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Implications of reciprocity for the spectra of equilibrium and nonequilibrium Casimir forces
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We investigate the Casimir forces in a planar two-body system with each backed by a plate of perfect electric
conductor. We show that for the equilibrium Casimir forces, the spectra of the Casmir pressure are symmetric
in the wave-vector space for reciprocal systems, and become asymmetric when reciprocity is broken. Therefore,
there is a distinct signature of reciprocity in the spectra of equilibrium Casimir forces. The same signature
also holds for the lateral force, which is nonzero only in the nonequilibrium case. On the other hand, for the
pressure in the nonequilibrium scenario, such an asymmetry can arise for both reciprocal and nonreciprocal
cases. We also elucidate a relation on the Casmir force that is connected to Newton’s third law. We show that
Newton’s third law holds for every frequency and wave vector, as long as no exchange of photons occurs between
the two-body system and the environment. Newton’s third law is distinct from the reciprocity constraints. We
illustrate the theoretical results with numerical calculations described by anisotropic permittivity tensors that are
either symmetric and hence reciprocal, or asymmetric and hence nonreciprocal.
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I. INTRODUCTION

There is a large body of literature on Casimir forces
in equilibrium [1–10] and nonequilibrium [11–18], explor-
ing various materials [19–24] and geometries [25–28], and
finding opportunities in applications towards nanoscale me-
chanical systems [29–32]. Most existing works on Casimir
forces use reciprocal material systems that satisfy the Lorentz
reciprocity. The Lorentz reciprocity implies a certain symme-
try in Green’s function of a system and is applicable when
the permittivity and permeability of the materials are scalar
or symmetric tensors [33]. On the other hand, by introducing
nonreciprocal materials, e.g., heavily doped semiconductors
under external magnetic field or magnetic Weyl semimetals,
one can achieve unusual effects in Casimir forces such as re-
pulsive pressures [34–41], lateral forces [42–46], and torques
[47–49]. In spite of these recent developments, however, there
has not been a study of the implications of reciprocity on the
spectra of Casimir forces.

The effects of Casimir forces are closely related to the
effects of near-field heat transfer since both effects arise from
electromagnetic fluctuations. Recently, the implications of
reciprocity on the spectra of near-field heat transfer have been
considered in Ref. [50]. As a step further, in this paper, we
consider the role of reciprocity in the spectra of Casimir forces
in a planar two-body system. Understanding of the symmetry
properties of these spectra is of importance for the control
of the Casimir forces. The spectra of the Casimir forces
are physical quantities. Therefore, they in principle can be
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measured, even though there has not been any direct measure-
ment of such spectra.

Casimir forces can occur in both equilibrium and nonequi-
librium systems. In equilibrium systems, all bodies and the
environment have the same temperature T , which can be
either at 0 K or at a nonzero value. These equilibrium systems
can only exhibit Casimir pressures. We show that the spectra
of the Casmir pressure are symmetric in the wave-vector space
(k space) for reciprocal systems, and can become asymmet-
ric when reciprocity is broken. Therefore, there is a distinct
signature of reciprocity in the spectra of equilibrium Casimir
forces. In nonequilibrium systems, the bodies and the envi-
ronment may have different temperatures. These systems can
exhibit both the pressure and the lateral force. The spectra of
the lateral force are symmetric in the k space for the reciprocal
system, and can become asymmetric when the reciprocity
is broken. On the other hand, the spectra of the pressure in
the nonequilibrium systems can exhibit asymmetry for both
reciprocal and nonreciprocal cases. For both equilibrium and
nonequilibrium systems, we also elucidate a relation on the
Casmir force that is connected to Newton’s third law. We show
that Newton’s third law holds for every frequency and wave
vector, as long as no exchange of photons occurs between the
two-body system and the environment. Thus, while Newton’s
third law has a form that is somewhat similar to some of the
constraints associated with reciprocity, it is in fact distinct
from the reciprocity constraints. We illustrate the theoretical
results with numerical calculations described by anisotropic
permittivity tensors that are either symmetric and hence re-
ciprocal, or asymmetric and hence nonreciprocal.

The rest of the paper is organized as follows. In Sec. II, we
present a model system consisting of two planar bodies for
the investigation of the Casimir pressure and lateral force. In
Sec. III, we present the formalism of the Casimir pressure,
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FIG. 1. (a) Geometry of a system consisting of two planar
bodies with each backed by plate of perfect electric conductor.
(b) Schematic illustration of Casimir pressures and lateral forces for
in-plane wave vectors +k‖ and −k‖ at angle ϕ. Dashed lines labeled
by A, B, and C denote boundaries below body 1, between body 1 and
body 2, and above body 2.

and analytically and numerically verify the implication of
symmetry for reciprocal systems in the equilibrium Casimir
pressure. In addition, we elucidate a relation on the Casimir
pressure that is connected to Newton’s third law. In Sec. IV,
we present an investigation of the lateral Casimir forces. This
paper is then concluded in Sec. V.

II. MODEL SYSTEM

We consider a system consisting of two planar bodies with
each backed by a plate of perfect electric conductor, as shown
in Fig. 1(a). The bodies are maintained at temperatures T1 and
T2, respectively, and are separated by the vacuum gap size d .
We assume that the bodies are much thicker than the dominant
wavelength that contributes to the Casimir forces, and the
regions outside the two plates of perfect electric conductor
consist of semi-infinite vacuum with temperature T3. This
system is in equilibrium if and only if T1 = T2 = T3, and is
in nonequilibrium if at least one of the three temperatures

is different. In this paper we mostly concentrate on the case
where T1 �= T2 when we consider nonequilibrium systems.

We use a coordinate system as indicated in Fig. 1(a). We re-
fer to the electromagnetic force along the z axis as the Casimir
pressure or the pressure, and the electromagnetic force in
the xy plane as the lateral Casimir force or the lateral force.
Figure 1(b) shows the schematic illustration of the Casimir
pressures and lateral forces arising from body 1 and from body
2. These forces are evaluated by integration of Maxwell’s
stress tensor in the boundaries as indicated in Fig. 1(b). We
will present the derivation of the formalism for the forces
acting on body 2, and discuss symmetry of the spectra with
respect to the in-plane wave vector k‖.

