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Tunable tunnel coupling in a double quantum antidot with cotunneling via localized state
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Controlling tunnel coupling between quantum antidots (QADs) in the quantum Hall (QH) regime is prob-
lematic. We propose and demonstrate a scheme for tunable tunnel coupling between two QADs by utilizing a
cotunneling process via a localized state as a third QAD. The effective tunnel coupling can be tuned by changing
the localized level even with constant nearest-neighbor tunnel couplings. We systematically study the variation of
transport characteristics in the effectively triple QAD system at the Landau level filling factor ν = 2. The tunable
tunnel coupling is clarified by analyzing the anticrossing of Coulomb blockade peaks in the charge stability
diagram, in agreement with numerical simulations based on the master equation. The scheme is attractive for
studying coherence and interaction in QH systems.
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I. INTRODUCTION

Controlling quantum coherence and interaction between
particles is a central subject in mesoscopic physics of con-
ventional and topological states of matter. In the case of the
integer and fractional quantum Hall (QH) regimes, the inter-
play between the Aharonov-Bohm effect and the Coulomb
blockade (CB) effect has been discussed for small filled re-
gions [quantum dots (QDs)] [1–3] and small empty regions
[quantum antidots (QADs)] [4–9]. Understanding the two ef-
fects is essential to unveil the anyon statistics of fractional
charges [10–13]. Double QDs and QADs should provide
another platform for better control of coherency and interac-
tion. Particularly, double QADs allow us to study coherent
tunneling of quasiparticles [14]. However, in contrast to the
successful development of quantum information devices with
QDs [15–17], controlling tunnel and electrostatic couplings in
double QADs remains challenging even in the integer quan-
tum Hall regime. While a few papers report on the tunnel and
electrostatic coupling of double QADs, finite tunnel couplings
are confirmed only at some particular conditions without tun-
ing capability [18,19]. Tunable coupling strength is highly
desirable for manipulating quasiparticles. The issue might be
related to the formation of tunnel barriers in a QH insulator
with a narrow energy gap determined by the cyclotron and
Zeeman energies [20]. The barrier height cannot exceed the
energy gap, and localized states randomly distributed in the
QH insulator are unexpectedly charged or discharged. Smooth
control of tunnel coupling may not be available with standard
techniques.

Here, we propose a triple QAD configuration to control
the tunnel coupling between the outer two QADs by us-
ing the second-order tunneling process through the central
QAD. The basic characteristics are investigated by using a
localized state acting as the central QAD located between
well-controlled QADs with gates. The charge stability di-
agram shows a dramatic change from the parallelogram

pattern showing negligible coupling between the two QADs
to the rounded honeycomb pattern manifesting the presence
of tunnel coupling by controlling the energy level of the
localized state. The transition is consistent with a model cal-
culation involving the hybridization of the electronic states
in the triple QAD. The scheme might be useful in study-
ing coherent tunneling of quasiparticles in a controllable
way.

II. TRIPLE QAD SYSTEM

We consider a triple QAD system at Landau level filling
factor νB = 2 in the bulk, as shown in Fig. 1(a). The left
(L), central (C), and right (R) QADs are formed with local
filling factors, νL = 0, νC = 1, and νR = 0, respectively, be-
tween the source (S) and drain (D) regions, where νC = 1
is assumed for a localized state as QAD C in this paper.
The following scheme should work even for other filling
factors. The energy diagram of the system is schematically
shown in Fig. 1(b) for spin-up and -down branches of the
lowest and second-lowest Landau levels. Transport is dom-
inated by tunneling through bound states, εL, εC, and εR,
in the spin-down lowest Landau level (0↓). The tunnel cou-
pling, tLC and tCR, and the electrostatic coupling, ULC and
UCR, should be determined by the potential profile of the
QH insulator. Notice that the bulk is insulating only near
the QH filling factor (νB = 2 in our case). Deviation from
the integer value induces occupation of integer charges on
localized states randomly distributed in the sample, which al-
ters the potential profile. Therefore, standard techniques, such
as surface gates that change the electron density underneath
and adjusting magnetic field that changes the flux density,
may not provide smooth control of tunnel coupling. Here, we
use εC as a control knob to induce tunnel and electrostatic
coupling between QADs L and R by utilizing second-order
tunneling.
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FIG. 1. (a) Schematic illustration of a triple QAD (L, C, and R) between the source (S) and drain (D) in a QH insulator at νB = 2. Local
filling factors νL = 0, νC = 1, and νR = 0 are assumed. (b) Energy diagram of spin-resolved Landau levels (0↑, 0 ↓, 1 ↑, and 1 ↓) for the
triple QAD. Bound states with energies εL, εC, and εR are coupled with tunnel coupling tLC and tCR, and electrostatic coupling ULC and UCR.
(c) Eigenenergies of a one-electron triple QAD with t = 50 µeV (the solid lines) and t = 0 (the dashed lines) as a function of ε ≡ εL − εR.
(d) Stability diagram of charge states (nL, nC, nR ) for the triple QAD with t = 50 µeV, U ′ = 75 µeV, and εC = 100 µeV.

