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Extension of the SYK model to 1+1 dimensions in the strong coupling limit
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We study a 1 + 1 (space-time)-dimensional extension of the 0 + 1-dimensional Sachdev-Ye-Kitaev model for
N Majorana fermions, with random all-to-all quartic interactions, averaged over disorder. At large interaction
couplings and large N , the conformal symmetry of the effective action emerges, which is not broken sponta-
neously as in the original 0 + 1 SYK model. Two-point correlators are obtained from a coupling expansion
of the Schwinger-Dyson equations. For N = 4, the model can be mapped onto complex fermions and solved
exactly via the bosonization technique, featuring two branches of excitations: a gapped “pseudocharge” mode
and a gapless “pseudospin” mode. We give an approximate analytic form of the two-point correlators at large
distances and zero temperature for N = 4, which is adopted heuristically to evaluate an approximation to
the large-N free energy in the zero temperature limit, numerically. The fact that this energy displays an absolute
minimum at a finite value of the gap, though in a restricted range of parameters, suggests that a gapped branch
of excitations is also present in our extension of the model at least in that range of parameters.
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I. INTRODUCTION

The Sachdev-Ye-Kitaev (SYK) [1–3] model, which de-
scribes random all-to-all J interaction between N Majorana
fermions in 0 + 1 dimensions, has become highly popular as
a holographic dual for gravity theories of black holes [4–7].
Disorder average, obtained by contracting the couplings of the
interaction Ja

i jkl J
b
i jkl = 3! δabJ2/N3, where a, b denote replica

indices, makes the model exactly solvable in the limit of large
N . A conformal symmetry emerges at strong coupling, which
spontaneously breaks at low energies, down to the S̃L(2,R)
group symmetry [8], giving rise to soft modes, finite zero-
temperature entropy, and maximally chaotic behavior. As a
tensor model [9,10], it is dominated by melon diagrams in the
large-N limit and fixed by the N-dependent parameter J . This
melonic mean-field behavior has been found even in other
nonrandom SYK-like tensor models [11–13], demonstrating
that the random distribution of the model is not really impor-
tant [14].

The short-range spectral correlations given by random ma-
trix theory have shown the model to be quantum chaotic
[15]. Indeed, the out-of-time-ordered-correlator grows expo-
nentially on an inverse timescale which corresponds to a
classical Lyapunov exponent λL and saturates at times less
than the “scrambling time” with [16,17] λL ∼ 2πkBT/h̄.

Generalized SYK models and complex fermion versions
of it [10,18–23] have been proposed with extension to higher-
space dimensions [22,24–29], in particular in the context of
condensed matter, having in mind dot arrays [30,31] with
a hopping term or the embedding of 0+1 subsystems in a
Fermi liquid environment [20,32]. These extensions to higher-
space dimensionality appear to be a tractable benchmark for

interacting quantum many-particle system with non-Fermi-
liquid (NFL) behavior [33–35]. When dealing with hopping
in a spatial lattice at lowest perturbative order, in the IR limit,
the response of the fermionic excitations, in the conformal
symmetry limit, to an external driving to be specified, gives
rise to the celebrated linear temperature dependence of the
transported current over a large range of temperatures and
to the constancy in temperature of the thermal conductiv-
ity [22,36,37]. As this is a striking feature of the resistivity
which is experimentally found in the normal phase of the high
critical temperature (HTc) superconducting materials, these
models, dubbed “strange metals,” are extensively studied in
that connection [32,38–46]. It is interesting that the addition of
a kinetic term to the model carries a complex U (1) phase with
it, to be added to the real fields, which gives rise to bosonic
collective gapped diffusive modes [20,47,48].

A different kind of generalization have been studied by ex-
tending the original 0 + 1-dimensional (0 + 1 d) SYK model
to 1 + 1-dimensional (1 + 1 d) space-time dimensions in the
continuum limit, as a field theoretical model. By adding an ex-
tra dimension, the canonical scale dimension of the fermions
is changed to 1/2. This makes the interaction term marginal
at best. To avoid this problem, some authors have considered
a topological kinetic term, to acquire zero scale dimension
of the fields [49]. Of course, this term is nonlocal. However,
a local higher-dimensional theory with scale invariance and
Lorentz symmetry is found in the supersymmetry context
[50]. In this model, it is necessary to define a superfield in-
volving both bosons and fermions. Finally, a family of models
have been proposed in the extension to 1 + 1 d and 2 + 1 d,
described by a large number of bosons and fermions, via local
random Yukawa coupling [42–44,46,51]. A quartic fermion
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interaction can be thought of as a two fermion fields interac-
tion mediated by a bosonic field. These variants can exhibit
critical saddle-point solution and maximal scrambling.

This paper is devoted to the study of the collective exci-
tations of the extension of the 0 + 1 d SYK model in the
continuum limit, when a one-dimensional space dependence
is added. We consider a generalized form of the nonchi-
ral 1 + 1 d SYK model involving two different sets of real
couplings among N Majorana fermions, Ji jkl and Qi jkl . The
couplings are antisymmetric with respect to any two indices.
When the J couplings vanish, the model can be seen as the
random Thirring model [52], while it becomes decoupled into
left and right-mover chiral SYK systems [53], when the Q
couplings vanish.

In Sec. II, we present the 1 + 1 d extended model by
expressing the propagator, after disorder average, as a 2 × 2
matrix in the chiral basis, with diagonal elements g± and
off-diagonal nonchiral contributions g∩, g∪. The emergence
of the conformal symmetry at large couplings J, Q, similar to
the 0 + 1 d case, is discussed. In this limit, when a UV cutoff
� is introduced in real time-space to regularize the singularity
at small arguments of the correlators with a logarithmic factor,
we show that the model indeed flows to strong coupling and
that the Schwinger-Dyson equation in the 1/N → 0 limit can
be solved within the conformal symmetry limit. When Q = 0
we prove that the model is still critical. Moving away from the
strong coupling fixed point, the two-point correlation function
displays a power-law dependence at large distance with a non-
free-fermion-like exponent � �= −1. This feature confirms the
non-Fermi-liquid nature of the excitations.

We argue that the Q �= 0 case is noncritical at the two-
point level. Our goal is to try to infer the properties of the
excitation spectrum of the Q �= 0, large-N model heuristically
from the results of the N = 4 case, which are presented in
Sec. III. We take advantage of the fact that the restriction of
the model to N = 4 can be exactly solved, via mapping to
complex fermions and bosonization. For N = 4 there are just
two independent coupling parameters J ≡ J1234, Q1234 and we
limit the analysis to the important case J = Q.

The action of the N = 4 version of the model, for a given
realization of the interaction coupling J , can be expressed
in terms of complex fermions with both chiralities labeled
by ±, (cσ±, c†

σ±), where σ =↑,↓ is a pseudospin label. In
turn, the complex fermion action can be mapped onto two un-
coupled bosonic sine-Gordon [54] actions which we dubbed
pseudospin and pseudocharge actions, characterized by the
corresponding velocities us,c = u0

√
1 ∓ J

πu0
, where u0 is a ve-

locity scale. As it is well known, the sine-Gordon model is in
the critical phase with a power-law decay of the two-point cor-
relation function when the corresponding interaction coupling
K > 1, while it has a gapped spectrum with exponentially
decaying correlators when K < 1. The pseudospin velocity
vanishes when J → πu0 and Ks = 1/

√
1 − J

πu0
diverges, thus

marking the strong coupling limit of this N = 4 model. In con-
clusion, the N = 4 model, which is not Lorentz invariant, nor

conformally symmetric, displays two excitation branches, the
pseudospin gapless excitations and the pseudocharge gapped
excitations. We expect that these general features are main-
tained in the large-N limit.

Based on these findings, we surmise that the large-N limit
is characterized by the disorder averaged interaction coupling
J and by a gap �, stemming from a gapped branch of the
spectrum. In Sec. IV, we provide an approximate form for
the two-point correlators, in analogy with the N = 4 case,
which reduce to the free ones when J,� → 0 uniformly, and
use these analytic expressions to evaluate the free energy at
the lowest 1/N order, in the zero-temperature limit. The free
energy is numerically minimized with respect to the parameter
� for increasing J . We find an intermediate range of values
of J in which an absolute minimum of the energy is found,
corroborating the idea that a gapped excitation branch may
arise in the spectrum with increasing interaction among the
fermions. However, the analogy with the N = 4 case cannot
be pushed to large values of J either, because of the finite
value of J at which the N = 4 reduced model breaks down.

A short summary and conclusions can be found in Sec. V.
The Fourier transform of the correlators in the conformal
limiting case are derived in Appendix A. Appendix B pro-
vides details about the mapping to complex fermions of the
N = 4 case. Appendix C reports on the approximations used
to extract an analytic form out of the correlators of the
N = 4 reduced model in the pseudospin and pseudocharge
representation.

II. THE ACTION FOR A NONCHIRAL 1+1 SYK SYSTEM

We consider a system of fermionic degrees of freedom
defined along the 1d line x and labeled by a flavor index i
that can take N (even) values. In the chiral representation,
the real (Majorana) fermionic operators will be denoted by
ψi(x, τ ), where ψT

i (x, τ ) ≡ (ψi+(x, τ ), ψi−(x, τ )) and ± la-
bels the chirality. The ψi(x, τ )’s of different flavor or site
anticommute,

ψi(x, τ ) ψ j (y, τ ) + ψ j (y, τ ) ψi(x, τ ) = δi, j δ(x − y). (1)

In Euclidean space, ψi+(x, τ ) is only function of the complex
coordinate z = x + iu0τ while ψi−(x, τ ) is only function of
z̄ = x − iu0τ . In the following, x in ψi±(x) will denote both
variables (x, τ ) if no ambiguity arises.

The free Majorana spectrum is linearized around k = 0
with velocity ±u0 for right/left movers. The action for the
free massless case is

S0 = 1

2

N∑
i=1

∫
d2x ψT

i (x)(−∂τ + iu0σz∂x )ψi(x). (2)

Introducing the γ matrices,

γ 0 = σx, γ 1 = −iσy, γ 5 = σz, (3)

the interaction can be written as

SI =
∫

d2x

[
1

2

∑
i< j<k<l

Ji jkl (ψ̄iγ
μψ j )(ψ̄kγ

μψl ) +
∑

i< j<k<l

Qi jkl

(
1

2
(ψ̄iγ

μψ j )(ψ̄kγμψl ) + (ψ̄iψ jψ̄kψl )

)]
, (4)
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where the couplings Ji jkl and Qi jkl are real and antisymmetric with respect to any two indices. In the large-N case, we assume
that they obey the random Gaussian distribution P with

(Ji jkl )2 = 3!J2

N3
, (Qi jkl )2 = Q2

8N3
. (5)

If J = 0, then we have the random Thirring model [52]. If Q = 0, then we have two decoupled SYK models for right/left-moving
fermions [53].

