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Spin-Hall current and nonlocal transport in ferromagnet-free multiband models
for SrTiO3-based nanodevices in the presence of impurities
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We compute the spin-Hall conductance in a multiband model describing the two-dimensional electron gas
formed at a LaAlO3/SrTiO3 interface in the presence of a finite concentration of impurities. Combining linear
response theory with a systematic calculation of the impurity contributions to the self-energy, as well as to the
vertex corrections of the relevant diagrams, we recover the full spin-Hall vs sheet-conductance dependence of
LaAlO3/SrTiO3 as reported in Trier et al. [Nano Lett. 20, 395 (2020)], finding a very good agreement with
the experimental data below and above the Lifshitz transition. In particular, we demonstrate that the multiband
electronic structure leads to only a partial, instead of a complete, screening of the spin-Hall conductance, which
decreases with increasing the carrier density. Our method can be generalized to other two-dimensional systems
characterized by a broken inversion symmetry and multiband physics.
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I. INTRODUCTION

Recently, spintronics, a branch of electronics based on
the manipulation of electron spin, rather than the charge, is
emerging as a promising technology for information stor-
ing and processing, and for sensing [1–3]. Spin injection in
spintronic devices can be done by using ferromagnetic leads,
however, the efficiency of this process is usually low [4–6].
An alternative approach is to use semiconducting materials
characterized by large charge-to-spin conversion efficiency.
Here, a charge current can be converted into a spin current
due to the Edelstein [7] and/or the spin-Hall (SH) effects
[8,9]. This is a particularly efficient process, for example,
in some two-dimensional systems [10–14] and topological
insulators (see, for instance, Ref. [15] and references therein),
characterized by breaking of the inversion symmetry due to a
Rashba-type spin orbit interaction (SOI), even in the absence
of ferromagnetic leads [16].

The Edelstein effect consists of a spin accumulation in-
duced by an injected electrical current due to the presence of
Rashba-split Fermi surfaces. The excess spin density diffuses
across the system, thus giving rise to a net spin-polarized spin
current perpendicular to the charge current, as the spin and
the momentum of the carrier get “locked.” At variance, the
SH effect can either be extrinsic, i.e., related to the impurity
scattering in the material, or intrinsic, due to the SOI related
to the direct coupling (in the response function) between the
electric and the spin currents [17].

An ideal platform to realize a versatile and tunable Rashba
SOI in realistic devices is provided by the two-dimensional

electron gas (2DEG) that emerges at the surface of SrTiO3

(STO) and at the interface between STO and large gap band
insulating oxides, like LaAlO3 (LAO) [18–21]. Among other
remarkable properties, the 2DEG possesses a strong tunability
of the carrier density by gate voltages, which allows for a
tuning of a Rashba-type SOI by electric field effect [22–25].

SrTiO3-based nanodevices are very promising for spintron-
ics, as they are characterized by one of the largest spin-charge
conversion efficiencies among all materials, as shown in
Refs. [2,26]. In Fig. 1 we sketch the experimental setup of
Ref. [16]. Here, the charge current Ic,in injected (along the y
axis of the figure) at contacts 1 and 2 generates a net spin
current Is diffusing in the bridge along the x axis. A second
spin-charge conversion at nearby contacts (3 and 4) turns
Is back into the charge current Ic,out, thus giving rise to a
nonlocal voltage drop and to a nonlocal resistance RNL.

RNL is related to the spin-diffusion length and to the spin-
Hall angle γ (note that RNL is expected to be ∝γ 2 [27]),
which, through a fitting, directly allows a measurement of
the efficiency of the charge-to-spin conversion. In Ref. [16]
a spin-diffusion length up to 900 nm was estimated in the
LAO/STO 2DEG. Moreover, a strong, nonmonotonic, depen-
dence of γ as a function of the gate voltage Vg was reported.

The spin-polarization direction, determined by measuring
RNL as a function of the magnetic field intensity and direction,
is mainly along the out-of-plane z direction (Fig. 1), consistent
with the SH effect as the main mechanism. The resulting
spin-Hall vs longitudinal conductance was then compared
to calculations assuming a multiband tight-binding model
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FIG. 1. Sketch of the experimental setup of [16]. The charge
current Ic,in injected at contacts 1 and 2 generates a net spin current
Is diffusing in the bridge along the x axis, which by a second spin-
charge conversion at contacts 3 and 4 turns again into the charge
current Ic,out.

in the absence of disorder. While the overall nonmonotonic
dependence is captured by a clean multiband mode [16],
discrepancies can be noticed at low values of the chemical
potential and at the Lifshitz transition, calling for further
studies, in particular considering the role of realistic impurity
scattering induced by nonmagnetic disorder.

In this paper we develop a general approach to the spin-
Hall conductance (SHC) in a multiband model with a SOI
in the form characteristic of the 2DEG at a LAO/STO inter-
face. In particular, we employ linear response theory (LRT)
to compute the SHC by accounting for elastic scattering ef-
fects of nonmagnetic impurities in the 2DEG (which seems
appropriate at low density of carriers [16]). In addition, we
compute the sheet conductance and the SHC in the multiband
system with the band structure and the various parameters as
in Ref. [16].

Along our derivation, we systematically take into account
the complex pattern of SOI in LAO/STO, both of atomic
nature, as well as Rashba type, due to the combined effect of
the splitting of the Ti-3d bands (which support the conduction
in the 2DEG), determined by the lateral confinement [2], and
to the inversion-symmetry breaking.

Throughout our analysis of the SH effect we show that,
while any finite concentration of elastic impurity scatterers
would fully screen to zero, the SHC in a single-band Rashba
2DEG [28–32], the multiband structure of the model, com-
bined with the intraband and the interband SOI, leads to only
a partial screening of the SHC, which shows a nonmonotonic
carrier density dependence consistent with the experimental
results of Ref. [16].

Our results for the sheet conductance show an excellent
agreement with the experimental data, both from the quali-
tative as well as from the quantitative point of view. When
low-lying bands only are involved, our results for the SHC
exhibit again an excellent quantitative (and qualitative) agree-
ment with the experimental data. The model captures also the
presence of a peak in the SHC when higher-energy bands
come into play through the Lifshitz transition in the 2DEG,
however, in this region the agreement is apparently less good,
which calls for a deeper discussion of how the SHC should be-

have across the Lifshitz transition. Eventually, the agreement
is recovered at a good level for larger values of Vg.

Our method allows us to derive in detail the impurity-
induced vertex corrections to the SHC in a multiband system
such as the 2DEG at the LAO/STO: it is a substantial exten-
sion of single-band models available to calculate the SHC in
two-dimensional systems, and can be easily generalized to any
multiband system. Here we focus on the “eight-band” model
to recover the results of Ref. [16], but we show how it can be
generalized to other systems, such as a Rashba, single-band
2DEG, which we discuss in the Appendixes of our paper, or
the “six-band” model, a simplified version of the eight-band
one discussed, for instance, in Ref. [33].

In presenting our method and its applications, we organize
our paper as follows:

(i) In Sec. II we present our method and how to apply it to
a generic multiband, tight-binding model in the presence of a
finite density of impurities.

(ii) In Sec. III we introduce and discuss in detail the eight-
band Hamiltonian describing the LAO/STO interface.

(iii) In Sec. IV we compute the sheet and the spin-Hall
conductances of the eight-band model in the presence of a
finite density of impurities. Eventually, we discuss our results
in relation to the experimental data of Ref. [16].

(iv) In Sec. V we provide our conclusions and present
some possible further developments of our work.

In the various Appendixes we provide several technical
details of our derivation.

(v) In Appendix A we review the Kubo formulas for the
response functions that we use to describe charge and/or spin
transport.

(vi) In Appendix B we present our approach to describing
the effects of a finite density of impurity scattering centers on
the various response functions.

(vii) In Appendix C we review the paradigmatic calcula-
tion of the spin-Hall conductance in a lattice model for the
two-dimensional Rashba Hamiltonian.

(viii) In Appendix D we derive the effective, low-energy
description of the eight-band model Hamiltonian in terms of a
two-subband Rashba-type Hamiltonian.

(ix) Finally, in Appendix E we provide the mathematical
details of our analytical derivation of the sheet conductance
and of the spin-Hall conductance in the eight-band model.

II. MULTIBAND MODEL HAMILTONIAN
WITH SPIN-ORBIT INTERACTION

In this paper we add the impurity Hamiltonian on top of
a specific model Hamiltonian describing a multiband system
in the presence of atomic spin-orbit coupling [34], as well as
interband inversion-symmetry-breaking terms, providing an
emergent Rashba interaction [23,35]. Given the grouping of
the energy bands into quasidegenerate doublets [36], the SOI
generically has matrix elements both intradoublet (the same),
as well as interdoublets (different) [37]. Assuming lattice
translational invariance, we employ a lattice Hamiltonian of
the form

H =
∑

�k

∑
σ,σ ′

c†
�k,σ

Hσ,σ ′ (�k)c�k,σ ′ , (1)
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with �k being a generic point in the Brillouin zone and σ being
the “bare” band index (not to be confused with the spin index,
with which it can nevertheless coincide in some cases, such as
the single-band two-dimensional Rashba Hamiltonian). The
(“undressed”) single-fermion operators in Eq. (1) obey the
canonical anticommutation relations {c�k,σ

, c†
�k′,σ ′ } = δ�k,�k′δσ,σ ′ .

We also use ��k,λ
to denote the (“dressed”) eigenoperators of

H , satisfying the anticommutation relations {��k,λ
, ��k′,λ′ } =

δ�k,�k′δλ,λ′ , as well as the canonical commutation relations

[��k,λ
, H] = ε�k,λ

��k,λ
, (2)

so that λ is the “dressed band” label. The operators ��k,λ
and

c�k,σ
are related to each other by a unitary transformation,

according to

c�k,σ
=

∑
λ

w
�k
σ,λ��k,λ

(3)

with the transformation matrix elements satisfying the rela-
tions ∑

λ

w
�k
σ,λ

[
w

�k
σ ′,λ

]∗ = δσ,σ ′ ,

∑
σ

[
w

�k
σ,λ

]∗
w

�k
σ,λ′ = δλ,λ′ . (4)

According to Eq. (3), it is possible to express any observ-
able O that is bilinear in the undressed fermionic operators in
the rotated basis, according to

O =
∑
�k,�k′

∑
σ,σ ′

[O](�k,σ );(�k′,σ ′ )c
†
�k,σ

c�k′,σ ′

=
∑
�k,�k′

∑
λ,λ′

[O](�k,λ);(�k′,λ′ )�
†
�k,λ

��k′,λ′ (5)

with

[O](�k,λ);(�k′,λ′ ) =
∑
σ,σ ′

[
w

�k
σ,λ

]∗
w

�k′
σ ′,λ′[O](�k,σ );(�k′,σ ′ ). (6)

On top of the “clean” Hamiltonian in Eq. (1), we add
disorder to our system by introducing an impurity scattering
potential and a finite density of impurities. We do so by
introducing, in real space, the white-noise impurity potential
VImp(�r) given by [38]

VImp(�r) =
∑

�Ri

U (�r − �Ri ) (7)

with U (�r) being the single-impurity scattering potential and
the impurity scattering centers �Rj randomly distributed over
the system lattice. In Appendix B we perform a systematic
derivation of the self-energy, as well as of the vertex correc-
tions due to the finite density of impurities in our system.