The hybridization of QADs L, C, and R can be described
by the effective one-electron Hamiltonian

H1 =

⎛
⎜⎝

εL tLC 0
t∗
LC εC tCR

0 t∗
CR εR

⎞
⎟⎠ (1)

for the first electron from the reference electron numbers
in the system. Here, we consider only the nearest-neighbor
tunneling tLC and tCR by neglecting distant tunneling between
L and R. Only a single energy level in each QAD is considered
for simplicity. Figure 1(c) shows the eigenenergies of the sys-
tem as a function of the energy bias ε ≡ εL − εR for εL = ε/2
and εR = −ε/2 at εC = 100 µeV and tLC = tCR = t = 50 µeV
(the solid lines). As compared to the uncoupled case with
tLC = tCR = 0 (the dashed lines), finite energy splitting δ is
seen in the hybridized states (the solid lines) around the
crossing of εL and εR. The bottom trace shows the ground-
state energy E (GS)

1 of the one-electron system. The splitting

δ = (
√

ε2
C + 8t2 − |εC|)/2 at εL = εR = 0 is tunable with εC

even when t is fixed. The second-order tunneling can be seen
in the approximated form of δ � 2t2/|εC| for |εC| � t .

We study the higher-order tunneling by investigating the
charging diagram of the triple QADs. The system accom-
modates (nL, nC, nR) numbers of excess electrons in the
respective QADs by varying εL and εR. In the absence of dis-
tant electrostatic coupling between L and R, the two-electron
Hamiltonian reads

H2 =

⎛
⎜⎝

εL + εC + ULC tCR 0
t∗
CR εL + εR tLC

0 t∗
LC εR + εC + UCR

⎞
⎟⎠ (2)

for the charge bases (1,1,0), (1,0,1), and (0,1,1). The ground-
state energy E (GS)

2 of the two-electron system can be obtained
by diagonalizing H2. The system takes the charge state
(nL, nC, nR ) with minimum energy, as shown in the stabil-
ity diagram of Fig. 1(d) in the εL-εR plane. The boundaries
among three regions with different total electron number n =

nL + nC + nR are shown by the red lines. Here, we investigate
the minimum spacing � between the charge states (0,0,0) and
(1,0,1) in this paper. For tLC = tCR ≡ t and ULC = UCR ≡ U ′,
� is given by

� =
U ′ − |εC| + 2

√
ε2

C + 8t2 −
√

(|εC| + U ′)2 + 8t2

2
, (3)

which includes δ = 1
2 (

√
ε2

C + 8t2 − |εC|). The remainder

U ′′ ≡ � − δ can be understood as emergent electrostatic
coupling induced by the second-order tunneling (U ′′ �
2t2 U ′

|εC|(|εC|+U ′ ) for |εC| � t). Therefore, observation of finite �

induced at small |εC| suggests tunable coupling of δ and U ′′.
Note that symmetric parameters (tLC = tCR and ULC = UCR)
are assumed for simplicity, and tunable coupling is expected
even with asymmetric parameters.

The model is equivalent to that for triple QDs. While simi-
lar three-level systems can be seen in previous studies on QDs
and atoms [21–23], their realization in QADs would provide
a significant step for coherent control of quasiparticles.

III. EXPERIMENT

A. Sample and measurement setup

Our sample was fabricated in a standard AlGaAs/GaAs
heterostructure with two-dimensional electron gas located
at 100 nm below the surface. With an electron density of
≈2.75 × 1015 m−2, a QH state at νB = 2 can be prepared by
applying perpendicular magnetic field B � 5 T. Two airbridge
gates with Ti (thickness of 30 nm) and Au (270 nm) layers
were fabricated by using electron-beam lithography with a
triple layer resist [24,25]. Each gate has a small pillar of
diameter D = 300 nm and is connected to the lead electrode
through the bridge of length L = 3 µm, width W = 300 nm,
and bridge height h = 150 nm, as shown in Fig. 2(a). The
two pillars are separated by distance d = 500 nm. This de-
vice was originally designed to form two QADs around the
pillars [the red circles in Fig. 2(a)]. Such airbridge gates
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FIG. 2. (a) Schematic illustration of the original QAD design
with two airbridge gates and two side gates. Two QADs are expected
to form around the pillars. The inset shows the 45◦-tilt SEM image
of an undeformed bridge used in our previous experiments [24,25].
(b) Schematic illustration of the present sample with two deformed
gates. Measurement setup for transport through QAD L and R un-
der the deformed bridge and impurity-induced QAD C is shown.
The inset shows the 45◦-tilt SEM image of the deformed airbridge
(shrunk horizontally to highlight the deformation). (c) A top view
SEM image of the present sample with the deformed bridges (taken
after the measurement). (d) Schematic geometry of QAD L, C, and
R between the source (S) and drain (D) channels. The QAD L′ and
R′ might be absorbed in L and R.