The Hubbard-Stratonovich procedure requires the introduction of the Green’s functions gaa′ (x, x′) = 1
N 〈∑ j ψ ja(x)ψ ja′ (x′)〉,

where a is the chirality label. The Green’s function Ĝ and the self energy ̂ are written as 2 × 2 matrices in chirality space
(where the label ± ≡ ±±, while ∩ ≡ +− and ∪ ≡ −+):

Ĝ =
(

g+ g∩
−g∪ g−

)
, ̂ =

(
+ −∩
∪ −

)
, (6)

Ĝ−1 =
(−(∂τ − iu0∂x ) − + ∩

−∪ −(∂τ + iu0∂x ) − −

)
,

and we use the standard replica method to perform the ensemble average over random coupling constants, assuming that the
replica symmetry is unbroken. In the chirality representation, the partition function

Z =
∫

Dψ

∫
DJ

∫
DQ P(Ji jkl )P(Qi jkl )e

[−S0+SI ] (7)

becomes, after disorder average [55],

Z =
∫

DDG

{∫
Dψ e− 1

2

∑N
i

∫
d2x(ψ̄iγ

μ∂μψi ) × exp

[
−

∫
d2xd2x′

2

(
+ψ+(x)ψ+(x′) + ∩ψ−(x)ψ+(x′) + ∪ψ+(x)ψ−(x′)

+−ψ−(x)ψ−(x′) − J2

4

∑
α

g4
α (x, x′) − Q

2

2

(g2
+g2

− + g2
∩g2

∪ − 4 g+g∩g−g∪)

)]}N

, (8)

where the label α runs over {+,−,∩,∪}. Integrating out the fermions, we obtain the effective action

−S[̂, Ĝ] = N

[
ln Pf[Ĝ−1] − 1

2

∫
d2xd2x′Tr[̂(x, x′) Ĝ(x′, x)]

+1

2

∫
d2xd2x′

(
J2

4

∑
α

g4
α (x, x′) + Q2

4
{Tr[(PĜP† Ĝ)2] + 4 g+g∩g−g∪}

)]
. (9)

Here Pf [O] denotes the pfaffian of the operator O, and
PĜP† = ( g− g∩

−g∪ g+) is the parity-transformed and transposed

Ĝ function. Since the action is translationally invariant in
both time and space, its two-point functions gα,α will
depend on the difference of spacetime coordinates, e.g.,
gα (τ1, ix1; τ2, ix2) = gα[(τ1 − τ2), i(x1 − x2)]. In the rest of
the paper, the pair (τ, x) will be often denoted simply by r.

A. The Schwinger-Dyson equations in the conformal limit

As in the 0 + 1 SYK model, the Schwinger-Dyson equa-
tions derived from the action of Eq. (9) provide solutions
which are invariant under reparametrizations in the limit of
large J, Q. We prove this here first in the simpler setup which
drops the off-diagonal terms in the matrices of Eq. (6). In this
case, the effective action becomes

S[, G] → N
∑
a=±

[
− ln Pf

[−(∂τ − ai∂x ) − a(x, x′)
]

+1

2

∫
d2xd2x′

(
a(x, x′)ga(x, x′) − J2

4
g4

a(x, x′) − Q2

2
g2

+(x, x′)g2
−(x, x′)

)]
. (10)

In the large-N limit, the saddle-point approximation for estimating Z gives the Schwinger-Dyson equations:

+(x, x′) = J2g3
+(x, x′) + Q2g+(x, x′)g2

−(x, x′), (11)

−(x, x′) = J2g3
−(x, x′) + Q2g−(x, x′)g2

+(x, x′). (12)
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As the prefactor of a given by Eqs. (11) and (12) includes
positive powers of J, Q, the inverse free Green’s function
term appearing in Eqs. (6) and (10) can be dropped in the
large J, Q limit and the conformal symmetry emerges in this
limit, as it occurs in the 0 + 1 SYK model. Equations (11)
and (12) become invariant under the conformal transformation
z → f (z) and z̄ → f̄ (z̄), which reads

g±(z, z′; z̄, z̄′) ≡ [ f 2]�±[ f̄ 2]�̄± g̃±, (13)

where [ f 2] stands for [ f ′(z) f ′(z′)], [ f̄ 2] stands for
[ f̄ ′(z̄) f̄ ′(z̄′)], and g̃± ≡ g±( f (z), f (z′); f̄ (z̄), f̄ (z̄′)). In a
four-fields interacting model, the self-energy a, according
to Eq. (12), transforms, with the same short-hand notation, as

±(z, z′; z̄, z̄′) = J2[ f 2](4−1)�± [ f̄ 2](4−1)�̄± g̃±4−1

+ Q2[ f 2]
4
2 (�±+�∓ )− 4

4 �±

× [ f̄ 2]
4
2 (�̄±+�̄∓ )− 4

4 �̄± g̃±
4
4 g̃∓

4
2 . (14)

Under the same approximations, the unitarity condition,∫
d2z′ g±(z, z′; z̄, z̄′) ±(z′, z′′; z̄′, z̄′′)

= −δ(z − z′′) δ(z̄ − z̄′′), (15)

arises from minimization of the action with respect to ±. The
unitarity condition of Eq. (15) implies that 4

2 (�± + �∓) =
4
2 (�̄± + �̄∓) = 1. Unbroken parity implies that g+(z, z̄) =
g−(z̄, z) ≡ g(z, z̄). Under these assumptions, �+ = 0 and
�̄− = 0, so that we can just redefine �̄+ → �− and �̄− →
�+, and we can conclude that the saddle point and unitarity
equations are invariant under conformal transformation z →
f (z), z̄ → f (z̄) with � ≡ �− = 1

2 . Reparametrization invari-
ance suggests the following solutions for Eqs. (11), (12), and
(15):

g(z, z̄) = C

z
lnα (zz̄�2),

(z, z̄) = C3

(
J2

z3
+ Q2

zz̄2

)
ln3α (zz̄�2), (16)

where α and C are constants to be fixed by Eq. (15). Here
the Lorentz invariance is explicitly broken, starting from the
action where a UV regularization has to be introduced all
the way down to the IR limit [52] with an UV cutoff �.
The Fourier transforms are derived in Appendix A. In the large
J, Q limit they are

g(p, p̄) = iπ
C

p̄
lnα

(
�2

|p|2
)

, (17)

(p, p̄) ≈ i p̄C3(J2 + Q2)
π

3α + 1
ln3α+1

(
�2

|p|2
)

, (18)

where |p|2 = pp̄. The log-term softens the RG flow and regu-
larizes the Fourier transformation of the self-energy given by
Eqs. (17) and (18) [3,52].

From the unitary condition Eq. (15), transformed to mo-
mentum space, we get α = − 1

4 and 4π2C4(J2 + Q2) = 1.
Here symmetry breaking was produced on purpose. This is

at variance with the 0 + 1 SYK model, in which the solution
of the Schwinger-Dyson equations spontaneously breaks the
conformal symmetry.

In the small J, Q limit, we can obtain solutions by car-
rying out perturbation theory [52], considering the Fourier
transform FT [ 1

z Fα (ln(zz̄�2))] = iπ
p̄ Fα (ln( �2

|p|2 )), and Fα being
the solution of the Schwinger-Dyson equation for the Green’s
function, once one factorizes the free-fermion-like 1/z part.
Rewriting Eq. (15) as

1

Fα

= π2(J2 + Q2)
∫ ln(�2/|p|2 )

dy F 3
α [y], (19)

one can get the differential equation F ′
α = −π2(J2 + Q2)F 5

α

(the prime means derivative with respect to the argument),
which provides the solution

Fα =
[

1 + 4π2(J2 + Q2) ln

(
�2

|p|2
)]−1/4

.

Correlation functions involving Fα can be plugged into the
Callan-Symanzik equation (with J̃2 = J2 + Q2):[

�
∂

∂�
+ β(J̃ )

∂

∂ J̃
+ 2 γ (J̃ )

]
p̄[

1 + 4π2J̃2 ln
(

�2

|p|2
)]1/4 = 0.

(20)

The β function satisfied by the fermion propagator g(p, p̄) can
be obtained as

β(J̃ ) = 4π2J̃3, γ (J̃ ) = π2J̃2. (21)

As the β function is positive, the coupling increases with
increasing energy scale and the model becomes strongly cou-
pled at high energy.

We must notice that the RG flow has been obtained by
considering the average coupling J̃ , which is coming from
random coupling for realizations i, j, k, l . One can think that
some realizations make also the coupling scale invariant or
decreasing with increasing energy scale. Then, there are rele-
vant and irrelevant operators that will grow or decrease as we
flow into the IR and these can also change as the couplings
themselves evolve. This point is discussed in Ref. [52], where
the authors consider the flow of ensemble of couplings for the
random Thirring model.

When the off-diagonal terms are included from Eq. (9), the
full action becomes

−S[̂, Ĝ] = N

[
ln Pf[Ĝ−1] − 1

2

∫
d2xd2x′

(
+g+ + ∩g∪ + ∪g∩ + −g−

− J2

4

∑
α

g4
α (x, x′) − Q

2

2

(g2
+g2

− + g2
∩g2

∪ − 4 g+g∩g−g∪)

)]
, (22)
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where the label α runs over {+,−,∩,∪}. Most of the argu-
ments developed for the diagonal SD solution can be extended
and applied to the off-diagonal case. Maximization with re-
spect to gα gives

±(z, z̄) = J2g3
± + Q2[g2

∓g± − 2 g∩g∓g∪],

∩(z, z̄) = J2g3
∪ + Q2[g2

∩g∪ − 2 g−g∩g+],

∪(z, z̄) = J2g3
∩ + Q2[g2

∪g∩ − 2 g+g∪g−].

The equations can be solved in the conformal limit. Thus, in
real space we assume the Ansatz

g+(z, z̄) = g−(z, z̄) = a

z
lnα (|z|2�2),

g∩(z, z̄) = g∪(z, z̄) = b

|z| lnα (|z|2�2), (23)

with a, b real, obtaining

+(z, z̄) =
{

J2 a3

z3
+ Q2

[
a3

z̄|z|2 − 2
ab2

z̄|z|2
]}

ln3α (|z|2�2),

−(z, z̄) = +(z, z̄),

∩(z, z̄) =
{

J2 b3

|z|3 + Q2

[
b3

|z|3 − 2
a2b

|z|3
]}

ln3α (|z|2�2),

∪(z, z̄) = ∩(z, z̄). (24)

With these definitions, we show that the Schwinger-Dyson
equations can be easily solved in the strong coupling, con-
formal limit.

The Fourier transforms of the given functions are de-
rived in Appendix A, Eqs. (A3), (A11), (A12), and (A13),
giving

g+(p, p̄) = iπ
a

p̄
lnα

(
�2

|p|2
)

,

g∩(p, p̄) = iπ
b

|p| lnα

(
�2

|p|2
)

, (25)

+(p, p̄) ≈ iπ p̄
(a3J2 + (a3 − 2ab2)Q2)

3α + 1
ln3α+1

(
�2

|p|2
)

,

∩(p, p̄) ≈ iπ |p| (b3J2 + (b3 − 2a2b)Q2)

3α + 1
ln3α+1

(
�2

|p|2
)

.