In a single-band 2DEG with a Rashba-type SOI, it is well
known that any finite amount of impurities provides a vertex
correction that fully screens to zero the spin-Hall conductance
[28–32,39], while the general conditions at which the cancel-
lation does, or does not, take place for impurity scattering with
an arbitrary angular dependence, and for an arbitrary angular
dependence of the spin-orbit field around the Fermi surface
are discussed in [40] within the Boltzmann equation approach.

Also, in Appendix C we apply our method to computing the
SHC in a lattice model for a two-dimensional electron gas
with Rashba SOI, finding a perfect, impurity-induced, screen-
ing. At variance, as we show in the following in the multiband
model describing the electronic states in SrTiO3 nanodevices
[16,33,41], the multiband structure itself determines a variable
screening of the SHC. Moreover, the amount of screening, at
a given density of impurities, depends on the position of the
Fermi energy in the system and, therefore, it can be continu-
ously tuned from being almost perfect to being negligible.

III. EIGHT-BAND MODEL HAMILTONIAN

We now focus onto the eight-band, tight-binding Hamil-
tonian describing the 2DEG that forms at a LaAlO3-SrTiO3

(LAO/STO) interface [2,16,42]. Basically, the perovskite
structure of the background lattice induces an isotropic disper-
sion relation in the t2g bands of the Ti, which are responsible
for the conduction in the 2DEG. In addition, the lateral con-
finement that determines the 2DEG splits the dxy subbands
from the dzy and the dxz ones [2]. A “minimal” (six-band)
model accounting for such effects is based on retaining one
band of each kind, for a total of six different subbands, taking
into account the spin degree of freedom, as well [33]. Follow-
ing Ref. [16], in this paper we include an additional pair of
dxy subbands (dxy;B), split above in energy with respect to the
lower (dxy;A) subbands with the same orbital character, but still
below with respect to the dyz and to the dzx subbands.

Defining the various labels as outlined above, we write
the eight-band model Hamiltonian in the lattice momentum
representation as

Height-band =
∑

�k

∑
σ,σ ′

c†
�k,σ

[Height-band(�k)]σ,σ ′c�k,σ ′ (8)

with the sum over �k taken over the full Brillouin zone,
and σ used to label single-particle operators c�k,α,s, with α ∈
{yz, zx, (xy; A), (xy; B)} and s ∈ {↑,↓}. Using a block nota-
tion with respect to the spin degree of freedom, we write the
matrix Height-band(�k) in Eq. (8) as

Height-band(�k) = H0(�k) + HSO + HZ (�k) (9)

with the various matrices at the right-hand side of Eq. (9)
defined as it follows:

(i) The band dispersion relation:

H0(�k) =

⎡
⎢⎢⎢⎣

εyz(�k)I 0 0 0
0 εzx(�k)I 0 0
0 0 εxy;A(�k)I 0
0 0 0 εxy;B(�k)I

⎤
⎥⎥⎥⎦ (10)

with

0 =
[

0 0
0 0

]
, I =

[
1 0
0 1

]
, (11)

and

εyz(�k) = 2t2[1 − cos(kx )] + 2t1[1 − cos(ky)],

εzx(�k) = 2t1[1 − cos(kx )] + 2t2[1 − cos(ky)],

εxy;(A,B)(�k) = 2t1[2 − cos(kx ) − cos(ky)] − 	(A,B). (12)
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TABLE I. Numerical values of the parameters of the eight-band
model (measured in meV) as from [16].

Parameter Numerical value (meV)

t1 388
t2 31
	A 150
	B 30
γ1 20
γ2 5
λSO 8.3

(ii) The atomic spin-orbit Hamiltonian:

HSO = λSO

⎡
⎢⎢⎣

0 iσ z −iσ y −iσ y

−iσ z 0 iσ x iσ x

iσ y −iσ x 0 0
iσ y −iσ x 0 0

⎤
⎥⎥⎦. (13)

(iii) The interband inversion-symmetry-breaking interac-
tion:

HZ (�k) =

⎡
⎢⎢⎢⎣

0 0 −i f X
1 (�k)I −i f X

2 (�k)I
0 0 −i f Y

1 (�k)I −i f Y
2 (�k)I

i f X
1 (�k)I i f Y

1 (�k)I 0 0
i f X

2 (�k)I i f Y
2 (�k)I 0 0

⎤
⎥⎥⎥⎦
(14)

with

f X
1,2(�k) = 2γ1,2 sin(kx ),

f Y
1,2(�k) = 2γ1,2 sin(ky). (15)

In addition to the various contributions at the right-hand side
of Eq. (9), in a nonzero applied magnetic field, an additional
spin-Zeeman interaction term HM term appears, HM = − �M ·
�S, with �M being the Zeeman field and �S being the total spin.
As, throughout our derivation, we always set �M = 0, we do
not include HM in Eq. (9).

In doing our calculation, we took the numerical estimate
of the various parameters as presented in Ref. [16], which we
summarize in Table I.

In Fig. 2 we plot the energy levels of the full Hamilto-
nian in Eq. (9) along high-symmetry lines of the Brillouin

FIG. 2. Energy levels of the full Hamiltonian in Eq. (9) computed
by choosing the other system parameters as in Table I. The colored,
horizontal dashed lines mark the opening (on increasing the energy)
of higher-energy doublets.

zone, by choosing the other system parameters as in
Table I. The combined effect of the atomic SOI and of the
inversion-symmetry-breaking terms also splits each doublet,
as evidenced in the figure, even at zero Zeeman field. The
colored horizontal dashed lines correspond to the “opening”
of the higher-energy doublets. As we discuss in the follow-
ing, as long as the chemical potential is much below the
opening of the green doublet (dashed horizontal green line,
about 45 meV), the 2DEG behaves as a “standard” spinful,
single-band Rashba 2DEG (see Appendix D for a detailed
model calculation), although the multiband structure of the
system strongly affects the impurity-induced screening of the
spin-Hall conductance.

Above the green dashed line the second doublet becomes
available: as we discuss in the following, for what concerns
spin transport, the green doublet is pretty similar to the
magenta one, as they both share a high overlap with, respec-
tively, the dxy;A and the dxy;B subbands, very similar in their
properties.

Moving across the dashed horizontal red line, higher-
energy subbands start to be populated. As it may be readily
checked by direct calculations, these subbands have a high
overlap with the dyz and the dzx subbands, which have
different symmetries, with respect to the lower-energy dxy;A/B

subbands. At the onset of the higher-energy subbands, a
Lifshitz transition (LT) is expected to take place [43], with a
massive and sudden increase in the density of states due to the
opening of the higher subbands, as evidenced in Appendix E.
As we evidence in the following, the LT carries along remark-
able changes in the (spin-) transport properties of the system,
with relevant consequences on the experimental results.

Specifically, on increasing the chemical potential, we have
computed, at fixed energy E , the spin pattern within the
xy plane in spin space as a function of the momentum �k
within the Brillouin zone. In Fig. 3 we report the results of
our derivation at energy E = −100, −30, and +55 meV. In
Fig. 3(a) we show our results at E = −100 meV. We clearly
recognize the typical spin pattern of a Rashba 2DEG [17].
As Fig. 3(a) evidences, the opposite spin orientation in the
two subbands corresponds to an opposite value of the Rashba
effective magnetic field acting over the electron spin and,
accordingly, to opposite, overall contributions to the total spin
current generated by an applied electric field Ey. In fact, that
result is consistent with our derivation of Appendix D, where
we show that, for −	A < μ < −	B, with the band offsets
	A,B defined in the last one of Eqs. (12), the eight-band model
is effectively described by the Rashba Hamiltonian Hxy in
Eq. (D8). We therefore expect, in the absence of disorder, a
quantized jump (by e2/h) in the spin-Hall conductance σ z

xy at
the onset of the first doublet and a featureless, constant value
σ z

xy on further increasing μ (see Appendix C for details). As
we discuss in the following, this is exactly what happens in
the absence of disorder.

In Fig. 3(b) we draw states at energy E = −30 meV. These
belong to the first two pairs of subbands. As it appears from
the figure, the sign of the Rashba SOI is the same in both
pairs of subbands: this suggests that, at the onset of the second
pair of subbands, an additional jump, similar to the one at the
start of the first doublet, should appear, with a corresponding
doubling in the quantized value of σ z

xy.
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(a)

(c)

(b)

FIG. 3. (a) Spin pattern within the xy plane in spin space as a function of the momentum �k computed using the eight-band model
Hamiltonian in Eq. (9) with �M = 0 and at energy E = −100 meV. (b) Same as in (a), but with E = −30 meV. (c) Same as in (a) and (b), but
with E = +55 meV. The spin pattern is evidenced in the zoom in the right-hand subpanel. In all the cases the out-of-plane spin component is
zero, due to the absence of an applied magnetic field.

A drastic change happens at E = +55 meV, when all four
of the doublets are involved [see Fig. 3(c)]. Indeed, from the
zoom of the highlighted region, we clearly see how the mixing
with higher effective mass bands implies that different pairs
of subbands show different signs in the net SOI (in fact, our
result mimics the one of Ref. [44], despite the different values
of the model parameters used in that paper). At the onset of the
(mostly yz- and zx-like) higher-energy subbands, we therefore
expect a breakdown of the monotonical increase of σ z

xy with μ

and, due to the large difference in the effective mass between
the lower and the upper doublets, even a possible change of
sign in the spin-Hall conductance, at a certain value of μ. As
we will see in the following, this is, in fact, what happens
when going through a full calculation of σ z

xy in the eight-
band model, even after impurities are added to the system. In
addition, while our sketch of the spin orientation in Figs. 3(a)–
3(c) is intended just to evidence the spin pattern at equal
energy curves, close to the Lifshitz transition, it is important
to consider the modulus of the average spin polarization, in
particular close to the avoided crossing directions (in our case

the diagonals of the Brillouin zone), due to its relation with
alternative possible sources of a nonlocal resistance signal,
such as the Edelstein effect [44]. For this reason, in the zoom
of Fig. 3(c), we provide the modulus of the average spin
polarization in the color code specified in the figure itself,
thus evidencing a reduction in the modulus of the average spin
polarization over the avoided crossing directions similar to the
one found in Ref. [44].

We now provide the results of our calculations of the sheet
conductance, as well as of the spin-Hall conductance, in the
eight-band model, in the clean limit as well as in the presence
of a finite impurity concentration.