We assume that body 1 consists of a heavily doped
semiconductor with its permittivity being a 3 × 3 diagonal
permittivity tensor ε̂1 = εpÎ , where Î is a 3 × 3 identity matrix

and εp = 1− ω2
p

ω(ω+i�) as determined by the Drude model, with
ωp and � being the plasma frequency and the damping rate,
respectively. We select � = 0.1ωp for numerical calculations.
For the nonreciprocal case, we consider body 2 consisting of
the same heavily doped semiconductor as body 1, but subject
to a magnetic field B along the y direction. Such a material is
described by a 3 × 3 permittivity tensor ε̂2 = ε̂A

2 , where [50]
where

ε̂A
2 =

⎛
⎜⎝

εd 0 iε f

0 εp 0

−iε f 0 εd

⎞
⎟⎠, (1)

εd = 1− ω2
p(1+i �

ω
)

(ω+i�)2−ω2
c

and ε f = − ω2
p

ωc
ω

(ω+i�)2−ω2
c
. ωc = eB

m is the cy-
clotron frequency, with e and m being the electron charge and
the electron mass, respectively. The hat denotes matrix. We
note that ε̂A

2 is asymmetric, indicating that the reciprocity is
broken in this system. We choose ωc = 0.2ωp for numerical
calculations. To illustrate the effect of reciprocity breaking,
we also consider a reciprocal case where body 2 instead has a
permittivity ε̂2 = ε̂S

2 , where

ε̂S
2 =

⎛
⎜⎝

εd 0 ε f

0 εp 0

ε f 0 εd

⎞
⎟⎠, (2)

has a very similar form as ε̂A
2 , but it is symmetric. Both ε̂A

2 and
ε̂S

2 have the same mirror-symmetry property. Both are mirror
symmetric with respect to the zx plane. Both are not mirror
symmetric with respect to any plane parallel to the z axis
except for the zx plane. Throughout the paper we choose the
spacing between the bodies d = λp/20, where λp = 2πc/ωp

and c is the speed of light.
The dispersion equation for the surface modes of the sys-

tem of Fig. 1(a) is given by⎛
⎝ ε2

d −ε2
f

εd
cos2(ϕ) + εpsin2(ϕ)

κz2
+ 1

κz0
− iw

ε f

εd
k‖cos(ϕ)

κz0κz2

⎞
⎠

×
(

εp

κz1
+ 1

κz0

)
eκz0d −

( ε2
d −ε2

f

εd
cos2(ϕ) + εpsin2(ϕ)

κz2
− 1

κz0

+ iw
ε f

εd
k‖cos(ϕ)

κz0κz2

)(
εp

κz1
− 1

κz0

)
e−κz0d = 0, (3)
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where w = 1 for the reciprocal material [Eq. (2)] and w = 2
for the nonreciprocal material [Eq. (1)]. Here, ϕ is the angle
from the x axis to the in-plane wave vector. The wave-vector
components normal to the surfaces of the bodies are κz0 =√

k2
‖−k2

0 (k0 < k‖, where k0 is the free-space wave number
and k‖ = |k‖| is the magnitude of the in-plane wave vector)

for the region of the vacuum gap and κz1 =
√

k2
‖ − εpk2

0 for
the region of body 1. For a given ω and k‖, κz2 for the region
of body 2 is obtained by solving the equation ∇ × ∇ × E −
ω2μ0ε0ε̂2E = 0. The detailed derivation of Eq. (3) is found in
Appendix A.

III. CASIMIR PRESSURE

In this section we consider the implications of reciprocity
on the spectrum of the Casmir pressure for the system shown
in Fig. 1(a). In Sec. III A, we derive the formalism of the
Casimir pressure in the system of Fig. 1(a). In Sec. III B,
we discuss the symmetry property of the pressure in the
wave-vector space, based on the analytic formalism derived
in Sec. III A. In Sec. III C, we elucidate a relation on the
pressure that is connected to Newton’s third law and discuss
the difference between reciprocity constraints and Newton’s
third law. In Sec. III D, the symmetry argument is numerically
verified.

A. Formalism of the Casimir pressure

We define the Casimir pressure F z
1→2(r‖, z, t, T1) from

body 1 to body 2 as the electromagnetic pressure exerted on
body 2 due to the fluctuating current sources in body 1. This
pressure is computed from the electric field E(r‖, z, t, T1) and
the magnetic field H (r‖, z, t, T1) in the vacuum gap, where r‖
is the in-plane real-space vector. The pressure has the form

F z
1→2(r‖, z, t, T1) = 〈

1
2ε0

(
E2

z − E2
‖
) + 1

2μ0
(
H2

z − H2
‖
)〉
, (4)

where μ0 is the free-space permeability. Here, t is time. In
the right-hand side of Eq. (4), (r‖, z, t, T1) is suppressed, and
the ensemble average, denoted by a pair of angle brackets, has
been used. We use the Fourier transformation convention in
time and space as

A(t ) = Re
∫ ∞

0
dωA(ω)e−iωt , (5)

A(r‖) =
∫ ∞

−∞

dk‖
(2π )2 A(k‖)eik‖·r‖ . (6)

F z
1→2(r‖, z, t, T1) is independent of r‖, z, and t due to transla-

tional symmetry, the absence of absorption in the vacuum gap,
and the fact that the underlying quantum and thermal fluctua-
tions are stationary random processes, respectively. Also, we
have

〈E(ω, k‖, z, T1)E†(ω′, k
′
‖, z, T1)〉

= 〈E(ω, k‖, z, T1)E†(ω, k‖, z, T1)〉δ(ω − ω′)δ(k‖ − k
′
‖).
(7)

From Eqs. (4)–(7), we have

F z
1→2 =

∫ ∞

0
dω

∫ ∞

−∞

dk‖
(2π )4 T z

1→2(ω, k‖, T1), (8)

where

T z
1→2(ω, k‖, T1) = 1

4 〈ε0(|Ez|2 − |E‖|2) + μ0(|Hz|2 − |H‖|2)〉.
(9)

(ω, k‖, T1) is suppressed for the electric- and magnetic-field
components in the right-hand side of Eq. (9). Below, in our
formalism, (ω, k‖, T1), (ω, k‖), or (ω) is suppressed.

