorption, as given by δ = √
2ρ/(ωμ)

√√
1 + (ρωε)2 + ρωε

∫

[77,78] where ρ is the resistivity of the bulk material, ω is
the angular frequency of the applied light beam, μ = μrμ0

is the permeability of the bulk material with the relative
magnetic permeability μr and the vacuum permeability μ0,
ε = εrε0 is the permittivity of the bulk material, with the
relative permittivity εr and the vacuum permittivity ε0. For
Bi2Se3, the conductivity is σ ∼ 8.8 × 104 S/m [79–81], i.e.,
ρ = 1/σ ∼ 1.136 × 10−5 m/S. For Bi2Te3, the conductiv-
ity is σ ∼ 1.22 × 105 S/m [82], i.e., ρ = 1/σ ∼ 8.197 ×
10−6 m/S. From the above, we have A(z, t ) = A(z, t + T ) =
ω−1E (z)( sin(ωt ), sin(ωt + ϕ), 0), which is of period T =
2π/ω, ω being the optical frequency. The phase delay ϕ =
∓π/2 introduces left- or right-handed circular polarization.
Since we are interested in the off-resonant regime in which
the central Floquet band is far away from other replicas,
such that the high-frequency expansion is applicable, we
set the driving frequency in this paper as h̄ω = 3.82 eV
(ω ∼ 5.80 × 103 THz that is in the deep ultraviolet), which is
much larger than the bandwidth [55–61]. For Bi2Se3, the skin
penetration depth is set as δ ∼ 16.3 nm at h̄ω = 3.82 eV based
on experimental data [69]; for Bi2Te3, it is 24.6 nm [69,70] at
the same frequency.

Under optical driving, the motion of lattice electrons is
governed by minimal substitution of the lattice momen-
tum with the electromagnetic gauge field A(z, t ), i.e., the
Peierls substitution t|| → t|| exp[i e

h̄

∫ r j′
r j

A(z, t ) · dr] and λ|| →
λ|| exp[i e

h̄

∫ r j′
r j

A(z, t ) · dr], where r j is the coordinate of the
lattice site j, j′ = j ± 1, −e is the electron charge, and h̄ is
the reduced Planck’s constant. Hence, upon irradiation with
light, the photon-dressed effective Hamiltonian is given by

H (k, t ) = H (0)
(

k − e

h̄
A(z, t )

)
+ �Hd . (5)

We next derive the effective static Floquet Hamiltonian
[83–90] H (F )(k) = i

T ln[T e−i
∫ T

0 H (k,t )dt ] with the periodic
driving “averaged” over through T , the time-ordering oper-
ator. In the high-frequency regime, a closed-form solution
exists via the Magnus expansion [49–56,88,90–92]

H (F )(k) = H0 +
∞∑

n=1

[H−n, Hn]

nh̄ω
+ O(ω−2), (6)

where Hm−m′ = 1
T

∫ T
0 H (0)(k, t )ei(m−m′ )ωt dt with m and m′ as

integers. The concrete analytical expressions for H0, H−n, and
Hn can be found in Appendix E. From Eq. (6), the Floquet
Hamiltonian can be evaluated as

H (F )(k) =
∑

jz

{m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]}C†
k, jz

γ0Ck, jz

+ tz
∑

jz

(
C†

k, jz
γ0Ck, jz+1 + C†

k, jz+1γ0Ck, jz

) − i
λz

2

∑
jz

(
C†

k, jz
γzCk, jz+1 − C†

k, jz+1γzCk, jz

)
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+ J0(A(z)a)λ|| sin(kxa)
∑

jz

C†
k, jz

γxCk, jz + J0(A(z)a)λ|| sin(kya)
∑

jz

C†
k, jz

γyCk, jz

+
∑

jz

C†
k, jz

∑
n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin (nϕ){2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz , (7)

where Jn(A(z)a) is the nth Bessel function of the first kind
[93], γ0 = σ0 ⊗ τz, γ j=x,y,z = σ j=x,y,z ⊗ τx, and we used ϕ =
π/2. The detailed matrix form of the tight-binding Flo-
quet Hamiltonian can be found in Appendix F. Here A(z) =
A0e−z/δ with A0 = eE0/(h̄ω). Additionally, the validity of the
high-frequency expansion can be found in Appendix G.

Note that it should not be taken for granted that opti-
cal driving will simply induce the Chern insulator phase:
When ϕ = 0, we find that the Floquet Hamiltonian T H (F ) (7)
still satisfies time-reversal symmetry, i.e., T H (F )(k)T −1 =
H (F )(−k) with the time-reversal symmetry operator being
T = σy ⊗ τ0K [76], where K is the complex conjugation
operator. However, when ϕ = π

2 , the terms containing ϕ in
H (F )(k) [Eq. (7)] lead to T H (F )(k)T −1 �= H (F )(−k), which
breaks time-reversal symmetry. The corresponding derivation
details can be found in Appendix H.

IV. ENERGY SPECTRA AND HALL CONDUCTANCES

To calculate the Hall conductance of the system, we first
define the Hall conductance as [94,95]

σH = e2

h

1

2π

∑
j

∫
f (Ej − EF )� j,z(kx, ky)dkxdky, (8)

where f (Ej − EF ) = �(EF − Ej ) is the Fermi distribution
function in the zero-temperature limit, �(x) the Heaviside
function [96–100], EF is the Fermi energy, and � j,z(kx, ky)
is the Berry curvature for the energy band j, which reads
[29,51,101–104]

� j,z(kx, ky) = −2Im
∑
i �= j

〈 j|(∂H/∂kx )|i〉〈i|(∂H/∂ky)| j〉
(Ej − Ei )2

.

(9)

Here H and its eigenvectors |i〉, | j〉 are taken to be those of
the Floquet Hamiltonian for cases with optical pumping. The
detailed derivation for the Berry curvature (9) can be found in
Appendix I.

We next present the energy spectra and how the presence
of each gapped surface Dirac cone leads to a half-quantized
Hall conductivity. First, we consider cases with only optical
driving and no Cr doping. As shown in Fig. 2(a1) for the
semi-Floquet case from Fig. 1(b), Bi2Se3 is under optical
pumping from the top surface with a weak light intensity of
A0 = 0.8 nm−1, such that only the top surface (red curve)
opens up a gap and the bottom surface (blue curve) is gapless.
Only the gapped top surface contributes a half-quantized Hall
conductance within its gap (green), as shown in Fig. 2(a2). In
Fig. 2(b1) for the Floquet Chern case from Fig. 1(c), Bi2Se3 is
under optical pumping from the top surface with a strong light

intensity of A0 = 2.5 nm−1, such that it penetrates both the
top and bottom surfaces and gaps out their Dirac cones, which
together contribute a quantized Hall conductance, as shown in
the gapped region of both surfaces (yellow) in Fig. 2(b2).

We next discuss cases where magnetic Cr doping �Hd is
added to the bottom layers of the topological insulator, as
presented in Fig. 3. Shown in Fig. 3(a1) is the band structure
without any Floquet driving. Since Cr doping is only present
at the bottom, the bottom surface Dirac cone (blue) gaps
out, resulting in a negative half-quantized Hall conductance

FIG. 2. Floquet band structures and their corresponding Hall
conductivity for the Floquet optical-driven Hamiltonian (7) of Bi2Se3