IV. SHEET CONDUCTANCE AND THE SPIN-HALL
CONDUCTANCE IN THE EIGHT-BAND MODEL

To compute the sheet conductance of the eight-band model
of Sec. III, σs, we use the analytical expression of Appendix E,
which we derive by means of a systematic implementation
of the formalism of Appendixes A and B. In particular,
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FIG. 4. σs as a function of μ (in units of e2/h), computed ac-
cording to Eq. (E4) (blue curve); σs experimentally measured, as
reported in Ref. [16] (black full squares). As discussed in the main
text, we have accounted for the finite impurity concentration by
setting the quasiparticle lifetime τImp = 3 ps, in agreement with the
experimental results of Ref. [16].

having numerically checked that the vertex corrections in
Eq. (E5) provide a negligible contribution to σs, we per-
form our calculation by using Eq. (A9) of Appendix A,
with the single-particle Green’s functions including the finite,
impurity-induced, imaginary part of the self-energy. Specifi-
cally, we set

σs = 1

V

∑
�k

∑
λ,λ′

[
jch,x

]
(�k,λ);(�k,λ′ )

[
jch,x

]
(�k,λ′ );(�k,λ)

×
∫

dω̄

2π

{
g<

(�k,λ)
(ω̄)∂ωgR

(�k,λ′ )
(ω̄) + gA

(�k,λ)
(ω̄)∂ωg<

(�k,λ′ )
(ω̄)

}
,

(16)

with V being the system volume, [ jch,a](�k,λ);(�k,λ′ ) being
the charge current matrix elements in the basis of the
single-particle eigenstates of Height-band(�k), and the single-
particle Green-Keldysh functions gA,R,<

(�k,λ)
(ω) being defined in

Appendix B 1. The impurity concentration determines, ac-
cording to Eq. (B17) of Appendix B, a finite lifetime τλ

Imp
for the quasiparticle excitations in band λ, which enters the
corresponding Green’s functions according to Eq. (B16). Due
to the relation between the impurity concentration and the
finite quasiparticle lifetime, as we discuss in Appendix B, we
take into account the former through the latter, by using for
τλ

Imp the λ independent value τImp = 3 ps, as from the measures
of Ref. [16].

In Fig. 4 we plot our result for σs (in units of e2/h) as a
function of μ, computed using Eq. (A9) as discussed before
(blue curve). For comparison, we also plot the experimental
data corresponding to the measures of Ref. [16] (black full
squares). Apparently, there is a pretty good agreement be-
tween the two sets of data: in particular, both in the theoretical
curve, as well as in the experimental data, we note the sudden
change in the slope of σs at the onset of the higher-energy
bands, at μ slightly higher than 0, which evidences the sudden
change in the density of states at the LT.

Close to the upper bound of the interval of values of
μ that we consider (μ ∈ [−150 meV, 150 meV]) the theo-
retical curve seems to become slightly higher than the last
experimental point. This might be a signal of an (expected)

FIG. 5. Spin-Hall conductance σ z
xy computed in the eight-band

model using the full Hamiltonian in Eq. (9), by neglecting the effects
of the impurities (“the clean limit”), as a function of the chemical
potential μ for −150 meV � μ � 150 meV. The quantized first two
plateaus (μ � 0) evidence the two-dimensional Rashba-type nature
of the effective spin-orbit interaction in the first two energy doublets
of Fig. 2.

breakdown of our approximation at large values of μ. Yet, the
agreement between the analytical and the experimental results
is pretty good throughout almost all the interval of values
covered by the experiment of Ref. [16].

We now consider the spin-Hall conductance σ z
xy. Along

the derivation of Appendixes A and B, we find that
the corresponding mathematical expression can be derived
from Eq. (16) by substituting the first charge-current ver-
tex [ jch,x](�k,λ);(�k,λ′ ) with the fully dressed spin-current ver-
tex [ jz

sp,x](�k,λ);(�k,λ′ ) and the second one [ jch,x](�k,λ′ );(�k,λ) with
[ jch,y](�k,λ′ );(�k,λ). Within the approach of Appendix A, we
perform our calculation using the formulas for σ z

xy for a homo-
geneous system. In fact, as it is typical for the spin-Hall effect,
the spin current is established over typical length scales of the
order of the electron mean-free path [27], which we assume to
be much smaller than the width of the sample we consider, as
well as of the distance between the contacts [16]. Eventually,
this enables us not to consider possible inhomogeneities in the
spin current in the sample due to finite-size effects and allows
us to resort to the formulas we employ in Appendix A.

For the sake of the discussion and also to interpret the
results in terms of an effective Rashba-type SOI, we begin
by computing σ z

xy as a function of μ in the “clean limit,”
that is, without adding impurities to the sample. To do so, we
use Eq. (E6) of Appendix E, by replacing gR/A

(�k,λ)
(ω) with their

counterparts in the clean limit, gR/A;(0)

(�k,λ)
(ω) in Eq. (B10).

In Fig. 5 we show the results of our calculation. We note
that, as soon as μ “hits” the bottom of the first dxy;A-like sub-
band, σ z

xy suddenly jumps from 0 to e2/h. A similar sudden,
quantized jump takes place as μ crosses the bottom of the
second doublet of energy eigenstates. As we review in detail
in Appendix C, this is the typical behavior of the SHC in a
lattice model of a Rashba 2DEG, which is consistent with
the effective description of the eight-band model in terms of
two, coupled Rashba-type Hamiltonians, at energies below the
onset of the yz- and of the zx-like subbands (see Appendix D
for details).

Moving toward higher value of μ, we see that the regular
behavior of σ z

xy, made out of sharp jumps between quantized
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plateaus, suddenly changes when the higher-energy doublets
set in. In fact, this comes along a drastical change in the
effective Rashba SOI within each doublet. From Fig. 3 we
see that, while the first two doublets both host an effective
Rashba SOI with coupling strengths of the same sign (which
is consistent with the two plateaus in the left part of the plot
in Fig. 5), as soon as the yz- and the zx-like subbands get
involved, the sign of the Rashba SOI from different doublets
of subbands can be different and, more importantly, the sign
of the Rashba coupling strength in subbands with higher ef-
fective mass is opposite to the one of the dxy;A-like doublet.
Thus, two different effects are expected to arise at the onset of
the higher subbands: a strong increase in σ z

xy, due to the larger
carrier density, accompanied by a sudden change in the sign of
the SHC itself, for the reason discussed above and evidenced
in Fig. 3. Apparently, this is exactly the feature that shows up
in Fig. 5 for μ slightly greater than 0, the following oscilla-
tions being likely due to the sequential changes in sign of the
effective Rashba SOI in the intermediate-energy doublets, as
μ gets larger [16]. We now discuss how Fig. 5 is modified by
adding impurities to the system.

The behavior of the SHC in the presence of a finite density
of impurities is strictly related to the mechanism behind the
nonlocal resistance in SrTiO3-based devices. In Ref. [16] a
systematic analysis of all the possible different mechanisms
that could potentially lead to a nonlocal resistance in the
system has been gone through, similar to what has been done
in Refs. [45,46] for graphene close to the charge-neutrality
point. Having ruled out all the possible alternatives, the only
leftover reasonable explanations rely on either the Edelstein
effect [7] or over the spin-Hall effect [17] (or a combination
of the two of them). Nevertheless, the direct measurement
of the spin polarization via the Hanle precession revealed
that the electron spins are mostly polarized orthogonal to the
electronic 2DEG, which rules out the Edelstein effect, as well,
leaving SH effect as the only possible mechanism responsible
for the measured nonlocal resistance [16].

In the two-band Rashba model the presence of a finite
impurity concentration is known to fully cancel the SHC by
“compensating” the terms σ z

xy;A, computed as in Eq. (E6),
with the vertex correction σ z

xy;B, in Eq. (E8) [28–32] (see
also Appendix C for details). At variance, as we are going
to show by direct calculation, due to the complex interband
mixing, the SHC in the eight-band model is affected only
partially by the presence of disorder: the cancellation strongly
depends on μ and, more importantly, it is never complete. This
leaves room for a finite SHC in the eight-band model, even in
the presence of a finite density of impurities in the system,
which is apparently consistent with the experimental results
of Ref. [16].

To spell out in detail the role of the two contributions to
σ z

xy, we now separately discuss the two of them. In Fig. 6, we
plot our results for σ z

xy;A as a function of μ for −150 meV �
μ � 150 meV, computed according to Eq. (E6) by using the
parameters in Table I and by setting τe = 3 ps. Remarkably,
we can already see how adding the finite quasiparticle lifetime
already strongly alters the behavior of σ z

xy, compared to the
clean limit of Fig. 5. Yet, differently from what happens for
the sheet conductance, we now show how, in this case, the
vertex corrections have an important weight in the final result.

FIG. 6. Spin-Hall conductance σ z
xy;A (without vertex corrections)

computed, as a function of μ, within the eight-band model, by using
the parameters in Table I and by setting τe = 3 ps in the dressed
single-particle Green’s functions.

To compute σ z
xy;B, we use Eq. (E8) of Appendix E. In

Fig. 7 we plot the corresponding result for the “full” spin-Hall
conductance σ z

xy = σ z
xy;A + σ z

xy;B, including the effects of the
vertex corrections. Looking at the plot, we note that there is a
large window of values of μ, from μ = −150 meV to the on-
set of the high-energy subbands, where the vertex correction
screens σ z

xy to a “quasilinear” dependence on μ at its onset.
A minor, though clearly visible, change in the slope takes
place at the onset of the second doublet: the change in the
slope is the remnant, after the screening, of the second jump
between the quantized values of σ z

xy in Fig. 5. A relatively
sharp decrease in the spin-Hall conductance takes place as
soon as μ crosses the bottom of the two high-energy subbands.
For μ slightly larger than 0, σ z

xy first increases and eventually
crosses 0 and becomes negative. This is strictly connected
with the onset of the higher-energy doublets which, as we
highlighted before, provide contributions to σ z

xy opposite in
sign with respect to the ones arising from the lower dou-
blet. Higher-energy doublets are indeed characterized by an
effective Rashba SOI of opposite sign, with respect to the
lower-energy ones, and by a much higher density of states (at
the band onset).

We now discuss our results in comparison with the experi-
mental data of Ref. [16]. To do so, we mimic the presentation
of that paper by combining the results of Figs. 4 and 7 to

FIG. 7. Spin-Hall conductance σ z
xy = σ z

xy;A + σ z
xy;B (including

vertex corrections) computed, as a function of μ, within the eight-
band model, by using the parameters in Table I and by setting τe = 3
ps in the dressed single-particle Green’s functions.
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FIG. 8. Solid blue line: (absolute value of the) spin-Hall conduc-
tance |σ z

xy| as in Fig. 7 drawn as a function of the sheet conductance σs

in Fig. 4. Solid red line: (absolute value of the) spin-Hall conductance
without vertex corrections, |σ z

xy;A|, as in Fig. 6 drawn as a function of
the sheet conductance σs in Fig. 4. Black full squares: experimental
results for σ z

xy as a function of σs as presented in Ref. [16]. The dashed
vertical lines mark the splitting of the graph into the regions I, II, and
III, as discussed in the text.

display our results for |σ z
xy| as a function of our theoretically

computed sheet conductance σs (note that we consider the
absolute value of |σ z

xy| to make a rigorous comparison with
the experimental results of Ref. [16], where they measure the
spin-Hall conductance from the square root of the squared
spin-Hall angle, which appears in the formula for the nonlocal
resistance [Eq. (1) of the paper]. To evidence the impor-
tance of accounting for impurity-induced vertex corrections,
in Fig. 8 we synoptically show the corresponding plots of
both |σ z

xy| (computed by taking the absolute of σ z
xy;A + σ z

xy;B –
blue curve) and of |σ z

xy;A| (red curve), together with the exper-
imental points corresponding to Fig. 4(c) of Ref. [16] (black
full squares).