In the calculations of the Casmir pressure, the electromag-
netic properties of the bodies enter in terms of their reflection
matrices. The reflection matrix at the surface of body l for
light incident from the vacuum has the form

R̂l =
(

Rss
l Rps

l

Rsp
l Rpp

l

)
, (10)

where Rαβ

l is the reflection coefficient from the α-polarized
incident wave to the β-polarized reflected wave. For s polar-
ization (p polarization), the electric (magnetic) field is normal
to the plane spanned by the wave vector k and the z axis. Each
component of the reflection matrix in Eq. (10) is obtained
based on the convention of s × p = k/|k|, with s and p being
the unit vectors for the s-polarized and p-polarized electric
fields. In the absence of body 2, we assume the field emitted
by body 1 to be E1. When body 2 is present, in the vacuum
gap, there are multiple reflections of the electromagnetic wave
that is emitted from body 1. As a result of such multiple
reflections, near the surface of body 2, the field due to the
emission from body 1 is expressed as

E = eikz0d (E1 + R̂1R̂2ei2kz0d E1 + R̂1R̂2R̂1R̂2ei4kz0d E1 + · · ·)
= eikz0d D̂12E1, (11)

where D̂12 = (Î − R̂1R̂2ei2kz0d )
−1

. kz0 =
√

k2
0−k2

‖ (k0 > k‖),

[kz0 = iκz0 (k0 < k‖)] is the wave-vector component normal
to the surfaces of the bodies for propagation waves (evanes-
cent waves). Substituting the electric field of Eq. (11) and
the corresponding magnetic field into Eq. (9), we have the
forms of contributions to the pressure from propagation and
evanescent waves, respectively, as

T z
1→2(ω, k‖, T1)

=
{

Tr
[− kz0

2Zω
(Î+ R̂†

2R̂2)D̂12〈E1E†
1〉D̂†

12

]
, (k‖ < k0)

Tr
[− iκz0

2Zω
(R̂†

2+ R̂2)D̂12〈E1E†
1〉D̂†

12e−2κz0d
]
, (k‖ > k0)

,

(12)

where Z = k0
kz0

√
μ0

ε0
, (k‖ < k0) [Z = k0

iκz0

√
μ0

ε0
, (k‖ > k0)] is the

impedance of vacuum for propagation waves (evanescent
waves). 〈E1E†

1〉 is the correlation of the electric field emitted
from body 1 near the surface of body 1 and is given by [50]

〈E1E†
1〉

=
{

(2π )2 Zh̄ω
π

[
n(ω, T1) + 1

2

]
(Î − R̂1R̂†

1), (k‖ < k0)

(2π )2 Zh̄ω
π

[
n(ω, T1) + 1

2

]
(R̂1 − R̂†

1), (k‖ > k0)
,

(13)

where n(ω, T ) = (e(h̄ω/kBT ) − 1)
−1

is the number of thermal
photons in a single optical mode at frequency ω and temper-
ature T , with h̄ and kB being the reduced Planck constant and
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Boltzmann constant, respectively. From Eqs. (8), (12), and
(13), we have the pressure from body 1 to body 2:

F z
1→2(ω, k‖, T1) =

[
n(ω, T1) + 1

2

]
h̄|kz0|
8π3

F̃ z
1→2(ω, k‖), (14)

where the exchange function

F̃ z
l→m(ω, k‖)

=
{

Tr[−(Î + R̂†
mR̂m)D̂lm(Î − R̂l R̂

†
l )D̂†

lm], (k‖ < k0)

Tr[−i(R̂†
m + R̂m)D̂lm(R̂l − R̂†

l )D̂†
lme−2κz0d ], (k‖ > k0)

(15)

(l, m) = (1, 2), (2, 1). We note that the treatment above is ap-
plicable for both reciprocal and nonreciprocal materials, and
the symmetry properties of the spectra of the Casimir pressure
can be determined by analyzing F̃ z

l→m as defined in Eq. (15).
The pressure from body 2 to body 1 can be determined by
exchanging the subscripts 1 and 2 in Eq. (14).

The total pressure acting on each of bodies 1 and 2 has
contributions from the sources in body 1, body 2, and vacuum.
By combining the contributions from all three sources, the
total pressures acting on bodies 1 and 2 are given by

F z
1,2(T1, T2, T3) =

∫ ∞

0
dω

∫ ∞

−∞
dk‖F z

1,2(ω, k‖, T1, T2, T3),

(16)

where

F z
1 (ω, k‖, T1, T2, T3) = F z

1→2(ω, k‖, T1) + F z
2→1(ω, k‖, T2)

+ F z
ext,1(ω, k‖, T3), (17)

F z
2 (ω, k‖, T1, T2, T3) = − F z

1→2(ω, k‖, T1) − F z
2→1(ω, k‖, T2)

+ F z
ext,2(ω, k‖, T3), (18)

with

F z
ext,2(ω, k‖, T3) = −F z

ext,1(ω, k‖, T3)

= −
[

n(ω, T3) + 1

2

]
h̄kz0

2π3
, (19)

where we have used F̃ z
ext,2 = −F̃ z

ext,1 = Tr[−2Î] = −4. In
Eq. (16), F z

1 > 0 indicates an attractive force on body
1, whereas F z

2 > 0 indicates a repulsive force on body
2. In deriving Eqs. (17) and (18), we have used the
relation

F z
1→1(ω, k‖, T1) = −F z

1→2(ω, k‖, T1), (20)

F z
2→2(ω, k‖, T2) = −F z

2→1(ω, k‖, T2). (21)

Both terms in each of Eqs. (20) and (21) in fact result from
the integration of the stress tensor on the same boundary B
from the same source, i.e., body 1 for Eq. (20) and body 2 for
Eq. (21). The sign difference arises since the normal directions
required for the two integrations are opposite to each other.
The first and the second terms in Eqs. (17) and (18) corre-
spond to the force components at the boundary in the vacuum
gap [boundary B in Fig. 1(b)], arising from bodies 1 and 2,
respectively. The third term in Eq. (17) corresponds to the
force component at the exterior boundary of body 1 [boundary
A in Fig. 1(b)], arising from the vacuum environment in the −z
region. Similarly, the third term in Eq. (18) corresponds to the
force component at the exterior boundary of body 2 [boundary
C in Fig. 1(b)], arising from the vacuum environment in the
+z region. The result in Eq. (19) arises due to the perfect
electric conductor plates at the exterior surfaces of bodies 1
and 2.

B. Symmetry properties for the Casimir pressure

Using the formalism as developed in the previous section,
in this section we discuss the symmetry properties of the
spectrum of Casmir pressure in the k‖ space. We focus on
the relation between the Casimir pressure at k‖ and at −k‖.
This is motivated by Ref. [50], which has shown that the
relation between the heat-transfer coefficient at k‖ and −k‖
is a constraint by reciprocity. Here, we show that a similar
reciprocity constraint is present for the Casimir pressure as
well.