without Cr doping. [(a1),(b1)] Floquet band structures under open
boundary conditions along the z direction and periodic boundary
conditions along the x and y directions. In (a1), A0 = 0.8 nm−1 and
the driving radiation only gaps out the top surface Dirac cone (red).
In (b1), A0 = 2.5 nm−1 and the driving radiation penetrates both
surfaces, gapping both the top and bottom surface Dirac cones (red
and blue). Here, Et± and Eb± are the energies of the top and bottom
surface bands; the subscripts “±” respectively denote the lowest
conduction band or highest valence band. The green and yellow
shaded intervals indicate the band widths of the top and bottom sur-
faces, respectively. [(a2),(b2)] Hall conductance as a function of the
Fermi energy EF , corresponding to the light intensities in (a1) A0 =
0.8 nm−1 and (b1) A0 = 2.5 nm−1. They exhibit half-integer (semi-
Floquet) and integer-quantized (Chern-Floquet) Hall conductivity
in the gap, respectively. The other parameters are ky = 0, sample
thickness Lz = 30 nm, az = 0.5 nm, a = 1 nm, tz = 0.40 eV, t|| =
0.566 eV, λz = 0.44 eV, λ|| = 0.41 eV, m0 = 0.28 eV, δ = 16.3 nm,
h̄ω = 3.82 eV, and ϕ = −π/2.
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FIG. 3. Band and Floquet band structures and their corresponding Hall conductivity for the Hamiltonian of Bi2Se3 with Cr doping.
[(a1)–(c1)] Energy bands for the tight-binding Hamiltonian of the Bi2Se3 under open boundary conditions along the z direction and periodic
boundary conditions along the x and y directions. In (a1), Vz = 0.1 eV, A0 = 0 nm−1, and the magnetic doping gaps out the bottom surface
Dirac cone (blue). In (b1), Vz = 0.1 eV, A0 = 0.8 nm−1, ϕ = −π/2, and the driving radiation penetrates the top surface, gapping the top surface
Dirac cone (red). The magnetic doping gaps out the bottom surface Dirac cone (blue). In (c1), Vz = 0.1 eV, A0 = 0.8 nm−1, ϕ = π/2, and the
driving radiation penetrates the top surface, gapping the top surface Dirac cone (red). The magnetic doping gaps out the bottom surface Dirac
cone (blue). Here, Et± and Eb± are the energies of the top and bottom surface bands, subscripts “±” respectively denote the lowest conduction
band or highest valence band. The green and yellow shaded intervals indicate the band widths of the top and bottom surfaces, respectively.
[(a2)–(c2)] Hall conductance as a function of the Fermi energy EF , corresponding to the parameters in (a1) Vz = 0.1 eV, A0 = 0 nm−1; (b1)
Vz = 0.1 eV, A0 = 0.8 nm−1, ϕ = −π/2; and (c1) Vz = 0.1 eV, A0 = 0.8 nm−1, ϕ = π/2. They exhibit half-integer (semimagnetic), zero
(axion), and integer-quantized (Chern) Hall conductivity in the gap, respectively. The thickness of the Cr-doped layer is d = 1 nm from the
bottom surface, and the laser penetration depth is δ = 16.3 nm under h̄ω = 3.82 eV [69] accompanying the light incoming from the top surface.
The black dashed line in (b2) is the combination of the Hall conductances of Figs. 2(a2) and 3(a2). The other parameters are the same as those
in Fig. 2.

within the gap (yellow) [Fig. 3(a2)]. This is the semimag-
netic topological insulator phase from Fig. 1(d). Shown in
Figs. 3(b) and 3(c) are cases where the top surfaces are ad-
ditionally Floquet-irradiated by left-handed and right-handed
circularly polarized light, respectively. Both the top (red) and
bottom (blue) surface Dirac cones are gapped—the top by
optical driving and the bottom by magnetic doping. While
each contributes a half-quantized Hall conductance, in (b)
with left-handed polarization, the Dirac cones are of opposite
chirality, resulting in opposite Hall conductances that cancel
[Fig. 3(b2)]. In Fig. 3(c) with right-handed polarization, the
top surface Dirac cone’s chirality is flipped, giving rise to
an integer quantized Hall conductance within the gap (green)
[Fig. 3(c2)]. These are respectively the cases (e) and (f) from
Fig. 1, namely the semimagnetic Floquet axion and Chern
insulators.

V. STATE DENSITY PROFILE AND BERRY
CURVATURE DISTRIBUTION

In order to more precisely trace the origin of the Hall
conductivity from the surface band structures, we present the
detailed distribution of the surface bands in real space as well
as their Berry curvatures in momentum space.

Figure 4 shows the spatial state distributions |ψ (z)|2 of the
four most relevant surface bands (|ψt±|2 – red lines and |ψb±|2
– blue lines) in the cases shown in Figs. 1(b), 1(d)–1(f). As
evident in Figs. 2 and 3, these bands are the ones closest to the
gap, as labeled by subscripts “t+” (top surface, conduction)
and “b+” (bottom surface, conduction), “t−” (top sur-
face, valence), “b−” (bottom surface, valence). These states
are plotted for kx = ky = 0 where the Dirac cones, if any,
reside.

From Fig. 4, it is evident that in all cases, the putative top
(t) and bottom (b) states are indeed localized near the top
surface (small z) and bottom surface (large z), respectively,
with identical distributions for corresponding conduction and
valence bands. The non-Floquet case in Fig. 4(b) has the most
localized Dirac cone states, but the top surface state (red) in
the other three Floquet cases [Figs. 4(a), 4(c), and 4(d)] are
still sufficiently localized in the top 10 layers (z = 5 nm), such
that they would be greatly affected by circularly polarized
pumping light incident on the top surface.

In Fig. 5, we present the Berry curvature distributions for
the lowest conduction (subscript “+”) and highest valence
(subscript “–”) bands of both the top (t) and bottom (b) sur-
faces, for each of the four cases shown in Figs. 1(d), 1(b),
1(e), and 1(f). Due to the approximate rotational symmetry of
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FIG. 4. Spatial state distribution |ψ (z)|2 along the vertical direc-
tion z for the lowest conduction (subscript “+”) and highest valence
(subscript “–”) bands of the top surface state (|ψt±|2 – red lines) and
bottom surface state (|ψb±|2 – blue lines) at kx = ky = 0. Indeed, the
supposed top and bottom surface states are concentrated near the top
(z = 0.5 nm) and bottom z = 30 nm boundaries. (a) Semi-Floquet
topological insulator with Vz = 0 eV, A0 = 0.8 nm−1, and ϕ =
−π/2. (b) Semimagnetic topological insulator with Vz = 0.1 eV and
A0 = 0 nm−1. (c) Axion insulator with Vz = 0.1 eV, A0 = 0.8 nm−1,
and ϕ = −π/2. (d) Chern topological insulator with Vz = 0.1 eV,
A0 = 0.8 nm−1, and ϕ = π/2. The other parameters are the same as
those in Fig. 3.

Dirac cones near the gapless point in the Brillouin zone, the
Berry curvature distributions in Fig. 5 also look approximately
rotation-invariant. In most of these plots, there is a ring of peak
Berry curvature at around 0.8 nm−1 when the surface bands
merge into the bulk. But more importantly, at small kx, ky, we
see even more intense Berry curvature contributions whenever
there are gapped Dirac cones; when the Dirac cone is gapless,
the Berry curvature disappears.

As shown in Figs. 5(a1)–5(d1), i.e., the semi-Floquet topo-
logical insulator phase, due to the light propagating vertically
only from the top surface, the Berry curvature is mainly dis-
tributed in the center of the Brillouin zone for the gapped
top surface state. But there is almost no distribution in the
center of the Brillouin zone for the bottom gapless surface
state without magnetic doping. As shown in Figs. 5(a2)–5(d2),
i.e., the semimagnetic topological insulator phase, due to the
magnetic doping only in the last two layers at the bottom,
the Berry curvature is mainly distributed in the center of the
Brillouin zone for the bottom surface Dirac cone. But there
is almost no distribution in the center of the Brillouin zone
kx = ky = 0 for the top surface state, which is gapless. In
Figs. 5(a3)–5(d3) and Figs. 5(a4)–5(d4), the Berry curvature
is always concentrated at the center of the Brillouin zone
because both surfaces are gapped—from the irradiation on
the top surface and the magnetic doping in the last two layers

at the bottom. Comparing Fig. 5(a3) with Fig. 5(a4) for the
lowest conduction band of the top surface state, one can find
that the sign of the Berry curvature is opposite due to the op-
posite chirality of the light polarization. The same conclusion
can be found by comparing Fig. 5(b3) with Fig. 5(b4) for the
highest valence band of the top surface state.

VI. ALTERNATIVE ROUTE TOWARDS FLOQUET AXION
AND CHERN INSULATORS

We briefly discuss an alternative route to achieve the Flo-
quet axion and Chern insulators without the use of magnetic
doping. The idea is to irradiate both the top and bottom sur-
faces of the topological insulator sample simultaneously, so as
to break time reversal on both surfaces purely through Floquet
driving. By using two different lasers (instead of one laser
beam that must pass through the sample), both surfaces can
be independently driven, and there is also no need for a beam
that is sufficiently strong for full penetration.

As described in Figs. 6(a) and 6(b), when we shine on both
surfaces simultaneously with two laser beams propagating
in opposite directions (without any magnetic doping), there
are two possible topological phases. One is (a) the Floquet
axion insulator phase (the two different circularly polarized
lights have opposite directions of polarization; for example,
one is a left-handed circularly polarized light and the other
is a right-handed circularly polarized light). The other one is
(b) the Floquet Chern insulator phase (the two different circu-
larly polarized lights have the same direction of polarization;
for example, they are both left-handed circularly polarized
lights).

The relative independence of tuning the top and bottom
surfaces’ lasers can potentially be useful for a chirality-
controlled topological transistor, reminiscent of [72]. The
“on” state [quantized conductance—Fig. 6(b)] and the “off”
state [zero conductance—Fig. 6(a)] can be easily toggled by
changing the chirality of either circularly polarized laser. If
ultrafast switching between the polarization directions can
be performed, our setup may even serve as a platform for
a Floquet quench involving Chern and axion phases, whose
interplay can be explored in future work.