In analyzing Fig. 8 we split the graph into three regions:
region I, for 0 � σs � e2/(2h); region II, for e2/(2h) � σs �
2e2/h; region III, for 2e2/h � σs.

Region I roughly corresponds to the part of the diagram
before the onset of the high-energy, yz-like, and zy-like sub-
bands in which, as it emerges from our analysis of Appendix D
and from Fig. 3, the two active xy-like subbands exhibit an
effective Rashba SOI of the same sign in both bands. A
synoptical numerical analysis of the data shown in Figs. 4, 8,
11 also evidences how region I corresponds to the interval of
values of μ where only the lowest-energy doublets contribute
the vertex corrections σ z

xy;B, which we reliably compute within
our approach, that is expected to work well in the low-density
region of the system, by using Eq. (E3) of Appendix E. In
fact, we see that there is a perfect collapse of the experimental
data onto the analytical blue curve: on one hand this shows
the reliability of our method in this region, on the other hand,
it evidences the importance of pertinently accounting for the
vertex corrections. Indeed, the corresponding (red) curve, de-
rived without taking into account the term σ z

xy;B, clearly does
not fit the experimental points.

Leaving aside region II, for the time being, let us focus
onto region III of Fig. 8. Region III is characterized by a
much higher carrier density than region I. Moreover, as we
readily infer from Fig. 11, there is also, in this region, a
finite contribution to Eq. (E1) from all the four doublets of

subband although, just as in region I, there is a single doublet
(the lowest-energy one) that takes over with respect to the
other ones. This makes us employ the approximate method
outlined in Appendix E to pertinently weight the four involved
doublets. Yet, despite the possibly oversimplified approach
we use here, from the plot of Fig. 8 we see again quite
a good agreement between the experimental points and the
analytical curve, with just a minor undershooting of the latter
which could possibly be fixed by, for instance, refining our
approach by going through a systematic fitting procedure of
the normalization factor in front of the vertex correction. Im-
portantly, by synoptically looking at the red and blue curves
of Fig. 8 we see how also in region III, it is fundamental to
add vertex corrections to the final expression for σ z

xy, in order
to recover a good agreement between experiment and theory.
Apparently, our results imply that contributions to the spin-
Hall conductance arising from vertex corrections are always
relevant, although their precise numerical estimate deserves
a more refined modulation than the one behind Eq. (E3).
In addition, as evidenced by Fig. S4 of the Supplemental
Material of Ref. [16], the contribution to τImp arising from
inelastic scattering processes should be taken into account,
as well. All these further extensions of our derivation, al-
though being definitely relevant to improve the numerical
match between theory and experiment, go beyond the scope
of this work, where we focus on the role of impurities to
catch the main features of the experiments of Ref. [16]. We
will possibly consider them in further developments of our
investigation. Yet, it is worth stressing once more the good
agreement of our theoretical calculations with the experimen-
tal data, despite the possibly oversimplified model we are
employing here.

We finally discuss region II. At a first glance, in this region
the agreement between the experimental data of Ref. [16] and
our analytical results is not as good as in the other two regions.
Indeed, first of all we note that the experimental data seem to
exhibit a peak in |σ z

xy| for σ ∗
s ≈ 0.6e2/h, while, as it is clearly

evidenced in Figs. 6 and 7, our analytical results, instead,
show a zero around that value of σs, whether the vertex cor-
rections are included or not. As we discuss above, due to the
different sign of the effective SOI interaction arising within
the various energy doublet, it is somehow expected that σ z

xy
crosses zero at some finite value of σs, roughly corresponding
to the onset of the higher-energy doublets. However, due to
the rather small hybridization between those last subbands
and the lower-lying ones, we also expect that the crossing
takes place sharply, within a small interval of variation of μ,
as also apparently shown in Fig. 7. Once switching to |σ z

xy|,
as we do in drawing Fig. 8, the zero-crossing feature trades
for a sharp double peak which, due to the limited number
of experimental points in Ref. [16] around σ ∗

s , might very
well be experimentally seen as a single peak. An additional
observation concerns the apparent offset, present throughout
all region II, between the experimental data and the analyt-
ical curve, which apparently underestimates σ z

xy, particularly
close to the left-hand end point of the region, although the
agreement between the experiment and the theory becomes
better on moving towards the right-hand end point of region
II. While we discuss more about this point below, here we
stress how the agreement could be in principle improved by a
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pertinent refining of our method for estimating the prefactor
in front of the vertex corrections and that, more importantly,
the main trend of the theoretical curve as a function of σs

is basically consistent with the experimental data throughout
region II, as well. In any case, at least from the conclusions
one may recover from Fig. 3 about the Rashba SOI in each
doublet, a zero crossing of |σ z

xy| should be expected, right
after the onset of the higher-energy doublets. In addition to
the previous arguments, we note a remarkable, experimentally
measured, decrease and increase of the spin-Hall angle γ

(although not all the way down to 0), which is evidenced in
Fig. 3(c) of Ref. [16], at the value of the gate voltage that
corresponds to σ ∗

s . In view of above arguments and given the
good agreement in regions I and III between our results and
the experimental data, a refinement of the σ z

xy measurements
around σ ∗

s would be highly desirable.
On the theory side, one could improve the modeling

of the system by introducing scattering from finite-range
impurities. Indeed, the scattering potential could present a
correlation length consistent with experiments on negative
magnetoresistance driven by spin-orbit coupling and scat-
tering by dislocations [47]. This could give a contribution
in the region II since the anisotropic scattering could sup-
press backscattering processes within the outer Fermi surface
with large average Fermi momentum, while still allowing
for interband scattering. This should be accompanied by a
quasiparticle lifetime which can be smaller for the inner bands
with smaller average Fermi momenta. The induced imbal-
ance could enhance the values of spin-Hall conductance in
the region II, while leaving the sheet conductance poorly
affected.

A possible extension of our work could possibly involve
carrying out the analysis of the spin, as well as of the orbital,
Edelstein effect. Indeed, while in Ref. [16] a contribution to
the nonlocal resistivity from the Edelstein effect was ruled
out from the dependence of the Hanle signal on the applied
magnetic field, it might also be possible that, due to a strong
anisotropy in the spin lifetime and spin-diffusion length with
the spin direction, for shorter channels, with lengths com-
parable to the spin-diffusion length for spins in the plane,
one gets a significant contribution from the (spin) Edelstein
effect, in addition to the spin-Hall effect (SHE). Moreover,
as evidenced in Refs. [44,48], there might be also a sizable
contribution from the orbital Edelstein effect, especially in
region II, where the agreement between the experimental data
and our analytical results is apparently less striking than in
regions I and III.

We are developing an extension of our work that
encompasses the analysis of the Edelstein effect, which
should appear in a forthcoming work, presently in
progress.

V. CONCLUSIONS

By means of a systematic implementation of linear
response theory applied to charge and spin transport in dis-
ordered systems, we have computed the sheet conductance,
as well as the spin-Hall conductance, in a multiband model
of the 2DEG at a LAO/STO interface, in the presence of
a finite density of impurities. Systematically computing the

impurity-induced single-particle self-energy corrections as
well as the vertex corrections to the relevant diagrams, we
have derived the sheet conductance and the spin-Hall con-
ductance as a function of the chemical potential in the 2DEG
(which ultimately determines the density of carriers support-
ing conduction). The sheet conductance shows an excellent
qualitative and quantitative agreement with the measurements
presented in Ref. [16]. The spin-Hall conductance shows
a similar excellent qualitative and quantitative agreement
with the experimental data as long as only carriers from xy
subbands contribute the corresponding response function. In
particular, we recover the monotonic increase of the spin-Hall
conductance, as a function of the chemical potential, until the
Lifshitz transition is reached, as well as its main behavior after
the transition.

Our results highlight how the charge-to-spin conversion
in LAO/STO is mainly due to the spin-Hall effect, how the
spin-Hall conductance (and, therefore, the efficiency of the
charge-to-spin conversion mechanism itself) depends on the
external control parameters, and, finally, how the inpurity-
induced screening of the spin-Hall conductance in a Rashba
2DEG is strongly suppressed in multiband systems.

While the model captures the spin-Hall vs longitudinal
conductance trend as seen in the experiment, the quantitative
discrepancies around the Lifshitz transition definitely call for
a refinement of our method in that region, not only by intro-
ducing a finite range in the impurity scattering, but also by
improving our estimate of the vertex corrections. For instance,
one could include at the right-hand side of Eq. (E3) contribu-
tions from higher-energy bands. Moreover, one could solve
numerically from scratch the Kubo response function for the
calculation of spin-Hall conductance including this way all
the single-particle scatterings even in high-density regimes.
We expect that these additional effects could only slightly
improve the evaluation of spin-Hall conductance around the
Lifshitz transition since the densities close to the transition
are not high (a few 1013 cm−2).

An improvement of the quantitative agreement beyond the
Lifshitz transition, instead, might be possibly recovered by
taking into account inelastic scattering processes, as well,
which would be consistent with the estimate for the corre-
sponding characteristic time as a function of the applied gate
voltage in Fig. S4 of the Supplemental Material of Ref. [16].

Aside for the necessary improvements of our method,
we apparently catch a number of features of the 2DEG in
LAO/STO that can be hardly recovered by means of ap-
proaches to the spin-Hall effect different from our “fully
quantum” one. Also, the magnitude and nonmonotonic tun-
ability of the spin-Hall conductance in the LAO/STO 2DEG
stems from the multiorbital nature of STO where the in-
dividual and unequal contributions from different subbands
(dzx, dxy, dyz) result in a large carrier density (Fermi energy)
dependence of the system. This subband character can be
present in some topological insulators or dichalcogenides,
but it is naturally not shared by all materials or other two-
dimensional electronic systems like, e.g., graphene, therefore,
even though it is possible to demonstrate spin-Hall con-
ductance in such systems, the nonmonotonic tunability of
spin-Hall conductance will most likely remain a unique fea-
ture of STO-based 2DEGs [49].
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Given the effectiveness of our technique, as a further exten-
sion of our work we plan to extend it to compute the nonlocal
resistivity of the LAO/STO in the presence of an applied mag-
netic field, as well as to study charge-to-spin conversion in
alternative devices with similar properties, such as the recently
discovered ones in which SrTiO3 is replaced with the KTaO3.
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APPENDIX A: REVIEW OF LINEAR RESPONSE THEORY

In this Appendix we review the Kubo formulas for the
response functions relevant to describing charge and/or spin
transport, derived within linear response theory. As specific
applications, in the following we consider the (Ohmic) sheet
conductance, as well as the spin-Hall conductance. To de-
scribe their behavior in realistic samples, in both cases we
have to take into account the effects of a scattering off the
impurities. In Appendix B we will therefore complement the
derivation of this Appendix with the analysis of the effects of
a finite density of impurities.

Overall, we compute the average value of an observable
O1(�r, t ), 〈O1(�r, t )〉, in response to an applied electric field
E (�r, t ) along the a direction in a two-dimensional sample,
which couples to the charge current in the a direction, jch,a(�r).