As the first main result of the paper, we show for a recipro-
cal system, in equilibrium with T1 = T2 = T3 = T , the spectra
of the pressure acting on each of bodies 1 and 2 are symmetric
in the k‖ space:

F z
1,2(ω, k‖, T, T, T ) = F z

1,2(ω,−k‖, T, T, T ). (22)

We prove Eq. (22) from Eqs. (17) and (18). Since the third
term in Eqs. (17) and (18) is constant in the ω−k‖ space, we
focus on the first two terms. The reflection matrix for each of
the bodies in the reciprocal system satisfies [51]

R̂l (−k‖) = σ̂zR̂
T
l (k‖)σ̂z, (23)

where σ̂z = diag(1,−1). From Eq. (15), we have

F̃ z
1→2(−k‖) =

{
Tr[−(Î + R̂†

2(−k‖)R̂2(−k‖))D̂12(−k‖)(Î − R̂1(−k‖)R̂†
1(−k‖))D̂†

12(−k‖)], (k‖ < k0)

Tr[−i(R̂†
2(−k‖) + R̂2(−k‖))D̂12(−k‖)(R̂1(−k‖) − R̂†

1(−k‖))D̂†
12(−k‖)e−2κz0d ]. (k‖ > k0)

(24)

Using Eq. (23) and the corresponding relation D̂21(−k‖) = σ̂zD̂T
12(k‖)σ̂z, Eq. (24) is rewritten as

F̃ z
1→2(−k‖) =

{
Tr[−(Î − R̂†

1(k‖)R̂1(k‖))D̂21(k‖)(Î + R̂2(k‖)R̂†
2(k‖))D̂†

21(k‖)], (k‖ < k0)

Tr[i(R̂†
1(k‖) − R̂1(k‖))D̂21(k‖)(R̂2(k‖) + R̂†

2(k‖))D̂†
21(k‖)e−2κz0d ]. (k‖ > k0)

(25)
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Comparing Eq. (25) with Eq. (15), F̃ z
1→2(k‖) and F̃ z

1→2(−k‖) may not be equal for the reciprocal system [52]. Similarly, one
can check that F̃ z

2→1(k‖) and F̃ z
2→1(−k‖) may not be equal for the reciprocal system. On the other hand,

F̃ z
1→2(−k‖) + F̃ z

2→1(−k‖) =
{

Re Tr[−2Î − 2(R̂1(−k‖)D̂21(−k‖)R̂2(−k‖) + R̂2(−k‖)D̂12(−k‖)R̂1(−k‖))ei2kz0d ], (k‖ < k0)

Im Tr[2R̂1(−k‖)D̂21(−k‖)R̂2(−k‖) + 2R̂2(−k‖)D̂12(−k‖)R̂1(−k‖)]e−2κz0d . (k‖ > k0)
(26)

Substituting Eq. (23) into Eq. (26), we have

F̃ z
1→2(−k‖) + F̃ z

2→1(−k‖) =
{

Re Tr[−2Î − 2(R̂1(k‖)D̂21(k‖)R̂2(k‖) + R̂2(k‖)D̂12(k‖)R̂1(k‖))ei2kz0d ], (k‖ < k0)

Im Tr[2R̂1(k‖)D̂21(k‖)R̂2(k‖) + 2R̂2(k‖)D̂12(k‖)R̂1(k‖)]e−2κz0d . (k‖ > k0)
(27)

Therefore, for the reciprocal system, the summation of the
exchange functions is symmetric:

F̃ z
1→2(ω, k‖)+F̃ z

2→1(ω, k‖) = F̃ z
1→2(ω,−k‖)+F̃ z

2→1(ω,−k‖),

(28)

which proves Eq. (22).
The discussion above is for the equilibrium case where

T1 = T2. For the nonequilibrium case with T1 �= T2, it is no
longer sufficient to discuss the symmetry properties of the
pressure by considering the exchange function only. Instead,
from Eqs. (14), (17), and (18), we have

F z
1 (ω, k‖, T1, T2, T3)

=
[

n(ω, T1) + 1

2

]
h̄|kz0|
8π3

F̃ z
1→2(ω, k‖)

+
[

n(ω, T2) + 1

2

]
h̄|kz0|
8π3

F̃ z
2→1(ω, k‖)

+
[

n(ω, T3) + 1

2

]
h̄kz0

8π3
F̃ z

ext,1(ω, k‖), (29)

and

F z
2 (ω, k‖, T1, T2, T3)

= −
[

n(ω, T1) + 1

2

]
h̄|kz0|
8π3

F̃ z
1→2(ω, k‖)

−
[

n(ω, T2) + 1

2

]
h̄|kz0|
8π3

F̃ z
2→1(ω, k‖)

+
[

n(ω, T3) + 1

2

]
h̄kz0

8π3
F̃ z

ext,2(ω, k‖). (30)

From Eqs. (29) and (30), we can show mathe-
matically that when T1 �= T2, F z

1,2(ω, k‖, T1, T2, T3) �=
F z

1,2(ω,−k‖, T1, T2, T3) if F̃ z
1→2(ω, k‖) �= F̃ z

1→2(ω,−k‖)
or F̃ z

2→1(ω, k‖) �= F̃ z
2→1(ω,−k‖). Below, in a numerical

example, we will show that F̃ z
1→2(ω, k‖) �= F̃ z

1→2(ω,−k‖)
and F̃ z

2→1(ω, k‖) �= F̃ z
2→1(ω,−k‖) can occur for both

reciprocal and nonreciprocal systems. Therefore, in the
nonequilibrium case with T1 �= T2, F z

1,2(ω, k‖, T1, T2, T3) �=
F z

1,2(ω,−k‖, T1, T2, T3) can occur for both reciprocal and
nonreciprocal systems.

C. Newton’s third law for the Casimir pressure

In our system, both the exterior sides of body 1 and body
2 are covered by perfect electric conductors and hence the
system is closed, we have F z

ext,2 = −F z
ext,1, as shown in

Eq. (19). Therefore, from Eqs. (17) and (18), Newton’s third
law holds for both equilibrium and nonequilibrium pressures
at every frequency and in-plane wave vector, i.e.,

F z
1 (ω, k‖, T1, T2, T3) = −F z

2 (ω, k‖, T1, T2, T3). (31)

We emphasize that Newton’s third law is in fact distinct
from the reciprocity constraints while it has a form that is
somewhat similar to some of the constraints associated with
reciprocity. It has been reported in Ref. [53] that Newton’s
third law holds for equilibrium Casimir forces including non-
reciprocal materials. Our results here agree with Ref. [53]
when specialized to the equilibrium case where T1 = T2 =
T3, but generalize the discussion on Newton’s third law for
nonequilibrium Casimir forces.

D. Numerical verification

In Fig. 2 we provide a detailed numerical verification of
the theoretical results as discussed above. For this purpose,
we consider three cases.

1. Case 1: Reciprocal case in equilibrium

We first provide a direct check of Eq. (22), which shows
the Casimir pressure spectrum is symmetric in k‖ space for
reciprocal systems. For this purpose, we use the model system
as described in Sec. II, with body 2 consisting of the reciprocal
anisotropic material as described in Eq. (2).