A. Axion-Chern quench

An interesting extension of the above-mentioned approach
involves performing a Floquet quench on the axion and Chern
phases. Since they are generated by left and right polarized
light, we shall investigate the possible outcomes of periodi-
cally quenching the chirality of the circularly polarized light
to alternate rapidly between Figs. 1(e) and 1(f) [or Figs. 6(a)
and 6(b)]. Without loss of generality, we take Figs. 1(e) (left-
handed circularly polarized light with ϕ = −π/2) and 1(f)
(right-handed circularly polarized light with ϕ = π/2) in the
following discussions.

We consider a periodic two-step quench with a total pe-
riod of T = T1 + T2, where each odd(even) step is governed
by the Hamiltonian under left (right) polarized light HL(k)
[HR(k)], for a duration of T1 [T2]. Then the effective Floquet
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FIG. 5. Berry curvature distributions for the lowest conduction (“+”) and highest valence bands (“–”) of the top (t) and bottom (b) surfaces,
for the four scenarios from Fig. 4. [(a1)–(d1)] Semi-Floquet topological insulator with Vz = 0 eV, A0 = 0.8 nm−1, and ϕ = −π/2. [(a2)–(d2)]
Semimagnetic topological insulator with Vz = 0.1 eV and A0 = 0 nm−1. [(a3)–(d3)] Axion insulator with Vz = 0.1 eV, A0 = 0.8 nm−1, and
ϕ = −π/2. [(a4)–(d4)] Chern topological insulator with Vz = 0.1 eV, A0 = 0.8 nm−1, and ϕ = π/2, which is equal but opposite to that of
(c) due to the reversed polarization of the optical driving. We see Berry curvature peaks around kx = ky = 0 when gapped Dirac cones exist,
and another ring of peaks at larger kx, ky when the bands merge into the bulk. The other parameters are the same as those in Fig. 3.

Hamiltonian is given by [105–107]

Heff(k) ≡ i

T1 + T2
ln[e−iHR (k)T2 e−iHL (k)T1 ], (10)

where HL(k) denotes the Hamiltonian under left-handed cir-
cularly polarized light with ϕ = −π/2 and HR(k) denotes
the Hamiltonian under right-handed circularly polarized light
with ϕ = π/2.

As shown in Fig. 7, we can find that the value of the gap of
the top surface (red curve) can be tuned by the time duration
parameters T1 and T2. In particular, when T1 = T2 as shown in
Fig. 7(b1), the system becomes a semimagnetic topological
insulator phase, which is different from the original axion
and Chern insulator phases. Finally, we note that higher half-
integer quantized conductivities can also be realized through
Floquet driving protocols in slightly more complicated related
settings [108].

VII. SUMMARY AND DISCUSSION

We propose a 3D topological insulator heterostructure
that can exhibit a variety of topologically quantized or half-
quantized phases through selective magnetic doping and/or
irradiation with circularly polarized lasers, both of which open
up a gap in the surface Dirac cones through time-reversal
breaking. In particular, when magnetic ions are modulation
doped only in the vicinity of the bottom surface and high-
frequency circularly polarized light is irradiated into the top
surface (without penetrating the bottom), we can either realize
the axion insulator (with zero Hall plateau) or the Chern
insulator (with quantized Hall plateau) by toggling the po-
larization chirality. These results are substantiated by explicit
evaluation of the Floquet Hamiltonian and numerical com-
putation of the resultant Berry curvatures based on realistic
topological insulator material parameters such as the optical
penetration depth.

It is interesting to note that although all the above-
mentioned phases are defined in 3D topological systems,
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FIG. 6. A 3D topological insulator sample of arbitrary thickness
and without magnetic doping can be induced into either the Floquet
axion or Chern phases by means of two lasers, one upon each surface.
(a) Floquet axion insulator under a left-handed circularly polarized
laser incoming from the top surface and a right-handed circularly
polarized light incoming from the bottom surface. (b) Chern insulator
phase under two left-handed circularly polarized lights incoming
from the top and bottom surfaces, respectively.

they can be mathematically “compressed” into 2D time-
reversal broken systems via an inverse holographic mapping
[19,109–111], such that the layer-resolved Berry curva-
tures become the scale-resolved Berry curvatures of the

FIG. 7. Floquet band structures and their corresponding Hall conductivity for the effective Hamiltonian (10) under quench dynamics.
[(a1)–(c1)] Floquet energy bands. In (a1) T1 = 0.3 h̄/eV, T2 = 0.1 h̄/eV, and the magnetic doping gaps out the bottom surface Dirac cone
(blue). The HL(k) is dominant, gapping the top surface Dirac cone (red). In (b1), T1 = T2 = 0.1 h̄/eV, and the magnetic doping gaps out the
bottom surface Dirac cone (blue). The contributions from HL(k) and HR(k) cancel each other out, so that the top surface is gapless (red). In
(c1), T1 = 0.1 h̄/eV, T2 = 0.3 h̄/eV, and the magnetic doping gaps out the bottom surface Dirac cone (blue). The HR(k) is dominant, gapping
the top surface Dirac cone (red). [(a2)–(c2)] Hall conductance as a function of the Fermi energy EF , corresponding to the parameters in (a1)
T1 = 0.3 h̄/eV, T2 = 0.1 h̄/eV; (b1) T1 = T2 = 0.1 h̄/eV; and (c1) T1 = 0.1 h̄/eV, T2 = 0.3 h̄/eV. They exhibit zero (axion), half-integer
(semimagnetic), and integer-quantized (Chern) Hall conductivity in the gap, respectively. Here, Vz = 0.1 eV and A0 = 0.8 nm−1. The other
parameters are the same as those in Fig. 3.

corresponding 2D holographic duals. With that the 3D Hall
conductivities correspond directly to 2D dual Chern numbers,
and half-quantized 3D insulators correspond to nonlattice reg-
ularized 2D gapped Dirac cones. In this paper, the main effect
of Floquet driving was to gap out Dirac cones through time-
reversal breaking; the investigation of how this mechanism
interplays with decidedly more robust nonlinear Dirac cones
[112–114] would certainly be interesting for future investiga-
tions.
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APPENDIX A: DERIVATION FOR THE
MOMENTUM-SPACE TIGHT-BINDING MODEL

The motivation of this Appendix A is to derive the analyt-
ical expression of the momentum-space tight-binding model
for both (Bi, Sb)2Te3 and Bi2Se3 without Cr doping and opti-
cal (Floquet) driving.
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We begin from the low-energy three-dimensional effective model Hamiltonian for bulk (Bi, Sb)2Te3 and Bi2Se3 near the
� point, which is given in the basis (|1p+

z ,↑〉, |2p−
z ,↑〉, |1p+

z ,↓〉, |2p−
z ,↓〉), which are the hybridized states of Te or Se pz

orbital (1) and Sb or Bi pz orbital (2), with even (+) and odd (−) parities, up (↑) and down (↓) spins [44–46], as used in
[45–47,56–58,73,75,94,115]

H(0)(k) =

⎛
⎜⎜⎝

m(k) A1kz 0 A2k−
A1kz −m(k) A2k− 0

0 A2k+ m(k) −A1kz

A2k+ 0 −A1kz −m(k)

⎞
⎟⎟⎠ (A1)

= m(k)σ0 ⊗ τz + A1kzσz ⊗ τx + A2kxσx ⊗ τx + A2kyσy ⊗ τx, (A2)

where σx,y,z are the Pauli matrices for the spin degree of freedom, τx,y,z are the Pauli matrices for the orbital degree of freedom,
σ0 (τ0) is a 2×2 unit matrix, m(k) = m0 − B1k2

z − B2(k2
x + k2

y ), k± = kx ± iky, m0, A1, A2, B1, and B2 are model parameters to
be specified later.