Therefore, letting A(�r, t ) be the corresponding vector poten-
tial, such that − ∂A(�r,t )

∂t = E (�r, t ), a nonzero E (�r, t ) generates
a “source” term in the system Hamiltonian HSource(t ), given
by

HSource(t ) = −
∫

d�r′A(�r′, t ) jch,a(�r′). (A1)

Computing 〈O1(�r, t )〉 within first-order, time-dependent
perturbation theory in the applied field, we obtain

〈O1(�r, t )〉 = i
∫

dt ′
∫

d�r′GR(�r, t ; �r′, t ′)A(�r′, t ′) (A2)

with the retarded Green’s function

GR(�r, t ; �r′, t ′) = θ (t − t ′)〈[O1(�r, t ), jch,a(�r′, t ′)]〉, (A3)

and 〈. . .〉 denoting the equilibrium averages computed with re-
spect to the “unperturbed” Hamiltonian (which we generically
refer to as H0).

To compute the response to a time-independent electric
field, we first apply a modulated field at frequency ω0,
E (�r, t ) = E (�r, ω0) cos(ω0t ). Defining 〈O1(�r, ω0)〉 to be the
corresponding average value of O1, we obtain

〈O1(�r, ω0)〉 =
∑

a=±1

1

2ω0

{
i
∫

d�r′GR(�r, �r′, aω0)E (�r′, aω0)

}
,

(A4)
with GR(�r, �r′, ω) = ∫

dt eiωt GR(�r, t ; �r′, 0).
As a next step, we now consider the decomposition of

O1(�r, t ) in terms of single-fermion operators. To do so, we
denote with ψ�k,λ

ei�k·�r a generic set of lattice momentum eigen-
functions determining a basis in our state space (note that the
ψ�k,λ

may not necessarily be a set of eigenfunctions of H0 and
if they are, then λ can be regarded as a “dressed” band index),
and with ��k,λ

the corresponding eigenmodes. Resorting to
Heisenberg representation, we assume that, in terms of the
��k,λ

, the operators O1(�r, t ) can be written as

O1(�r, t ) = 1

V

∑
�k,�k′

∑
λ,λ′

e−i�r·[�k−�k′][O1](�k,λ);(�k′,λ′ )�
†
�k,λ

(t )��k′,λ′ (t ). (A5)

For an applied field at a fixed momentum �Q, that is, if E (�r, ω0) = E ( �Q, ω0)ei�r· �Q, resorting to the Keldysh-Green function
approach, we obtain that 〈O1(�r, ω0)〉 = O1( �Q; ω0)ei�r· �Q, with

O1( �Q; ω0) = e−iω0t−i �Q·�r

2V ω0

∑
a=±1

a
∑

�k

∑
λ1,λ

′
1

∑
λ2,λ

′
2

[O1](�k,λ1 );(�k+ �Q,λ′
1 )

[
jch,a

]
(�k+ �Q,λ2 );(�k,λ′

2 )

×
∫

dω̄

2π

{
g<

[�k;(λ′
2,λ1 )]

(ω̄)gR
[�k+ �Q;(λ′

1,λ2 )]
(ω̄ + aω0) + gA

[�k;(λ′
2,λ1 )]

(ω̄)g<

[�k+ �Q;(λ′
1,λ2 )]

(ω̄ + aω0)
}
E ( �Q, ω0), (A6)

with g(η,η′ )
[�k;(λ,λ′ )]

(ω) being the Fourier transform of the Keldysh-Green function

g(η,η′ )
[�k;(λ,λ′ )]

(t ) = −i〈TK��k,λ
(t ; η)�†

�k,λ′ (0; η′)〉, (A7)

and TK being the Keldysh path-ordering product. The dc response to a time-independent applied field is eventually recovered by
taking the ω0 → 0 limit of the right-hand side of Eq. (A6).
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A remarkable simplification occurs if the subscript λ labels the dressed energy eigenstates of H0. In this case, the single-
particle Green’s functions are diagonal in that index and Eq. (A6) reduces to

O1( �Q; ω0) = e−iω0t−i �Q·�r

2V ω0

∑
a=±1

a
∑

�k

∑
λ,λ′

[O1](�k,λ);(�k+ �Q,λ′ )

[
jch,a

]
(�k+ �Q,λ′ );(�k,λ)

×
∫

dω̄

2π

{
g<

(�k,λ)
(ω̄)gR

(�k+ �Q,λ′ )
(ω̄ + aω0) + gA

(�k,λ)
(ω̄)g<

(�k+ �Q,λ′ )
(ω̄ + aω0)

}
E ( �Q, ω0). (A8)

In the case of a uniform applied field, E ( �Q; ω0) ∝ δ(2)( �Q), from Eq. (A8) we define the DC response function �1,2 according
to

�1,2 = lim
ω0→0

{
1

2V ω0

∑
a=±1

a
∑

�k

∑
λ,λ′

[O1](�k,λ);(�k,λ′ )

[
jch,a

]
(�k,λ′ );(�k,λ)

×
∫

dω̄

2π

{
g<

(�k,λ)
(ω̄)gR

(�k,λ′ )
(ω̄ + aω0) + gA

(�k,λ)
(ω̄)g<

(�k,λ′ )
(ω̄ + aω0)

}
. (A9)

To further simplify Eq. (A9), we set

[S1,2](�k,λ);(�k′,λ′ ) = Re
{
[O1](�kλ);(�k′,λ′ )

[
jch,a

]
(�k′,λ′ );(�k,λ)

}
,

[I1,2](�k,λ);(�k′,λ′ ) = Im
{
[O1](�kλ);(�k′,λ′ )

[
jch,a

]
(�k′,λ′ );(�k,λ)

}
. (A10)

[Note that, if O1 = jch,a, then [I1,2](�k,λ);(�k′,λ′ ) = 0.] Taking into account the splitting in Eqs. (A10), we recast Eq. (A9) in the
form

�1,2 = �S
1,2 + �I

1,2 (A11)

with

�S
1,2 = − 1

2V

∑
�k

∑
λ,λ′

[S1,2](�k,λ);(�k,λ′ )

∫
dω̄

2π

[
gA

(�k,λ)
(ω̄) − gR

(�k,λ)
(ω̄)

][
gA

(�k,λ′ )
(ω̄) − gR

(�k,λ′ )
(ω̄)

]∂ f (ω̄)

∂ω̄
, (A12)

and

�I
1,2 = − i

2V

∑
�k

∑
λ,λ′

[I1,2](�k,λ);(�k,λ′ )

∫
dω̄

2π

[
gA

(�k,λ)
(ω̄) − gR

(�k,λ)
(ω̄)

]
∂ω̄

[
gA

(�k,λ′ )
(ω̄) + gR

(�k,λ′ )
(ω̄)

]
f (ω̄). (A13)

Equations (A12) and (A13), pertinently improved by intro-
ducing the effects of a finite impurity density, are the main
formulas we used throughout our paper to derive the response
functions of our system.

APPENDIX B: EFFECTS OF A FINITE DENSITY
OF IMPURITY SCATTERING CENTERS

In this Appendix we review the impurity-related correc-
tions to the Kubo-conductance formulas derived in the clean
limit. Following [28–32], in the following we employ a simple
model of short-range, uncorrelated impurity scatterers. Ac-
cordingly, we encode the effects of the disorder on our system
with the impurity potential

VImp(�r) =
∑

�Ri

U (�r − �Ri ) (B1)

with { �Ri} being the (randomly distributed over the plane) im-
purity centers. Denoting with an overbar the ensemble average
with respect to the position of the impurity centers and with
VImp( �Q) the Fourier transform of VImp(�r), defined as

VImp( �Q) =
∫

d2�rei �Q·�rVImp(�r), (B2)

we set

VImp( �Q) =
∫

dd�rei�r· �QU (�r)
∑

�Ri

ei �Ri · �Q

= NImp

∫
dd�rei�r· �QU (�r)δ �Q (B3)

and

VImp( �Q)VImp( �Q′)

=
∫

dd�r
∫

dd�r′ ei�r· �Qei�r′ · �Q′
U (�r)U (�r′)

∑
�Ri, �R′

i

ei �Ri · �Qei �R′
i · �Q′

= NImp(NImp − 1)
∫

dd�r
∫

dd�r′ U (�r)U (�r′)δ �Qδ �Q′

+NImp

∫
dd�r

∫
dd�r′ ei�r· �Qei�r′ · �Q′

U (�r)U (�r′)δ �Q+ �Q′ (B4)

with NImp being the number of impurity scattering centers in
the system.

A minimal model describing the coupling between the
impurities and the band electrons is provided by the impurity
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Hamiltonian HImp given by

HImp =
∫

d2r VImp(�r)
∑

σ

c†
σ (�r)cσ (�r)

= 1

V

∑
�k,�k′

VImp(−�k + �k′)
∑

σ

c†
�k,σ

c�k′,σ (B5)

with σ being a generic band index, including (but not neces-
sarily coinciding with) the actual spin index. For the following
applications, it is also useful to express the right-hand side
of Eq. (B5) in terms of the eigenmodes ��k,λ

of the (clean)
system Hamiltonian, with λ being the (dressed) band index.
The correspondence between the operators c�k,σ

and the ��k,λ

is given by

c�k,σ
=

∑
λ

w
�k
σ,λ��k,λ

(B6)

with the matrix {w�k
σ,λ} being unitary, at any given �k. As a

result, Eq. (B5) can be rewritten as

HImp = 1

V

∑
�k,�k′

VImp(−�k + �k′)
∑
λ,λ′

∑
σ

[
w

�k
σ,λ

]∗
w

�k′
σ,λ′ ]�†

�k,λ
��k′,λ′

≡ 1

V

∑
�k,�k′

VImp(−�k + �k′)
∑
λ,λ′

A(�k,λ);(�k′,λ′ )�
†
�k,λ

��k′,λ′ . (B7)

In the following, unless explicitly stated otherwise, we will
resort to the approximation of short-range impurity scattering
potential, that is, we will assume U (�r) = ūδ(�r). We now dis-
cuss the main effects of having a finite impurity density: the
impurity-induced single-fermion self-energy imaginary part
and the interaction vertex renormalization.