Figure 2(a) shows exchange function F̃ z
1→2(ω, k‖) as a

function of ω and k‖, for in-plane wave vector k‖ that is
at an angle of ϕ = π

4 from the x axis. The choice of the
direction of k‖ and the reciprocal anisotropic material is
such that this system does not have either inversion or mir-
ror symmetry that relates this k‖ and −k‖. The exchange
function, which is proportional to the force component, in
general peaks at the dispersion relation of the system, as
determined using Eq. (3) with w = 1. It is attractive (red
color) for the frequency range below 0.72ωp, and repulsive
(blue color) above the frequency for both k‖ and −k‖. We
emphasize that F̃ z

1→2(ω, k‖) is not symmetric, despite the
fact that F̃ z

1→2(ω, k‖) peaks at the dispersion relation of the
surface modes, and the dispersion relation is symmetric for
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FIG. 2. Spectra of exchange functions for Casimir pressure. (a) F̃ z
1→2(ω, k‖), (b) F̃ z

2→1(ω, k‖), and (c) summation F̃ z
1→2(ω, k‖) +

F̃ z
2→1(ω, k‖) for reciprocal system with permittivity of body 2 given by ε̂S

2 [Eq. (2)]. Angle of ϕ = π/4 is selected. (d)–(f) show
subtraction F̃ z

l→m(ω, k‖) − F̃ z
l→m(ω,−k‖) corresponding to (a)–(c), respectively. (g) F̃ z

1→2(ω, k‖), (h) F̃ z
2→1(ω, k‖), and (i) summation

F̃ z
1→2(ω, k‖) + F̃ z

2→1(ω, k‖) for nonreciprocal system with permittivity of body 2 given by ε̂A
2 [Eq. (1)]. White solid lines represent disper-

sion curves obtained from Eq. (3) with w = 1 in (a)–(c) and w = 2 in (g)–(i), respectively. White dashed lines in each panel represent
lightlines.

reciprocal systems [54]. To clearly demonstrate the asymmet-
ric aspect of F̃ z

1→2(ω, k‖), we plot F̃ z
1→2(k‖) − F̃ z

1→2(−k‖) in
Fig. 2(d) for both evanescent and propagation waves, and
notice that the plotted values are nonzero. The asymmet-
ric property F̃ z

1→2(k‖) �= F̃ z
1→2(−k‖) comes from R̂l (k‖) �=

R̂l (−k‖), which is seen from the comparison of Eqs. (15)
and (25). Similar behaviors are observed for F̃ z

2→1(ω, k‖),
as shown in Figs. 2(b) and 2(e), respectively. On the other
hand, the summation F̃ z

1→2(ω, k‖) + F̃ z
2→1(ω, k‖) [Fig. 2(c)],

which relates to forces F z
1,2(ω, k‖, T1, T2, T3) with T1 = T2,

is symmetric, as can be seen by Fig. 2(f), where we plot
F̃ z

1→2(k‖) − F̃ z
1→2(−k‖) + F̃ z

2→1(k‖) − F̃ z
2→1(−k‖), and notice

that the plotted values are zero for all ω and k‖. The numerical
results provide a direct check of Eq. (28), which leads to
Eq. (22).

2. Case 2: Nonreciprocal case in equilibrium

We next show that Eq. (22) can be violated for nonrecip-
rocal systems at equilibrium. For this purpose, we use the
model system as described in Sec. II, with body 2 consist-
ing of the nonreciprocal material as described in Eq. (1).
Here, we use the same k‖ as in case 1. We numerically
investigate the spectra of F̃ z

1→2(ω, k‖) and F̃ z
2→1(ω, k‖) as

shown in Figs. 2(g) and 2(h), respectively, and the summation
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F̃ z
1→2(ω, k‖) + F̃ z

2→1(ω, k‖) in Fig. 2(i). The exchange func-
tions and their summation in general peak at the dispersion
relation of the system, as determined using Eq. (3) with w =
2. Since the dispersion relation for this nonreciprocal system
is asymmetric, we see that the spectra in the three panels are
asymmetric. And, hence the pressure spectra are asymmetric
as well.

3. Case 3: Nonequilibrium cases

We now consider the nonequilibrium cases. Our nu-
merical results in Fig. 2 show that for both recipro-
cal and nonreciprocal cases, we can have F̃ z

1→2(ω, k‖) �=
F̃ z

1→2(ω,−k‖). When T1 �= T2, from the discussion of
Eqs. (29) and (30), these numerical results directly indi-
cate that F z

1,2(ω, k‖, T1, T2, T3) �= F z
1,2(ω,−k‖, T1, T2, T3) can

hold for both reciprocal and nonreciprocal cases. On the
other hand, in the case of T1 = T2 �= T3 with the behavior
given by F̃ z

1→2(ω, k‖) + F̃ z
2→1(ω, k‖), for the two struc-

tures as considered above, we have F z
1,2(ω, k‖, T1, T2, T3) =

F z
1,2(ω,−k‖, T1, T2, T3) for the reciprocal structure [Figs. 2(c)

and 2(f)] and F z
1,2(ω, k‖, T1, T2, T3) �= F z

1,2(ω,−k‖, T1, T2, T3)
for the nonreciprocal structure [Fig. 2(i)], as can also be in-
ferred from Eqs. (29) and (30).

IV. LATERAL CASIMIR FORCE

Following the Casimir pressure in the previous section,
here we investigate the lateral Casimir force. We present
the derivation of the formalism in Sec. IV A, the symmetry
properties in Sec. IV B, Newton’s third law in Sec. IV C, and
numerical verification in Sec. IV D. It is known that indepen-
dent of whether the bodies are reciprocal or not, the lateral
force is always zero in equilibrium [42]. Therefore, in this
section we focus only on the nonequilibrium case.

A. Formalism of the lateral Casimir force

We consider the lateral Casimir force F‖
1→2(r‖, z, t, T1).

The lateral force is computed from the electric field
E(r‖, z, t, T1) and the magnetic field H (r‖, z, t, T1) in the vac-
uum gap, and has the form

F‖
1→2(r‖, z, t, T1) = 〈ε0E‖Ez + μ0H‖Hz〉. (32)

From Eqs. (5)–(7) and (32), we have

F‖
1→2 =

∫ ∞

0
dω

∫ ∞

−∞

dk‖
(2π )4 T ‖

1→2(ω, k‖, T1), (33)

where

T ‖
1→2(ω, k‖, T1) = 1

2 Re〈ε0E‖E∗
z + μ0H‖H∗

z 〉. (34)

Substituting the electric field of Eq. (7) and the corre-
sponding magnetic field into Eq. (34), we have the forms
of the stress tensor for propagation and evanescent waves,
respectively, as

T ‖
1→2(ω, k‖, T1)

=
{

k‖Tr
[− 1

2Zω
(Î − R̂†

2R̂2)D̂12〈E1E†
1〉D̂†

12

]
, (k‖ < k0)

k‖Tr
[− 1

2Zω
(R̂†

2 − R̂2)D̂12〈E1E†
1〉D̂†

12e−2κz0d
]
. (k‖ > k0)

