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Manifestation of the Aharonov-Bohm effect in the interaction of moving charges
with a semiconductor nanotube with dielectric filling
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We theoretically study the Aharonov-Bohm effect manifestation in the interaction of a moving nonrelativistic
electron and a tubular electron beam with electromagnetic eigenmodes in a semiconductor nanotube with
dielectric filling placed in a coaxial dc magnetic field. The calculations are performed taking into account the
effect of delay of electromagnetic waves and collisions of electrons in a nanotube. First, we have shown that
collisions of electrons lead to a significant transformation of the eigenmode spectrum of the structure under
study in comparison with the collisionless case. In particular, dissipative (leaky) modes with phase velocities
greater than the speed of light in vacuum appear in the spectrum. It has been established that the number of
branches with negative (anomalous) dispersion in the eigenmode spectrum oscillates when changing the number
of magnetic flux quanta in a nanotube with a period equal to one magnetic flux quantum. Second, an analysis of
the expressions for the power of energy loss of a single moving electron and the rate of increase in the kinetic
instability of an electron tubular beam due to their interaction with the studied eigenmodes showed that these
quantities also oscillate when changing the number of magnetic flux quanta. These oscillations are the result of
the Aharonov-Bohm effect.
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I. INTRODUCTION

A paper by Aharonov and Bohm [1], published more than
50 years ago, took a fresh look at the role of electromagnetic
field potentials in quantum phenomena. They first pointed out
that the electrons could be affected by electromagnetic poten-
tials without their coming into contact with actual force fields.
This prediction was confirmed in subsequent interference ex-
periments of coherent electronic beams wrapping miniature
solenoids as well as in later, similar experiments using a tiny
toroidal magnet [2–4]. It is worthwhile to note that, in the
original 1959 paper, the magnetic as well as electric versions
of the effect were considered, and, as was demonstrated later,
both versions of the Aharonov-Bohm effect had so-called du-
als such as the Aharonov-Casher effect and the neutron-scalar
effect (see review [5] and references therein).

Note that conducting nanotubes and quantum rings occupy
a special place in the physics of low-dimensional systems due
to the non-simply-connected area of electron movement. This
leads, in the presence of the magnetic field, to phenomena that
are consequences of the Aharonov-Bohm effect. Therefore,
since the first solid-state manifestation of the Aharonov-Bohm
effect for electron circulation in a mesoscopic nonsuper-
conducting metal rings [6], this effect has been actively
investigated in a variety of mesoscopic systems. For instance,
in recent decades, the Aharonov-Bohm oscillations of conduc-
tance matrix elements in ballistic graphene and phosphorene
quantum rings, as well as in topological quantum rings in
silicene and bilayer graphene, were studied in Refs. [7–9].

*Corresponding author: yuriyaverkov@gmail.com

The possibility of the Aharonov-Bohm effect for excitons in
a semiconductor quantum ring dressed by circularly polarized
light was theoretically demonstrated in Ref. [10]. The influ-
ence of the Aharonov-Bohm effect on magnetoconductance,
the quantum Hall effect, and Coulomb blockade in topological
insulator nanocones were studied in Ref. [11]. The Aharonov-
Bohm effects in three-dimensional higher-order topological
insulators and in mesoscopic Bose-Einstein condensates were
investigated in Refs. [12,13]. Topology and its detection
in a dissipative Aharonov-Bohm chain was considered in
Ref. [14].

The study of the Aharonov-Bohm effect in structures con-
taining carbon nanotubes is of particular interest. This is due
to a number of unique properties of such structures, making
them promising candidates for creating a new element base for
modern micro- and nanoelectronics (see, e.g., Refs. [15,16]).
The measurement of magnetoresistance oscillations in indi-
vidual multiwalled nanotubes caused by the Aharonov-Bohm
effect was first made in Ref. [17]. The Fano resonance in
crossed carbon nanotubes was studied in Ref. [18]. It was
shown that the conductance peak is sensitive to the external
magnetic field and exhibits Aharonov-Bohm-type oscilla-
tions. The Aharonov-Bohm splitting of the exciton peak in
metallic carbon nanotubes was studied in Ref. [19]. The
Aharonov-Bohm interferometer based on waveguides created
by gating graphene with carbon nanotubes was proposed in
Ref. [20].

Given the technological importance of semiconductors for
the realization of nanoelectronics devices, semiconductor nan-
otubes alongside carbone nanotubes have been the subject
of intense experimental and theoretical research (see, e.g.,
Refs. [21–23]). Note that semiconductor nanotubes and other
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two-dimensional semiconductor structures can be produced
from silicon atoms forming unit cells similar to honeycombs,
i.e., the same cells as in structures based on graphene [24–27].
Silicon nanotubes can be used in nanomedicine, e.g., for
bioseparation, drug delivery, imaging, and other biomedical
applications [21]. In addition, silicon nanotubes are promising
as anode material in batteries [22] and silicon nanotubes,
which are doped by transition-metal atoms, demonstrate mag-
netism and become attractive for use as nanoscale magnets
[23].

In Ref. [28], the role of the Aharonov-Bohm effect in the
dispersion properties of surface plasmons in semiconductor
and carbon nanotubes was first studied theoretically in elec-
trostatic approximation. It was demonstrated that the surface
plasmon frequency as well as the Fermi energy of the degen-
erate electron gas oscillate with a change of the magnetic flux
in the nanotube. Note that under Fermi energy oscillations,
the equilibrium surface electron density was supposed to be
given. As was stressed in this paper, the spatial dispersion of
nanotube conductivity tensor components plays a key role in
such oscillations.

In our previous papers [29,30], we have theoretically stud-
ied the manifestation of the Aharonov-Bohm effect in the
eigenmode spectrum of a semiconductor nanotube with di-
electric filling placed in a coaxial dc magnetic field. The
main differences between our approach in the analysis of the
eigenmode spectrum and the approach used in Ref. [28] were
as follows. First, we supposed that the inner cavity of the nan-
otube was filled with a solid-state dielectric. Second, we have
taken into account the retardation effects of the electromag-
netic fields under the derivation of the dispersion equation,
which described both the bulk-surface and the surface elec-
tromagnetic eigenmodes. We have shown that, in particular,
the Aharonov-Bohm effect manifested itself in the oscillations
of the number of dispersion branches with the change of the
magnetic flux value in the nanotube. Hereafter, we describe
the results of Refs. [29,30] in more detail.