1. Impurities and self-energy imaginary part

To discuss the impurity-induced self-energy imaginary
part, here we consider a generic disordered Hamiltonian given
by

H = H0 + HImp (B8)

with H0 = ∑
�k
∑

λ ε�k,λ
�

†
�k,λ

��k,λ
, ε�k,λ

being the (dressed) en-
ergy dispersion relations of the system, and HImp given in
Eq. (B7). In the absence of impurities, the retarded and ad-
vanced Green’s functions for the eigenmode belonging to the
energy eigenvalue E�k,λ

, gR/A;(0)

(�k,λ)
(t ), are respectively given by

gR;(0)

(�k,λ)
(t ) = −iθ (t )〈{��k,λ

(t ), �†
�k,λ

(0)}〉,
gA;(0)

(�k,λ)
(t ) = iθ (−t )〈{��k,λ

(t ), �†
�k,λ

(0)}〉 (B9)

in the time domain, and by

gR/A;(0)

(�k,λ)
(ω) = 1

ω − ξ�k,λ
± iη

(B10)

in Fourier space, with ξ�k,λ
= ε�k,λ

− μ, μ being the chemical
potential, and η = 0+. At a fixed realization of the disorder
(that is, at a given VImp), computing the self-energy correc-
tion to the retarded and to the advanced Green’s functions

�
R/A

(�k,λ);(�k′,λ′ )
(ω) yields, to first order in VImp, the result

�̂
R/A;(I )

(�k,λ);(�k′,λ′ )
(ω) = δλ,λ′

V
VImp(−�k + �k′) A(�k,λ);(�k′,λ′ ) (B11)

with V being the total volume of the system and A(�k,λ);(�k,λ′ ) =∑
σ [w�k

σ,λ]∗w�k
σ,λ′ . On ensemble averaging the result in

Eq. (B11) over the impurity distribution according to
Eqs. (B4), one obtains

�
R/A;(I )

(�k,λ);(�k′,λ′ )
(ω) = �̂

R/A;(I )

(�k,λ);(�k′,λ′ )
(ω) = NImpūλ δ−�k+�k′δλ,λ′

(B12)
with ūλ = U ( �Q = 0) [note that, in going through the last step
of Eq. (B12), we employed the identity A(�k,λ);(�k,λ′ ) = δλ,λ′ ,
which is a trivial consequence of the orthogonality of the
eigenvectors of the Hamiltonian at fixed �k]. The (first order in
the impurity interaction) correction in Eq. (B12) just implies
a uniform shift in the offset of the dressed band λ.

In considering the second-order contribution to the self-
energy we note that the former term at the right-hand side of
Eq. (B4) can be lumped into an additional constant correction
to the real part of the self-energy. At variance, the latter con-
tribution yields a second-order contribution to the self-energy
that, at fixed realization of the disorder, is given by

�̂
R/A;(II )

(�k,λ);(�k′,λ′ )
(ω) = 1

V

∑
�q

∑
μ

{
VImp(−�k + �q)VImp(−�q + �k′)

×A(�k,λ);(�q,μ)A(�q,μ);(�k′,λ′ )g
R/A;(0)
(�q,μ) (ω)

}
.

(B13)

Averaging over the impurities and leaving aside terms that
just provide a further renormalization to the uniform part of
the self-energy, we obtain

�
R/A;(II )

(�k,λ);(�k′,λ′ )
(ω) = �̂

R/A;(II )

(�k,λ);(�k′,λ′ )
(ω) = NImp

V

∑
�q

∑
μ

×{|U (−�k + �q)|2gR/A;(0)
(�q,μ) (ω)

×A(�k,λ);(�q,μ)A(�q,μ);(�k,λ′ )

}
δ−�k+�k′ . (B14)

Assuming U (�r) = uδ(�r), Eq. (B14) simplifies to

�
R/A;(II )

(�k,λ);(�k′,λ′ )
(ω) ≈ NImpū2

V

∑
�q

∑
μ

× {
A(�k,λ);(�q,μ)A(�q,μ);(�k,λ′ )g

R/A;(0)
(�q,μ) (ω)

}
δ−�k+�k′ .

(B15)

Focusing on the right-hand side of Eq. (B15) we note that
impurity-triggered interband scattering processes can, in prin-
ciple, take place both as virtual processes (that is, μ �= λ, λ′),
as well as real processes, yielding, at a given �k, an interband
finite transition amplitude, corresponding to having λ′ �= λ.
However, as discussed in detail in Ref. [50], when computing
the self-energy corrections in the weak impurity scattering
limit, one may safely neglect interband real transition. Based
on this observation, in the following we will assume λ = λ′ at
the right-hand side of Eq. (B15). Now, by definition, ( 1

2 times)
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the inverse particle lifetime due to a finite impurity concen-
tration τImp is given by the imaginary part of the self-energy.
In our further derivation we will neglect the dependence on ω

[which is equivalent to only taking into account elastic scat-
tering processes at the impurity sites (see the main text for our
motivation of such an approximation), given the experimental
results of Ref. [16]]. Accordingly, reabsorbing the real part
of the self-energy in a “trivial” shift of μ, we assume for
the dressed (by the interaction with the impurities) Green’s
function the form

gR/A

(�k,λ)
(ω) = 1

ω − ξ�k,λ
± i

2τλ
Imp

. (B16)

In principle the inverse lifetime τλ
Imp (that is, the imaginary

part of the single-electron self-energy) should be computed
separately for each band. To second order in the impurity
interaction strength, it is determined by the condition

1

2τλ
Imp

= −NImpū2

V

∑
�q

∑
μ

× {
A(�k,λ);(�q,μ)A(�q,μ);(�k,λ)Im

{
gR;(0)

(�q,μ)(ω)
}}

. (B17)

Substituting, in the right-hand side of Eq. (B17), gR;(0)
(�q,μ)(ω)

with gR
(�q,μ)(ω) yields a set of self-consistent equations for

the τλ
Imp. In general, solving, even numerically, the full set

of equations is quite a formidable task to achieve, especially
because, due to the dependence on the momenta of A(�k,λ);(�q,μ),

one cannot exclude a priori an explicit dependence of τλ
Imp

on the momentum �k, as well. This eventually reflects into
the formulas for the response functions, with a corresponding
substantial increase in the computational complexity of the
problem. For this reason it is compelling to find pertinent
approximations that might possibly simplify the calculation of
the imaginary part of the single-particle self-energy. In some
cases, such as in the two-band Rashba model, the calculation
simplifies with no further approximations, due to the fact
that summing over �q allows for τImp fully getting rid of any
dependence on both �k and λ (see Appendix C for details). In
the eight-band model the situation is not so simple and, as we
discuss in the following, we have to resort to some “educated”
approximations to make our problem tractable.

2. Impurity-induced vertex renormalization

To derive the impurity-induced vertex renormalization, we
consider the diagrams contributing a specific conductance ten-
sor in the absence of impurity effects, such as the “bubble”

FIG. 9. (a) Feynman diagram (“bubble”) representing the con-
ductance tensor computed in the absence of impurity effects.
(b) Sketch of the typical diagrams contributing to the self-energy
renormalization (finite τ−1

Imp). (c) Sketch of typical diagrams (“lad-
der”) contributing to the vertex renormalization. (d) Pictorial
representation of the renormalization of the spin-Hall current vertex
(red square).

diagram reported in Fig. 9(a), with the colored dots repre-
senting the vertex insertions, respectively, corresponding to
the operator coupled to the external source field (blue dot,
in our formalism this corresponds to [ jch,a](�k,λ);(�k′,λ′ )), and
the vertex insertion represented by the red dot corresponding
to the specific operator that we measure (in our case this
corresponds to [O1](�k,λ);(�k′,λ′ )). Next, we “dress” the retarded
and the advanced single-particle Green’s functions with the
self-energy corrections described in the previous subsection.
Diagrammatically, this amounts to adding to the “bare” bubble
the contributions of diagrams such as the ones sketched in
Fig. 9(b). Finally, we introduce diagrams such as those in
Fig. 9(c), which renormalize the vertices, as well. Carefully
doing the calculation and singling out only the total contri-
butions arising from diagrams such as those in Fig. 9(c), it
is possible to recover the corresponding contribution to the
fermion bubble that yields the required vertex renormaliza-
tion. For a generic pair of bilinear operators in the fermionic
fields O1(�r, t ) and O2(�r′, t ′), we have therefore to recover
the vertex renormalization from the retarded Green’s function
θ (t − t ′)〈[O1(�r, t ),O2(�r′, t ′)]〉.

We now consider the impurity-induced renormalization
of the equal-momentum vertex corresponding to an inser-
tion of a generic operator O1(�r, t ). Taking into account the
impurity-induced imaginary part of the self-energy, we obtain
the modified version of Eq. (A9) in the presence of a finite
density of impurities, that is,

�1,2 = lim
ω0→0

∑
a=±1

a

2ω0

{
1

V

∑
�k

∑
λ,λ′

∫
dω̄

2π
[O1](�k,λ);(�k,λ′ )[O2](�k,λ′ );(�k,λ)

× {
f (ω̄)

[
gR

(�k,λ)
(ω̄) − gA

(�k,λ)
(ω̄)

]
gR

(�k,λ′ )
(ω̄ + aω0) + f (ω̄ + aω0)gA

(�k,λ)
(ω̄)

[
gR

(�k,λ′ )
(ω̄ + aω0) − gA

(�k,λ′ )
(ω̄ + aω0)

]}
+ 1

V

∑
�k

∑
λ,λ′

∫
dω̄

2π
[δO1](ω̄,ω̄+aω0 );[R,R]

(�k,λ);(�k,λ′ )
[O2](�k,λ′ );(�k,λ) f (ω̄)gR

(�k,λ)
(ω̄)gR

(�k,λ′ )
(ω̄ + aω0)
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− 1

V

∑
�k

∑
λ,λ′

∫
dω̄

2π
[δO1](ω̄,ω̄+aω0 );[A,A]

(�k,λ);(�k,λ′ )
[O2](�k,λ′ );(�k,λ) f (ω̄ + ω0)gA

(�k,λ)
(ω̄)gA

(�k,λ′ )
(ω̄ + aω0)

+ 1

V

∑
�k

∑
λ,λ′

∫
dω̄

2π
[δO1](ω̄,ω̄+aω0 );[A,R]

(�k,λ);(�k,λ′ )
[O2](�k,λ′ );(�k,λ)[ f (ω̄ + aω0) − f (ω̄)]gA

(�k,λ)
(ω̄)gR

(�k,λ′ )
(ω̄ + aω0)

}
(B18)

with the vertex correction [δO1](ω̄,ω̄+ω0 );[X,Y ]

(�k,λ);(�k,λ′ )
(X,Y = A, R) satisfying the equation

[δO1](ω̄,ω̄+ω0 );[X,Y ]

(�k,λ);(�k,λ′ )
=

∞∑
n=1

{
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(�k,λ);(�k,λ′ )

}
(n) (B19)

with {
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(�k,λ);(�k,λ′ )

}
(1) = ū2NImp

V

∑
�q

∑
μ,μ′

A(�k,λ);(�q,μ)g
X
(�q,μ)(ω̄)[O1](�q,μ);(�q,μ′ )g

Y
(�q,μ′ )(ω̄ + ω0)A(�q,μ′ );(�k,λ′ ) (B20)

and {
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(�k,λ);(�k,λ′ )

}
(n+1) = ū2NImp

V

∑
�q

∑
μ,μ′

A(�k,λ);(�q,μ)g
X
(�q,μ)(ω̄)

{
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(�q,μ);(�q,μ′ )

}
(n)g

Y
(�q,μ′ )(ω̄ + ω0)A(�q,μ′ );(�k,λ′ ). (B21)

To formally solve the iterative system in Eqs. (B20) and (B21), we set{
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(σ );(σ ′ )

}
(n)

=
∑

�k

∑
λ,λ′

[
w

�k
σ,λ

]∗
w

�k
σ ′,λ′

{
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(σ,σ ′ )

}
(n)

, (B22)

which enables us to respectively rewrite Eqs. (B20) and (B21) in the form

{
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(σ,σ ′ )

}
(1)

= ū2NImp

V

∑
�q

∑
σ1,σ

′
1

gX
[�q;(σ,σ1 )](ω̄)[O1](σ1,σ

′
1 )g

Y
[�q;(σ ′

1,σ
′ )](ω̄ + ω0) (B23)

and {
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(σ,σ ′ )