(35)

From Eqs. (13), (33), and (35), we have the lateral force
from body 1 to body 2:

F‖
1→2(ω, k‖, T1) =

[
n(ω, T1) + 1

2

]
h̄k‖
8π3

F̃ ‖
1→2(ω, k‖), (36)

where

F̃ ‖
l→m(ω, k‖)

=
{

Tr[(−1)l (Î − R̂†
mR̂m)D̂lm(Î − R̂l R̂

†
l )D̂†

lm], (k‖ < k0)

Tr[(−1)l (R̂†
m − R̂m)D̂lm(R̂l − R̂†

l )D̂†
lme−2κz0d ], (k‖ > k0)

(37)

again (l, m) = (1, 2), (2, 1). The factor of (−1)l arises from
the definition of the reflection matrices. We note that the ex-
change function F̃ ‖

1→2(ω, k‖) for the lateral force [Eq. (37)] is
the same as that for the heat transfer derived in Refs. [50,55],
as was noted in Ref. [42]. The exchange function F̃ ‖

1→2(ω, k‖)
for the lateral force also has a similar form as the exchange
function F̃ z

1→2(ω, k‖) for the pressure [Eq. (15)], except for
the sign flip of the term relating reflection matrix R̂2 for
body 2, i.e., Î + R̂†

2R̂2 for propagation waves and R̂†
2 + R̂2 for

evanescent waves in Eq. (15). The total lateral forces acting
on bodies 1 and 2 are given by

F‖
1,2(T1, T2) =

∫ ∞

0
dω

∫ ∞

−∞
dk‖F‖

1,2(ω, k‖, T1, T2), (38)

where

F‖
1(ω, k‖, T1, T2) = F‖

1→2(ω, k‖, T1) + F‖
2→1(ω, k‖, T2),

(39)

F‖
2(ω, k‖, T1, T2) = −F‖

1→2(ω, k‖, T1) − F‖
2→1(ω, k‖, T2).

(40)

We note that there is no component of the lateral force
at exterior boundaries A and C due to the plates of perfect
electric conductor. In deriving Eqs. (39) and (40), similarly,
we have used the relation

F‖
1→1(ω, k‖, T1) = −F‖

1→2(ω, k‖, T1), (41)

F‖
2→2(ω, k‖, T2) = −F‖

2→1(ω, k‖, T2). (42)

B. Symmetry properties for the lateral Casimir force

Following the formalism in the previous section, we dis-
cuss symmetry properties of the lateral Casimir force in the
k‖ space. Similar to Sec. III B, here we focus on the relation
between the lateral force at k‖ and at −k‖. We show that a
similar reciprocity constraint is present for the lateral Casimir
force as well.

As the second main result of the paper, we show for the
reciprocal system the spectra of the lateral force acting on
each of bodies 1 and 2 are symmetric with respect to k‖:

F‖
1,2(ω, k‖, T1, T2) = −F‖

1,2(ω,−k‖, T1, T2). (43)

We prove Eq. (43) from Eqs. (39) and (40) via the exam-
ination of the exchange functions. From the relation of the
reflection matrix for the reciprocal system [Eq. (23)] and the
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exchange function [Eq. (37)], we have

F̃ ‖
1→2(ω,−k‖) = −F̃ ‖

2→1(ω, k‖). (44)

The detailed deviation is found in Appendix B. In addition,
regardless of whether the system is nonreciprocal or recipro-
cal, the exchange function for the lateral forces is symmetric
with respect to an exchange of bodies 1 and 2, i.e.,

F̃ ‖
1→2(ω, k‖) = −F̃ ‖

2→1(ω, k‖). (45)

The detailed derivation is found in Appendix C. Both of
these derivations parallel those of the related results for heat
transfer in Ref. [50]. From Eqs. (44) and (45), we have the
relation of symmetry in the spectrum

F̃ ‖
1→2(ω, k‖) = F̃ ‖

1→2(ω,−k‖). (46)

Equations (44) to (46) are true by exchanging the
subscripts 1 and 2. From Eqs. (36), (39), and (40),
we have

F‖
1(ω, k‖, T1, T2) =

[
n(ω, T1) + 1

2

]
h̄k‖
8π3

F̃ ‖
1→2(ω, k‖)

+
[

n(ω, T2) + 1

2

]
h̄k‖
8π3

F̃ ‖
2→1(ω, k‖),

(47)

and

F‖
2(ω, k‖, T1, T2) = −

[
n(ω, T1) + 1

2

]
h̄k‖
8π3

F̃ ‖
1→2(ω, k‖)

−
[

n(ω, T2) + 1

2

]
h̄k‖
8π3

F̃ ‖
2→1(ω, k‖).

(48)

From Eqs. (47) and (48), one can clearly check that the
lateral forces F‖

1,2(ω, k‖, T1, T2) are symmetric if and only if

exchange functions F̃ ‖
1→2(k‖, ω) and F̃ ‖

2→1(k‖, ω) are symmet-
ric. Hence, from Eq. (46), Eq. (43) has been proved. We also
observe from Eqs. (45), (47), and (48) that the lateral force
becomes zero in equilibrium. Our observation agrees with
Refs. [42,45], but contradicts the results in Ref. [56], where
nonzero lateral force in equilibrium was claimed. References
[42,45] have argued that the lateral force in equilibrium should
be zero, as expected from a general thermodynamics consid-
eration.

C. Newton’s third law for the lateral Casimir force

Similar to the pressure, from Eqs. (39) and (40), Newton’s
third law holds for the lateral forces at every frequency and in-
plane wave vector, as long as no exchange of photons occurs
between the two-body system and the environment.

F‖
1(ω, k‖, T1, T2) = −F‖

2(ω, k‖, T1, T2). (49)

D. Numerical verification

In Fig. 3 we provide a detailed numerical verification of
Eq. (43) by considering two cases in nonequilibrium. In these
examples, the lateral force is along the x direction and we
plot the dependency of exchange functions, which control
the behavior of F‖

1,2 on the parallel wave vector along the
direction, ϕ = π

4 .

1. Case 1: Reciprocal case

We provide a direct check of Eq. (43), which shows the
lateral force spectrum is symmetric in k‖ space for recipro-
cal systems. For this purpose, we use the model system as
described in Sec. II, with body 2 consisting of the reciprocal
anisotropic material as described in Eq. (2).