worked nicely in our previous study [24,25]. However, for
the particular device used in this paper, it turned out that the
airbridges have been deformed, as shown in Fig. 2(b) with an
SEM picture taken after the measurement. The central part
of the bridge is touching the surface of the heterostructure.
We noticed later that the deformation was introduced during
the post photo-lithography process with PMGI, which was
not used for the previous devices. Note that the deforma-
tion of the bridge is reproducible with the same process,
whereas the detailed mechanism of the deformation is not
known.

As a result of the deformation, a relatively large QAD
with the area of LW � 1 (µm)2 should be formed under the
deformed bridge. This area is comparable to those of typical
QADs seen in the literature [26]. We find that such QADs,
referred to as QADs L and R, under the deformed bridges
work nicely in this paper. However, we did not find any
characteristics associated with the intended QADs L′ and R′
under the pillars (see Sec. III C).

We take advantage of localized states present in our device.
While they are randomly distributed in the sample, we focus
on a specific localized state, which acts as QAD C, located
between QADs L and R. Following measurements suggests
that QAD C with the area of 0.02–0.04 (µm)2, equivalent to a
circle with a diameter of 160–230 nm, is located in the middle
of QAD L and R, as illustrated in Fig. 2(b) (see Sec. III B).
Figure 2(c) shows the top view SEM image of the present de-
vice taken after the measurements, where pillars (deformed),
airbridges, and lead electrodes are seen. Schematic locations
of QADs are illustrated in Fig. 2(d), while QADs L’ and R’
might be merged into L and R, respectively.

FIG. 3. (a) Color plot of differential conductance G as a function
of VL and VR at B = 5.0 T and Vs−dc = 0. The peak between the
arrows labeled c is the CB peak associated with QAD C. Single
QADs L and R are investigated at conditions marked by #L and #R,
respectively. Double and triple QADs are investigated at conditions
marked by #D and #T, respectively. (b) G as a function of VLR =
VL + VR along the dot-dashed line in (a) at different magnetic fields.
Each trace is offset by 0.05e2/h for clarity. (c), (d) G as a function
of B and each gate voltage. (e), (f) Coulomb diamond characteristics
seen in G as a function of bias voltage Vs−dc and the gate voltage, VR

for QAD R in (e) and VL for QAD L in (f). The white parallelogram
shows an approximate CB region.

The transport through the QADs is investigated by apply-
ing ac voltage Vs−ac = 30 µV at 37 Hz and dc voltage Vs−dc

(= 0 unless otherwise noted) to the source and measuring
the ac voltage drop V between the voltage probes with a
lock-in amplifier [Fig. 2(b)]. The differential conductance G
is estimated from the relation G = (2e2/h) × (V/Vs−ac). All
measurements were performed in a dilution refrigerator with
a base temperature of about 100 mK.

B. Localized state as QAD C

Figure 3(a) shows a color plot of conductance G over the
wide ranges of VL and VR at B = 5.0 T. Whereas the Coulomb
oscillations of QAD L and R are not visible with this coarse
scan, several current peaks associated with localized states are
resolved. For example, the horizontal line at VR � −1.0 V
(marked by the arrow labeled r) should be associated with a
localized state near the right gate with VR but far from the
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left gate with VL. We focus on a specific localized state that
exhibits the current peak marked by the arrows labeled c.
As this peak is elongated in the lower-right direction with a
slope of dVR/dVL = −1.45 in the figure, the state is almost
equally coupled to the two gates, and thus should be located
at around the center of the two gates (slightly closer to the
left gate). We shall use this localized state as QAD C in the
following.

Figure 3(b) shows the conductance traces taken by simulta-
neously changing VL and VR along the dot-dashed line labeled
VLR in Fig. 3(a) for several B values. In Fig. 3(b), the two peaks
labeled c and c′ evolve in a similar manner with B, as shown
by the dashed lines, implying that they are two consecutive
CB peaks for the same impurity. The corresponding magnetic
field period of about �Bimp = 0.1–0.2 T suggests that the
area enclosed by the bound state is Simp = (h/e)/�Bimp �
0.02–0.04 (µm)2 by assuming local filling factor νC = 1. If the
bound state is circular, its diameter of 160–230 nm can fit in
between the two gates with the distance of d = 500 nm, as
illustrated in Fig. 2(d).