In the present work, we consider the manifestation of the
Aharonov-Bohm effect under the interaction of charged parti-
cles with a semiconductor nanotube filled with a solid-state
dielectric. Unlike Refs. [29,30], now we take into account
the electron collisions in the nanotube in order to correctly
calculate the energy loss of an electron under the excitation of
the electromagnetic waves in the structure. We show that the
electron energy loss, as well as the increment of the kinetic
instability in the case of propagation of a tubular electron
beam along the structure, oscillate with a change in the num-
ber of magnetic flux quanta in the nanotube. In addition, we
demonstrate that taking into account the electron collisions
in the nanotube gives rise to the emergence of a new branch
of the bulk-surface waves closely resembling the well-known
Zenneck’s wave [31].

II. STATEMENT OF THE PROBLEM: SPECTRUM
OF THE EIGENWAVES

Consider a nonmagnetic dielectric cylinder of radius ρc

occupying the space region 0 � ρ � ρc, 0 � ϕ � 2π , and
|z| < ∞ (the z axis is directed along the cylinder axis). We
suppose that the cylinder is made of a solid-state isotropic
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FIG. 1. Geometry of the problem.

nonmagnetic material with real permittivity ε and there is an
infinitely thin semiconductor layer on the lateral surface of
the cylinder. This waveguide is located in the vacuum in an
external dc magnetic field �H0 directed parallel to its axis (see
Fig. 1).

A point charge moves in the vacuum parallel to the cylinder
symmetry axis at a distance ρe from the axis with velocity
v � c (here c is the velocity of light in the vacuum). The
electron charge density in the vacuum region is determined
by the formula

Qe(�r, t ) = ene(�r, t ) = eδ(�ρ − �ρe)δ(z − vt ), (1)

where e is the electron charge and δ(x) is the Dirac delta
function.

We describe the interaction between the moving electron
and the structure eigenmodes using the Maxwell equations,

rot �H (�r, t ) = 1

c

∂

∂t
�D(�r, t ) + 4π

c
�j(�r, t ), (2)

rot �E (�r, t ) = −1

c

∂

∂t
�H (�r, t ), (3)

div �D(�r, t ) = 4πeN (�r, t ), (4)

div �H (�r, t ) = 0, (5)

concurrent with the linearized continuity equation

e
∂N (�r, t )

∂t
+ div�j(�r, t ) = 0, (6)

where �E (�r, t ) and �H (�r, t ) are the electric and magnetic field
vectors, and �D(�r, t ) is the electric displacement vector. The
current density exists in the vacuum region, at (ρ > ρc), due
to the moving point charge,

�j(�r, t ) = (0, 0, Qe(�r, t )v), (7)

and within the semiconductor nanotube in the form of surface
current,

�j(�r, t ) = (0, �jτ (�r, t )), �jτ (�r, t ) = �j2D
τ (ϕ, z, t )δ(ρ − ρc).

(8)

The electron density N (�r, t ) is ne(�r, t ) in the vacuum region,
at (ρ > ρc), and N (�r, t ) = n2D(ϕ, z, t )δ(ρ − ρc) in the semi-
conductor nanotube, at (ρ < ρc), where n2D(ϕ, z, t ) is the 2D
density of charge carriers.

The displacement vector �D(�r, t ) is connected to the electric
field �E (�r, t ) by the local relation,

�D(�r, t ) = ε �E (�r, t ). (9)
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The question about the conductivity of the surface conducting
layer in a dc magnetic field is considered below.

A. Main equations for eigenmodes

We first study the spectra of electromagnetic eigenwaves in
a semiconductor nanotube with dielectric filling. To find the
dispersion equation for eigenmodes, it is necessary to use the
boundary conditions for electric and magnetic fields at ρ =
ρc. We use four boundary conditions describing the continuity
of the tangential components of the electric field, Eϕ (�r, t ),
Ez(�r, t ), and the jumps of the ρ-component Dρ (�r, t ) of the
electric displacement vector and of the z-component Hz(�r, t )
of the magnetic field, caused by the presence of charges and
currents on the surface of the semiconductor nanotube (see
Ref. [30]).

We represent all field components as the superpositions of
space-time harmonics, e.g.,

�E (�r, t ) =
∞∑

n=−∞

∫ ∞

−∞

∫ ∞

−∞
�En(ρ, qz, ω)

× exp[i(qzz + nϕ − ωt )]dqzdω, (10)

where ω, qz, and n are the frequency, longitudinal wave
number, and spatial harmonic number (coinciding with the
azimuthal mode index), respectively.

Taking into account expansion (10), we can rewrite
Eqs. (2)–(5) for the axial spectral components of the fields
in the regions ρ < ρc and ρ > ρc in the form


̂Ezn(ρ, qz, ω) = 0, 
̂Hzn(ρ, qz, ω) = 0, (11)

where


̂ = 1

ρ

∂

∂ρ
ρ

∂

∂ρ
+

(
q2

ν − n2

ρ2

)
,

ν = 1, 2; q2
ν = ενω

2/c2 − q2
z is the squared transverse wave

number, ε1 = ε (cylinder filling), and ε2 = 1 (vacuum). For
q2

ν > 0, expressions (11) have the form of the Bessel equa-
tions, and for q2

ν < 0 they are the modified Bessel equations.
In our case, q2

2 < 0 because we consider the case when the
condition ω2 < c2q2

z is satisfied. The eigenmodes with q2
1 >

0 and q2
2 < 0 are the bulk-surface electromagnetic waves,

whereas the eigenmodes with q2
1 < 0 and q2

2 < 0 are the sur-
face electromagnetic waves.