To regularize the low-energy long-wavelength Hamiltonian on a lattice, one makes the following replacements [101]:

k j → 1

a j
sin(k ja j ), (A3)

k2
j → 2

a2
j

[1 − cos(k ja j )], (A4)

where j = x, y, z and aj is the lattice constant along j direction. With the mappings (A3) and (A4), one obtains

M(k) = m0 − 2B1

a2
z

[1 − cos(kzaz )] − 2B2

a2
x

[1 − cos(kxax )] − 2B2

a2
y

[1 − cos(kyay)], (A5)

k̃± = 1

ax
sin(kxax ) ± i

ay
sin(kyay). (A6)

Due to the lattice symmetry, ax = ay = a|| and we have

M(k) = m0 − 2B1

a2
z

[1 − cos(kzaz )] − 2B2

a2
||

[2 − cos(kxa||) − cos(kya||)]

= m0 − 4B1

a2
z

sin2 kzaz

2
− 4B2

a2
||

(
sin2 kxa||

2
+ sin2 kya||

2

)
, (A7)

k̃± = 1

a||
[sin(kxa||) ± i sin(kya||)]. (A8)

Therefore, the momentum-space tight-binding model for both (Bi, Sb)2Te3 and Bi2Se3 without Cr doping and light in the basis
(ck,+,↑, ck,−,↑, ck,+,↓, ck,−,↓)T is given by

H3D(k) = M(k)σ0 ⊗ τz + A1

az
sin(kzaz )σz ⊗ τx + A2

a||
sin(kxa||)σx ⊗ τx + A2

a||
sin(kya||)σy ⊗ τx. (A9)

By setting that tz = B1
a2

z
, t|| = B2

a2
||
, λz = A1

az
, and λ|| = A2

a||
, we have

H3D(k) = M(k)σ0 ⊗ τz + λz sin(kzaz )σz ⊗ τx + λ|| sin(kxa||)σx ⊗ τx + λ|| sin(kya||)σy ⊗ τx, (A10)

M(k) = m0 − 4tz sin2 kzaz

2
− 4t||

(
sin2 kxa||

2
+ sin2 kya||

2

)

= m0 − 4tz sin2 kzaz

2
− 2t||[1 − cos(kxa||) + 1 − cos(kya||)]

= (m0 − 2tz − 4t||) + 2tz cos(kzaz ) + 2t||[cos(kxa||) + cos(kya||)]. (A11)

The parameters for both (Bi, Sb)2Te3 and Bi2Se3 are adopted as [2–4,31]: A1 = 0.22 eV · nm, A2 = 0.41 eV · nm, m0 = 0.28 eV,
B1 = 0.1 eV · nm2, and B2 = 0.566 eV · nm2. Furthermore, by setting az = 0.5 nm and a|| = a = 1 nm, we can have tz = 0.4 eV,
t|| = 0.566 eV, λz = 0.44 eV, and λ|| = 0.41 eV.
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APPENDIX B: DERIVATION FOR THE REAL-SPACE TIGHT-BINDING MODEL (1)

The motivation of this Appendix B is to derive the analytical expression of the real-space tight-binding model for both
(Bi, Sb)2Te3 and Bi2Se3 without Cr doping and optical driving, under open boundary conditions along the z direction and
periodic boundary conditions along the x and y directions. This is necessary for the numerical calculations in the main text.

In momentum space, the low-energy three-dimensional tight-binding model Hamiltonian for topological insulators
(Bi, Sb)2Te3 and Bi2Se3 is given by [2,31,35,73,74,101] (ax = ay = a|| = a)

H3D(k) = M(k)σ0 ⊗ τz + λz sin(kzaz )σz ⊗ τx + λ|| sin(kxa)σx ⊗ τx + λ|| sin(kya)σy ⊗ τx, (B1)

where M(k) is given by Eq. (A11), σx,y,z and τx,y,z are the Pauli matrices for the spin and orbital degrees of freedom, respectively,
σ0 (τ0) is a 2×2 unit matrix, the wave vector is k = (kx, ky, kz ), a is the lattice constant, m0, tz, t||, λz, and λ|| are model parameters.
The parameters for both (Bi, Sb)2Te3 and Bi2Se3 are adopted as [4,31]: tz = 0.40 eV, t|| = 0.566 eV, λz = 0.44 eV, λ|| = 0.41 eV,
and m0 = 0.28 eV.

Fourier transforming along the z direction so as to go from momentum to real space, one has [101]

c†
k,s,σ = 1√

Nz

Nz∑
jz=1

eikz jzaz c†
kx,ky, jz,s,σ

, ck,s,σ = 1√
Nz

Nz∑
jz=1

e−ikz jzaz ckx,ky, jz,s,σ , (B2)

C†
k =

⎛
⎜⎜⎜⎜⎝

c†
k,+,↑

c†
k,−,↑

c†
k,+,↓

c†
k,−,↓

⎞
⎟⎟⎟⎟⎠ = 1√

Nz

Nz∑
jz=1

eikz jzazC†
kx,ky, jz

, Ck =

⎛
⎜⎜⎜⎝

ck,+,↑
ck,−,↑
ck,+,↓
ck,−,↓

⎞
⎟⎟⎟⎠ = 1√

Nz

Nz∑
jz=1

e−ikz jzazCkx,ky, jz . (B3)

As such, we obtain

C†
k[H3D(k)]Ck =

∑
jz

[
m0 − 2tz − 4t||

(
sin2 kxa

2
+ sin2 kya

2

)]
C†

kx,ky, jz
[σ0 ⊗ τz]Ckx,ky, jz

+ tz
∑

jz

{
C†

kx,ky, jz
[σ0 ⊗ τz]Ckx,ky, jz+1 + C†

kx,ky, jz+1[σ0 ⊗ τz]Ckx,ky, jz

}

− i
λz

2

∑
jz

{
C†

kx,ky, jz
[σz ⊗ τx]Ckx,ky, jz+1 − C†

kx,ky, jz+1[σz ⊗ τx]Ckx,ky, jz

}

+ λ|| sin(kxa)
∑

jz

C†
kx,ky, jz

[σx ⊗ τx]Ckx,ky, jz + λ|| sin(kya)
∑

jz

C†
kx,ky, jz

[σy ⊗ τx]Ckx,ky, jz , (B4)

where we have used sin2 kzaz

2 = ( eikzaz/2−e−ikzaz/2

2i )2 = − 1
4 (eikzaz + e−ikzaz − 2).

Therefore, the real-space tight-binding Hamiltonian under x-PBCs, y-PBCs, and z-OBCs in the basis
(Ckx,ky,1

,Ckx,ky,2, . . . ,Ckx,ky,Nz
)T is given by

H(0)
tb =

⎛
⎜⎜⎜⎜⎜⎝

h Tz 0 · · · 0
T †

z h Tz · · · 0

0 T †
z h . . .

...
...

. . .
. . .

. . . Tz

0 · · · 0 T †
z h

⎞
⎟⎟⎟⎟⎟⎠

4Nz×4Nz

, (B5)

where

h =
[

m0 − 2tz − 4t||

(
sin2 kxa

2
+ sin2 kya

2

)]
σ0 ⊗ τz + λ|| sin(kxa)σx ⊗ τx + λ|| sin(kya)σy ⊗ τx, (B6)

= {m0 − 2tz − 4t|| + 2t||[cos(kxa) + cos(kya)]}σ0 ⊗ τz + λ|| sin(kxa)σx ⊗ τx + λ|| sin(kya)σy ⊗ τx (B7)

= [(m0 − 2tz − 4t||) + t||(eikxa + e−ikxa + eikya + e−ikya)]σ0 ⊗ τz

− i
λ||
2

(eikxa + e−ikxa)σx ⊗ τx − i
λ||
2

(eikya + e−ikya)σy ⊗ τx

= M0 + Txeikxa + T †
x e−ikxa + Tyeikya + T †

y e−ikya, (B8)

M0 = (m0 − 2tz − 4t||)σ0 ⊗ τz, (B9)

Tx = t||σ0 ⊗ τz − i
λ||
2

σx ⊗ τx, T †
x = t||σ0 ⊗ τz + i

λ||
2

σx ⊗ τx, (B10)
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Ty = t||σ0 ⊗ τz − i
λ||
2

σy ⊗ τx, T †
y = t||σ0 ⊗ τz + i

λ||
2

σy ⊗ τx, (B11)

Tz = tzσ0 ⊗ τz − i
λz

2
σz ⊗ τx, T †

z = tzσ0 ⊗ τz + i
λz

2
σz ⊗ τx. (B12)

APPENDIX C: THE MATRIX FORM OF THE REAL-SPACE TIGHT-BINDING MODEL WITH CR DOPING

Here, we derive the matrix form of the real-space tight-binding model with Cr doping under open boundary conditions along
the z direction and periodic boundary conditions along the x and y directions.