In Sec. II E, we focus on peak c of Fig. 3(b), where rich
characteristics associated with QADs L, C, and R show up in
the fine sweep of VR and VL.

C. Single QAD L and R

The QADs L and R were investigated separately by focus-
ing on the conditions #L and #R, respectively, in the VR-VL

plane of Fig. 3(a). The transport is effectively determined by
each QAD under the asymmetric gate voltages, where other
QADs are strongly coupled to the leads. CB oscillations of
QAD R can be seen in fine sweeps of VR and B, as shown in
Fig. 3(c). Its oscillation period in B is �BR � 3 mT, which
corresponds to the area enclosed by the bound states, SR =
1
2

h
e

1
�BR

� 0.7 (µm)2. Here, the factor 1
2 is used for the two oc-

cupied spin-resolved Landau levels with νB − νR = 2, where
bound states associated with the two Landau levels strongly
interacted electrostatically [4–7]. This SR is comparable to the
area of the deformed bridge [LW = 1.0 (µm)2] but far from
the area of the pillar [≈0.07 (µm)2)] in consistency with QAD
R being formed under the deformed gate.

The Coulomb diamond characteristics of QAD R are ob-
tained by applying Vs−dc and VR, as shown in Fig. 3(e).
The CB region with G ≈ 0 is seen in the voltage range
|Vs−dc| � 200 µV, as illustrated by a white parallelo-
gram as a guide. This measures the addition energy UR �
200 µeV, which includes the on-site Coulomb charging energy
and level spacing of the bound states. This value is comparable
to typical values of reported QADs with similar sizes [26].
The energy of each bound state can be shifted by αR�VR

with small change �VR in VR, where the lever arm factor
αR � −0.13e is roughly estimated from the size of the par-
allelogram.

Similarly, QAD L investigated at around condition #L
shows CB oscillations in Fig. 3(d). The oscillation period
�BL � 3 mT also suggests that the QAD is formed under
the deformed bridge. The two QADs show similar oscillation
periods in B as well as their gate voltages (VR and VL). The
Coulomb diamond characteristics for QAD L in Fig. 3(f)
show smaller blockade regions with somewhat smaller addi-

FIG. 4. (a) Color plot of conductance G as a function of VL

and VR at around condition #D in Fig. 3(a) for uncoupled QADs L
and R showing parallelogram patterns (the white lines). (b) G as a
function of VL and B at VR = −1.135 V, showing another example of
uncoupled QADs L and R. The black lines labeled L and R represent
CB peaks attributed to QAD L and R, respectively.

tion energy UL � 180 µeV and αL � −0.15e. Similar QADs
with small differences are well reproduced by the deformed
bridges.

D. Uncoupled double QAD

Transport through QADs L and R with a negligible role
of QAD C can be seen when large negative voltages, VL and
VR, are applied. Figure 4(a) shows such Coulomb oscillations
in the fine sweep of VL and VR at around condition #D in
Fig. 3(a). The oscillations for QAD L (the vertical lines) and R
(the horizontal lines) are resolved but not influenced by each
other with no measurable splitting at their crossings, as shown
by the white parallelogram in Fig. 4(a). This is the signature of
negligible tunnel and electrostatic couplings, as studied with
conventional QDs [15].

Another example of uncoupled QADs is shown in the
B-VL plane of Fig. 4(b), where the parallelogram pattern (the
black lines) for CB oscillations of QAD L and R is resolved.
Whereas this VL and VR range is the condition where triple
QAD formation is expected [#T in Fig. 3(a)], a negligible role
of QAD C is seen probably due to small tunneling (tLC, tRC)
in this B range. The magnetic field periods, �BR � 3 mT and
�BL � 3 mT, are similar to those obtained for single QADs.
Therefore, QADs L and R are stably formed in the wide range
of VL and VR.

The above data show that distant QADs L and R are un-
coupled with negligible tunneling (tLR � 0) and electrostatic
(ULR � 0) couplings. However, the two QADs can be coupled
by introducing QAD C, as shown in the next subsection.

E. Triple QAD

Coupling of QADs L, C, and R can be found in Fig. 5,
where G was measured with a fine sweep of VL and VR at
various magnetic fields. The sweep ranges of VL and VR are ad-
justed for each B to keep the focus on the resonance with QAD
C [the equivalent condition is marked by #T in Fig. 3(a)].
Fine oscillations are superimposed on the broad peak of QAD
C. Rich characteristics ranging from parallelogram to hon-
eycomb patterns are seen. In addition, sharp diagonal lines
(some marked by the arrows) show up in the limited range of
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FIG. 5. (a)–(h) Color plots of G as a function of VL and VR at different magnetic fields from 4.800 T in (a) to 4.975 T in (h). For each B, the
sweep ranges of VL and VR are adjusted to focus on the broad CB peak of the impurity QAD C. Some diagonal straight lines are highlighted
by the arrows.