For the bulk-surface eigenmodes, the spectral components
of the electromagnetic field, Ezn(ρ, qz, ω) and Hzn(ρ, qz, ω),
have the forms

Ezn(ρ, qz, ω) = AE
n Jn(q1ρ),

Hzn(ρ, qz, ω) = AH
n Jn(q1ρ) (12)

for the cylinder region (ρ � ρc, q2
1 > 0), and

Ezn(ρ, qz, ω) = BE
n Kn(|q2|ρ),

Hzn(ρ, qz, ω) = BH
n Kn(|q2|ρ) (13)

for the vacuum region (ρ � ρc, q2
2 < 0). Here Jn(u) is the

nth-order Bessel function of the first kind, and Kn(u) is
the nth-order modified Bessel function of the second kind
(Macdonald function) (see Ref. [32]); AE ,H

n and BE ,H
n are the

arbitrary constants.
The spectral components of the electromagnetic field for

the surface eigenmodes are described by the same Eqs. (12)
and (13) as for bulk-surface waves, where, however, we take
a modified Bessel function of the first kind, In(u) (the Infeld
function), instead of the Bessel function Jn(u) because inside
the cylinder the condition q2

1 < 0 holds. The choice of solu-
tions is conditioned by the demand to fulfill the requirements
of finiteness of the values Ezn(ρ, qz, ω) and Hzn(ρ, qz, ω) at
ρ → 0 and ρ → ∞.

Other Fourier components of electromagnetic fields inside
(ρ < ρc) and outside (ρ > ρc) the cylinder are expressed via
values Ezn(ρ, qz, ω) and Hzn(ρ, qz, ω) using Maxwell’s equa-
tions. Note that, for the nonzero azimuthal mode indices, the
eigenmodes under study are hybrid ones, i.e., these eigen-
modes have all components of the electric and magnetic fields.

We represent the surface current �j2D
τ (ϕ, z, t ) in the

form

�j2D
τ (ϕ, z, t ) =

∞∑
n=−∞

∫ ∞

−∞

∫ ∞

−∞
�j2D
τn (qz, ω)

× exp[i(qzz + nϕ − ωt )]dqzdω, (14)

where

j2D
αn (qz, ω) =

∑
β

σαβ (n, qz, ω)Eβn(qz, ω). (15)

σαβ (n, qz, ω) (α, β = ϕ, z) are the tensor components of the
nanotube conductivity, the general expressions for which were
derived in Ref. [33].

Using Eqs. (10), (15), and the continuity equation (6), we
find the following expression for the Fourier component of the
surface density of charge carriers in the nanotube:

n2D(n, qz, ω) = qz

eω

∑
β

[
n

qzρc
σϕβ (n, qz, ω)

+ σzβ (n, qz, ω)

]
Eβn(ρc; qz, ω), (16)

where β = ϕ, z. Satisfying the above boundary conditions on
the cylinder surface, we obtain the dispersion equation for the
eigenmodes spectra for the semiconductor nanotube with a
dielectric filling,


(n, qz, ω) = 4π i

ωρc

[
n2

ρ2
c q2

σϕϕ (n, qz, ω) + σzz(n, qz, ω)

]

× 
H (n, qz, ω), (17)
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where


(n, qz, ω) = 
E (n, qz, ω)
H (n, qz, ω) − 
0(n, qz, ω),

(18)


E (n, qz, ω) = 1

qρc

K ′
n(qρc)

Kn(qρc)
+ ε

q1ρc

J ′
n(q1ρc)

Jn(q1ρc)
, (19)


H (n, qz, ω) = 1

qρc

K ′
n(qρc)

Kn(qρc)
+ 1

q1ρc

J ′
n(q1ρc)

Jn(q1ρc)
, (20)


0(n, qz, ω) =
[

nωqz(ε − 1)

q2
1q2ρ2

c c

]2

, (21)

with q =
√

−q2
2 = √

q2
z − ω2/c2. Here the prime denotes the

derivative of the corresponding special function with respect
to its argument.

In the absence of a semiconductor nanotube, the relation

(n, qz, ω) = 0 for n � 1 can be interpreted as the dispersion
equation for hybrid E- and H-type waves. The symmetric (n =
0) cylindrical E-type eigenmodes are characterized by the
dispersion relation 
E (0, qz, ω) = 0, whereas the symmetric
H-type waves are characterized by equation 
H (0, qz, ω) =
0. Note that the special case of dispersion equation (17) in the
quasistationary approximation (when c → ∞) and for ε = 1
was derived in Ref. [28]. In this case, it describes slow surface
hybrid eigenmodes in a hollow semiconductor nanotube.

To determine the type of hybrid waves, we introduce the
following value:

� = |Ezn(ρ, qz, ωg)|max

|Hzn(ρ, qz, ωg)|max
,

where the index “max” indicates the maximum value of the
corresponding component. For hybrid E- and H-type waves,

the conditions � > 1 and � < 1 are satisfied, respectively.
From these facts, it transpires that the wave type is determined
by the dominant axial component of the electromagnetic field
[34]. The mode subscript g represents actually two indexes,
the azimuthal number n and the radial number s, which is
the number of field variations along the radial coordinate.
In the case of symmetric waves, the index s corresponds to
the root number of the corresponding dispersion equation:

E (0, qz, ω) = 0 or 
H (0, qz, ω) = 0. In the dispersion equa-
tion 
(n, qz, ω) = 0, the role of the coupling factor between
the E- and H-waves is played by the quantity 
0(n, qz, ω). If
n = 0, the dispersion equation 
(n, qz, ω) = 0 splits into two
independent equations, 
E (0, qz, ω) = 0 and 
H (0, qz, ω) =
0. In this case, the electromagnetic fields of symmetric waves
have three components: Eρ0s, Hϕ0s, and Ez0s for E waves,
and Hρ0s, Eϕ0s, Hz0s for H waves. If n 	= 0, all electric and
magnetic field components of the cylindrical eigenmodes
are nonzero, and, therefore, they are the hybrid E- and H-
type waves. In Refs. [34,35], a method was provided for
the separation of such modes into the so-called HEns and
EHns modes depending on the predominant axial compo-
nent of the electromagnetic field. If the axial component
of the electric field dominates (� > 1), the eigenmode is
the HEns mode (of E type); otherwise it is the EHns mode
(of H type).