The real-space tight-binding Hamiltonian with Cr doping without light under x-PBCs, y-PBCs, and z-OBCs in the basis
(Ckx,ky,1

,Ckx,ky,2
, . . . ,Ckx,ky,Nz

)T is given by

Htb = H(0)
tb + �Hex, (C1)

where

�Hex =

⎛
⎜⎜⎜⎜⎜⎝

�Hd (1) 0 0 · · · 0
0 �Hd (2) 0 · · · 0

0 0 �Hd (3) . . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 �Hd (Nz )

⎞
⎟⎟⎟⎟⎟⎠

4Nz×4Nz

, (C2)

and

�Hd ( jz ) = Vz( jz )σz ⊗ τ0. (C3)

APPENDIX D: TIME-REVERSAL SYMMETRY BREAKING WITH MAGNETIC DOPING

Here we show that when the magnetic doping is added, i.e., Vz( jz ) �= 0, time-reversal symmetry is broken.
The Hamiltonian with magnetic doping under time-reversal transformation becomes

T [H (k)]T −1 =
∑

jz

C†
k, jz

σ0 ⊗ τyK
{[

m0 − 2tz − 4t||

(
sin2 kxa

2
+ sin2 kya

2

)]
σ0 ⊗ τz

+ λ|| sin(kxa)σx ⊗ τx + λ|| sin(kya)σy ⊗ τx

}
K−1(σ0 ⊗ τy)−1Ck, jz

+
∑

jz

[
C†

k, jz
σ0 ⊗ τyKTK−1(σ0 ⊗ τy)−1Ck, jz+1 + C†

k, jz+1σ0 ⊗ τyKT †K−1(σ0 ⊗ τy)−1Ck, jz

]

+
∑

jz

C†
k, jz

Vz( jz )σ0 ⊗ τyK(σz ⊗ τ0)K−1(σ0 ⊗ τy)−1Ck, jz

=
∑

jz

C†
k, jz

{[
m0 − 4tz sin2 kza

2
− 4t||

(
sin2 kxa

2
+ sin2 kya

2

)]
σ0 ⊗ τz

− λ|| sin(kxa)σx ⊗ τx − λ|| sin(kya)σy ⊗ τx − Vz( jz )σz ⊗ τ0

}
Ck, jz

+
∑

jz

[
C†

k, jz
TCk, jz+1 + C†

k, jz+1T †Ck, jz

]

= H (−k) −
∑

jz

C†
k, jz

2Vz( jz )σz ⊗ τ0Ck, jz , (D1)

where H (k) = H (0)(k) + �Hd , H (−k) = H (0)(−k) + �Hd , T = σy ⊗ τ0K [76] is the time-reversal operator with the complex
conjugate operator K, we have KH (k)K−1 = H∗(k), and we use

(σy ⊗ τ0)(σ0 ⊗ τz )(σy ⊗ τ0)−1 = σ0 ⊗ τz, (D2)

(σy ⊗ τ0)(σz ⊗ τx )(σy ⊗ τ0)−1 = −σz ⊗ τx, (D3)
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(σy ⊗ τ0)(σx ⊗ τx )(σy ⊗ τ0)−1 = −σx ⊗ τx, (D4)

(σy ⊗ τ0)(Kσy ⊗ τxK−1)(σy ⊗ τ0)−1 = −σy ⊗ τx, (D5)

(σy ⊗ τ0)(KTK−1)(σy ⊗ τ0)−1 = T, (D6)

(σy ⊗ τ0)(KT †K−1)(σy ⊗ τ0)−1 = T †, (D7)

(σy ⊗ τ0)(σz ⊗ τ0)(σy ⊗ τ0)−1 = −σz ⊗ τ0. (D8)

As a result of Eq. (D1), if Vz( jz ) = 0, we have T H (k)T −1 = H (−k), which shows a time-reversal symmetry. However, for
Vz( jz ) �= 0, Eq. (D1) shows that the time-reversal symmetry is broken.

APPENDIX E: EXPRESSIONS FOR H0, H−n, AND Hn

The motivation for this Appendix E is to derive the concrete analytical expressions for the time Fourier components H0, H−n,
and Hn that enter the Floquet Hamiltonian (6) of the main text.

With A(z, t ) = ω−1E0e−z/δ ( sin(ωt ), sin(ωt + ϕ), 0), A(z) = A0e−z/δ and A0 = eE0/(h̄ω), we have the photon-dressed effec-
tive Hamiltonian as

H (0)(k, t ) =
∑

jz

C†
k, jz

{
m0 − 2tz − 4t||

[
sin2 (kx − A(z) sin(ωt ))a

2
+ sin2 (ky − A(z) sin(ωt + ϕ))a

2

]}
σ0 ⊗ τzCk, jz

+
∑

jz

C†
k, jz

{λ|| sin[(kx − A(z) sin(ωt ))a]σx ⊗ τx + λ|| sin[(ky − A(z) sin(ωt + ϕ))a]σy ⊗ τx}Ck, jz

+
∑

jz

(
C†

k, jz
TzCk, jz+1 + C†

k, jz+1T †
z Ck, jz

)

=
∑

jz

C†
k, jz

{m0 − 2tz − 4t|| + t||[ei[kx−A(z) sin(ωt )]a + e−i[kx−A(z) sin(ωt )]a

+ ei[ky−A(z) sin(ωt+ϕ)]a + e−i[ky−A(z) sin(ωt+ϕ)]a]}σ0 ⊗ τzCk, jz

+
∑

jz

C†
k, jz

λ||
2i

[ei[kx−A(z) sin(ωt )]a − e−i[kx−A(z) sin(ωt )]a]σx ⊗ τxCk, jz

+
∑

jz

C†
k, jz

λ||
2i

[ei[ky−A(z) sin(ωt+ϕ)]a − e−i[ky−A(z) sin(ωt+ϕ)]a]σy ⊗ τxCk, jz +
∑

jz

(
C†

k, jz
TzCk, jz+1 + C†

k, jz+1T †
z Ck, jz

)
. (E1)

Furthermore, the concrete analytical expressions for H0, H−n, and Hn in the Floquet Hamiltonian (6) are given as

H0 = 1

T

∫ T

0
H (0)(k, t )dt

=
∑

jz

C†
k, jz

{{m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]}σ0 ⊗ τz

+ J0(A(z)a)λ|| sin(kxa)σx ⊗ τx + J0(A(z)a)λ|| sin(kya)σy ⊗ τx}Ck, jz +
∑

jz

(
C†

k, jz
TzCk, jz+1 + C†

k, jz+1T †
z Ck, jz

)
, (E2)

H−n = 1

T

∫ T

0
H (0)(k, t )e−inωt dt

=
∑

jz

C†
k, jz

{
Jn(A(z)a)t||{(−1)neikxa + e−ikxa + einϕ[(−1)neikya + e−ikya]}σ0 ⊗ τz

+ Jn(A(z)a)λ||
2i

[(−1)neikxa − e−ikxa]σx ⊗ τx + Jn(A(z)a)λ||
2i

einϕ[(−1)neikya − e−ikya]σy ⊗ τx

}
Ck, jz , (E3)
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Hn = 1

T

∫ T

0
H (0)(k, t )einωt dt

=
∑

jz

C†
k, jz

{
Jn(A(z)a)t||{eikxa + (−1)ne−ikxa + e−inϕ[eikya + (−1)ne−ikya]}σ0 ⊗ τz

+ Jn(A(z)a)λ||
2i

[eikxa − (−1)ne−ikxa]σx ⊗ τx + Jn(A(z)a)λ||
2i

e−inϕ[eikya − (−1)ne−ikya]σy ⊗ τx

}
Ck, jz , (E4)

where Jn(x) = 1
2π

∫ π

−π
ei(nτ−x sin τ )dτ is the nth Bessel function of the first kind [93].

For n ∈ even, n = 2n0 > 0 with n0 ∈ N (integers), and ϕ = π/2, i.e., e±inϕ = e±in0π = ein0π = ±1, we have H−n = Hn, i.e.,
[H−n, Hn] = 0.

For n ∈ odd, n = 2n0 + 1 > 0 with n0 ∈ N (integers), and ϕ = π/2, i.e., cos(nϕ) = cos( (2n0+1)π
2 ) = 0, e±inϕ =

±i sin( (2n0+1)π
2 ), we have

H−n =
∑

jz

C†
k, jz

{−2iJn(A(z)a)t||[sin(kxa) + einϕ sin(kya)]σ0 ⊗ τz

+ iJn(A(z)a)λ|| cos(kxa)σx ⊗ τx + iJn(A(z)a)λ||einϕ cos(kya)σy ⊗ τx}Ck, jz , (E5)

Hn =
∑

jz

C†
k, jz

{2iJn(A(z)a)t||[sin(kxa) + e−inϕ sin(kya)]σ0 ⊗ τz

− iJn(A(z)a)λ|| cos(kxa)σx ⊗ τx − iJn(A(z)a)λ||e−inϕ cos(kya)σy ⊗ τx}Ck, jz , (E6)

∑
n

[H−n, Hn]

nh̄ω

=
∑

jz

C†
k, jz

∑
n∈odd,n>0

1

nh̄ω
{(−2iJn(A(z)a)t||[sin(kxa) + einϕ sin(kya)])[−iJn(A(z)a)λ|| cos(kxa)][γ0, γx]

+ (2iJn(A(z)a)t||[sin(kxa) + e−inϕ sin(kya)])[iJn(A(z)a)λ|| cos(kxa)][γx, γ0]

+ (−2iJn(A(z)a)t||[sin(kxa) + einϕ sin(kya)])[−iJn(A(z)a)λ||e−inϕ cos(kya)][γ0, γy]

+ (2iJn(A(z)a)t||[sin(kxa) + e−inϕ sin(kya)])[iJn(A(z)a)λ||einϕ cos(kya)][γy, γ0]

+ [iJn(A(z)a)λ|| cos(kxa)][−iJn(A(z)a)λ||e−inϕ cos(kya)][γx, γy]