}
(n+1)

= ū2NImp

V

∑
�q

∑
σ1,σ

′
1

gX
[�q;(σ,σ1 )](ω̄)

{
[δO1](ω̄,ω̄+ω0 );[X,Y ]

(σ1,σ
′
1 )

}
(n)g

Y
[�q;(σ ′

1,σ
′ )](ω̄ + ω0) (B24)

with

gX
[�q;(σ,σ ′ )](ω̄) =

∑
λ

w �q
σ,λ

[
w �q

σ ′,λ

]∗
gX

(�q,λ)(ω̄). (B25)

As a further formal simplification, we only retain the vertex corrections at the right-hand side of Eq. (B18) containing the
[A, R] terms [32]. Accordingly, we eventually obtain the vertex-correction-induced additional contribution to �1,2, δ�1,2, given
by (in the zero-temperature limit)

δ�1,2 = 1

V

∑
�k

∑
λ,λ′

∫
dω̄

2π
[δO1](ω̄,ω̄);[A,R]

(�k,λ);(�k,λ′ )
[O2](�k,λ′ );(�k,λ)g

A
(�k,λ)

(ω̄)gR
(�k,λ′ )

(ω̄)∂ω̄ f (ω̄)

= −2π

V

∑
�k

∑
λ,λ′

[δO1](0,0);[A,R]

(�k,λ);(�k,λ′ )
[O2](�k,λ′ );(�k,λ)g

A
(�k,λ)

(0)gR
(�k,λ′ )

(0). (B26)

APPENDIX C: SPIN-HALL CONDUCTANCE IN A LATTICE
MODEL FOR THE TWO-DIMENSIONAL

RASHBA HAMILTONIAN

As a test bed of our approach, in this Appendix we compute
the SHC in a lattice model for a two-dimensional electron gas
with Rashba SOI, described by the Hamiltonian HR given by

HR = 1

V

∑
�k

∑
σ,σ ′

c†
�k,σ

[HR(�k)]σ,σ ′c�k,σ ′ (C1)

with V being the (two-dimensional) lattice “volume,” σ and
σ ′ being actual spin labels, and

HR(�k) =
[
ε�k δ�k
δ∗
�k ε�k

]
(C2)

with

ε�k = −2t{cos(kx ) + cos(ky)},
δ�k = 2α{i sin(kx ) + sin(ky)}. (C3)
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The relevant parameters of HR are the single-fermion hopping
amplitude t (which we assume to be the same both along the
x and y directions over the lattice) and the Rashba spin-orbit
coupling α. Eventually, we use the chemical potential μ as our
tuning parameter.

To compute the SHC we need the SH current and the
charge-current operators, respectively given by (in the 2 × 2
matrix notation)

jz
sp,x = t sin(kx )σ z,

jch,y = 2et sin(ky)I + 2eα cos(ky)σ x. (C4)

The energy eigenvalues ε�k,λ
, with λ = ±, and the correspond-

ing eigenmodes ��k,λ
are given by

ε�k,λ
= ε�k + λ|δ�k| (C5)

and by

��k,+ = 1√
2
{c�k,↑ + eiϕ�k c�k,↓},

��k,− = 1√
2
{−e−iϕ�k c�k,↑ + c�k,↓} (C6)

with ϕ�k = arg(δ�k ). Once rotated to the energy eigenmode ba-
sis, the operators in Eq. (C4) become

jz
sp,x → −t sin(kx ){cos(ϕ�k )σ x − sin(ϕ�k )σ y},

jch,y → 2et sin(ky)I + 2eα cos(ky) cos(ϕ�k )σ z

− 2eαi sin(ϕ�k ) cos(ky){cos(ϕ�k )σ x − sin(ϕ�k )σ y}.
(C7)

Summing over the possible directions of �k
(within the Brillouin zone) allows for rewriting

Eq. (B17) as

1 = NImpū2

2V

∑
�k

∑
λ=±1

{
1

(ε�k + λ|δ�k| − μ)2 + (2τImp)−2

}
.

(C8)
From Eq. (C8) we see that any dependence on the momentum,
as well as on the spin index, has disappeared at the right-hand
side of the equation, leaving only an overall factor of 1

2 . While
this is just a special feature of the two-band Rashba model, it
is in any case a useful guideline to choosing the appropriate
approximations to implement in the more complicated multi-
band calculation.

We now compute the SHC of the two-band Rashba model
σ z

xy. To do so, we label with subscript 1 the vertex corre-
sponding to the z component of the spin current along x
and with subscript 2 the vertex corresponding to the charge
current along y. As in the main text, we denote with σ z

xy;A the
contribution to the SHC without vertex corrections and with
σ z

xy;B the total contribution arising from vertex corrections. As
a next step, we consider the splitting in Eqs. (A10), which in
this case yields

[S1,2](�k,λ);(�k,λ′ ) = 0, ∀ λ, λ′,

[I1,2](�k,+);(�k,+) = [I1,2](�k,−);(�k,−) = 0,

[I1,2](�k,+);(�k,−) = −[I1,2](�k,−);(�k,+)

= 2etα sin2(kx ) cos(ky)√
sin2(kx ) + sin2(ky)

. (C9)

Taking into account Eqs. (C9), we obtain

σ z
xy;A = 2etα

πV

∑
�k

sin2(kx ) cos(ky)��k (μ)√
sin2(kx ) + sin2(ky)

(C10)

with

�(μ) = −i
∫ 0

−∞

dω̄

2π

∑
λ=±

λ
[
gA

(�k,λ)
(ω̄) − gR

(�k,λ)
(ω̄)

]
∂ω̄

[
gA

(�k,−λ)
(ω̄) + gR

(�k,−λ)
(ω̄)

]

= 2τImp{[|δ�k|2 − (ε�k − μ)2] − (2τImp)−2}
π |δ�k|((2τImp)−2 + 2{(ε�k − μ)2 + |δ�k|2 + 2τ 2

Imp[(ε�k − μ)2 − |δ�k|2]2})

+
{

arctan[2τImp(|δ�k| − ε�k + μ)] + arctan[2τImp(|δ�k| + ε�k − μ)]

2π |δ�k|2
}
. (C11)

The contribution determined by the vertex corrections σ z
xy;B can be computed according to Eq. (B26). It is given by

σ z
xy;B = 2

πV

∑
�k

∑
σ,σ ′

∑
ρ,ρ ′

[
δ jz

sp,x

](0,0);[A,R]

(�k,σ );(�k,σ ′ )g
A
�k;(ρ,σ )

(0)gR
�k;(σ ′,ρ ′ )

(0)[ jch,y](�k,ρ ′ );(�k,ρ). (C12)

[Note that, for computational purposes, we wrote Eq. (C12) in the spin-eigenstate basis.] Finally, going through the systematic
procedure discussed in Appendix B, we find for the renormalized vertex the expression

[
δ jz

sp,x

](0,0);[A,R]

(�k,σ );(�k,σ ′ ) = NImpū2�

1 − NImpū2ν
[σ x]σ,σ ′ (C13)
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that is independent of �k, with

� = αt

τImpV

∑
�q

{
sin2(qx )

(2τImp)−4 + 2(2τImp)−2[(ε�q − μ)2 + |δ�q|2] + [(ε�q − μ)2 − |δ�q|2]2

}
,

ν = 1

V

∑
�q

{
(ε�q − μ)2 + (2τImp)−2

(2τImp)−4 + 2(2τImp)−2[(ε�q − μ)2 + |δ�q|2] + [(ε�q − μ)2 − |δ�q|2]2

}
. (C14)

Finally, plugging Eq. (C8) into (C13), we eventually get

[
δ jz

sp,x

](0,0);[A,R]

(�k,σ );(�k,σ ′ ) = t

4ατImp
σ x. (C15)

Inserting Eq. (C15) into (C12), we derive σ z
xy;B as a function

of μ.
In Fig. 10 we separately plot the results for the two terms,

computed using the Hamiltonian HR with t = 300 meV, α =
10 meV, and with τImp = 3 ps. From the plot in Fig. 10 we
note the main features of the SHC in a Rashba-2DEG in the
presence of impurity. First, we note that, in the absence of
vertex corrections, σ z

xy is either zero or it is quantized (in
units of e2/2h) [51]. When including vertex corrections, these
fully screen the SHC, which results in the absence of the
effect, as widely discussed in the literature [28–32,39,40].
In the main text we, instead, note how the behavior is com-
pletely different in the multiband model, due to the various,
impurity-induced, interband processes. This notwithstanding
the fact that, as we show in the next Appendix, at low enough
values of μ, the eight-band model can be effectively described
as a Rashba-type Hamiltonian such as the one we discuss
here.

APPENDIX D: EFFECTIVE TWO-SUBBAND
RASHBA-TYPE HAMILTONIAN

In this Appendix we show how the eight-band model of
Sec. III, when μ is within the first pair of subbands but still
below the bottom of higher-energy subbands, can be effec-
tively described by a Rashba Hamiltonian Hxy, involving the

FIG. 10. Contributions to the spin-Hall conductance σ z
xy;A (red

curve) and σ z
xy;B (blue curve) in the model described by the lattice

Rashba Hamiltonian in Eq. (C1), in the presence of a finite im-
purity concentration, with parameters chosen so that t = 300 meV,
α = 10 meV, and τImp = 3 ps.

effects of virtual transitions from the low-lying subbands to,
and from, higher-energy bands.

Employing the approach developed in Ref. [52] and re-
ferring to the eight-band Hamiltonian that we discuss in
Sec. III, we define the energy eigenmodes ��k,λ

as ��k,λ
=∑

α

∑
s u∗

α,scα,s, with α ∈ {(xy; A), (xy; B), zx, yz} and s being
the spin polarization. In the following, we will simply de-
note with uα the (bi)spinor [uα,↑, uα,↓]t . We now recover the
reduced, effective Hamiltonian for the first two subbands in
the bispinor representation, by systematically going through
a projection over the xy; A and the xy; B subbands. To do so,
we introduce the projection operators P and Q which, in the
block notation of Sec. III and in the basis of the spinors such
as the one in Eq. (8) are written as

P =

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 I 0
0 0 0 I

⎤
⎥⎥⎦, Q =

⎡
⎢⎢⎣

I 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦. (D1)

Projecting with P and Q the Schrödinger equation corre-
sponding to the Hamiltonian in Eq. (9), we obtain

[
ε − εxy;A(�k) 0

0 ε − εxy;B(�k)

][
uxy;A

uxy;B

]

= i

[
f X
1 (�k) + λSOIσ

y f Y
1 (�k) − λSOIσ

x

f X
2 (�k) + λSOIσ

y f Y
2 (�k) − λSOIσ

x

][
uyz(�k)
uzx(�k)

]
,

[
ε − εyz(�k) −iλSOIσ

z

iλSOIσ
z ε − εzx(�k)

][
uyz(�k)
uzx(�k)

]

= −i

[
f X
1 (�k) + λSOIσ

y f X
2 (�k) + λSOIσ

y

f Y
1 (�k) − λSOIσ

x f Y
2 (�k) − λSOIσ

x

][
uxy;A

uxy;B

]
. (D2)