Figure 3(a) shows the spectrum of exchange function
F̃ ‖

1→2(ω, k‖) for this reciprocal case. F̃ ‖
1→2(ω, k‖) peaks at the

dispersion curves (white solid lines) obtained from Eq. (3)
with w = 1 as overlaid in Fig. 3(a). F̃ ‖

1→2(ω, k‖) is negative
(blue color) for the entire area of (ω, k‖) we consider here.
The spectrum of F̃ ‖

1→2(ω, k‖) is symmetric, as can be clearly
seen in Fig. 3(c), where we plot F̃ ‖

1→2(k‖) − F̃ ‖
1→2(−k‖) and

show that plotted values are zero for all ω and k‖. This result
here contrasts with exchange function F̃ z

1→2(ω, k‖) for the
pressure, which is asymmetric as plotted in Figs. 2(a) and 2(d).
Figures 3(b) and 3(d) show F̃ ‖

2→1(ω, k‖), where it has a posi-
tive value and the same symmetric properties as F̃ ‖

1→2(ω, k‖).
Therefore, the symmetry property of the lateral force spectrum
in the reciprocal system [Eq. (43)] is verified.

2. Case 2: Nonreciprocal case

We next show that Eq. (43) can be violated for nonrecip-
rocal systems. For this purpose, we use the model system as
described in Sec. II, with body 2 consisting of the nonrecip-
rocal material as described in Eq. (1). We plot the spectra of
exchange functions F̃ ‖

1→2(ω, k‖) and F̃ ‖
2→1(ω, k‖) in Figs. 3(e)

and 3(f), respectively. Both F̃ ‖
1→2(ω, k‖) and F̃ ‖

2→1(ω, k‖) peak
at the dispersion relation of the surface modes, as calculated
using Eq. (3) with w = 2, and overlaid in the figures. Since
the dispersion relation for such nonreciprocal system is asym-
metric, the exchange functions are asymmetric with respect to
k‖ as well.

It is noted that the main results of Eqs. (22) and (43) for
the pressure and lateral force hold for any reciprocal material
satisfying Eq. (23), including uniaxial materials with arbi-
tral direction of the optical axis, although the permittivity of
Eq. (2) has been used as an illustration.

V. CONCLUSIONS

We have investigated the Casimir pressure and lateral force
in the two-plate system, where one of the plates consists of a
reciprocal anisotropic or nonreciprocal material. Our analyti-
cal and numerical results have revealed a distinct signature of
reciprocity in the equilibrium pressure and the nonequilibrium
lateral force, where the spectra are symmetric with respect to
k‖. On the other hand, for the nonequilibrium pressure, the
spectra may be asymmetric for both reciprocal and nonrecip-
rocal cases. In addition, we have shown that Newton’s third
law holds for every frequency and wave vector, as long as
no exchange of photons occurs between the two-body system
and the environment. Our results provide understandings of
some of the symmetry properties of Casimir pressures and
lateral forces in equilibrium or nonequilibrium for reciprocal
or nonreciprocal systems.

In our study, here we assume that the two bodies are sta-
tionery with respect one another. It should be of interest to
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FIG. 3. Spectra of exchange functions for lateral Casimir force. (a) F̃ ‖
1→2(ω, k‖) and (b) F̃ ‖

2→1(ω, k‖) for reciprocal system with permittivity
of body 2 given by ε̂S

2 [Eq. (2)]. Angle of ϕ = π/4 is selected. (c) and (d) show the subtraction F̃ ‖
l→m(ω, k‖) − F̃ ‖

l→m(ω,−k‖) corresponding to
(a) and (b), respectively. (e) F̃ ‖

1→2(ω, k‖) and (f) F̃ ‖
2→1(ω, k‖) for the nonreciprocal system with the permittivity of body 2 given by ε̂A

2 [Eq. (1)].
White solid lines represent dispersion curves obtained from Eq. (3) with w = 1 in (a) and (b) and w = 2 in (e) and (f), respectively. White
dashed lines in each panel represent lightlines.

generalize our results to the case where the two bodies are in
relative motion [46].
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APPENDIX A: DERIVATION OF DISPERSION
EQUATION OF EQ. (3)

Dispersion relations of the surface modes in a three-layer
structure including an anisotropic planar body are presented
in Ref. [57]. Here, we include the effect of twist of the

anisotropic planar body in the dispersion relations. We con-
sider p-polarized evanescent waves in the system of Fig. 1(a).
The permittivities ε̂A

2 in Eq. (1) and ε̂S
2 in Eq. (2) have the form

ε̂2 =

⎛
⎜⎝

εd 0 εxz

0 εp 0

εzx 0 εd

⎞
⎟⎠. (A1)

The dispersion relation of the surface modes for in-plane
wave vector k‖ that is at angle ϕ from the x axis is equivalent
to that for wave vector kx with the twist of the anisotropic
planar body by angle −ϕ. Thus, the permittivity of the twisted
anisotropic planar body is given by

ε̂
′
2 = R̂zε̂2R̂†

z =

⎛
⎜⎝

εd cos2(ϕ) + εpsin2(ϕ) −(εd − εp)sin(ϕ)cos(ϕ) εxz cos(ϕ)

−(εd − εp)sin(ϕ)cos(ϕ) εd sin2(ϕ) + εp cos2(ϕ) −εxz sin(ϕ)

εzx cos(ϕ) −εzx sin(ϕ) εd

⎞
⎟⎠, (A2)

where

R̂z =

⎛
⎜⎝cos(−ϕ) −sin(−ϕ) 0

sin(−ϕ) cos(−ϕ) 0
0 0 1

⎞
⎟⎠. (A3)
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The regions of the vacuum gap, body 1, and body 2 are
labeled by 0, 1, and 2, respectively. The magnetic fields for
the three regions are given by

H0,y = H+
0,yeikxx−κz0z + H−

0,yeikxx+κz0(z−d ), (A4)

H1,y = H−
1,yeikxx+κz1z, (A5)

H2,y = H+
2,yeikxx−κz2(z−d ), (A6)

where the superscripts + and − of the y component of the
magnetic field represent the upward and downward waves
along the z axis. The electric fields are, correspondingly, given
by

E0,x = κz0

iωε0
(−H+

0,yeikxx−κz0z + H−
0,yeikxx+κz0(z−d ) ), (A7)

εpE1,x = κz1

iωε0
H−

1,yeikxx+κz1z, (A8)

(εd cos2(ϕ) + εp sin2(ϕ))E2,x + εxz cos(ϕ)E2,z

= − κz2

iωε0
H+

2,yeikxx−κz2(z−d ), (A9)

εzx cos(ϕ)E2,x + εd E2,z = − kx

ωε0
H+

2,yeikxx−κz2(z−d ). (A10)

The boundary conditions are

H0,y|z=0 = H1,y|z=0, (A11)

E0,x|z=0 = E1,x|z=0, (A12)

H0,y|z=d = H2,y|z=d , (A13)

E0,x|z=d = E2,x|z=d . (A14)