(26)

The unitarity condition in the conformal limit requires the
following equality in Fourier space:

Ĝ(p, p̄) =
(

g+ g∩
−g∪ g−

)
(p, p̄),

Ĝ−1(p, p̄) = 1

g+g− + g∩g∪

(
g− −g∩
g∪ g+

)
(p, p̄)

=
(−+ ∩

−∪ −−

)
(p, p̄). (27)

By plugging the Ansatz, Eqs. (25) and (26), into Eq. (27), it
is straightforward to obtain two independent equations for the

constants a and b:

a

a2 + b2
= π2

3α + 1
[a3J2 + (a3 − 2ab2)Q2] ln4α+1

(
�2

|p|2
)

,

b

a2 + b2
= π2

3α + 1
[b3J2 + (b3 − 2a2b)Q2] ln4α+1

(
�2

|p|2
)

,

which have solution α = −1/4 and b = ±a, so that

a4 = b4 = 1

8π2(J2 − Q2)
. (28)

In Secs. III and IV, we will consider the case Q = J . Our
derivation shows that, for a and b to be finite in this limiting
case, the given solution only holds for Q2 → J2 → ∞, pro-
vided lima2→b2

J2→∞
8π2J2(a4 − b4) = 1. We have shown that our

Ansatz by which g+(z) decays as a free-fermion-like power
law ∼1/z in the infinity limit, holds in the conformal symme-
try limit. This can be checked directly. Choosing a different
power, g+(z) = (r0/z)1/2K which, in Fourier space implies,
for dimensional reasons only,

g+ ∼ i p̄
1

2K −2, g∩ ∼ |p| 1
2K −2,

+ ∼ −iJ2 p̄
3

2K −2, ∩ ∼ J2|p| 3
2K −2.

Comparing the exponents of the p, p̄ powers in the unitarity
relation G−1(ω) ↔ (ω):

g∩
g+g− + g∩g∪

∼ |p| 1
2K −2

(a2 + b2)|p| 2
2K −4

= |p|2− 1
2K

(a2 + b2)

to be compared to J2|p| 3
2K −2 ∼ ∩, and

g−
g+g− + g∩g∪

∼ ip
1

2K −2

(a2 + b2)|p| 2
2K −4

= i p̄2− 1
2K

(a2 + b2)

to be compared to −iJ2 p̄
3

2K −2 ∼ +, we find that the expo-
nents coincide if and only if 2K = 1, as expected.

In the next subsection we set Q = 0, so that the chiralities
become decoupled and we show that, by moving J away from
infinity to large but finite values, g+(z) remains a power law
at large distances, but it acquires an exponent � �= −1. By
contrast, the case N = 4 discussed in Sec. III shows that our
Ansatz of Eq. (23) may not be justified at strong but finite
coupling, as the two-point correlator is found to be noncritical
and exponentially decaying at finite J = Q.

B. Critical correlator at large distances away from the strong
coupling conformal symmetry limit

The previous case shows that, except for a very soft break-
ing obtained by the envelope function ln( |p|2

�2 )
1
4 , the conformal

symmetry forces the correlation function g+(z, z̄) ∝ 1/z as in
the free 1 + 1 d case. Here we show that a critical power-law
decay of the correlators at large distance with non-free-
fermion-like exponent � �= −1 can also be obtained from
the conformal symmetry limit, close to the infinitely strong
coupling fixed point.

Let us put Q = 0, so that chiralities are decoupled and
consider just the z-chiral contribution in the saddle point equa-
tions for +, given in Eq. (24). We keep just the lowest orders
of the expansion in inverse powers of z, for large z. We also
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drop the regularizing log factors, so that the chiral Green’s
function takes the form

g(z, z̄) ≈ i

C�

r0

z

[
1 + λ

r0
η

( z

λ

)]
. (29)

Here η( z
λ

) is assumed to be an expansion in powers of 1/z
(unit of r0 are assumed): η( z

λ
) = ( λ

z )� + ..., with � and λ to
be determined and the dots refer to higher powers. The saddle-
point equation for , given in Eq. (24), takes the form

J (z, z̄) = −i

(
Jλ

πu0

)2 1

C3
�

(
1

z

)3[
1 + η

( z

λ

)]3
. (30)

C� appearing in Eq. (29) is fixed by the unitarity condition.
The cubic power on the right-hand side of Eq. (30) can un-
dergo a rearrangement of powers. For large z, by keeping just
the lowest order in the λ/z expansion of ηJ ( z

λ
), the function

η( z
λ

) itself is approximately reproduced, giving rise to a sort
of linearization:

J (z, z̄) ≈ −i

(
Jλ

πu0

)2 1

C3
�

(
1

z

)3[
1 + 3 η

( z

λ

)]
.

We invert the Fourier transform of Eq. (29) and use the Dyson
equation g−1(q) = g−1

0 (q) − (q), obtaining [16]

C� × g−1(q) → 1
1
iq̄ − iFT [(1/z) × η](q, q̄)

≈ iq̄ − iq̄2FT [(1/z) × η](q, q̄)

= iq̄ − C�(q, q̄), (31)

where FT stands for Fourier transformation. The last equal-
ity, which is valid for q → 0, allows us to write down a
differential equation for η( z

λ
),

∂2
z

[
λ

z
η

( z

λ

)]
≈

(
J

πu0C�

)2(
λ

z

)3[
1 + 3 η

( z

λ

)]
. (32)

Introducing hJ ( z
λ

) = λ
z η( z

λ
) and defining bJ = ( J

πu0C�
)2, we

get the simple differential equation

∂2
z hJ

( z

λ

)
− 3bJλ

2

z2
hJ

( z

λ

)
= bJλ

3

z3
, (33)

whose solution is

hJ

( z

λ

)
= −λ

z

1[
1 + 2

(
1 − 1

bJλ2

)]
+

( z

λ

) 1
2

(
c1

( z

λ

)s/2
+ c2

( z

λ

)−s/2
)

,

with s2 = 1 + 12bJλ
2. Putting c1 = 0, we get from Eq. (29)

g̃(z)

C�

= i

z
− iλ

z

1[
1 + 2

(
1 − 1

bJλ2

)] + c2
i(

z
λ

) s
2 − 1

2

. (34)

If we want that the free-fermion-like 1/z dependence disap-
pears in favour of 1/( z

λ
)

s
2 − 1

2 , then we have to choose λ such
that 3λ2 − λ3 = 2/bJ . For bJ → ∞ both λ = 0 and λ → 0
give the reparametrization invariant solution. In fact, the λ →
0 solution, implying bJλ

2 → 2/3, gives an exponent � =
s
2 − 1

2 = 1
2 (

√
[1 + 12 bJλ2] − 1) → 1. This confirms that the

conformal symmetry emerges at strong coupling even in the
1 + 1 d, Q = 0, SYK model.

With increasing λ, � increases slightly. The inverse power
z−� = 1/z

s
2 − 1

2 can be Fourier transformed with respect to
time, yielding a power-law ∼ω�−1 behavior of g(q → 0, ω).
Away from the infinitely strong coupling fixed point, for 0 <

λ � 3, we get

� − 1 = 1

2

√√√√[
1 + 8

1 − λ
3

]
− 3

2
< 1. (35)

This derivation proves that the conformal symmetry can be
broken also by moving away from the infinitely strong cou-
pling fixed point. On the other side, � < 2 points out that the
critical state at strong coupling has NFL nature.

The nonchiral Q-dependent term in Eq. (24) can be dealt
with additively in a similar way. However, the differential
equation corresponding to Eq. (32) cannot be linearized.

III. COMPLEX FERMION MAPPING AND
BOSONIZATION FOR N = 4

The approximate conformal symmetry emerging at large
J, Q and large N when dropping the contribution due
to the free Green function in the Dyson equation pro-
vides the close form given in Eq. (23) for the correlators
1
N 〈∑ j ψ ja(x)ψ ja′ (x′)〉 of the model. In this section, we eval-
uate the two-point function g(z, z̄) directly for the case of
N = 4, which allows for mapping onto complex fermions and
their bosonization.

For N = 4 and Q = J there is just one interaction parame-
ter J and the Lagrangian density is

L = L0 + LI

≡ i

2

4∑
i=1

[ψi+(∂0 + u0∂x )ψi+ + ψi−(∂0 − u0∂x )ψi−]

− J[ψ1+ψ2+ψ3+ψ4+ + ψ1+ψ2+ψ3−ψ4−
+ψ1+ψ2−ψ3−ψ4+ + ψ1+ψ2−ψ3+ψ4− + (+ ↔ −)].

(36)

It is convenient to define the complex fermion fields [53]

c↑± = 1√
2

(ψ1± + iψ2±) , c↓± = 1√
2

(ψ3± + iψ4±),

c†
↑± = 1√

2
(ψ1± − iψ2±) , c†

↓± = 1√
2

(ψ3± − iψ4±),

(37)

distinguished by a pseudospin label σ ≡↑,↓. For any pair
of indices σ± and x �= x′, {c(x), c†(x′)} = {c(x), c(x′)} =
{c†(x), c†(x′)} = 0. In the free action for N = 4, right and left
movers are decoupled

S0 =
∫

d2x
∑

σ=↑,↓
[c†

σ+(−∂τ + iu0∂x )cσ+

+ c†
σ−(−∂τ − iu0∂x )cσ−]. (38)
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The interaction terms in Eq. (36) are c†
↑±c↑±c†

↓±c↓±,

c†
↑±c↑±c†

↓∓c↓∓, c†
↑±c↑∓c†

↓∓c↓±, c†
↑±c↑∓c†

↓±c↓∓, so that the in-
teracting IR action SI is

SI = J
∫

d2x c†
↑(x) c↑(x) c†

↓(x) c↓(x), (39)

where cσ = cσ− + cσ+. In the present form the problem
is similar to the Tomonaga-Luttinger model solved by
Dzyaloshinski and Larkin [56,57] but in the absence of a
Fermi sea. The interaction term in Eq. (39) is Hubbard-like,
but, because of particle-hole symmetry, it is unbounded from
below. Nevertheless, the Hamiltonian can be bosonized in
terms of the chiral bosonic fields φσ+, φσ−, obeying the com-
mutation relations

[φσa(x), φσ ′a(x′)] = i

4
δσσ ′ sgn(x − x′), (40)

[φσ+(x), φσ ′−(x′)] = i

4
δσσ ′, (41)

and of the dual fields φσ = φσ+ + φσ− and θσ = φσ− − φσ+,
with

[φσ (x1), θσ ′ (x2)] = i

2
δσσ ′ sgn(x2 − x1).