+ [iJn(A(z)a)λ||einϕ cos(kya)][−iJn(A(z)a)λ|| cos(kxa)][γy, γx]}Ck, jz

=
∑

jz

C†
k, jz

∑
n∈odd,n>0

J 2
n (A(z)a)

nh̄ω
{−2t||λ|| cos(kxa)[sin(kxa) + einϕ sin(kya)][γ0, γx]

− 2t||λ|| cos(kxa)[sin(kxa) + e−inϕ sin(kya)][γx, γ0]

− 2t||λ|| cos(kya)[e−inϕ sin(kxa) + sin(kya)])[γ0, γy] − 2t||λ|| cos(kya)[einϕ sin(kxa) + sin(kya)][γy, γ0]

+ λ2
||e

−inϕ cos(kya) cos(kxa)[γx, γy] + λ2
||e

inϕ cos(kya) cos(kxa)[γy, γx]}Ck, jz

=
∑

jz

C†
k, jz

∑
n∈odd,n>0

λ||J 2
n (A(z)a)

nh̄ω
{−2t|| cos(kxa) sin(kya)(einϕ − e−inϕ )[γ0, γx]

− 2t|| cos(kya) sin(kxa)(e−inϕ − einϕ )[γ0, γy] + λ|| cos(kya) cos(kxa)(e−inϕ − einϕ )[γx, γy]}Ck, jz

=
∑

jz

C†
k, jz

∑
n∈odd,n>0

λ||J 2
n (A(z)a)
nh̄ω

(einϕ − e−inϕ ){−2t|| cos(kxa) sin(kya)[γ0, γx] + 2t|| cos(kya) sin(kxa)[γ0, γy]

− λ|| cos(kya) cos(kxa)[γx, γy]}Ck, jz

=
∑

jz

C†
k, jz

∑
n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin(nϕ){2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz (E7)
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=
∑

jz

C†
k, jz

∑
n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin

(nπ

2

)
{2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz , (E8)

where γ0 = σ0 ⊗ τz and γ j=x,y,z = σ j=x,y,z ⊗ τx. In numerical calculations, we can choose an appropriate upper cutoff for n by
checking whether the results converge consistently independently of n.

APPENDIX F: MATRIX FORM OF THE REAL-SPACE TIGHT-BINDING FLOQUET HAMILTONIAN

The motivation of this Appendix F is to derive the matrix form of the real-space tight-binding Floquet Hamiltonian.
Combining Eqs. (E2) and (E8) into (6) of the main text, we have

H (F )(k) =
∑

jz

{m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]}C†
k, jz

γ0Ck, jz

+ tz
∑

jz

(
C†

k, jz
γ0Ck, jz+1 + C†

k, jz+1γ0Ck, jz

) − i
λz

2

∑
jz

(
C†

k, jz
γzCk, jz+1 − C†

k, jz+1γzCk, jz

)

+ J0(A(z)a)λ|| sin(kxa)
∑

jz

C†
k, jz

γxCk, jz + J0(A(z)a)λ|| sin(kya)
∑

jz

C†
k, jz

γyCk, jz

+
∑

jz

C†
k, jz

∑
n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin

(
nπ

2

)
{2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz . (F1)

Therefore, the real-space tight-binding Hamiltonian with light without Cr doping under x-PBCs, y-PBCs, and z-OBCs in the
basis (Ck,1,Ck,2, . . . ,Ck,Nz

)T is given by

HF =

⎛
⎜⎜⎜⎜⎜⎝

hF Tz 0 · · · 0
T †

z hF Tz · · · 0

0 T †
z hF

. . .
...

...
. . .

. . .
. . . Tz

0 · · · 0 T †
z hF

⎞
⎟⎟⎟⎟⎟⎠

4Nz×4Nz

, (F2)

where

hF ={m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]}γ0 + J0(A(z)a)λ|| sin(kxa)γx + J0(A(z)a)λ|| sin(kya)γy

+
∑

n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin

(
nπ

2

)
{2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}, (F3)

Tz = tzγ0 − i
λz

2
γz, T †

z = tzγ0 + i
λz

2
γz. (F4)

APPENDIX G: VALIDITY OF THE HIGH-FREQUENCY EXPANSION

To estimate the validity of the high-frequency expansion quantitatively, we evaluate the maximum instantaneous energy of
the time-dependent Hamiltonian H (0)(k − e

h̄ A(z, t )) averaged over a period of the field 1
T

∫ T
0 dt max{||H (0)(k, t )||} < h̄ω at

the � point (kx = ky = 0). The optical field parameters have to satisfy the condition t||(Aa)2/(h̄ω) < 1. In the high-frequency

regime ω ∼ 5.80×103 THz (h̄ω = 3.82 eV) [69], one can obtain A(z) = A0e−z/δ < 1
a

√
h̄ω
t||

∼ 2.59791 nm−1 with a = 1 nm, i.e.,

A0 < 2.59791ez/δ nm−1. With z � 0 and δ > 0, one can obtain A0 = eE0/(h̄ω) < 2.59791 nm−1 (E0 = A0 h̄ω/e < 9.92398 ×
109 V/m), which corresponds to an incident light intensity [116] of I = 1

2 ncε0|E0|2 < 1.79074 × 1017 W/m2, where n is the
refractive index, c is the speed of light in vacuum, and ε0 is the vacuum permittivity. A refractive index n ≈ 1.37 [117–119] was
observed in the Bi2Se3 (Bi2Te3) thin film under deep-ultraviolet frequency. Note that while a weaker laser intensity satisfies the
high-frequency expansion more accurately, it also leads to a smaller Dirac gap, which may decrease experimental robustness.
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APPENDIX H: TIME-REVERSAL SYMMETRY BREAKING WITH LIGHT

Here, we prove that when ϕ = 0, the Floquet Hamiltonian (7) in the main text still satisfies time-reversal symmetry. However,
when ϕ = π

2 , the time-reversal symmetry of the Hamiltonian (7) is broken.
The Floquet Hamiltonian (7) under time-reversal transformation becomes

T H (F )(k)T −1

=
∑

jz

C†
k, jz

σ0 ⊗ τyK{[m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]]γ0

+ J0(A0a)λ|| sin(kxa)γx + J0(A(z)a)λ|| sin(kya)γy}K−1(σ0 ⊗ τy)−1Ck, jz

+ tz
∑

jz

(
C†

k, jz
γ0Ck, jz+1 + C†

k, jz+1γ0Ck, jz

) − i
λz

2

∑
jz

(
C†

k, jz
γzCk, jz+1 − C†

k, jz+1γzCk, jz

)

+
∑

jz

C†
k, jz

∑
n∈odd,n>0

2λ||J 2
n (A(z)a)
nh̄ω

sin(nϕ)σ0 ⊗ τyK{2it|| cos(kxa) sin(kya)[γx, γ0] + 2it|| sin(kxa) cos(kya)[γ0, γy]

− iλ|| cos(kxa) cos(kya)[γx, γy]}K−1(σ0 ⊗ τy)−1Ck, jz

=
∑

jz

C†
k, jz

{[m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]]γ0

− J0(A0a)λ|| sin(kxa)γx − J0(A(z)a)λ|| sin(kya)γy}Ck, jz

+ tz
∑

jz

(
C†

k, jz
γ0Ck, jz+1 + C†

k, jz+1γ0Ck, jz

) − i
λz

2

∑
jz

(
C†

k, jz
γzCk, jz+1 − C†

k, jz+1γzCk, jz

)

+
∑

jz

C†
k, jz

∑
n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin(nϕ){2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

+ λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz

= H (F )(−k) +
∑

jz

C†
k, jz

∑
n∈odd,n>0

4iλ||J 2
n (A(z)a)

nh̄ω
sin(nϕ){2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

+ λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz , (H1)

where T = σy ⊗ τ0K [76] is the time-reversal operator with the complex conjugate operator K, we have KH (F )(k)K−1 =
H (F )∗(k), and we use

H (F )(−k) =
∑

jz

{m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]}C†
k, jz

γ0Ck, jz

+ tz
∑

jz

(
C†

k, jz
γ0Ck, jz+1 + C†

k, jz+1γ0Ck, jz

) − i
λz

2

∑
jz

(
C†

k, jz
γzCk, jz+1 − C†

k, jz+1γzCk, jz

)

− J0(A(z)a)λ|| sin(kxa)
∑

jz

C†
k, jz

γxCk, jz − J0(A(z)a)λ|| sin(kya)
∑

jz

C†
k, jz

γyCk, jz

+
∑

jz

C†
k, jz

∑
n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin

(
nπ

2

)
{−2t|| cos(kxa) sin(kya)[γx, γ0] − 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}Ck, jz . (H2)

(σy ⊗ τ0)(γ0)(σy ⊗ τ0)−1 = γ0, (H3)

(σy ⊗ τ0)(γx )(σy ⊗ τ0)−1 = −γx, (H4)

(σy ⊗ τ0)(KγyK−1)(σy ⊗ τ0)−1 = −γy, (H5)

(σy ⊗ τ0)(γz )(σy ⊗ τ0)−1 = −γz, (H6)

(σy ⊗ τ0)[K(iγxγ0)K−1](σy ⊗ τ0)−1 = iγxγ0, (H7)
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(σy ⊗ τ0)[K(iγ0γx )K−1](σy ⊗ τ0)−1 = iγ0γx, (H8)

(σy ⊗ τ0)[K(iγyγ0)K−1](σy ⊗ τ0)−1 = iγyγ0, (H9)

(σy ⊗ τ0)[K(iγ0γy)K−1](σy ⊗ τ0)−1 = iγ0γy, (H10)

(σy ⊗ τ0)[K(iγxγy)K−1](σy ⊗ τ0)−1 = −iγxγy, (H11)

(σy ⊗ τ0)[K(iγyγx )K−1](σy ⊗ τ0)−1 = −iγyγx, (H12)

As a result of Eq. (H1), if ϕ = 0, we have T H (F )(k)T −1 = H (F )(−k), which shows a time-reversal symmetry. However, for
ϕ = π

2 , Eq. (H1) shows that the time-reversal symmetry is broken.