From Eqs. (A4)–(A14), the dispersion equation is derived:

⎛
⎝ ε2

d −εxzεzx

εd
cos2(ϕ) + εp sin2(ϕ)

κz2
+ 1

κz0
− i

εxz

εd
kx cos(ϕ)

κz0κz2

⎞
⎠(

εp

κz1
+ 1

κz0

)
eκz0d

−
⎛
⎝ ε2

d −εxzεzx

εd
cos2(ϕ) + εp sin2(ϕ)

κz2
− 1

κz0
+ i

εxz

εd
kx cos(ϕ)

κz0κz2

⎞
⎠(

εp

κz1
− 1

κz0

)
e−κz0d = 0, (A15)

where εxz = εzx = ε f for the reciprocal system, and εxz = −εzx = iε f for the nonreciprocal system. Equation (A15) is recovered
to Eq. (6B) in Ref. [57] with ϕ = 0 (Voigt configuration) for a nonreciprocal system. κz2 is obtained from solving for ∇ × ∇ ×
E − ω2μ0ε0ε̂

′
2E = 0, which is given by

κ4
z2 − ikx

εxz + εzx

εd
cos(ϕ)κ3

z2 +
[
−

(
1 + cos2(ϕ) + εp

εd
sin2(ϕ)

)
k2

x +
(

εp + εd − εxzεzx

εd

)
k2

0

]
κ2

z2

+ i
(
k2

x − εpk2
0

)
kx

εxz + εzx

εd
cos(ϕ)κz2 +

(
cos2(ϕ) + εp

εd
sin2(ϕ)

)
k4

x +
[
−

(
εd + εp − εxzεzx

εd

)
cos2(ϕ) − 2εp sin2(ϕ)

]
k2

x k2
0

+ εp

(
εd − εxzεzx

εd

)
k4

0 = 0. (A16)

One can check that in the case of ϕ = 0 in the nonreciprocal system with εxz = −εzx = iε f , Eq. (A16) gives κz2 =√
k2

x −
ε2

d −ε2
f

εd
k2

0 and
√

k2
x − εpk2

0 [57].

APPENDIX B: PROOF OF EQ. (44)

Substituting Eq. (23) into Eq. (37), F̃ ‖
1→2(ω, k‖) is given for propagation waves:

F̃ ‖
1→2(−k‖) = Tr[−(Î − R̂†

2(−k‖)R̂2(−k‖))D̂12(−k‖)(Î − R̂1(−k‖)R̂†
1(−k‖))D̂†

12(−k‖)]

= Tr
[−σ̂z

(
Î − R̂∗

2(k‖)R̂T
2 (k‖)

)
D̂T

21(k‖)(Î − R̂T
1 (k‖)R̂∗

1(k‖))D̂∗
21(k‖)σ̂z

]
= Tr

[−D̂∗
21(k‖)

(
Î − R̂∗

2(k‖)R̂T
2 (k‖)

)
D̂T

21(k‖)(Î − R̂T
1 (k‖)R̂∗

1(k‖))
]T

= Tr[−(Î − R̂†
1(k‖)R̂1(k‖))D̂21(k‖)(Î − R̂2(k‖)R̂†

2(k‖))D̂†
21(k‖)]

= −F̃ ‖
2→1(k‖), (B1)

where we have used Tr[σ̂zσ̂z] = Tr[Î] and Tr[M̂T ] = Tr[M̂] for a matrix M̂. Likewise, for evanescent waves, F̃ ‖
1→2(ω, k‖) is

given:

F̃ ‖
1→2(−k‖) = Tr[−(R̂†

2(−k‖) − R̂2(−k‖))D̂12(−k‖)(R̂1(−k‖) − R̂†
1(−k‖))D̂†

12(−k‖)e−2κz0d ]

= Tr
[−σ̂z

(
R̂∗

2(k‖) − R̂T
2 (k‖)

)
D̂T

21(k‖)
(
R̂T

1 (k‖) − R̂∗
1(k‖)

)
D̂∗

21(k‖)e−2κz0d σ̂z
]

= Tr
[−D̂∗

21(k‖)
(
R̂∗

2(k‖) − R̂T
2 (k‖)

)
D̂T

21(k‖)
(
R̂T

1 (k‖) − R̂∗
1(k‖)

)
e−2κz0d

]T

= Tr[−(R̂†
1(k‖) − R̂1(k‖))D̂21(k‖)(R̂2(k‖) − R̂†

2(k‖))D̂†
21(k‖)e−2κz0d ]

= −F̃ ‖
2→1(k‖). (B2)
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APPENDIX C: PROOF OF EQ. (45)

From Eq. (37), exchange function F̃ ‖
1→2(ω, k‖) for the lateral force is rewritten for propagation waves:

F̃ ‖
1→2(k‖) = Tr[−(Î − R̂†

2R̂2)D̂12(Î − R̂1R̂†
1)D̂†

12]

= Tr[R̂†
2R̂2D̂12D̂†

12 + D̂12R̂1R̂†
1D̂†

12 − R̂†
2R̂2D̂12R̂1R̂†

1D̂†
12 − D̂12D̂†

12]

= Tr[R̂2D̂12(R̂2D̂12)
† + R̂1D̂21(R̂1D̂21)

† − R̂2D̂12R̂1(R̂2D̂12R̂1)
†−R̂1D̂21R̂2(R̂1D̂21R̂2)

†

− R̂1D̂21R̂2ei2k0zd − (R̂1D̂21R̂2ei2k0zd )
† − Î], (k‖ < k0) (C1)

and for evanescent waves:

F̃ ‖
1→2(k‖) = Tr[−(R̂†

2 − R̂2)D̂12(R̂1 − R̂†
1)D̂†

12e−2κz0d ]

= Tr[−R̂†
2D̂12R̂1D̂†

12 − R̂2D̂12R̂†
1D̂†

12 + R̂2D̂12R̂1D̂†
12 + R̂†

2D̂12R̂†
1D̂†

12]e−2κz0d

= Tr[−D̂12R̂1(R̂2D̂12)
†
e−2κ0d − D̂21R̂2(R̂1D̂21)

†
e−2κz0d+D̂21D̂†

12 + D̂12D̂†
21 − D̂12 − D̂†

12].(k‖ > k0) (C2)

From Eqs. (C1) and (C2) with the relations of Tr�R̂1D̂21R̂2 = Tr�R̂2D̂12R̂1 and Tr�D̂12 = Tr�D̂21, we see that F̃ ‖
1→2(ω, k‖)

is symmetric with respect to bodies 1 and 2, where the minus sign is added for the exchange of the labels of bodies, i.e.,
−F̃ ‖

2→1(ω, k‖). Therefore, Eq. (45) has been proved.
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