Furthermore, the pseudocharge (c) and pseudospin (s) oper-
ators can be defined from the combinations φc/s = 1√

2
(φ↑ ±

φ↓) (the same for θc/s), so that we represent the complex
fermion cσ±(x) as

cσ±(x) = 1√
2πα

ei
√

π
2 [±φc (x)−θc (x)+σ (±φs (x)−θs (x))], (42)

where α is a spatial short-distance cutoff [58].
The Hamiltonian density separates in this representation so

that the pseudocharge and pseudospin sectors have a separate
spectrum:

H = Hc + Hs,

Hc = u0

2

[
�2

c +
(

1 + J

πu0

)
(∂xφc)2 + J

u0π2α2
cos (

√
8πφc)

]
,

Hs = u0

2

[
�2

s +
(

1 − J

πu0

)
(∂xφs)2 + J

u0π2α2
cos (

√
8πφs)

]
, (43)

where the canonical momentum field conjugate to φσ (x) is

�ρ (x) = ∂xθρ (x), ρ = c, s. (44)

In the following, we will denote as “critical,” quantities de-
rived from Hamiltonians including just the first two quadratic
terms appearing in the Hamiltonians of Eq. (43), i.e., when
cosine term’s effects are neglected. In the usual approach to
the Hubbard model, the cosine term does not appear in the
pseudocharge sector if Umklapp processes are neglected. Here
the absence of an underlying Fermi sea puts the interaction
of both sectors on an equal footing. In Appendix B [see
Eq. (B5)] we show that the addition of an extra interaction
term (ψ̄iγ

5ψ j )(ψ̄kγ
5ψl ) can cancel one of the two cosine

terms as in the random Gross-Neveu-like interaction. Note
that the pseudospin Hamiltonian Hs signals an instability
as Hs is unbounded from below when J/πu0 > 1. A simi-
lar situation can happen when electron-phonon interaction is
introduced in a low-dimensional electronic system [57,59].
Therefore, the mapping is only meaningful for 0 < J/πu0 <

1.
By a Legendre transformation we obtain the Lagrangian

density for the two separate sectors,

L = 1

2

∑
ρ=c,s

1

Kρ

[
1

uρ

(∂tφρ )2 − uρ (∂xφρ )2

− JKρ

π2α2
cos

√
8πφρ

]
, (45)

where uρ is the velocity of the mode and we have introduced

uρKρ = u0, with Kρ = 1/
√

1 ± J
πu0

. In the expression for Kρ ,
the upper sign is for ρ = c while the lower sign is for ρ = s.

The energy-momentum tensor, defined as

T μν = ∂L
∂ (∂μφρ )

∂νφρ − gμνL, (46)

gives information about the energy density T 00, the energy
current T x0, the momentum density T 0x and the pressure T xx.
Lowering the ν index using the Minkowski metric, we have,
from Eq. (46), T 0

0 = H, T 0
x = ∑

ρ=c,s
1
u0

∂tφρ∂xφρ , T x
0 =

− ∑
ρ=c,s

uρ

Kρ
∂tφρ∂xφρ and

T x
x = −1

2

∑
ρ=c,s

[
1

u0
(∂tφρ )2 + uρ

Kρ

(∂xφρ )2

− KρJ

u0π2α2
cos (

√
8πKρφρ )

]
�= −H. (47)

The fact that T μ
ν is not symmetric and not traceless confirms

that the N = 4 model is not Lorentz invariant nor conformally
invariant [60]. However, even if traceless energy-momentum
implies conformal symmetry, the opposite cannot be assured.
We have shown in Sec. II B that in the case of the 1 + 1 d,
large-N model, an approximate conformal symmetry emerges,
in the strong coupling limit, as in the 0 + 1 d case. Here, at
N = 4, this is excluded, due to the fact that N is finite and the
limitation 0 < J/πu0 < 1, as well. The bosonized form of the
diagonal element of correlator Ĝ in the chiral basis, G±(z),
with G(z, z̄) ≡ G+(z, z̄) = G−(z, z̄) (r stands for z − z′), is

G(r) = i

2πα
(e

π
2 〈φc (r)φc (0)−φ2

c (0)〉e
π
2 〈θc (r)θc (0)−θ2

c (0)〉

× e
π
2 〈φs (r)φs (0)−φ2

s (0)〉e
π
2 〈θs (r)θs (0)−θ2

s (0)〉). (48)
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Here and in the following, we denote with upper case letter
G the fermionic Green’s functions of the N = 4 model, while
the Green’s function appearing in Ĝ for the large-N model will
be denoted with lower case. All the correlators, which we are
going to derive, are in the zero-temperature limit.

As is well known, the excitation spectrum of each of the
Hamiltonians of Eq. (43) is gapped if Kρ < 1, while it is
gapless in the case Kρ > 1. The pseudospin sector is gap-
less. However, the pseudocharge sector, having Kc < 1, has
a gapped spectrum.

The small velocity of the pseudospin sector, us � u0,
gives rise to two effects. On the one hand, fluctuations
of the phase 〈φ2

s 〉0 grow enormously. On the other hand,
they renormalize the cosine interaction term which, by nor-
mal ordering is strongly suppressed as J

uρ
cos (

√
8πφρ ) →

J
uρ

e−〈φ2
s 〉0 : cos (

√
8πφρ ) : by making it irrelevant in the

strong coupling limit. This implies that criticality shows up
in the pseudospin sector. The fixed-point Hamiltonian of the
pseudospin sector is quadratic and critical. The two-point
bosonic correlator for φs can be readily found as [54]

Iφs (r) = 〈
φs(r)φs(0) − φ2

s (0)
〉

= Ks

2π
ln

(
α√

x2 + (usτ + α)2

)
. (49)

Similarly, for its dual field θs, it is found that Iθs (r) =
〈θs(r)θs(0) − θ2

s (0)〉 = 1
K2

s
Iφs (r). The fermionic two-point

correlators can be related with the bosonic ones through
Eq. (42) as

G±(r) = 1

4

∑
i

〈ψi±(r)ψi±(0)〉

= 1

4

∑
σ=↑,↓

〈(cσ±(r)c†
σ±(0) + H.c.)〉

= ± i

2πα
[e

π
2 Iφc e

π
2 Iθc e

π
2 Iφs e

π
2 Iθs ], (50)

appearing in a factorized form. We can define for the pseu-
dospin sector:

Gs(r) ≡ Gφsφs (r) × Gθsθs (r) = e
π
2 Iφs × e

π
2 Iθs

=
(

α√
x2 + (usτ + α)2

) 1
4 (Ks+ 1

Ks
)

, (51)

which appears also as factorized in two chiral terms Gs(r) =∏
± G±,s(r). In the pseudocharge sector, the variational

method provides the self-consistent equation for the gap �,

�2

L2
= 4 ucJ

πα2

(
�

uc�

)2Kc

, (52)

where � is a large momentum cutoff [54]. In the large gap
limit, the gapped pseudocharge degrees of freedom can be
approximately described by the Hamiltonian density

Hc = 1

2

[
u0(�c)2 + uc

Kc
(∂xφc)2 + 4J

πα2
φ2

c

]
, (53)

where the conjugate momentum �c = 1
u0

∂tφc = ∂xθc. In
Fourier space, the action corresponding to the quadratic
Hamiltonian (53), in terms of the dual fields θc, φc, is

Sc = 1

2β�

∑
q

(θc(−q) φc(−q))

×
(

u0k2 −ikωn

−ikωn
uc
Kc

k2 + 4J
πα2

)(
θc(q)
φc(q)

)
, (54)

with q = (k, ωn). The field correlators required in Gφcφc (r) ×
Gθcθc (r) corresponding to Eq. (51) for the pseudocharge sector
are obtained by inverting the matrix of Eq. (54) and Fourier
transforming back:

Iφc = 〈
φc(r)φc(0) − φ2

c (0)
〉 = Kc

∫ +∞

−∞

dω′

2π

∫ +∞

0

dk

π

1

k2 + �2

L2 + ω′2 (eiucω
′τ cos kx − 1),

Iθc = 〈
θc(r)θc(0) − θ2

c (0)
〉 = 1

Kc

∫ +∞

−∞

dω′

2π

∫ +∞

0

dk

π

(
k2 + �2

L2

)
k2

(
k2 + �2

L2 + ω′2) (eiucω
′τ cos kx − 1). (55)

The mass � scales with L, the size of the sample, and its specific form is ∝ 4J
πα2 :

�

L
= 2

α

√
K−2

c − 1

Kc
, (56)

with L/α = N . The two correlators of Eq. (55) are derived in Appendix C [see Eq. (C9)]. They are nonchiral and are
approximated in such a way that they reproduce the critical result of the same form as Eq. (51) in the limit � → 0. In the
limit of large distances (τ, x) they read:

Iφc (τ, x) ≈ −Kc

4π

[∫ i x+ucτ

0

�

L

√−2i x

z + α
K1

(
�

L

√−2i x
√

z + α

)
dz + ln (α2) + c.c.

]
,

Iθc (τ, x) ≈ 1

4πKc
ln

⎧⎪⎨⎪⎩e
4π
Kc

Iφc (τ,x)
∏
±

e
�

[
e− �ucτ±i x

L

][√±i x

2πL
�

(±i x

L

)
e∓i x

L (γ+1)

]�e− �ucτ
L

⎫⎪⎬⎪⎭, (57)
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where terms proportional to O(�4) have been neglected. �(z) is the � function and γ is the Euler’s constant. K1(z) is the
modified Bessel function of integer order [61].

The final form of the chiral diagonal correlator G(r) of Eq. (48), which includes both Gs(r) given in Eq. (51) for the pseudospin
sector and the corresponding contribution for the pseudocharge sector (see Appendix C), is

G(r) = i

2πα

(
α√

(usτ + α)2 + x2

) 1
4 (Ks+ 1

Ks )

e
− 1

8 (Kc+ 1
Kc )

[∫ i x+ucτ

0
�
L

√−2i x
z+α

K1( �
L

√−2i x
√

z+α)dz+c.c.
]

×
∏
±

e
�

8Kc

[
e− �ucτ±i x

L

][√±i x

2πL
�

(±i x

L

)
e∓i x

L (γ+1)

] �
8Kc

e− �ucτ
L

. (58)

This is nonchiral, due to the gap-dependent part. Again, by expanding the Bessel function K1(z) in the limit � → 0, the critical
result, factorized in the two chiral terms, is recovered.