4.875 � B � 4.950 T. Some representative characteristics are
analyzed in the following.

First, we focus on the white dashed region of Fig. 5(e)
at B = 4.900 T, which is enlarged in Fig. 6(a). Strikingly,
one of the CB peaks follows the single straight diagonal line

between the two arrows labeled ξ . This line is located around
the center of the CB peak of QAD C, and the linewidth is
much sharper than the peak width of QAD C. The meaning
of the diagonal line is clarified by analyzing the Coulomb
oscillations of QADs L and R. The CB peaks of QAD L

FIG. 6. (a) G as a function of VL and VR measured at 4.900 T [equivalent gate-voltage condition is marked by #T in Fig. 3(a)]. The straight
diagonal line is indicated by two arrows labeled ξ . Other honeycomb and parallelogram patterns are almost symmetric about the diagonal line.
The spacings of CB oscillations (the dot-dashed lines) for QAD L reflect UL and ULC. (b) Schematic charge stability diagram with excess
electron numbers (nL, nC, nR ) for (a). The red arrows indicate the spacing �Ṽ of the anticrossings. (c) Cross-sectional slices of G along the
lines χ and χ ′ as a function of relative gate voltage ṼLR in VLR = VL + VR measured from the straight diagonal line in (a). The anticrossing is
represented by the vertical lines as guides to the eye. (d) The anticrossing �Ṽ in VLR is plotted as a function of ṼLR for the slices χ and χ ′ in
(c). The right axis �̄ = | 1

2 α��Ṽ | is converted with α� = −0.13e. The top axis ε̄C is estimated from the fit (the green line) with the model.
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[the dot-dashed lines in Fig. 6(a)] are abruptly shifted across
the diagonal line. This shift suggests that the charge state of
QAD C is changed from nC = 0 (the lower-left side) to 1 (the
upper-right side), which influences the potential of QAD L.
Therefore, we define εC = 0 on the diagonal line. The shift
measures the electrostatic coupling ULC � 75 µeV between
QAD L and C. Similar shift is seen for CB peaks of QAD
R (not marked), from which UCR � 75 µeV is estimated. It
should be noted that the straight diagonal line is associated
with a special resonance of hybridized states under symmetric
conditions of the triple QAD, as elaborated in Sec. IV.

The current profile in the vicinity of the diagonal line
shows a clear rounded honeycomb pattern, which manifests
finite coupling between QAD L and R. The honeycomb pat-
tern gradually changes to the parallelogram pattern toward the
upper-right and lower-left corners. The corresponding charge
stability diagram is sketched in Fig. 6(b), where each region
is labeled with excess electron numbers (nL, nC, nR ) from a
reference. We investigate the minimum spacing �Ṽ between
the rounded charge boundaries, which corresponds to � in
Eq. (3). The overall conductance profile is mirror symmet-
ric about the diagonal line and periodic along the diagonal
line (the upper-left direction). This feature suggests that the
spacing �Ṽ is dominantly changed only by |εC|, i.e., the
distance from the diagonal line. Other parameters, specifically
tLC and tCR, are unchanged within the sweep range of VL and
VR. Otherwise, the conductance pattern should change in a
nonsymmetric way. These characteristics support the demon-
stration of tunable coupling with cotunneling.

Cross-sectional current profiles passing through several an-
ticrossing conditions are shown in Fig. 6(c). Here, two cross
sections χ and χ ′ pick up different anticrossings as illustrated
by the dashed lines in Figs. 6(a) and 6(b). The axis ṼLR denotes
the relative gate voltage in VLR = VL + VR measured from the
central diagonal line (εC = 0). The splitting �Ṽ is shown by
the bars in Fig. 6(c). The precise values and their errors are
determined from the overall pattern in Fig. 6(a). For example,
the peak (spot) slightly elongated to the upper-right direction
suggests finite splitting, even if the two split peaks are unre-
solved in the cross-sectional plot. The estimated �Ṽ is plotted
as a function of ṼLR in Fig. 6(d), in which the symmetric
variation of �Ṽ is seen.