APPENDIX I: CHERN NUMBER

Here, we use the definition of the Chern number [94,95,103] on our specific model, and present some intermediate analytic
simplifications that are useful for numerical implementation.

C = 1

2π

∑
j

∫
f (Ej − EF )� j,z(kx, ky)dkxdky, (I1)

where f (Ej − EF ) is the Fermi distribution function, f (Ej − EF ) = �(EF − Ej ) and �(x) is the Heaviside step function (in the
zero-temperature limit) [96,97], EF is the Fermi energy, and � j,z(kx, ky) = εxyz� j,xy(kx, ky) is the Berry curvature for the energy
band j with the three-component antisymmetric Levi-Civita tensor εxyz, which reads [102]

� j,xy(kx, ky) = i
∑
i �= j

[〈 j|(∂H/∂kx )|i〉〈i|(∂H/∂ky)| j〉 − 〈 j|(∂H/∂ky)|i〉〈i|(∂H/∂kx )| j〉]
(Ej − Ei )2

= −Im
∑
i �= j

[〈 j|(∂H/∂kx )|i〉〈i|(∂H/∂ky)| j〉 − 〈 j|(∂H/∂ky)|i〉〈i|(∂H/∂kx )| j〉]
(Ej − Ei )2

= −2Im
∑
i �= j

〈 j|(∂H/∂kx )|i〉〈i|(∂H/∂ky)| j〉
(Ej − Ei )2

. (I2)

Here, the velocity operator vx along the x direction is defined as vx = ∂H/(h̄∂kx ) and the velocity operator vy along the y
direction is defined as vy = ∂H/(h̄∂ky).

Therefore, we have

∂H(0)
tb

∂kx
=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂h
∂kx

0 0 · · · 0
0 ∂h

∂kx
0 · · · 0

0 0 ∂h
∂kx

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 ∂h
∂kx

⎞
⎟⎟⎟⎟⎟⎟⎠

4Nz×4Nz

,
∂H(0)

tb

∂ky
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂h
∂ky

0 0 · · · 0

0 ∂h
∂ky

0 · · · 0

0 0 ∂h
∂ky

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 ∂h
∂ky

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

4Nz×4Nz

, (I3)

where

∂h

∂kx
= −2t||a sin(kxa)σ0 ⊗ τz + λ||a cos(kxa)σx ⊗ τx, (I4)

= it||a(eikxa − e−ikxa)σ0 ⊗ τz + λ||a
2

(eikxa + e−ikxa)σx ⊗ τx, (I5)

= ia(Txeikxa − T †
x e−ikxa), (I6)

∂h

∂ky
= −2t||a sin(kya)σ0 ⊗ τz + λ||a cos(kya)σy ⊗ τx, (I7)

= it||a(eikya − e−ikya)σ0 ⊗ τz + λ||a
2

(eikya + e−ikya)σy ⊗ τx, (I8)

= ia(Tyeikya − T †
y e−ikya), (I9)

075435-16



LIGHT-INDUCED HALF-QUANTIZED HALL EFFECT AND … PHYSICAL REVIEW B 108, 075435 (2023)

h =
[

m0 − 2tz − 4t||

(
sin2 kxa

2
+ sin2 kya

2

)]
σ0 ⊗ τz + λ|| sin(kxa)σx ⊗ τx + λ|| sin(kya)σy ⊗ τx

= M0 + Txeikxa + T †
x e−ikxa + Tyeikya + T †

y e−ikya. (I10)

M0 = (m0 − 2tz − 4t||)σ0 ⊗ τz, (I11)

Tx = t||σ0 ⊗ τz − i
λ||
2

σx ⊗ τx, T †
x = t||σ0 ⊗ τz + i

λ||
2

σx ⊗ τx, (I12)

Ty = t||σ0 ⊗ τz − i
λ||
2

σy ⊗ τx, T †
y = t||σ0 ⊗ τz + i

λ||
2

σy ⊗ τx, (I13)

Tz = tzσ0 ⊗ τz − i
λz

2
σz ⊗ τx, T †

z = tzσ0 ⊗ τz + i
λz

2
σz ⊗ τx. (I14)

Furthermore, we have

∂HF

∂kx
=

⎛
⎜⎜⎜⎜⎜⎜⎝

∂hF
∂kx

0 0 · · · 0
0 ∂hF

∂kx
0 · · · 0

0 0 ∂hF
∂kx

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 ∂hF
∂kx

⎞
⎟⎟⎟⎟⎟⎟⎠

4Nz×4Nz

,
∂HF

∂ky
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

∂hF
∂ky

0 0 · · · 0

0 ∂hF
∂ky

0 · · · 0

0 0 ∂hF
∂ky

. . .
...

...
. . .

. . .
. . . 0

0 · · · 0 0 ∂hF
∂ky

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

4Nz×4Nz

, (I15)

where

∂hF

∂kx
= − 2J0(A(z)a)t||a sin(kxa)γ0 + J0(A(z)a)λ||a cos(kxa)γx

+
∑

n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin(nϕ){−2t||a sin(kxa) sin(kya)[γx, γ0] + 2t||a cos(kxa) cos(kya)[γ0, γy]

+ λ||a sin(kxa) cos(kya)[γx, γy]}, (I16)

∂hF

∂ky
= − 2J0(A(z)a)t||a sin(kya)γ0 + J0(A(z)a)λ||a cos(kya)γy

+
∑

n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin(nϕ){2t||a cos(kxa) cos(kya)[γx, γ0] − 2t||a sin(kxa) sin(kya)[γ0, γy]

+ λ||a cos(kxa) sin(kya)[γx, γy]}, (I17)

hF = {m0 − 2tz − 4t|| + 2J0(A(z)a)t||[cos(kxa) + cos(kya)]}γ0 + J0(A(z)a)λ|| sin(kxa)γx + J0(A(z)a)λ|| sin(kya)γy

+
∑

n∈odd,n>0

2iλ||J 2
n (A(z)a)

nh̄ω
sin(nϕ){2t|| cos(kxa) sin(kya)[γx, γ0] + 2t|| sin(kxa) cos(kya)[γ0, γy]

− λ|| cos(kxa) cos(kya)[γx, γy]}. (I18)

APPENDIX J: LOCALIZATION OF THE BOTTOM
SURFACE STATE

The motivation of this Appendix J is to discuss the local-
ization of the bottom surface state with only magnetic doping.

A topological insulator has a topologically protected bulk
gap but gapless Dirac cones localized on the top and bottom
surfaces. When the local-time reversal symmetry is broken
by the magnetic doping, the gapless surface Dirac cone will
open an energy gap, accompanied by a half-quantized surface
chiral Hall current. This surface energy gap is determined
by the magnitude of the magnetic doping. Therefore, if the

magnitude of the magnetic doping is not strong enough to
flip the bulk energy bands, the localization of the bottom
surface state will not be significantly affected by the extent
of magnetic doping penetration into the bulk material. In this
case, even if magnetization enters the bulk, it will only induce
a modification of the bulk energy gap, and the bulk of the
system will remain insulating, having little impact on the
surface states. Furthermore, we will confirm this conclusion
through numerical calculations.