Note that the inclusion of a semiconductor nanotube in the
system under consideration does not violate the symmetry of
the problem. Therefore, the above-described classification of
eigenmodes is also suitable for the system with a nanotube.
For the conductivity tensor components of a semiconductor
nanotube, we use the expressions obtained in Ref. [33]. We
write below only components needed for our analysis. These
are as follows:

Re σϕϕ (n, qz, ω) = − e2

4πm∗|qz|ρ3
c ω

∑
m′

{(
m′ + η + n

2

)2

[θ (A+−+) − θ (A−−+)] −
(

m′ + η − n

2

)2

[θ (A++−) − θ (A−+−)]

}
,

(22)

Re σzz(n, qz, ω) = − e2

8πε0|qz|3ρ3
c ω

∑
m′

{(ω − �+)2[θ (A+−+) − θ (A−−+)] − (ω − �−)2[θ (A++−) − θ (A−+−)]}, (23)

Im σϕϕ (n, qz, ω) = e2n2D
0

m∗ω

{
1 − 1

4π2n2D
0 ρ3

c qz

∑
m′

[(
m′ + η + n

2

)2

ln

∣∣∣∣A+−+
A−−+

∣∣∣∣ −
(

m′ + η − n

2

)2

ln

∣∣∣∣A++−
A−+−

∣∣∣∣
]}

, (24)

Im σzz(n, qz, ω) = − e2n2D
0

m∗ωq2
z ρ

2
c

{
n2 + h̄2

16π2n2D
0 ρ3

c qzε
2
0

∑
m′

[
(ω − �+)2 ln

∣∣∣∣A+−+
A−−+

∣∣∣∣ − (ω − �−)2 ln

∣∣∣∣A++−
A−+−

∣∣∣∣
]}

. (25)

Here θ (u) is the Heaviside theta function, m∗ is the electron
effective mass, n2D

0 is the equilibrium surface electron density,
h̄ is the Planck constant, η is the number �/�0 of magnetic
flux quanta �0 = 2π h̄c/e inside the nanotube,

A+−+ = qzvm′ − ω− + �+,

A−−+ = −qzvm′ − ω− + �+,

A++− = qzvm′ − ω+ + �−,

A−+− = −qzvm′ − ω+ + �−,

vm =
√

2

m∗ (εF − εm) (26)

is the maximum value of electron velocity along the tube
axis in subzone with boundary energy εm = ε0(m + η)2, ε0 =
h̄2/2m∗ρ2

c is the rotational quantum, m = 0,±1, . . . is the
quantum number defining the z-projection of electron angular
momentum mh̄, εF is the Fermi energy which is related to the
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electron density n2D
0 in the nanotube by the equation

n2D
0 =

√
2m∗

2π2h̄ρc

∑
m

√
εF − εm

= 1

2π2ρ2
c

∑
m

√
εF

ε0
− (m + η)2,

ω± = ω ± h̄q2
z /2m∗,

�±(n, m′) = ε0

h̄
[±(m′ + η ± n)2 ∓ (m′ + η)2] (27)

is the frequency of the “vertical” electron transitions be-
tween subzones of the electron spectrum in the nanotube (see
Ref. [33]). The summation over m in Eqs. (22)–(25) and (27)
is done from mmin to mmax, where mmin and mmax are the
minimal and maximal values of m satisfying the condition
εF > εm. In Eqs. (22)–(25), we neglect the spin level splitting
because we consider the semiconductor materials with small
effective masses, m∗ � m0 (see Ref. [33]), where m0 is the
mass of a free electron.

It might be worthwhile to point out that the tensor com-
ponents Eqs. (22)–(25) of conductivity were obtained in
Ref. [33] without taking into account the collisions of charge
carriers in the nanotube, but with regard to the electron tran-
sitions between the valence and conductivity zones. Only
these transitions provide the real components Eqs. (22) and
(23) of the conductivity tensor. These real components of the
conductivity are nonzero in a very narrow range of frequencies
with relative width of the order of vF /c � 1, where vF is the
Fermi velocity of electrons in the semiconductor. We assume
that the electron collisions in the nanotube make a more
significant contribution to the real part of the conductivity
tensor and affect the behavior of the eigenmode spectrum of
the structure under consideration. Taking these comments into
account, we use Eqs. (24) and (25) below for the conductivity
tensor components, where we replace, however, frequency ω

by ω + iν. Here ν is the collision frequency. In doing so, these
components become complex, and later we omit the symbol
“Im” for them.

B. Analysis of the eigenmodes spectrum

It is convenient to carry out the analysis of the eigenmodes
spectrum using the dimensionless frequency � = ω/ω0 and
wave number Q = qzρc with ω0 = c/ρc. In the numerical
calculations, we choose the following geometric and material
parameters of the structure: ρc = 50 nm, ε = 9.8 (for policor
dielectric), and m∗ = 0.013 m0 (for InSb semiconductor).
For these parameters, we have ω0 = 6 × 1015 s−1 and ε0 ≈
1.16 meV. The value of magnetic field which corresponds to
the magnetic flux quanta �0 is B0 ≈ 0.525 T. According to
Ref. [27], the radius of a semiconductor nanotube can reach
200 nm, which gives B0 ≈ 0.138 T. For a chosen value of
ρc = 50 nm, the peculiarities of the eigenmodes spectrum
discussed below arise in the terahertz frequency range. Nu-
merical calculations show that the greater the radius ρc, the
fewer the frequencies where these peculiarities take place.