�Ṽ can be converted into the splitting energy, �̄ =
| 1

2α��Ṽ |, by using the lever arm factor α� = −0.13e (see
Appendix A), as shown in the right scale. To see the con-
sistency with the proposed scheme, we assume equal tunnel
coupling (tLC = tCR = t), which will be justified in Sec. IV A,
and linear dependence of ε̄C = ηṼLR on ṼLR with unknown
factor η. Here, symbols with a bar (�̄ and ε̄C) denote the
quantities obtained for different charge states, while the orig-
inal � and εC are defined for a given charge state. We apply
Eq. (3) by replacing � and εC with �̄ and ε̄C for the fitting
to the data. By using U ′ = ULC = UCR = 75 µeV, the mea-
sured �̄ is well reproduced by the fitting [the solid green
line in Fig. 6(d)] with adjusted parameters, t = 50 µeV and
η = −0.02e. Here, tuning of ε̄C is induced by the purely
capacitive effect with εC = η′Ṽ but partially compensated
by the excess charge of the QADs (nL and nR). They are
related by ε̄C = η′Ṽ + ULCnL + UCRnR, where nL = nR = 0
is defined for the region at εC = 0 [see Fig. 6(b)]. We obtained

FIG. 7. (a)–(c) Measured G as a function of VL and VR at B =
4.950 T in (a), 4.900 T in (b), and 4.825 T in (c). Straight diagonal
lines are marked by the arrows in (a) and (b), but not seen in (c). (d)–
(f) Calculated G as a function of ṼL and ṼR. The offset energy for εC is
εC0 = 8.7 µeV in (d) and εC0 = 0 in (e) and (f). The tunnel couplings
are tLC = tCR = 50 µeV in (d) and (e), and tLC = 70 µeV and tCR =
30 µeV in (f). UL = UR = 200 µeV and ULC = UCR = 75 µeV were
used for the calculation.

η′ = −0.06e from the relations. This η′ does not contradict the
realistic lever arm factors in our sample (see Appendix A), and
supports our scheme. Therefore, the result indicates that the
total coupling energy � as well as the tunnel coupling δ are
successfully controlled with the energy of the localized state
in the range of 0 < δ <

√
2t (� 70 µeV in the present case).

The tunable tunnel coupling can be confirmed in the wide
range of B, as shown in Fig. 5. In all cases, one can see
honeycomb patterns near the center of the CB peak of QAD C
and parallelogram patterns near the upper-right and lower-left
corners. However, the precise patterns including the diagonal
lines near the CB peak of QAD C change significantly with
B. The white dashed regions in Figs. 5(b), 5(e), and 5(g)
are magnified in Figs. 7(b), 7(c), and 7(a), respectively. Two
diagonal lines (indicated by the arrows) are resolved at B =
4.95 T in Fig. 7(a), whereas only a single line is seen at
B = 4.90 T in Fig. 7(b) [the same data as Fig. 6(a)]. No clear
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diagonal line is resolved at B = 4.825 T in Fig. 7(c) [see also
B = 4.800 and 4.975 T in Figs. 5(a) and 5(h), respectively],
while the honeycomb pattern with finite splitting is seen. Full
understanding requires detailed analysis on the symmetry of
the QAD parameters, as shown in the next section.

IV. SYMMETRY OF TRIPLE QAD

A. System Hamiltonian

First of all, we should note the differences in electronic
states between QADs and standard QDs. For QDs at zero or
low magnetic fields, the energy levels are strongly influenced
by many-body effects with direct and exchange interactions
as well as single-particle orbitals and Zeeman splittings. As a
result, CB oscillations are generally aperiodic and thus charge
stability diagrams of multiple QDs are complicated with many
jumps in the CB conditions [21–23,27–33]. In contrast, the
energy quantization of QADs in the integer QH system is
dominated by the Aharonov-Bohm effect, which determines
the area of the bound state under uniform B. Therefore, the
energy spacing is almost constant for a smooth QAD potential
for each spin-resolved Landau level. When multiple Landau
levels are involved for each QAD, occupation of the inner
Landau level is well screened by the outer one. Therefore, CB
oscillations are periodic with a constant addition energy U for
different charge states [34]. The deviation from the periodic
pattern is studied with the hybridization of the system, as
shown below.

In this paper, a symmetric QAD with tLC = tCR and ULC =
UCR is assumed for proposing the tunable second-order cou-
pling scheme. While the symmetry is not required just for
tuning the tunnel coupling, we should investigate the role of
the symmetry in the hybridization. Interestingly, we found that
the diagonal straight line observed in Fig. 6(a) is the signature
of the symmetry.

Generally, CB peaks appear when the ground-state energy
E (GS)

n of the n-electron system coincides with that E (GS)
n+1 of

the (n + 1)-electron system, where the electrochemical po-
tential μ = E (GS)

n+1 − E (GS)
n of the system equals the chemical

potentials (defined to be zero) of the leads. The appearance of
the diagonal straight line suggests that this equality (E (GS)

n+1 =
E (GS)

n ) is satisfied on the diagonal line over several charge
states. In the presence of significant nearest-neighbor tunnel-
ing (tLC, tCR �= 0), the most probable situation is that the n-
and (n + 1)-electron systems share the identical eigenenergies
including the ground-state one with the same form of Hamil-
tonians Hn and Hn+1.