The off-diagonal elements of the correlator Ĝ in the chiral basis, G∩/∪(r), vanish in the N = 4 model:

G∩/∪(r) ≡ 1

4

4∑
i=1

〈ψi±(r)ψi∓(0)〉

= 1

4

∑
σ=↑,↓

〈cσ±(r)c†
σ∓(0) + c†

σ±(r)cσ∓(0)〉 = 0. (59)

Other combinations can be envisaged, which do not conserve chirality nor fermion number:

Oz
TS = [ψ1+ψ1− − ψ2+ψ2−] − i[ψ1+ψ2− + ψ2+ψ1−]

= 2c†
↑+c†

↑−

= 1

πα
ei

√
2πθc ei

√
2πθs , (60)

Oz̄
TS = [ψ3+ψ3− − ψ4+ψ4−] − i[ψ3+ψ4− + ψ4+ψ3−]

= 2c†
↓+c†

↓−

= 1

πα
ei

√
2πθc e−i

√
2πθs , (61)

where Oz
TS and Oz̄

TS are the operators which describe superconducting zero-momentum triplet pairing in Luttinger liquid models
[54]. The number and chirality conserving correlator corresponding to

∑4
i, j=1〈ψi+(r)ψi−(0)ψ j−(r)ψ j+(0)〉 does not vanish in

the N = 4 model:
4∑

i, j=1

〈ψi+(r)ψi−(0)ψ j−(r)ψ j+(0)〉 ∼
∑

σ,σ ′=↑,↓
[〈cσ+(r)c†

σ−(0)cσ ′−(r)c†
σ ′+(0) + cσ+(r)c†

σ−(0)c†
σ ′−(r)cσ ′+(0)

+ c†
σ+(r)cσ−(0)cσ ′−(r)c†

σ ′+(0) + c†
σ+(r)cσ−(0)c†

σ ′−(r)cσ ′+(0)〉]
∼

∑
σ=↑,↓

[〈cσ+(r)c†
σ−(0)cσ−(r)c†

σ+(0)〉 + H.c.] �= 0. (62)

Each of the terms appearing in the sum of Eq. (62) can be expressed in terms of the operators Oz/z̄
TS (r) of Eqs. (60) and (61). As an

example, we give explicitly the expectation value of Oz†
TS(r)Oz

TS(0) = 4c↑+(r)c†
↑−(0)c↑−(r)c†

↑+(0). Its approximate expression,
derived from Eqs. (60) and (61), can be extracted from Appendix C, Eq. (C22) and is reported here:

〈Oz†
TS(r)Oz

TS(0)〉 ≈ 1

π2α2
e2π〈θc (r)θc (0)−θ2

c (0)〉e2π〈θs (r)θs (0)−θ2
s (0)〉

≈ 1

π2α2

(
α√

(usτ + α)2 + x2

) 1
Ks

e
− 1

2Kc

[∫ i x+ucτ

0
�
L

√−2i x
z+α

K1( �
L

√−2i x
√

z+α)dz+ln (α2 )+c.c.
]

×
∏
±

e
�

2Kc

[
e− �ucτ±i x

L

][√±i x

2πL
�

(±i x

L

)
e∓i x

L (γ+1)

] �
2Kc

e− �ucτ
L

. (63)
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The same result is obtained for 〈Oz̄†
TS(r)Oz̄

TS(0)〉 in these ap-
proximations.

We will adopt 〈Oz†
TS(r)Oz

TS(0)〉 and 〈Oz̄†
TS(r)Oz̄

TS(0)〉 from
Eq. (63), to give an heuristic analytical approximation
for the product g∩(z, z̄) g∪(z, z̄) in the large-N extension
of the model, when evaluating the approximate free energy
of the model in the next section. Two representative plots for
the dependence on the space coordinate at equal times of these
quantities are presented in Fig. 1 and are used in the next
section.

IV. APPROXIMATE ENERGY IN THE NONCHIRAL
1+1-DIMENSIONAL EXTENDED SYK MODEL

In this section, we go back to the partition function of the
original model for large N , after disorder average, Eq. (8),
in the limit Q → J , and discuss the physical properties aris-
ing from the effective action S[̂, Ĝ] of the model, Eq. (9).
Our goal is to give an approximate derivation of the energy,
or zero-temperature limit, β → ∞, of the free energy with
−βF ∼ −S to be derived from the Eq. (9). We assume that
the features of the model restricted to N = 4, which were
derived in the previous section, can be appropriately extended
to the large-N model, at least in some range of parameters to
be discussed.

Our starting assumption is that the features of the spec-
trum derived in the N = 4 case still hold when N � 4,
i.e., that the spectrum of the N � 4 case still includes two
branches as in the N = 4 case: a gapless one corresponding
to the N = 4 pseudospin one, with renormalized velocity

FIG. 1. Decay in space of Green’s functions g++(z, z̄) and
g+−(z, z̄) ∗ g−+(z, z̄) ≡ g∩(z, z̄)g∪(z, z̄), used to compute the free en-
ergy (∩ ≡ +−, while ∪ ≡ −+), at almost equal time τ − τ ′ = 0.01.
The figure shows them for the specific fixed values � = 1.71, τ ≡
u0(τ − τ ′)/L = 0.01, and J ≡ J/πu0 = 0.6, in the gapped regime.
g+−(z, z̄) ∗ g−+(z, z̄) has been chopped close to x − x′ ∼ 0.

us = u0
√

1 − J/πu0 and a gapped one, with gap �, cor-
responding to the pseudocharge branch with velocity uc =
u0

√
1 + J/πu0. The gapless one is remnant of the Goldstone

boson branch which comes together with the spontaneous
conformal symmetry breaking at large coupling J in the 0 +
1 d SYK model. The addition of the space dimension and of
the interchiral scattering determines an extra excitation branch
in the spectrum, which, we assume, corresponds to the N = 4
pseudocharge one. While the pseudocharge excitations allow
for whatever large value of J , the velocity of the pseudospin
branch vanishes at J/πu0 = 1, so that we consider J/πu0 � 1
as the strong coupling limit of this approach. It has been
shown that in the 1 + 1 d chiral, large-N SYK model, the
leading Lyapunov exponent reaches the maximal chaos bound
at vanishing us [53].

In this section, we use the Green’s function of Eq. (6) to
plot the energy as a function of the parameters us/u0, uc/u0,
and �, in search for an absolute minimum of the free energy.
To evaluate the Green’s function given by Eq. (6), the func-
tions g±(z, z̄) and g∩(z, z̄), g∪(z, z̄), in the zero-temperature
limit, are required. We adopt heuristically the functional form
of g±(z, z̄) obtained in the previous section, Eq. (58), for
the N = 4 case. These functions tend to the “critical” limit
when J/πu0 is small and � → 0, a limiting form that has
been discussed in the previous section. We take the diagonal
chirality Green’s function, g±(z, z̄), in the strong coupling
limit, as g(z, z̄) ∼ G(r), where G(r) is given by Eq. (58)
(with g(z, z̄) ≡ g+(z, z̄) = g−(z, z̄), as usual). As for the off-
chirality functions, g∩ /∪(z, z̄), they individually vanish when
N = 4, as explained already in Sec. III. A direct evaluation
of these correlators would require a precise knowledge of the
excitation spectrum and this is out of the present possibilities
[62]. They do not vanish in the large-N limit, because the
interaction in the disorder average does not conserve chirality.
However, we will see in Eq. (69) that, in the limit Q → J ,
only the product g∩(z, z̄) · g∪(z, z̄) appears in the free energy.
We use this fact to proceed with our extension to the large-N
case and we trade the four-point correlators 〈Oz̄†

TS(r)Oz̄
TS(0)〉

and 〈Oz†
TS(r)Oz

TS(0)〉 from Eq. (63), for the product g∩(z, z̄) ·
g∪(z, z̄). They are nonvanishing, because they conserve both
number and chirality. According to Eq. (62),〈

Oz̄†
TS(r)Oz̄

TS(0)
〉 + 〈

Oz†
TS(r)Oz

TS(0)
〉

→ g∩(z, z̄) · g∪(z, z̄). (64)

In the limit � → 0, this product tends to the critical result

lim
J→0

g∩(z, z̄) · g∪(z, z̄)

= lim
J→0

1

π2α2

(
α2

(usτ + α)2 + x2

) 1
Ks

+ 1
Kc

. (65)

However, as explained already in Sec. III, the limiting G
expressions for the N = 4 model, Eqs. (58) and (64) were
derived in the limit of sizable � and J/πu0. It follows that
our results, which are in any case just qualitative, cannot
reproduce the real features of the large-N model in the two
opposite limits of small and large coupling J/πu0. This will
be apparent in our results because the free energy which we
derive in this way is not at a minimum in these two limits.
The plots of βF as a function of �, at given J/πu0, are
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FIG. 2. Free energy βF vs the gap � for different values of the
dimensionless coupling J ≡ J/(πu0). The energy does not develop
any minimum when J = 0.3 or lower. At J = 0.4 a minimum appears
at low � which is the absolute minimum of the energy till J = 0.6
when it becomes metastable (see Fig. 4).

presented in Figs. 2–4. They indeed show that there is a range
of intermediate values for J/πu0 in which the free energy of
our model has an absolute minimum at finite �, in the sense
that the minimum is indeed lower in energy than the reference
energy at � = 0.

Having anticipated the final result, we now turn to the
derivation of the free energy which follows the same lines
as for the 0 + 1 d SYK model [16]. In the 1/N limit, βF

FIG. 3. Blowup of the appearance of the absolute minimum of
the free energy βF at � � 0, which develops continuously at � > 0
for increasing coupling J ≡ J/(πu0 ) > 0.4.

FIG. 4. The free energy βF vs the gap � appearing in Fig. 2,
restricted to the values of the dimensionless coupling J ≡ J/(πu0) =
0.7, 0.8, 0.9. For J beyond 0.6, the absolute minimum is lost and a
metastable minimum arises at finite �. In the inset: Blowup of the
free energy βF vs the gap � for J ≡ J/(πu0) = 0.9, around �min ≈
7.0, where the minimum disappears.

is derived from the effective action in which the Green’s
function and the self-energy solving the Schwinger-Dyson
equations are inserted. For the time being, the parameters for
the interaction couplings J and Q will be kept as separate in
the next derivation, to make results more transparent. Even-
tually, we perform the limit Q → J . Due to the fact that Ĝ
and ̂ obey the SD equations and explicitly depend on the
coupling parameters in the conformal symmetry limit (see
Sec. II A), it is enough to take the derivative of the free en-
ergy with respect to the coupling parameters: J ∂J (−βF/N ) +
Q ∂Q(−βF/N ). Since the partition function only depends on
the combinations βJ, βQ, the derivative J∂J + Q∂Q produces
the derivative β∂β . At the energy minimum, E , the equality
holds, ∂β (−βF/N ) = −E/N . We will still talk of free energy
for simplicity, in the following, no matter that we consider
the zero-temperature limit only. Using the identity for a given
matrix A

1

Pf(A)

∂Pf(A)

∂x
= 1

2
Tr

(
A−1 ∂A

∂x

)
,

we have

∂J ln Pf[−(∂τ − ai∂x ) − a(x, x′)] = 1

2
Tr

(
G

∂

∂J

)
(66)

and similarly for ∂Q. From the action (22) some cancellation
of terms occurs and the final result is (with � = u0h̄αN)

−E

N
= 1

β
[J ∂J (−βF/N ) + Q ∂Q(−βF/N )]

= J2

4�

∫
d2z

∑
a

g4
a(z, z̄) + Q2

2�

∫
d2z

× [g2
+g2

− + g2
∩g2

∪ − 4 g+g∩g−g∪] (z, z̄). (67)

The first term contains the single g∩/∪(z, z̄) in the large-
N limit but, restricting the model to the case J2 = Q2 and
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rearranging the related terms,

g4
∩ + g4

∪ + 2g2
∩g2

∪ = (g2
∩ + g2

∪)2 ≡ (g2
∩ + g∩2)2

= 4[(�eg∩)2 − (�mg∩)2]2

= 4[�e(g∩g∪) + �m(g∩g∪)]2

= 4|g∩g∪|2, (68)

we obtain an explicit dependence only on the product g∩g∪,
which we approximate from Eqs. (63) and (64). The energy
takes the form

−E

N
= J2

�

∫
d2z {(g+g−)2 + (g∩g∪)2 − 2 g+g∩g−g∪}

= J2

2�

∫
d2z (Tr Ĝ2)2, (69)

with Ĝ given in Eq. (6). This is the extension of the result
for the 0 + 1 d Sachdev-Ye-Kitaev model [16] to the 1 + 1 d
nonchiral case for J2 = Q2.