We set d as the penetration depth of Cr doping into the
bulk. Without light, if Vz( j) penetrates into the bulk, for
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FIG. 8. [(a1)–(d1)] Band structures with only magnetic doping and ky = 0 for (a1) d = 2 nm; (b1) d = 10 nm; (c1) d = 20 nm; (d1)
d = 30 nm. Here, “d” is the penetration depth of Cr doping into the bulk. Et± and Eb± are the energies of the top and bottom surface bands; the
subscripts “±” respectively denote the lowest conduction band or highest valence band. The yellow shaded intervals indicate the band widths
of the bottom surface. Indeed, the bulk gap is always much larger than the bottom surface gap. The total length along z direction is Lz = 30 nm.
Therefore, when d = Lz = 30 nm, both the top and bottom surfaces are gapped, as shown in (d1). [(a2)–(d2)] Spatial state distribution |ψ (z)|2
with (a2) d = 2 nm, (b2) d = 10 nm, (c2) d = 20 nm, (d2) d = 30 nm, along the vertical direction z for the lowest conduction (subscript
“+”) and highest valence (subscript “–”) bands of the top surface state (|ψt±|2 – red lines) and bottom surface state (|ψb±|2 – blue lines) at
kx = ky = 0. Indeed, the supposed top and bottom surface states are concentrated near the top (z = 0.5 nm) and bottom z = 30 nm boundaries.
The other parameters are A0 = 0, Vz = 0.1 eV, Lz = 30 nm, az = 0.5 nm, a = 1 nm, tz = 0.40 eV, t|| = 0.566 eV, λz = 0.44 eV, λ|| = 0.41 eV,
and m0 = 0.28 eV.

FIG. 9. [(a1)–(e1)] Band structures with only light pumping and ky = 0 for (a1) A0 = 0.5 nm−1; (b1) A0 = 0.8 nm−1; (c1) A0 = 1.5 nm−1;
(d1) A0 = 2.0 nm−1; (e1) A0 = 2.5 nm−1. Here, Et± and Eb± are the energies of the top and bottom surface bands; the subscripts “±”
respectively denote the lowest conduction band or highest valence band. The green and yellow shaded intervals indicate the band widths of
the top and bottom surfaces, respectively. [(a2)–(e2)] Hall conductivities with (a2) A0 = 0.5 nm−1; (b2) A0 = 0.8 nm−1; (c2) A0 = 1.5 nm−1;
(d2) A0 = 2.0 nm−1; (e2) A0 = 2.5 nm−1. The other parameters are Vz = 0, Lz = 30 nm, az = 0.5 nm, a = 1 nm, tz = 0.40 eV, t|| = 0.566 eV,
λz = 0.44 eV, λ|| = 0.41 eV, m0 = 0.28 eV, δ = 16.3 nm, h̄ω = 3.82 eV, and ϕ = −π/2.
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FIG. 10. [(a1)–(e1)] Band structures with magnetic doping (Vz = 0.1 eV), weak intensity of light (A0 = 0.8 nm−1), and fixed T2 = 0.1 h̄/eV
for (a1) T1 = 0.4 h̄/eV; (b1) T1 = 0.2 h̄/eV; (c1) T1 = 0.1 h̄/eV; (d1) T1 = 0.05 h̄/eV; (e1) T1 = 0.025 h̄/eV. Here, Et± and Eb± are the
energies of the top and bottom surface bands; the subscripts “±” respectively denote the lowest conduction band or highest valence band.
The green and yellow shaded intervals indicate the band widths of the top and bottom surfaces, respectively. [(a2)–(e2)] Hall conductivities
with (a2) T1 = 0.4 h̄/eV; (b2) T1 = 0.2 h̄/eV; (c2) T1 = 0.1 h̄/eV; (d2) T1 = 0.05 h̄/eV; (e2) T1 = 0.025 h̄/eV. The other parameters are
d = 1 nm, Lz = 30 nm, az = 0.5 nm, a = 1 nm, tz = 0.40 eV, t|| = 0.566 eV, λz = 0.44 eV, λ|| = 0.41 eV, m0 = 0.28 eV, δ = 16.3 nm,
h̄ω = 3.82 eV, and ϕ = π/2.

example, d = 2 nm, d = 10 nm, d = 20 nm, d = 30 nm
(compared to d = 1 nm in the main text), the wavefunc-
tion will still localize on the bottom surface as shown in
Figs. 8(a2)–8(d2).

As shown in upper line (band structures) of Figs. 8(a1)–
8(d1), the chosen magnitude of the magnetic impurity is
0.1 eV, i.e., the bottom surface gap (which is represented by
the yellow shaded intervals) is about 0.2 eV, which is always
smaller than the bulk gap [which is delineated between two
dashed green lines as shown in Fig. 8(a1) and its counterparts]
with different penetration depth of Cr doping. Therefore, the
wavefunction of the bottom surface state always localizes on
the bottom surface as shown in the lower line (spatial state
distribution) of Figs. 8(a2)–8(d2).

Particularly when d = Lz = 30 nm, both the top and bot-
tom surfaces are gapped, as shown in Fig. 8(d1). Here, the
total length along the z direction is Lz = 30 nm.

APPENDIX K: SEMI-FLOQUET PHASE TO FLOQUET
CHERN INSULATOR PHASE

The motivation of this Appendix K is to discuss the
crossover from the semi-Floquet phase to the Floquet Chern
insulator phase with only light pumping.

With continuously tuned light intensity, we plot the
crossover from the semi-Floquet phase to the Floquet Chern
insulator phase as shown in Fig. 9.

As shown in Figs. 9(a1) and 9(b1) for the semi-Floquet
case, the light is coming from the top surface with a weak
light intensity, such that only the top surface (red curves)
opens up a gap and the bottom surface (blue curves) is gapless.
Only the gapped top surface contributes a half-quantized Hall
conductance within its gap (green shaded interval), as shown
in Figs. 9(a2) and 9(b2). In Figs. 9(c1), 9(d1), and 9(e1) for the

Floquet Chern case, the light is coming from the top surface
with a strong light intensity, such that it penetrates both the
top and bottom surfaces and gaps out their Dirac cones, which

FIG. 11. [(a1)–(b1)] Band structures with magnetic doping
(Vz = 0.1 eV) and strong intensity of light (A0 = 2.5 nm−1) for
(a1) ϕ = −π/2 (left-handed polarization) and (b1) ϕ = π/2 (right-
handed polarization). Here, Et± and Eb± are the energies of the top
and bottom surface bands; the subscripts “±” respectively denote the
lowest conduction band or highest valence band. The green and yel-
low shaded intervals indicate the band widths of the top and bottom
surfaces, respectively. [(a2)–(b2)] Hall conductivities with (a2) ϕ =
−π/2 (left-handed polarization) and (b2) ϕ = π/2 (right-handed
polarization). The other parameters are Lz = 30 nm, az = 0.5 nm,
a = 1 nm, tz = 0.40 eV, t|| = 0.566 eV, λz = 0.44 eV, λ|| = 0.41 eV,
m0 = 0.28 eV, d = 1 nm, δ = 16.3 nm, and h̄ω = 3.82 eV.
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together contribute a quantized Hall conductivity, as shown in
the gapped region of both surfaces (yellow shaded interval) in
Figs. 9(c2), 9(d2), and 9(e2).

APPENDIX L: QUENCH DYNAMICS FROM AXION
INSULATOR PHASE TO CHERN INSULATOR PHASE

The motivation of this Appendix L is to discuss the
crossover from the axion insulator phase to the Chern insu-
lator phase with a continuously tuned time duration parameter
T1.

With fixed T2 and continuously tuned T1, we plot the
crossover from the axion insulator phase to the Chern insu-
lator phase as shown in Fig. 10.

As shown in Figs. 10(a1)–10(e1), one can find that the
value of the gap of the top surface (red curve) can be tuned by
the time duration parameter T1. When T1 > T2, the system is in
the axion insulator phase, as shown in Figs. 10(a2) and 10(b2).
When T1 < T2, the system is in the Chern insulator phase, as
shown in Figs. 10(d2) and 10(e2). Particularly, when T1 = T2,
as shown in Figs. 10(c1) and 10(c2), the system becomes a
semimagnetic topological insulator phase, which is different
from the original axion insulator and Chern insulator phases.

APPENDIX M: PHASES UNDER A STRONG
INTENSITY OF LIGHT

The motivation of this Appendix M is to investigate the
phases under a strong intensity of light.

We plot the energy spectrum and the Hall conductivities
with opposite polarized optical chirality under a strong inten-
sity of light (A0 = 2.5 nm−1) as shown in Fig. 11.

As shown in Figs. 11(a1) and 11(b1), both the top (red)
and bottom (blue) surface Dirac cones are gapped. With
left-handed polarization, the Dirac cones are of opposite chi-
rality, resulting in opposite Hall conductivities that cancel
within the gap (green), as shown in Fig. 11(a2). With right-
handed polarization, the top surface Dirac cone’s chirality is
flipped, giving rise to an integer quantized Hall conductivity
within the gap (green), as shown in Fig. 11(b2). These are,
respectively, the axion and Chern insulators, which are very
similar to those in the cases that are under a weak intensity of
light (A0 = 0.8 nm−1) as shown in Figs. 3(b1) and 3(c1) and
3(b2) and 3(c2) in the main text.

Different from the case of weak light intensity, the band
width of the bottom surface (indicated by the yellow shaded
interval) undergoes a slight modification under the influence
of strong light intensity.
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