The analysis of the spectra of the bulk-surface electromag-
netic eigenmodes in the dielectric cylinder was presented in
Refs. [36]. In Ref. [30], we have shown that, in the collision-

FIG. 2. Dispersion curves for eigenmodes in the collisionless
regime (ν = 0, dashed curves 3′, 4′, and 5′) and taking into account
the relaxation frequency ν = 3 × 1011 s−1 (solid curves 3, 4, and 5)
built using the numerical solution of the dispersion equation (17).
Red curves 3 and 3′ correspond to nonsymmetrical (hybrid) bulk-
surface HE 11 waves (i.e., E type modes) with n = s = 1, while blue
curves 4 and 4′ are for EH11 modes (i.e., H type modes). Green
curves 5′ and a pair of closely spaced dashed curves 5 are for the
surface waves. Dash-dotted orange lines 1 and 2 correspond to the
vacuum (� = Q) and dielectric (� = Q/

√
ε) light lines. Letter A

denotes the point of intersection of solid red dispersion curve 3
and the vacuum light line 1. Note that point A is located at the
starting point of the dispersion curve 3′. The values of the parameters
are n2D

0 = 5.35 × 1013 m−2, εF ≈ 2.33 meV, η = 1.42, and m in
Eqs. (24) and (25) takes on the values −2, −1.

less regime, the spatial dispersion of nanotube conductivity
causes the splitting of the dispersion curves for the nonsym-
metrical (hybrid) eigenmodes. This splitting takes place only
for the modes with one variation of fields by radius. This is
due to the fact that the frequency region in which the splitting
occurs is well below the frequencies of other modes. A very
interesting fact is that the number of split eigenmode branches
oscillates when changing the number of magnetic flux quanta
in the nanotube. In addition, the frequencies of these modes
also oscillate with the same period. These oscillations are
caused by corresponding oscillations of the nanotube con-
ductivity, and they are manifestations of the Aharonov-Bohm
effect. The latter, in turn, occur as a result of oscillations of
the number of subzones in the electron energy spectrum of the
nanotube when the number of magnetic flux quanta changes.

Here we discuss the changes in the eigenmodes spec-
trum due to the electron collisions in the nanotube. Figure 2
demonstrates these changes for nonsymmetrical (hybrid)
bulk-surface waves with n = s = 1 and for the surface waves.
The dispersion curves are built using the numerical solution
of the dispersion equation (17) without taking into account
the electron relaxation frequency (ν = 0, dashed curves 3′, 4′,
and 5′) and for ν = 3 × 1011 s−1 (solid curves 3, 4, and 5).

As seen from Fig. 2, the electron collisions result in sig-
nificant restructuring of the eigenmodes spectrum. At first
glance, it may seem unexpected that taking into account
the relatively small relaxation frequency (ν/ω � 1) leads to
such a significant rearrangement of the eigenmode spectrum.
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However, one should pay attention to the fact that, as is clearly
seen in Fig. 2, this significant restructuring spectrum occurs at
very insignificant changes in the eigenmode frequencies by the
values 
� of the order of ν. Such changes of the eigenmode
frequencies are quite expected.

The most important change consists in the appearance of a
section in dispersion curve 3 located to the left of the vacuum
light line 1. The phase velocities of the waves correspond-
ing to this section are greater than the velocity of light in
the vacuum. The electromagnetic waves of the electric type
(TM-type), propagating along the flat metal-dielectric inter-
face with phase velocities greater than the velocity of light in
the vacuum, are referred to as Zenneck’s waves [31], while
the E -type waves propagating along cylindrical conductors
in a dielectric environment were named Sommerfeld’s waves
[37,38].

A detailed analysis of the dispersion curves for surface
polaritons and Zenneck’s waves at the flat air-germanium in-
terface was performed in Ref. [39]. It was shown, in particular,
that there are so-called crossover points at the intersections of
the dispersion curves with the vacuum light line. To the left of
these points, the dispersion curves correspond to Zenneck’s
waves, while to the right of these points the dispersion curves
are for the surface polaritons. In our case, the crossover point
is point A in Fig. 2. Note that unlike the well-known Zenneck-
Sommerfeld’s supraluminal waves, the waves that we describe
(curve 3 in Fig. 2) are hybrid HEn1-type waves. Despite their
hybrid nature, the supraluminal waves considered here are
E -type modes, like the Zenneck-Sommerfeld waves. Similar
to the Zenneck-Sommerfeld waves, HEn1-type supraluminal
waves in conductive nanotubes may be of interest for use in
nanoscale terahertz transmission lines (see, e.g., [40–42]).

Strictly speaking, the supraluminal waves similar to
Zenneck-Sommerfeld’s waves are not eigenmodes of the sys-
tem because they have a nonzero radial component of the
Poynting vector in the vacuum directed away from the sam-
ple surface. However, the wave leakage into vacuum can be
considered as an additional source of mode damping, along
with Joule losses. Therefore, we can continue to consider
Zenneck-Sommerfeld’s and similar waves as eigenmodes with
two sources of their damping.

The analysis of the dispersion equation (17) shows that
taking into account the electron collisions in the nanotube
does not result in the appearance of supraluminal portions of
the dispersion curves for the azimuthally symmetric modes
but only for the nonsymmetrical hybrid HEn1 modes (i.e., for
E type modes) only.

In Ref. [30], the following dependence of the number NBSW

of split spectrum branches for the hybrid eigenmodes on the
number k of filled electronic energy subzones was established:
NBSW = 2|2k − 1| + 1. The number k changes in a jump

k = −1 when the value of magnetic flux satisfies the con-
dition η = j + √

εF /ε0 (where j is integer number). Reversal
jumps occur at η = j − √

εF /ε0. The electron collisions in the
nanotube result in the merging of the spectral branches (i.e., in
the disappearance of gaps in the spectrum by frequency) and
a greater difference in the wave number Q of the dispersion
curves near the turning point of the spectrum. Therefore, it
is more correct to say that the number NND of sections of
dispersion curves with negative dispersion increases when the

FIG. 3. Dispersion curves for the eigenwaves in a semiconductor
nanotube with dielectric filling at different values of the magnetic
flux. Solid curves 3, 4, and 5 are plotted for η = 1.42 (slightly above
the critical value ηcr = √

εF /ε0 = √
2). These curves are the same as

curves 3, 4, and 5 in Fig. 2. Dashed curves 3′, 4′, and 5′ correspond to
η = 1.41 (slightly below the critical value ηcr). Points A,B and A′, B′

indicate the characteristic sections of the dispersion curves where
the normal dispersion changes by the anomalous one. The behavior
of point C on dispersion curve 3 when increasing magnetic flux is
followed in Fig. 5.

number k of filled electronic subzones increases. The value
of NND oscillates when changing the number of magnetic flux
quanta in the nanotube, similarly to the oscillations of NBSW in
the absence of collisions [30]. The splitting of the dispersion
curves for the EHns waves is less pronounced than that for the
HEns modes.