We now comment on the numerical results. In the fol-
lowing and in the figures, we denote as J the dimensionless
coupling J/πu0 and the time parameter τ ∼ u0(τ − τ ′)/L →
0. In Fig. 1 we plot the space dependence of the Green’s func-
tions g(z, z̄) ≡ g+(z, z̄) = g−(z̄, z) and g∩(z, z̄)g∪(z, z̄), used
to compute the free energy (omitting the prefactor i). All of
them only depend on the difference of the space/time argu-
ments because of translational invariance. The figure shows
them for the specific fixed values � = 1.71, τ = 0.01, and
J = 0.6 versus the dimensionless space coordinate x/L. These
parameter values belong to the interval in which the energy
is at an absolute minimum. Both g± and g∩g∪ are taken
from the N = 4 case, in such a way that g+ ∼ G++ and
g∩g∪ ∼ G+−G−+, by assuming that the functional form of
the correlators is the same for N � 4. While g+ = g− tends
to unity by construction when x → 0 and shows a crossover
from power-law decay to exponential decay ∼ e− πx

8
�
Kc at large

x, the product g∩(z, z̄)g∪(z, z̄) has been chopped to unity at
small distances and has an exponential decay ∼ e− πx

2
�
Kc at

large distances.
Figure 2 shows the free energy βF versus the gap � for

different values of J , in the limit of zero temperature. The free
energy increases with � when J increases from zero. In the
range J � 0.3, the model is unable to produce a minimum
of the free energy not only at finite gap, but also at zero
gap. The fact that the zero gap limit at low J is not accu-
rate happens because, both the diagonal and the off-diagonal
terms of the Green’s function of Eq. (6), adopted from the
N = 4 case, acquire factorized contributions from the two
excitation branches in this limit, as seen from Eqs. (58) and
(63). While this is expected to be so for terms which conserve
the chirality, it is highly unphysical for terms which do not
conserve the chirality, because the gapless and gapped branch
merge in energy when � → 0 and their contributions to the
propagator cannot come out to be factorized. The situation
improves when J increases, because, with increasing J , also
the gap between the two branches in the spectrum increases
(see the inset of Fig. 5). It is remarkable that the absolute
minimum appears at zero gap for J � 0.4 (orange curve).
Figure 3 highlights the formation of the minimum for nonzero

FIG. 5. The minimum of βF becomes shallower when the di-
mensionless coupling J ≡ J/(πu0) and �min increase and the depth
at the minimum decreases down to zero. In the inset: Value of the gap
at the minimum, �min, vs the dimensionless coupling J ≡ J/(πu0).
�min increases with increasing J .

� around J ∼ 0.4. The minimum emerges with continuity and
becomes more pronounced by increasing J beyond J ∼ 0.4,
as it happens in Landau’s second order phase transitions. For
increasing values of J , the energy develops an absolute mini-
mum which confirms, at least within our approximations, the
presence of gapped excitations in the spectrum of the model,
in the range 0.4 � J � 0.6. At higher values of J , let us
say 0.7 � J � 0.8, the minimum is still present but becomes
metastable, meanwhile a stable minimum of the energy is lost
and the assumptions on which the model rests appear to break
down. A very shallow minimum appears at � ∼ 0.5 for J �
0.8 (brown curve in Fig. 2) and more in detail in Fig. 4. Close
to the physical bound, us → 0, the minimum fully disappears,
as it is shown in the inset of Fig. 4 for J = 0.9.

As stressed already, as J increases, so does �min, the �

value corresponding to the minimum of the free energy (see
inset of Fig. 5), while the minimum itself becomes shallower
and shallower as can be seen in Fig. 5.

From the numerical results we conclude that our basic
assumption that the extension to 1 + 1 d of the SYK model,
extrapolated from the exactly soluble N = 4 case to large
N and relatively strong coupling J , entails two excitation
branches, the gapless one originating from the emergent con-
formal symmetry at strong coupling and the gapped one
originating from nonconservation of the number and chirality,
may hold at least for a limited range of values of the coupling
constant J inside the physical bounds 0 < J/πu0 < 1. The
excitation modes have different velocities and the limit of
us → 0 which occurs at finite J/πu0 is clearly intrinsic of the
finite N model, but not of its extension to large N .

V. CONCLUSIONS

The 0 + 1 d SYK model of N Majorana fermions, with
disorder average of the random interaction appears ex-
tremely rich and exactly solvable in the N → ∞ limit. The
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challenge of applying the model to real condensed matter
systems demands an extension of the model to higher-space
dimensionality. Such an extension would be extremely fruit-
ful because in the N → ∞ limit, an approximate conformal
symmetry emerges, which is spontaneously broken in the
IR limit. The two-point function plays the role of an order
parameter and is nonlocal in imaginary time τ . Its Fourier
transformed dependence, ∼ω1/2, points to NFL excitations,
which are induced by the soft modes arising in connection
with the spontaneous symmetry breaking [3,16]. Extension of
the model could give an hint for interpreting as NFL behavior
the unusual properties of the “strange” metals among which
the high temperature superconductors are classified.

Most of the attempts to introduce higher-space dimen-
sionality in the model start from parent complex fermion
Hamiltonians which include hopping between sites. The dis-
order average of the interaction is performed at the partition
function level, expressed in terms of Grassman variables. To
our view this approach overlooks the fact that the original
Hamiltonian is written in terms of Majorana fields, i.e., real
fermions, which do not conserve the charge, nor the mo-
mentum, in the added space dimensions. By contrast, we
believe that nonconservation is the crucial interesting feature
of the model, which the parent Hamiltonians loose in the IR
and T → 0 limit. By adding an hopping term, made up of
Majorana’s [63]:

∑
i< j Ki jψiψ j , a closer Hamiltonian to the

original one is obtained instead, but the flavor is changed
into a site label, a procedure that obscures what is electron
transport in the lattice.

From the field theory point of view, by adding an extra
dimension, the canonical scale dimension of the fermions is
changed to 1/2. This makes the interaction term marginal at
best. Since the 0 + 1 d SYK model has relevant interactions,
the above is an important obstacle in the generalization of the
model to higher dimensions, especially in the nonchiral case.
To avoid this problem, some authors have considered a theory
with a nonlocal topological kinetic term, to acquire zero scale
dimension of the fields [49], or models described by a large
number of bosons and fermions, via local random Yukawa
coupling [42–44,46,51], among other options.

Our choice was to consider a generalized form of the
1 + 1 d SYK model in the continuum limit, involving two dif-
ferent sets of real couplings, Ji jkl and Qi jkl among N Majorana
fermions, which mediate the interactions between fermions
of the same and of different chirality branches, respectively.
In the large-N case, when the J couplings vanish, the model
reduces to the random Thirring model [52], while left- and
right-movers decouple when the Q couplings vanish. We
have shown that there is an approximate conformal symmetry
emerging in the disorder averaged action when N, J, Q → ∞,
as in the 0 + 1 d case, and the model is still critical, with
a strong coupling fixed point. However, this symmetry is
not spontaneously broken in the 1 + 1 d case, and the sys-
tem can be considered as a marginal Fermi liquid, in which
the Schwinger-Dyson equation only admits free-fermion-like
two-point correlators as solutions. Nevertheless, by moving
away from the fixed point in the chiral case Q = 0, this sym-
metry is indeed broken by hand and we obtain NFL power-law
decaying propagators. The case Q �= 0 requires the solution of

a nonlinear Dyson equation and does not exclude a noncritical
solution, with the appearance of an exponential decay.

In the limiting case N = 4, the model can be exactly solved
by bosonization. The Hamiltonian is not conformally invariant
and the need to introduce a UV cutoff in the space depen-
dence of the correlators also breaks the Lorenz invariance.
The N = 4 action can be mapped onto two uncoupled bosonic
sine-Gordon [54] actions. This fact shows that there are two
branches of excitations with velocities uc,s = u0

√
1 ± J

πu0
,

which we denote as “pseudocharge” (c) and “pseudospin” (s),
in analogy with the well known sine-Gordon case. Since the
pseudospin velocity us vanishes when J → πu0, we found
that there is a physical window 0 < J/u0π < 1 within which
the bosonization picture is meaningful. A similar case of in-
stability [57,59,64] was found in the charge channel of the
Luttinger liquid, when the attractive interaction arising from
the electron-phonon interaction is introduced. As the corre-
sponding interaction parameter Ks = 1/

√
1 − J

πu0
diverges

when J → πu0, we interpret the J values close to this limit
as strong coupling, also for the large-N case.

It has been shown in the chiral case [53] Q = 0 that the
functional form of the two-point correlator for N = 4 and
large N are equal (upon average over random couplings) and
the model remains critical with gapless excitations. However,
in our nonchiral N = 4 case, it is found that the pseudocharge
branch is gapped, while the pseudospin branch is gapless, and
it is not difficult to accept that cross-chiral scattering (Q �= 0)
can add a gapped branch to the spectrum also in the large-N
case. It is tempting to assume that this feature is maintained
in the N → ∞ limiting case. To check this Ansatz, we have
derived the expression for the free energy βF in the limit of
zero-temperature and Q → J at the lowest order in 1/N , in
terms of the diagonal and off-diagonal chirality correlators,
g± and g∩, g∪. To proceed, we have assumed heuristically that
the analytic correlator G±, evaluated in the N = 4 case, can
be considered as an indication of the functional form of the
corresponding correlators g± in the large-N , large-J case.

There is no correspondent expression of g∩, g∪ in the N =
4 case. This is because the ground state conserves number
and chirality at finite N , and two-point off-diagonal chirality
correlators vanish. However, the energy in the Q → J limit
only depends on the product g∩ · g∪, which we assume to
be given by a corresponding four-point correlator, Eq. (63)
factorized at lowest order. We have obtained the limiting form
of the free energy βF at zero-temperature numerically, as a
function of the parameter J , which determines the velocities
uc, us of the excitations, and of the gap �. By plotting the
free energy versus the gap �, for increasing values of J , we
have found an intermediate range of values of J in which an
absolute minimum of the energy is found, corroborating the
idea that a gapped excitation branch may arise in the spectrum
with increasing interaction among the fermions. However, our
approach seem to be justified only at intermediate J couplings
and fails at J → 0 and J

πu0
� 1 because the N = 4 analogy

breaks down at these extrema.
We have used the dual sine-Gordon version of the model,

which can be solved exactly by bosonization in the limit
N = 4, as an approximation to infer the features of the system
in the large-N limit. Because in our approach we are neither
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forcing a zero canonical scale dimension of the fermions nor
changing the nature of the quartic fermionic interaction, our
model keeps similar in form to the original one. However, the
inclusion of the spatial dimension generally makes 1 + 1 d
nonchiral SYK models statistically marginal irrelevant [52], in
the sense that after averaging over disorder and using confor-
mal perturbation theory, the β function is positive. However,
there are relevant and irrelevant operators that will grow or de-
crease as we flow into the IR. Since all these contributions are
screened by the net effect of the average over disorder, added
to the fact that our model is not truly conformal symmetric,
we found that the theory can be studied as an effective model
in a range of couplings J determined by the physical bound
0 < J/u0π < 1, coming from the gapless pseudospin sector,
where the theory can be studied safely.