To see this happens, the excess charges (nL, nC, nR) that
belong to the n- and (n + 1)-electron systems are listed in
Fig. 8(a) with an integer m in such a way that electrons are
moved from the left to the right by tunneling processes with
tLC and tCR under the constraint nC ∈ {0, 1}. The total energy
of state n = (nL, nC, nR ) in the absence of tunneling can be
written as

En =
∑

i=L,C,R

[
niεi + 1

2
ni(ni − 1)Ui

]

+ nLnCULC + nCnRUCR. (4)

FIG. 8. (a) Tunnel coupling (tLC and tCR) between charge states
(nL, nC, nR ) in n- and (n + 1)-electron systems. (b) Chemical poten-
tial diagram for the triple QAD. Sequential tunneling between the
unhybridized states can be characterized by the simple electrochem-
ical potentials μL, μC, and μR. Correct electrochemical potential μT

should be considered for the hybridized triple QAD.

Therefore, the matrix form of the Hamiltonian with charge
bases has diagonal elements of En and nearest-neighbor off-
diagonal elements tLC and tCR. H1 and H2 in Eqs. (1) and (2)
are examples of n = 1 and m = 1 in the reduced Hilbert
space (only for three charge states). The conditions for iden-
tical Hamiltonians (Hn = Hn+1) are tLC = tCR, ULC = UCR (≡
U ′), UL = UR (≡ U ), εC = −nU ′, and εL + εR = −nU . The
straight diagonal line is expected to appear if all conditions
are met.

The last two conditions can be written with convenient but
misleading electrochemical potentials μL = εL + mU , μC =
0, and μR = εR + (n − m)U for adding an electron to QADs
L, C, and R, respectively, from charge state (m, 0, n − m)
[the dashed arrows in Fig. 8(a)], where the hybridization is
not considered at all. Notice μL + μR = 0 under the required
conditions, as shown in the energy diagram of Fig. 8(b).
Conventional sequential-tunneling transport is not allowed for
this condition (μL �= μC �= μR), and thus does not explain the
appearance of the diagonal line. In the presence of significant
tLC = tCR, the charge states of n- and (n + 1) -electron sys-
tems are strongly hybridized with the identical matrix form of
Hamiltonians, and thus the correct electrochemical potential
of the triple QAD is μT = 0 on the diagonal line. Therefore,
the hybridization plays an essential role in the appearance of
the diagonal line.

The appearance of the diagonal line implies that the sys-
tem satisfies all conditions. As our sample shows ULC � UCR

and UL � UR, tLC = tCR and μC = 0 must be satisfied within
the experimental allowance. Considering the variations of the
patterns at different B’s in Fig. 5, the data in Fig. 6(a) could
be the special case close to the symmetric conditions.

B. Numerical simulation

The current profiles under the symmetric and nonsymmet-
ric conditions are calculated by using the standard master
equation [35]. The two gate voltages, ṼL and ṼR, control the
electrostatic potentials of the three QADs, εL, εC, and εR,
with the lever arm factors, αR = αL = −0.13e, αCL = αCR =
−0.06e, and αLR = αRL = 0, and offset energies εL0 = εR0 =
0 and εC0 (see Appendix A for their definitions). The Hamilto-
nian Hn is diagonalized to obtain the eigenstates. The current
through the triple QAD is calculated for small bias voltage
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VS = 30 µeV between the source and the drain at electron
temperature T (kBT = 10 µeV). Tunneling rates to the source
and the drain are fixed at 
S = 
D = 1 GHz. The calculation
scheme for the wide range of charge states is described in
Appendix B.

Figure 7(e) shows the calculated G under the symmetric
condition with tLC = tCR = 50 µeV, UL = UR = 200 µeV,
ULC = UCR = 75 µeV, and εC0 = 0, where identical Hamil-
tonian Hn = Hn+1 is expected at ṼL + ṼR = 0. The central
diagonal line (marked by the arrows) is reproduced at ṼL +
ṼR = 0. The honeycomb pattern is clearly resolved near the
line, and the splitting is gradually decreasing toward the
upper-right and lower-left corners. All features are symmetric
about the diagonal line (highlighted by the dot pair). They are
qualitatively the same as the experimental features including
the mirror symmetry in Fig. 7(b), which suggests that the
symmetric conditions are satisfied in the experiment.

When a small energy offset of εC0 = 8.7 µeV is introduced
to the conditions for Fig. 7(e), the pattern is no longer mirror
symmetric about the diagonal line, as shown in Fig. 7(d).
The pattern shows the glide reflection symmetry (highlighted
by the dot pair) about the dashed line between the double
diagonal line (marked by the arrows). Such glide reflection
symmetry is seen in our experimental data of Fig. 7(a).