Figure 3 shows the dispersion dependences for the eigen-
modes in a semiconductor nanotube with the dielectric filling
for εF ≈ 2.33 meV (εF /ε0 = 2), ν = 3 × 1011 s−1, and the
following two values of filling factor η: η = 1.41 < ηcr = √

2
(m = −2,−1, 0, k = 3, dashed curves 3′, 4′, and 5′) and
η = 1.42 > ηcr (m = −2,−1, k = 2, solid curves 3, 4, and 5).
Points A,B and A′, B′ indicate the characteristic sections of
the dispersion curves where the derivative d�/dQ tends to
infinity, and normal dispersion changes by an anomalous one.

It is evident from Fig. 3 that the number of sections with
negative dispersion in curve 3′ (which corresponds to k = 3
and m = −2,−1, 0) is larger than that in curve 3 (with k = 2
and m = −2,−1). The sections with negative dispersion in
curves 4 and 4′ are much less pronounced than that on curves
3 and 3′.

It should be noted that turning points such as A,B in curve
3 and A′, B′ in curve 3′ appear due to the specific features of
the frequency and spatial dispersion of the conductivity tensor
components in the regions of Q and � where new subzones
of the electron energy spectrum arise. Figure 4 demonstrates
the peculiarities of the real and imaginary parts of the con-
ductivity tensor components σ̄ϕϕ (n, Q,�) in the vicinity of
turning points A and B on curve 3 in Fig. 3. Here the values
Re σϕϕ (n, Q,�) and Im σϕϕ (n, Q,�) are expressed in units
of σ0 = e2n2D

0 /m∗ω0. As seen from Fig. 4, the characteristic
bends of the dependences Re σ̄ϕϕ (n, Q,�) appear at points
corresponding to the turning points on the dispersion curve 3
in Fig. 3.
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FIG. 4. Dependences of the real (solid curve 1) and imagi-
nary (dashed curve 2) parts of the conductivity tensor component
σ̄ϕϕ (n, Q, �) on the wave number Q in the vicinity of turning points
A and B on the dispersion curve 3 in Fig. 3.

When looking at Fig. 4, it might give the impression
that the real and imaginary parts of the conductivity ten-
sor component σ̄ϕϕ (n, Q,�) are multivalued functions of the
wave vector Q. Meanwhile, as is evident from Eq. (24),
σ̄ϕϕ (n, Q,�) is a single-valued function of two arguments, of
the wave vector Q and of the frequency �. It should be noted
that when constructing the dependences of Re σϕϕ and Im σϕϕ

on the wave vector Q, shown in Fig. 4, we do not consider the
frequency � as an independent argument but take it from the
solution of dispersion equation (17). Since there exist several
dispersion curves �(Q) in the vicinity of turning points A and
B (see Fig. 3), we have several values of � that correspond to
the same value of Q and, correspondingly, several values of
the conductivity tensor components.

The dependences of the real and imaginary parts of the
conductivity tensor components σ̄zz(n, Q,�) on Q near the
turning points of the spectrum, like A,B and A′, B′, have
similar features.

It is of interest to follow the behavior of the dis-
persion curves when changing the magnetic flux through
the nanotube. In the quasistationary approximation, the
Aharonov-Bohm oscillations of plasmon frequency in a hol-
low semiconducting nanotube were studied in Ref. [28]. Here,
as an example, we choose the point C (marked with a filled
circle) on the dispersion curve 3 in Fig. 3 for the HE11

bulk-surface wave at Q = 1.1 × 10−3. Figure 5 demonstrates
the Aharonov-Bohm oscillations of the eigenmode frequency
when increasing the magnetic flux.

III. WAVE EXCITATION BY CHARGED PARTICLES

The total radiative energy loss of the electron can be esti-
mated by determining the work done by the wave electric field
being excited by the moving electron per unit time,

dW

dt
= evEz(ρe, ϕe, vt ; t ), (28)

where Ez(ρe, ϕe, vt ; t ) is the z-component of the electric field
excited by the moving electron at the electron location point,
i.e., at point (ρ = ρe, ϕ = ϕe, z = vt ).

FIG. 5. Dependence �(η) for the HE11 bulk-surface wave at Q =
1.1 × 10−3. Point C at η = 1.42 corresponds to point C in Fig. 3.

By representing the function ne(�r, t ) in cylindrical coordi-
nates as (see Ref. [43])

ne(�r, t ) = δ(ρ − ρe)√
ρρe

δ(ϕ − ϕe)δ(z − vt ), (29)

we obtain the corresponding solutions of the Maxwell equa-
tions for the Fourier components of the electric field of the
moving electron. Then, using the boundary conditions dis-
cussed above and Eq. (28), we find the following expression
for the electron energy loss per unit time [30]:

dW

dt
= − e2

ρc

∞∑
n=−∞

K2
n (ρe|qz|)In(ρc|qz|)
H (n, qz, ωg)

Kn(ρc|qz|)|
′(n, ω/v, ω)|ωg

×
[

ε

q1ρc

J ′
n(ρcq1)

Jn(ρcq1)
+ |qz|

qz

I ′
n(ρc|qz|)

In(ρc|qz|)
]
, (30)

where qz = ωg/v, i.e., the fulfillment of the Cherenkov res-
onance condition is taken into account, ωg is the frequency
of the cylinder eigenmode satisfying the dispersion equation

(n, qz = ωg/v, ωg) = 0, and the value |
′(n, ω/v, ω)|ωg is
the modulus of the first derivative of 
(n, qz = ω/v, ω) with
respect to ω taken at ω = ωg.

As noted above, the dispersion curves for both the bulk-
surface and surface waves have parts with negative dispersion.
This means that the structure under study can be used as
materials for constructing both the generators and amplifiers
of electromagnetic radiation. Indeed, this is possible under
propagation of the tubular flow of electrons along the structure
when the beam instability effect emerges. The electrons in
beams, as a rule, have a certain spread in velocity, so the
kinetic instability occurs when the electron velocity variation
exceeds some critical value (see, e.g., Ref. [44]),

|
�u|
|�u| >

|ω − qzv0|
qzv0

. (31)

Here �u is an electron velocity in the flow, 
�u is the velocity
variation, and v0 is the directed motion velocity of the flow.