Two excitation branches were found, the gapless one, orig-
inating from the emergent conformal symmetry at strong
coupling, and the gapped one, originating from nonconserva-
tion of the number and chirality. The excitation modes have
different velocities and the limit of us → 0 which occurs at
finite J/πu0 is clearly intrinsic of the finite N model, but not
of its extension to large N . Since our approximation cannot
reproduce the large-N results in the entire physical bound, the
model being restricted to an intermediate range of values of
coupling constant J , a deeper analysis of the large-J limit,
which does not rely on the assumption made, is required.
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APPENDIX A: FOURIER TRANSFORMS OF THE GREEN’S
FUNCTION IN THE CONFORMAL SYMMETRY LIMIT

In this Appendix we provide the Fourier transforms of the
two-point function g(z, z̄), Eqs. (17) and (23), and of the self-

energy (z, z̄), Eqs. (18) and (24), for the solution of the SD
equations in the large-N case.

The diagonal terms in the matrix Ĝ, ̂ are

g+(p, p̄) = a
∫

d2z

z
ln(zz̄�2)αeipz+i p̄z̄, (A1)

+(p, p̄) = a3

(
J2

∫
d2z

z3
ln(zz̄�2)3αeipz+i p̄ z̄

+ Q2
∫

d2z

zz̄2
ln(zz̄�2)3αeipz+i p̄ z̄

)
= J + Q. (A2)

For the Fourier transforms of the Green’s function g+(z, z̄)
and for the Q part of the self-energy, Q, we define [52]

Fβ (|p|/�) ≡
∫

d2z

zz̄
ln(zz̄�2)βeipz+i p̄z̄

= 2β+1π

∫ ∞

0

dr

r
lnβ (�r)J0(|p|r)

= π

β + 1
ln

(
�2

|p|2
)β+1

,

where |p|2 = pp̄. It follows that

g+(p, p̄) = −ia∂p̄Fα (|p|/�) = iπ
a

p̄
ln

(
�2

|p|2
)α

. (A3)

Similarly,

∂p̄Q = i a3Q2F3α (|p|/�) = i a3Q2 π

3α + 1
ln

(
�2

|p|2
)3α+1

,

so that, neglecting O(ln3α �2

|p|2 ) terms,

Q(p, p̄) ≈ i p̄ a3Q2 π

3α + 1
ln

(
�2

|p|2
)3α+1

. (A4)

However,

∂pJ = a3J2i
∫

d2z

z2
ln(zz̄�2)3αei (pz+p̄z̄)

= −a3J2i
∫ ∞

0
r dr

∫ π

−π

dθ
cos 2θ − i sin 2θ

r2
ln(r2�2)3αei |p|r cos η,

where we put ei pz+p̄z̄ = ei |p|r[cos γ cos θ+sin γ sin θ] = ei|p|r cos η with η = θ − γ . As cos 2θ − i sin 2θ = (cos 2η −
i sin 2η)(cos 2γ − i sin 2γ ), integrating over η and dropping sin 2η which is odd in the integration, we obtain

∂pJ = −a3J2i (cos 2γ − i sin 2γ )
∫ ∞

0
r dr

∫ π

−π

dη
cos 2η

r2
ln(r2�2)3αei |p|r cos η

= 2π a3J2i
p̄

p

∫ ∞

0

dr

r
ln(r2�2)3α J2(|p|r) = a3J2i

p̄

p
F (J )

3α (|p|/�). (A5)
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The last equality defines the function F (J )
α (|p|/�) which can be approximated by use of the following integral:

G(J )
ε

( |p|
�

)
=

∫ ∞

0

dr

r
(�r)ε ln (�r) J2(|p|r)

= 1

22−ε

�
[
1 + ε

2

]
�

[
2 − ε

2

](
�

|p|
)ε[

ψ
(

1 + ε

2

)
+ ψ

(
2 − ε

2

)
+ 2 ln

2�

|p|
]
. (A6)

We analytically continue the relation

F (J )
n+1(|p|/�) = 2n+2π lim

ε→0
∂n
ε G(J )

ε

( |p|
�

)
,

to noninteger index n + 1 → 3α, obtaining

F (J )
3α+1(|p|/�) = 23α+2π lim

ε→0
∂3α
ε G(J )

ε

( |p|
�

)
.

Expanding G(J )
ε for small ε,

G(J )
ε

( |p|
�

)
≈

(
�

|p|
)ε 1

4

[
γ (γ − 1) + 2 ln

2�

|p|
]

= 1

2

(
�

|p|
)ε

ln
�

|p|
[

1 + O
(

1/ ln
�

|p|
)]

= 1

2

∞∑
m=0

εm lnm+1( �
|p| )

m!

[
1 + O

(
1/ ln

�

|p|
)]

,

(A7)

Eq. (A5) becomes

∂pJ = a3J2i
p̄

p
π ln3α (�2/|p|2). (A8)

Finally, the primitive function with respect to the variable p,
provides the desired result:

J (p, p̄) = −a3J2iπ p̄
∫ p d p

p
ln

(
p̄

�2
p

)3α

= a3J2iπ p̄

3α + 1
ln

(
�2

|p|2
)3α+1

. (A9)

In conclusion, the Fourier transforms in the large J , Q limit
are given by

g+(p, p̄) = iπ
a

p̄
lnα

(
�2

|p|2
)

, (A10)

+(p, p̄) ≈ iπ p̄ a3 (J2 + Q2)

3α + 1
ln3α+1

(
�2

|p|2
)

. (A11)

The off-diagonal terms are, according to Eqs. (23) and (24),

g∩(p, p̄) ∝
∫

d2z

|z| ln(|z|2�2)αei|p||z|,

∩(p, p̄) ∝
∫

d2z

|z|3 ln(|z|2�2)3αei|p||z|.

g∩(p, p̄) can be obtained directly:

g∩(p, p̄) ∼
∫

|z|d|z|dθ
ln(|z|2�2)α

|z| ei|p||z| cos θ

∼ 2α

�

∫
d|z| ln(|z|)J0

( |p||z|
�

)
∼ −2α

�

�

|p| ln

( |p|
�

)
∼ 1

|p| ln

(
�2

|p|2
)α

, (A12)

or, with a procedure similar to the one of Eq. (A3), we define

F ′
β (|p|/�) ≡ 1

2

∫
d2z

|z|2 ln(|z|2�2)βei|p||z|

= 1

2

π

β + 1
ln

(
�2

|p|2
)β+1

,

and obtain

g∩(p, p̄) ∝ −i ∂|p|F ′
α (|p|/�) = iπ

1

|p| ln

(
�2

|p|2
)α

,

as above. Similarly,

∂|p|∩(p, p̄) ∝ i F ′
3α (|p|/�) = i

π

3α + 1
ln

(
�2

|p|2
)3α+1

,

where, neglecting O(ln3α �2

|p|2 ) terms, we obtain

∩(p, p̄) ∝ i
π

3α + 1
|p| ln

(
�2

|p|2
)3α+1

. (A13)

APPENDIX B: BOSONIZATION OF THE INTERACTION
FOR N = 4

Here we derive the bosonized form of the action of the
model given in Eq. (4) for the case N = 4. Putting {J} = {Q}
from the outset, Eq. (4) has the following structure:

∑
i< j<k<l

[
1

2
((ψ̄iγ

μψ j )(ψ̄kγ
μψl ) + (ψ̄iγ

μψ j )(ψ̄kγμψl )) + ψ̄iψ jψ̄kψl

]
,
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or, in an expanded way, ∑
i< j<k<l

∑
a=±

[ψiaψ jaψkaψla + ψiaψ jaψkāψl ā + ψiaψ jāψkāψla + ψiaψ jāψkaψl ā]. (B1)

In the N = 4 case, there is only one possibility of ordering i, j, k, l fermions∑
a=±

(ψ1aψ2aψ3aψ4a + ψ1aψ2aψ3aψ4a + ψ1aψ2aψ3aψ4a + ψ1aψ2aψ3aψ4a),

and, using the definitions of the complex fermions cσ± given in Eq. (37), the interaction becomes∑
a=±

(c†
↑ac↑ac†

↓ac↓a + c†
↑ac↑ac†

↓ac↓a + c†
↑ac↑ac†

↓ac↓a + c†
↑ac↑ac†

↓ac↓a) = −c†
↑c↑c†

↓c↓, (B2)

where cσ = cσ− + cσ+. Under bosonization, the theory can
be separated into pseudospin and pseudocharge sectors, by
defining the bosonic phases φ↑,↓ = 1√

2
(φc ± φs). We obtain∑

a=±
(c†

↑ac↑ac†
↓ac↓a + c†

↑ac↑ac†
↓ac↓a)

= 1

2π
((∂xφc)2 − (∂xφs)2),∑

a=±
(c†

↑ac↑āc†
↓āc↓a) = 1

2π2α2
cos (

√
8πφs),

∑
a=±

(c†
↑ac↑āc†

↓ac↓ā) = 1

2π2α2
cos (

√
8πφc). (B3)

The terms in Eq. (B3) contribute to rescaling velocities in the
action, giving rise to pseudocharge/pseudospin separation,
while the last two terms are the cosine interactions. Therefore,
the interaction part

1

2
((ψ̄iγ

μψ j )(ψ̄kγ
μψl ) + (ψ̄iγ

μψ j )(ψ̄kγμψl ))

←→
∑
a=±

(c†
↑ac↑ac†

↓ac↓a + c†
↑ac↑ac†

↓āc↓ā) (B4)

just rescales the velocity, while the interaction part

ψ̄iψ jψ̄kψl ←→
∑
a=±

(c†
↑ac↑āc†

↓āc↓a + c†
↑ac↑āc†

↓ac↓ā)

introduces cosine-like interaction terms in both sectors, in the
N = 4 case.

As a last comment, if we add to the interaction the term

(ψ̄iγ
5ψ j )(ψ̄kγ

5ψl )

←→
∑
a=±

(c†
↑ac↑āc†

↓ac↓ā − c†
↑ac↑āc†

↓āc↓a),

it is possible to obtain a model having the cosine interaction
term in just one of the spin/charge sectors. For instance, in
random Gross-Neveu-like interaction

1

2
[(ψ̄iψ jψ̄kψl ) − (ψ̄iγ

5ψ j )(ψ̄kγ
5ψl )]

←→
∑
α=±

(c†
↑ac↑āc†

↓āc↓a) = 1

2π2α2
cos (

√
8πφs), (B5)

the cosine in the charge sector disappears.

APPENDIX C: CORRELATORS IN THE N = 4 CASE

In this Appendix, we compute the different correlators for
the case N = 4 introduced in Sec. III. In the limit of strong
coupling, the critical action holds for the pseudospin degree
of freedom:

S =
∫

dtdx
1

2

[
1

usKs
(∂tφs)2 − us

Ks
(∂xφs)2

]
. (C1)

As the critical Hamiltonian is invariant under the duality trans-
formation φ ↔ θ , K ↔ 1

K , we can use this correspondence to
get Iθs (x, τ ) straightforwardly, once the phase-phase correla-
tor 〈φs(r1)φs(r2)〉 in known. This is defined as [54]

〈φs(r1)φs(r2)〉 =
∫
DφDθ e−S[φ,θ]φs(r1)φs(r2)∫

DφDθ e−S[φ,θ]
. (C2)

In Fourier space, φs(r) = 1
β�

∑
k,ωn

ei(kx−ωnτ )φs(k, ωn). Real
fields satisfy φ∗(q) = φ(−q). The action can be represented
as

S[φs] = 1

β�

∑
k,ωn

1

2usKs

[
ω2

n + u2
s k2

]
φs(k, ωn)φ∗

s (k, ωn).