Identical tunneling with tLC = tCR is the essential condi-
tion. Our simulation (not shown) suggests that we would not
recognize the deviation from the straight diagonal line if the
asymmetry is not large ( γ ≡ | tLC−tCR

tLC+tCR
| � 0.1). When large

γ = 0.4 (tLC = 70 µeV and tCR = 30 µeV) is assumed in the
simulation, the diagonal line disappears as shown in Fig. 7(f).
While the honeycomb pattern is seen in the entire region of the
figure, the splitting shows gentle variation. A similar pattern
is seen in our data of Fig. 7(c), whereas the parameters for
Fig. 7(f) were not adjusted to the experimental data.

Identical Coulomb interactions with ULC = UCR and UL =
UR are important for the periodicity along the diagonal line.
Some diagonal lines are visible only for a few oscillation
periods, which may be related to small asymmetry in the
Coulomb interactions.

Whereas we observed smooth tuning of honeycomb pat-
terns with gate voltages, we do not see systematic variation
with the magnetic field. Slight change in magnetic field can
induce drastic change in the stability diagram, which might
be related to uncontrollable charging of localized states.

V. SUMMARY

We have proposed and demonstrated the triple QAD
scheme for tunable coupling between two separate QADs
by using cotunneling through the central QAD. The charge
stability diagram of the system changes from the parallelo-
gram pattern for the uncoupled case to the round honeycomb
pattern for the coupled case by tuning the energy level of the
central QAD. In a special case, the charge diagram shows
diagonal straight lines as a signature of symmetric parameters
of the triple QAD. Systematic variation of transport character-
istics is studied by numerical calculation based on the master
equation and by experiment with unintentional QADs and a
localized state. The system can be made more tunable, if the
localized state is replaced by an intentional QAD with an

independent gate. Our research has paved the way for further
studies on multiple QADs in the integer and fractional QH
states, such as a QAD array for anyon operations [14].
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APPENDIX A: LEVER ARM FACTORS

The electrostatic potentials εL, εC, and εR can be changed
by the gate voltages VL and VR with linear relations:

εL = αLVL + αLRVR + εL0,

εC = αCLVL + αCRVR + εC0,

εR = αRVR + αRLVL + εR0,

(A1)

with lever arm factors (α’s) and offsets (εL0 and so on). We
estimated αR � −0.13e from the data in Fig. 3(e) and αL �
−0.15e from Fig. 3(f). The CB oscillation periods of QAD L
and R in Fig. 6(a) at #T are similar and close to the period of
QAD R at #R. Therefore, the lever arm factor α� = −0.13e
was used to obtain �̄ = 1

2α��Ṽ in Fig. 6(d). The small ratios
αLR/αL � αRL/αR � 0.04 are estimated from the slope of the
CB oscillations (the dot-dashed lines for αLR/αL) in Fig. 6(a),
but αLR and αRL are neglected in the numerical calculations
for simplicity.

Unfortunately, we have no direct estimates on αCL and αCR.
For example, αCL describing the effect of the left gate on
the QAD C potential should arise from the direct capacitive
coupling and indirect coupling through QAD L. Whereas the
former contribution is unknown, the latter can be estimated
from αL

ULC
UL

� −0.05e. As αCL should be smaller than αL, αCL

as well as αCR should be in the range of −0.05e ≈ −0.13e.
If available, these values provide η′ � 1

2 (αCL + αCR) for the
determination εC in Fig. 6(d). This parameter range does not
contradict η′ = −0.06e obtained from the fitting to the data
in Fig. 6(d). Therefore, we used αCL = αCR = −0.06e in the
numerical simulations.

APPENDIX B: CALCULATION OF TRIPLE-QAD
CURRENT

We calculated the current through the triple QAD based on
the master equation [35]. The electrochemical potential εi for
the first excess electron only in QAD i can be controlled with
excess gate voltages ṼL and ṼR, in the form of Eq. (A1). Here,
εC0 plays an important role in the stability diagram, and we set
εL0 = εR0 = 0 and αLR = αRL = 0 for simplicity. The Hamil-
tonian Hn shown in Sec. IV A is diagonalized to obtain kth
eigenenergy En,k of the n-electron system. Transport through
the triple QAD can be calculated by considering tunnel transi-
tions to the leads. We assumed energy-independent tunneling
rates 
S between the source and QAD L and 
D between
QAD R and the drain. A master equation for occupation
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probabilities of the eigenstates is constructed under a small
bias voltage VS = 30 μV and thermal energy kBT = 10 μV in
the leads. For each ṼL and ṼR, a few eigenstates with energies
in the range of En,k � E (min) + eVS + 3kBT contribute to the

transport, where E (min) is the total ground-state energy for all
possible n and k. The eigenstates within this energy range are
considered in solving the master equation. The current was
calculated from the steady-state occupation probabilities.
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