An important characteristic of the beam instability is the in-
crement γ . Recall that the instability increment characterizes
the exponential growth of the wave amplitude (or intensity)
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at the linear stage of the instability development (see, e.g.,
Ref. [44]). In this paper, we study the amplitude instability
in time of the waves in the structure under consideration
when they interact with the electron beam. In this case, the
increment has a frequency dimension, and its inverse value
indicates how long it takes for the wave amplitude to in-
crease by e times. To obtain the increment of the kinetic
instability, we use the so-called energy approach, follow-
ing Ref. [45]. The essence of this approach is to represent
the energy of the excited waves in the form of a sum of
quanta h̄ωg of elementary excitations, the change of the num-
ber ℵg of which is described by the corresponding kinetic
equation,

∂ℵg

∂t
= 2π

h̄

∑
�k1,�k2

∣∣W�k1,g,�k2

∣∣2
δ(�1 − �2 − h̄ωg)

× [
(ℵg + 1)n�k1

(
1 − n�k2

) − ℵgn�k2

(
1 − n�k1

)]
, (32)

∑
g

h̄ωg
∂ℵg

∂t
= 1

4π

∫ (
�H ∂ �H

∂t
+ �E ∂ �D

∂t

)
d�r = −dW

dt
, (33)

where n�k j
= (0, 1) is the occupation number of the electron

quantum state with wave vector k j , � j = h̄2k2
j /2m0 is the

energy of an electron in the state with wave vector k j , W�k1,g,�k2

is the Hamiltonian matrix element of the electron interaction
with the electromagnetic field quantum with energy h̄ωg, and
integration in Eq. (33) is done over the volume occupied by
the field of excited eigenmodes.

The energy loss of a single electron per unit time can be
considered as the power of spontaneous radiation. So, when

calculating |W�k1,g,�k2
|2, we should put ℵg → 0, n�k2

→ 0, n�k1
→

1. Substituting Eq. (32) into Eq. (33) and comparing the result
with Eq. (30), we get

∣∣W�k1,g,�k2

∣∣2 = e2h̄v

Lρc

K2
n (ρe|qz|)In(ρc|qz|)
H (qz, ωg, n)

ωgKn(ρc|qz|)|
′(n, qz, ω)|ωg

×
[

ε

q1ρc

J ′
n(ρcq1)

Jn(ρcq1)
+ |qz|

qz

I ′
n(ρc|qz|)

In(ρc|qz|)
]
. (34)

Here q1 is taken at ω = ωg, 
′(n, qz, ω)|ωg is the first deriva-
tive of 
(n, qz, ω) with respect to ω taken at ωg, and L is
the characteristic length of the localization of the fields in
the vacuum along the cylinder radius. The product of ma-
trix element square |W�k1,g,�k2

|2 and (2π/h̄)δ(�1 − �2 − h̄ωg)
determines the probability of the electron transition from the
state �2 with the wave vector �k2 into the state �1 with the
wave vector �k1 with absorption of the plasmon with energy
h̄ωg in the time unit [45].

Contrary to the radiation of a single electron, the radiation
of the beam of charged particles is defined by the induced pro-
cesses. Using Eq. (32) and taking into account the smallness
of momentum h̄qz of the electromagnetic field quantum com-
pared to the electron momentum h̄kz, we find the expression
for the increment γ of the studied modes when they interact
with the electron beam. At electron temperatures (expressed

in energy units) T > h̄ωg, we have

γ = 1

ℵg

∂ℵg

∂t
= 2πV

h̄

×
∫ ∣∣W�k1,g,�k2

∣∣2
δ

(
uz − ωg

qz

)
∂ f ( �p)

∂ pz
d �p, (35)

where �p = h̄�k is the momentum of the beam electron, V is
the localization volume of fields in the vacuum, f ( �p) is the
Maxwell distribution function

f ( �p) = nB
0

(2πm0T )3/2
exp

[
− (pz − p0)2 + p2

ϕ + p2
ρ

2m0T

]
, (36)

and nB
0 and p0 = m0v0 are the equilibrium electron density

and the directed motion momentum of the flow. We emphasize
that the wave vector of the beam electron �k = �p/h̄ is precisely
the value that is used in the definition of the matrix element
W�k1,g,�k2

. We note also that, when substituting Eq. (34) into
Eq. (35), we should replace the value v by pz/m0.

Performing the integration in Eq. (35), we get the following
expression for the increment:

γ = e2SnB
0

√
2πm0

T 3/2ρcqz

K2
n (ρe|qz|)In(ρc|qz|)
H (qz, ωg, n)

Kn(ρc|qz|)|
′(n, qz, ω)|ωg

×
[

ε

q1ρc

J ′
n(ρcq1)

Jn(ρcq1)
+ |qz|

qz

I ′
n(ρc|qz|)

In(ρc|qz|)
](

v0 − ωg

qz

)

× exp

[
− m0

2T

(
v0 − ωg

qz

)2]
, (37)

where S ∼ 1/q2 is the square of the localization region of the
fields in the vacuum in plane perpendicular to the cylinder
axis. As follows from Eq. (37), the increment is positive (γ >

0) at v0 > ωg/qz. This means that the beam instability occurs
and the electromagnetic waves are excited by the beam.

IV. NUMERICAL ANALYSIS OF WAVE EXCITATION

For the correct numerical analysis of both the electron
energy loss and the beam instability increment, it is necessary
to take into account the dissipative loss of the excited waves
through taking into account the electron collisions in the nan-
otube.

A. Electron energy loss

In this subsection, we perform a numerical analysis of
the dependence of the electron energy loss [Eq. (30)] on
the number of flux quanta η for the following parameter
values: β = 0.33, Q = 1.79 × 10−3, εF /ε0 = 2, ρe = 1.1ρc,
ν = 3 × 1011 s−1; the value k changes from 2 [m = −2, −1
and η ∈ (0.415; 0.59) with period 1] to 3 [m = −2, −1, 0
and η ∈ (0.59; 1.415) with period 1].