(C3)

The correlator in momentum space is

〈φs(q1)φs(q2)〉 = usKs
β�

ω2
n + u2

s k2
δq1,−q2 .

Back to real space, we obtain the correlator Iφs (x, τ ) appear-
ing in Eq. (49):

Iφs (x, τ ) = 〈φs(x, τ )φs(0, 0) − φ2
s (0, 0)〉

= Ks

2π
ln

(
α√

x2 + (usτ + α)2

)
. (C4)

We now turn to the pseudocharge mode. Due to the pres-
ence of the gap m = �

L , the approximate action is given by
Eq. (54) and the correlators Iφc (x, τ ) and Iθc (x, τ ) are given
by Eqs. (55) (ω = ω′uc):〈

φc(r)φc(0) − φ2
c (0)

〉
= 2Kc

∫ +∞

−∞

dω′

2π

∫ +∞

0

dk

2π

(eiucω
′τ cos kx − 1)

k2 + m2 + ω′2 ,
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〈
θc(r)θc(0) − θ2

c (0)
〉

= 2

Kc

∫ +∞

−∞

dω′

2π

∫ +∞

0

dk

2π

(k2 + m2)(eiucω
′τ cos kx − 1)

k2(k2 + m2 + ω′2)
.

The Hamiltonian is not invariant under the transformation
φc ↔ θc, Kc ↔ 1

Kc
as before, due to the presence of the gap.

To stick to analytic approximate expressions for the corre-
lators, we are going to assume small m and large distances
ζ ≡ (ucτ ∓ i x) in the following, by keeping just the leading
contributions.

We define the following integrals:

I1± ≡
∫ +∞

−∞

dω′

2π
eiucω

′τ
∫ +∞

0

dk

2π
e±ikx 1

k2 + m2 + ω′2 ,

(C5)

I2± ≡
∫ +∞

−∞

dω′

2π
eiucω

′τ
∫ +∞

0

dk

2π
e±ikx

× m2

(ω′2 + m2)(k2 + m2 + ω′2)
, (C6)

I3± ≡ m2
∫ +∞

−∞

dω′

2π

eiucω
′τ

(m2 + ω′2)

∫ +∞

0

dk

2π

e±ikx

k2

≡ I3aI3b±, (C7)

which allow to rewrite the correlators according to

Iφc (r) = 〈
φc(r)φc(0) − φ2

c (0)
〉

= Kc[I1(r) − I1(0)], (C8)

Iθc (r) = 〈
θc(r)θc(0) − θ2

c (0)
〉

= 1

Kc
[I1(r) − I2(r) + I3(r) − (I1(0) − I2(0) + I3(0))],

(C9)

where In = In+ + In−. The integral I1± is computed as follows:

I1± =
∫ +∞

−∞

dω′

2π

∫ +∞

0

dk

2π

e±ikxeiω′ucτ

2i
√

k2 + m2

(
1

ω′ − i
√

k2 + m2
− 1

ω′ + i
√

k2 + m2

)

=
∫ +∞

0

dk

4π

e±ikxe−ucτ
√

k2+m2

√
k2 + m2

, (C10)

where the circuit has been closed in the upper complex half
plane. In the limit m → 0 we want to obtain back the critical
result. In the case m = 0, I1± satisfies the relation

∂

∂ (−ucτ ± i x)
I1±

∣∣∣∣
m=0

=
∫ +∞

0

dk′

4π
e−(ucτ∓i x)k′

e−αk′

= − 1

4π (∓i x + ucτ + α)
, (C11)

so that I1± = − 1
4π

ln (∓i x + ucτ + α). However, in the limit
0 < m � 1, the derivative ∂

∂ (−ucτ±i x) I1± takes the form

∂

∂ (−ucτ ± i x)
I1± ≈ ±i

∫ +∞

m

dz

4π
e±i x

√
z2−m2

e−ucτ z, (C12)

with
√

z2 − m2 → z(1 − m2

2z2 ) and, considering again the con-
vergent factor α, Eq. (C11) becomes [65]

∂I1±
∂ (−ucτ ± i x)

≈
∫ +∞

0

dz

4π
e−(ucτ∓i x)ze−(±2 i xm2 ) 1

4z

= − 1

4π

√
±2i m2x

∓i x + ucτ + α

× K1(
√

±2i m2x
√∓i x + ucτ + α).

(C13)

Equation (C11) is recovered in the limit of vanishing m, be-
cause, at first order, the Bessel function K1(z) → 1

z . We have

added a spurious contribution in Eq. (C13),∣∣∣∣∫ m

0

dz

4π
e−(ucτ∓i x)ze−(±2 i xm2 ) 1

4z

∣∣∣∣
<

∣∣∣∣∫ m

0

dz

4π
e−ζ z e∓i x m

2

∣∣∣∣ <
m

4π

1

ζ
, (C14)

where ζ = (ucτ ∓ i x). We disregard it, because ζ is assumed
to be large. Hence, for small m, the nonchiral result is

I1± = −
∫ ∓i x+ucτ

0

dz

4π

�

L

√±2i x

z + α
K1

(
�

L

√±2i x
√

z + α

)
.

As for the the second pair of integrals I2±, we use the identity
1

a2+b2 = ∫ ∞
0 e−s(a2+b2 )ds. In the generalized Gaussian’s inte-

gral, both integrals give the same result and we can sum them,
thus obtaining

I2 = m2
∫ +∞

−∞

dω′

2π
eiucω

′τ e−x
√

ω′2+m2

(ω′2 + m2)3/2
. (C15)

In the limit of small m, this integral can be approximated

by reducing it to the chiral form as eiucω
′τ e−x

√
ω′2+m2 ≈

e−(x−iucτ )
√

ω′2+m2
. In doing this, we can view the integral as

∂2

∂ (x − i ucτ )2
I2± ≈ m2

∫ ∞

0

dω′

π

e−(x−iucτ )
√

ω′2+m2√
ω′2 + m2

= m2

π
K0[m(x − iucτ )], (C16)
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which shows that this contribution can be neglected in the
limit of small m and large distances. In this form, it ap-
pears that I2 can be estimated to give rise to a contribution
< m2e−(ix+ucτ )2v[m(x−iucτ )] with v[ζ ] a positive function of ζ .

In the last pair of integrals I3±, the ω′ and k integrals can be
separated. The k integral contains a nonsingular contribution
I3a and a singular contribution I3b±. The nonsingular integral
for I3a gives

I3a = m2
∫ +∞

−∞

dω′

2π

eiucω
′τ

(ω′2 + m2)
= m2 i

4πm
[emucτ Ei(iucτω − ucτm) − e−mucτ Ei(iucτω + ucτm)]

∣∣+∞
−∞ ≈ m

2
e−mucτ

(where Ei(z) is the exponential integral, with the following properties Ei(i∞) = iπ and Ei(−i∞) = −iπ , and where just the
leading decaying exponential part was considered). For I3b− we have

I3b− ≈
∫ +∞

1/L
dk lim

ε→0

e−ikx

ε2 + k2
= x lim

ε→0

∫
dy

e−iy

ε2 + y2

= x lim
ε→0

i

2ε
[eεE1(ε + i y) − e−εE1(−ε + i y)] ≈ L e−i x

L + i x
[
γ + ln i

x

L

]
. (C17)

It follows that the singular part I3± becomes

m2
∫

dk

2π

∫
dω

2π

ei ωτ±i kx

k2(ω2 + m2)
≈ mL

4π

[
e−(mτ∓i x

L ) ∓ i e−mτ x

L

(
γ + ln

∓i x

L

)]
. (C18)

However, �(z) is the � function, which can be approximated as ln �(z) ≈ (z − 1
2 ) ln z − z + 1

2 ln 2π + O( 1
z ), so that the final

expression for I3± is

I3± ≈ mL

4π
e−mτ

[
e±i x

L + ln

[√∓i x

2πL

]
�

(∓i x

L

)
+ ∓i x

L
(γ + 1)

]
. (C19)

Putting these results in Eqs. (C9), we obtain Eqs. (57) of the main text. Together with Iφs (x, τ ) given by Eq. (C4) and Iθs (x, τ ),
the bosonized version of this two-point Green’s function propagator can be constructed,

G±(r) = ± i

2πα
(e

π
2 〈φc (r)φc (0)−φ2

c (0)〉e
π
2 〈θc (r)θc (0)−θ2

c (0)〉e
π
2 〈φs (r)φs (0)−φ2

s (0)〉e
π
2 〈θs (r)θs (0)−θ2

s (0)〉), (C20)

which gives Eq. (58) of the main text.
It can be proved that the off-diagonal correlators vanish identically in the bosonized N = 4 model because they correspond

to nonnumber conserving correlators which are absent in the N = 4 case. In fact, recalling the initial definition of complex
fermions, it is possible to write [see Eq. (60)]

G∩/∪(r) = 1

4

∑
i

〈ψi±(r)ψi∓(0)〉

= 1

4

∑
σ=↑,↓

〈cσ±(r)c†
σ∓(0) + c†

σ±(r)cσ∓(0)〉. (C21)

Using the bosonization dictionary and the fact that pseudocharge and pseudospin sectors can be completely separated, the
correlators become

G∩/∪(r) = ± i

8πα
[〈e±i

√
π
2 φc (r)e±i

√
π
2 φc (0)〉〈e−i

√
π
2 θc (r)ei

√
π
2 θc (0)〉(φc → φs, θc → θs)

+〈e∓i
√

π
2 φc (r)e∓i

√
π
2 φc (0)〉〈ei

√
π
2 θc (r)e−i

√
π
2 θc (0)〉(φc → φs, θc → θs)

+〈e±i
√

π
2 φc (r)e±i

√
π
2 φc (0)〉〈e−i

√
π
2 θc (r)ei

√
π
2 θc (0)〉(φc → −φs, θc → −θs)

+〈e∓i
√

π
2 φc (r)e∓i

√
π
2 φc (0)〉〈ei

√
π
2 θc (r)e−i

√
π
2 θc (0)〉(φc → −φs, θc → −θs)].

For the correlator to be nonzero, the sum of the factors multiplying the fields in the exponentials has to vanish. In the φ sector
this does not happen and off-diagonal correlators vanish. On the contrary, in the θ sector opposite signs occur in the exponents,
so that correlators involving cross-chirality fermions, like〈

Oz†
TS(r)Oz

TS(0)
〉 = 1

π2α2
e2π〈θc (r)θc (0)−θ2

c (0)〉e2π〈θs (r)θs (0)−θ2
s (0)〉 (C22)

of Eq. (63), provide a nonzero result. They can be obtained from Eqs. (49) and (57).
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