According to Eq. (30), the electron energy loss occurs
due to the excitation of the waves satisfying the Cherenkov
resonance condition, ω = qzv. This means that the discrete set
of points (Q, �) lying on the intersections of the all dispersion
curves and the line � = βQ define the waves responsible
for the energy loss of the electron moving with the velocity
v = βc. The chosen parameter β corresponds to the electron
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FIG. 6. Aharonov-Bohm oscillations of the dimensionless loss
W = −(dW/dt )/(dW/dt )0 (red solid curve 1) due to the excitation
of the EH11 bulk-surface wave and of the number k of filled electron
energy subzones (blue dashed curve 2).

velocity v that is higher than the light velocity c/
√

ε in the
dielectric cylinder. In this case, all the above-mentioned points
of intersection of the dispersion curves with the Cherenkov
resonance line correspond to the excitation of the bulk-surface
waves only.

Since the nanotube significantly affects only the modes
with n = 1 and s = 1, it is interesting to carry out numer-
ical estimates of the electron energy loss for the case of
excitation of the HE11 and EH11 bulk-surface waves. As an
example, we present the magnetic field dependence of the
partial dimensionless losses W = −(dW/dt )/(dW/dt )0 due
to the excitation of the EH11 wave (see the red solid curve 1 in
Fig. 6), where (dW/dt )0 = e2c/ρ2

c ≈ 2.8 × 10−5 W. One can
see that the electron energy loss oscillates with a change in the
number η of magnetic flux quanta through the nanotube cross
section with a period equal to one magnetic flux quantum.
The extrema points in the dependence W (η) correspond to
the turning points on the dispersion curves �(Q) built for
corresponding values of η. As is also evident from Fig. 6, the
values of η at the extrema points in the dependence W (η) are
the same as the values of η at which the jumps in the magnetic
field dependence of the number k of filled electron energy
subzones occur (see the blue dashed curve 2 in Fig. 6).

B. Increment

For numerical analysis of the dependence of the increment
of kinetic instability on the number of magnetic flux quanta,
we choose the following parameters of the tubular beam:
nB

0 = 1016 m−3, T = 2.2 × 104 K, which corresponds to the
average thermal velocity of the beam electrons (vT ≈ 106 m/s
and v0/c ≈ 0.33). In this case, the beam is nonrelativistic
because the condition 1 −

√
1 − v2

0/c2 ≈ 0.06 � 1 holds.
The dependence of relative increment γ /� of the kinetic

instability due to the excitation of EH11 bulk-surface waves
on the number η of magnetic flux quanta (solid red curve 1)
and the dependence �(η) (dashed blue curve 2) are shown
in Fig. 7 for Q = 1.79 × 10−3, ρe = 1.1ρc, ν = 3 × 1011 s−1.
As seen from this figure, the dependence γ /� on η has
the form of a periodic set of narrow maxima with a period

FIG. 7. Dependence of the relative increment γ /� of the kinetic
instability due to the excitation of EH11 bulk-surface waves on the
number η of the magnetic flux quanta (solid red curve 1) and the
dependence �(η) (dashed blue curve 2) for Q = 1.79 × 10−3, ρe =
1.1ρc, ν = 3 × 1011 s−1. The value k of the electron energy subzones
in nanotube changes from 2 [m = −2, −1 and η ∈ (0.415; 0.59)
with period 1] to 3 [m = −2, −1, 0 and η ∈ (0.59; 1.415) with
period 1].

equal to one magnetic flux quantum. The positions of these
maxima coincide with the positions of the maxima in the
dependence �(η). This means that an external dc magnetic
field can significantly influence the interaction efficiency of
the beam of charged particles with the electron plasma in
the nanotube. This, in turn, makes it possible to propose the
studied structure for the creation of nanoscale oscillators and
amplifiers effectively controlled by a dc magnetic field. Recall
that the generation of electromagnetic waves is possible in the
case when the beam excites the electromagnetic waves with
negative dispersion. It is remarkable that the Aharonov-Bohm
effect can significantly affect the macroscopic phenomenon of
the beam instability.

V. CONCLUSIONS

The problem of electron and tubular electron beam interac-
tion with electromagnetic waves in a semiconductor nanotube
with a dielectric filling placed in a coaxial dc magnetic field
has been theoretically examined. In this study, the electron
collisions in the nanotube should be taken into account, and
first we analyzed the transformation of the eigenmodes spec-
trum due to these collisions. The main transformation consists
in the emergence of dissipative (leaky) waves (similar to
Zenneck-Sommerfeld’s waves in the plane geometry) with
phase velocities greater than the speed of light in the vacuum
and in the disappearance of frequency gaps in the spectrum.
However, in doing so the sections in the dispersion curves
with negative dispersion, existing in the collisionless regime,
are kept. We have found that the number of such sections with
negative slope oscillates with a change in the number of the
magnetic flux quanta through the nanotube with a period equal
to one magnetic flux quantum. The presence of characteristic
bends on the dependence of the nanotube conductivity on the
longitudinal wave number are shown to be responsible for the
appearance of the turning points on the dispersion curves for
the eigenmodes.
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The analysis of the interaction of a moving nonrelativistic
electron with both the bulk-surface and surface electromag-
netic waves was carried out. We have shown that the electron
energy loss due to the wave excitation oscillates when chang-
ing the magnetic flux through the nanotube with a period equal
to one magnetic flux quantum, which is a manifestation of the
Aharonov-Bohm effect.

Using the so-called energy approach, we obtained the ana-
lytical expression for the increment of the kinetic instability
due to the wave interaction with a tubular electron beam.
The numerical analysis of the dependence of this increment
on the number of magnetic flux quanta through the nanotube
shows the presence of oscillations, which have the form of
a set of narrow periodically located maxima, with a period

equal to one magnetic flux quantum. This means that, first, the
Aharonov-Bohm effect clearly manifests in the macroscopic
phenomenon of beam instability, and second, it is possibile
to use this phenomenon to create nanoscale amplifiers and
oscillators of terahertz radiation controlled by an external dc
magnetic field.
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