Getting rid of the uyz(�k) and of the uzx(�k), Eqs. (D2) yield the
reduced time-independent Schrödinger equation, with energy
eigenvalue ε, projected over the low-lying doublets in the
form

[
ε − εxy;A(�k) − hAA(�k) −hAB(�k)

−hBA(�k) ε − εxy;B(�k) − hBB(�k)

][
uxy;A(�k)
uxy;B(�k)

]
= 0 (D3)
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with [
hAA(�k) hAB(�k)
hBA(�k) hBB(�k)

]
= 1

[ε − εyz(�k)][ε − εzx(�k)] − λ2
SOI

[
f X
1 (�k) + λSOIσ

y f Y
1 (�k) − λSOIσ

x

f X
2 (�k) + λSOIσ

y f Y
2 (�k) − λSOIσ

x

]

×
[
ε − εzx(�k) iλσ z

−iλσ z ε − εyz(�k)

][
f X
1 (�k) + λSOIσ

y f X
2 (�k) + λSOIσ

y

f Y
1 (�k) − λSOIσ

x f Y
2 (�k) − λSOIσ

x

][
uxy;A

uxy;B

]
. (D4)

Explicitly expanding the right-hand side of Eq. (D4), we eventually obtain

hAA(�k) = D−1(�k)
{
[ε − εzx(�k)]

[
f X
2 (�k)

]2 + [ε − εyz(�k)]
[

f Y
2 (�k)

]2 + λ2
SOI[2ε − εzx(�k) − εyz(�k)]

+ 2λSOI
{−[ε − εyz(�k)] f Y

1 (�k)σ x + [ε − εzx(�k)] f X
1 (�k)σ y

}}
,

hBB(�k) = D−1(�k)
{
[ε − εzx(�k)]

[
f X
1 (�k)

]2 + [ε − εyz(�k)]
[

f Y
1 (�k)

]2 + λ2
SOI[2ε − εzx(�k) − εyz(�k)]

+ 2λSOI
{ − [ε − εyz(�k)] f Y

2 (�k)σ x + [ε − εzx(�k)] f X
2 (�k)σ y

}}
,

hAB(�k) = h∗
BA(�k) = D−1(�k)

{
[ε − εzx(�k)]

[
f X
1 (�k) + λSOIσ

y
][

f X
2 (�k) + λSOIσ

y
]

+ [ε − εyz(�k)]
[

f Y
1 (�k) − λSOIσ

x
][

f Y
2 (�k) − λSOIσ

x
]

+ iλSOI
{−[ε − εzx(�k)]

[
f Y
1 (�k) − λSOIσ

x
][

f X
2 (�k) + λSOIσ

y
]

+ [ε − εyz(�k)]
[

f X
1 (�k) + λSOIσ

y
][

f Y
2 (�k) − λSOIσ

x
]}

σ z
}
, (D5)

with

D−1(�k) = 1

[ε − εyz(�k)][ε − εzx(�k)] − λ2
SOI

. (D6)

At a given chemical potential μ, for −	A < μ < −	B we approximate the matrix elements in Eqs. (D5) by simply
substituting ε with εxy;A(�k). For |μ| ∼ 	A we may further neglect the effective interband couplings in the right-hand side of
Eqs. (D4) and (D5) by therefore introducing a simple effective Rashba-type Hamiltonian for the xy; A doublet, HAA(�k), given by

HAA(�k) = εxy;A(�k) + {
[εxy;A(�k) − εyz(�k)][εxy;A(�k) − εzx(�k)] − λ2

SOI

}−2

×{
[εxy;A(�k) − εzx(�k))]

[
f X
2 (�k)

]2 + [εxy;A(�k) − εyz(�k)]
[

f Y
2 (�k)

]2 + λ2
SOI[2εxy;A(�k) − εzx(�k) − εyz(�k)]

+ 2λSOI
[−[εxy;A(�k) − εyz(�k)] f Y

1 (�k)σ x + [εxy;A(�k) − εzx(�k)] f X
1 (�k)σ y

]}
. (D7)

Expanding the right-hand side of Eq. (D7) up to second order in �k, we obtain that HAA(�k) ≈ Hxy(�k), with

Hxy(�k) ≈ −	̂A + t̂2�k2 + α̂{−kxσ
y + kyσ

x} (D8)

and

	̂A = 	A + 2	Aλ2
SOI

	2
A − λ2

SOI

, t̂ = t1 + λ2
SOI(t1 − t2) − 4	Aγ 2

2

	2
A − λ2

SOI

− 2	2
Aλ2

SOI(t1 − t2)[
	2

A − λ2
SOI

]2 ,

α̂ = 4γ1λSOI	A

	2
A − λ2

SOI

. (D9)

The emergence of an effective Hamiltonian, at low �k, with
a linear Rashba spin-orbit coupling, is consistent with the
apparent suppression of the spin-Hall conductance due to
the vertex renormalization in the low-μ part of the plot of
Fig. 7. Of course, on increasing μ, nonlinear contributions
to the Rashba coupling as well as interband terms in the
system Hamiltonian are expected to spoil the perfect can-
cellation of the spin-Hall conductance from impurity-induced
vertex corrections and, again, this is consistent with our result
of Fig. 7.

APPENDIX E: ANALYTICAL DERIVATION OF THE
SHEET CONDUCTANCE AND OF THE SPIN-HALL

CONDUCTANCE IN THE EIGHT-BAND MODEL

In this Appendix we provide the explicit derivation of the
formulas for the sheet conductance and for the spin-Hall con-
ductance in the eight-band model, that we used to analytically
derive the plots that we show in the main text of the paper.
All the formulas we derive in the following are grounded over
a systematic implementation of the formalism that we review
in Appendixes A and B. Before going through the details of
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the derivation of the conductances, it is crucial to extensively
discuss and motivate the way in which we employ (the self-
consistent version of Eq. (B17) for the inverse single-particle
lifetime τλ

Imp.
In general, τλ

Imp should be self-consistently determined
from Eq. (B17), with the “bare” single-particle retarded
Green’s function gR;(0)

(�q;μ)(ω) at the right-hand side of the equa-

tion substituted with the “dressed” one gR
(�q;μ)(ω) in Eq. (B16).

However, in the specific case of the LAO/STO interface, as it
is evidenced in the Supplemental Material of Ref. [16], within
all the interval of values of the gate voltage that they consider
(which corresponds to our interval of values of μ), the elastic
contribution to τImp, τe, keeps smaller than the inelastic one,
τi (by even two to three orders of magnitude in the first part
of the interval of values of μ). This evidences how we can
safely neglect τi and, accordingly, compute τe by setting to 0
the frequency ω in (the self-consistent version of) Eq. (B17).
Still keeping, for the time being, the explicit dependence on λ

we therefore simplify Eq. (B17) to

1

2τλ
e

= NImpū2

V

∑
�q

∑
μ

⎡
⎣(

2τμ
e

)−1A(�k,λ);(�q,μ)A(�q,μ);(�k,λ)

ξ 2
�q,μ

+ (
2τ

μ
e
)−2

⎤
⎦.

(E1)

To recover a numerical estimate for the τλ
e , we rely on

Ref. [16], where the non-λ-resolved τe is obtained from
the measured magnetoconductance by means of a fit to
the Maekawa-Fukuyama formula [42]. Having only a band-
independent estimate for τe we dropped the dependence on
λ in the inverse lifetimes appearing at the right-hand side of
Eq. (E1) and approximated it by means of the rough estimate
τe ≈ 3 ps [16]. Accordingly dropping the dependence on λ in
τe in Eq. (E1), we further approximate it by averaging over λ,
so that we eventually obtain

1 = NImpū2

NV

∑
�q

∑
μ

[
1

ξ 2
�q,μ

+ (2τe )−2

]
. (E2)

While slightly changing the value of τe and even adding
a slight dependence on μ and/or on the band index λ does
almost not affect at all the contributions to the conduc-
tances from the nonzero, impurity-induced single-fermion
self-energy. At variance, especially when computing σ z

xy in
the multiband model, the implementation of the above ap-
proximations in computing the vertex corrections is crucial in
determining the weight of that latter contribution on the finite
result.

In fact, looking at the right-hand side of Eq. (E2), we see
that, on varying μ, terms with different index λ contribute
in a largely different way to the total sum. To evidence this,
in Fig. 11 we plot (aside from the overall factor NImpū2) the
contributions from the four different doublets, averaged over
each doublet, as a function of μ. As in Fig. 8, it is useful
to ideally split the plot in Fig. 11 into three regions. The
first region approximatively corresponds to −150 mev � μ �
−35 meV. In this region we see that the contribution to the
vertex correction just comes from the first doublet. This sug-
gests us that the crude approximation resulting into Eq. (E2)
should not apply in this region: only two, out of eight, bands

FIG. 11. Contributions to the factor multiplying NImpū2 at the
right-hand side of Eq. (E2) determined by setting τe = 3 ps and
averaged over band doublets, as a function of the chemical potential
μ. In order of increasing energy, the contributions are drawn in blue,
red, magenta, and green.

are contributing to τe and, therefore, the average encoded in
the right-hand side of the equations has to be performed over
just 2, rather than N = 8, bands. Consistently with this result,
in computing the vertex correction we resort to a different
approximation by trading Eq. (E2) for

1 = NImpū2

2V

∑
�k

∑
λ=d±

xy;A

[
1

ξ 2
�k,λ

+ (2τe )−2

]
(E3)

with d±
xy;A denoting the dxy;A doublet. Having numerically set

τe as discussed above, Eq. (E3) eventually trades for a nu-
merical estimate of the (otherwise unknown) factor NImpū2.
To move ahead, leaving aside, for the time being, the second
region, we now focus onto the third one, roughly ranging over
the interval 50 meV � μ � 150 meV. While, in this region,
the first doublet still provides by a large amount the leading
contribution to the right-hand side of Eq. (E2), there is, now,
a finite contribution from the other three doublets, which is
approximatively the same over the various subbands. This
suggests to weight the contributions of all four doublets by
first separately assuming that the right-hand side of Eq. (E2)
is contributed by a single doublet only, for all four doublets,
and by then attributing to all the integrals a weight that is
the same for the three higher-energy doublets and, obviously,
higher for the lowest-energy one. This eventually results into
an effective normalization factor at the right-hand side of
Eq. (E2), NEff , such that 2 < NEff < 8, with NEff numerically
determined as stated above. This allows us to estimate NImpū2

throughout the third region, as well. Finally, a straightforward
extension of the method we used for the third region to the
second region, as well, with different weights for different
doublets, in general, allows for estimating NImpū2 throughout
this region, as well.

We now proceed with computing the sheet- and the spin-
Hall conductances. Let us begin with the sheet conductance.

Within the linear response theory of Appendix A, for a
system in a Hall bar arrangement such as the one we draw
in Fig. 1, the sheet conductance σs is recovered from the
current response along x to an electric field applied in the
same direction. Adding also the effects of the impurities we
obtain, according to the result of Appendixes A and B, σs =
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σs;A + σs;B, with σs;A accounting for the nonzero, impurity-
induced imaginary part of the single-electron self-energy and
σs;B determined by vertex corrections.

From the derivation of Appendix B and taking into account
our discussion above, we obtain

σs;A ≈ 1

2πwV

∑
�k

∑
λ,λ′

[ jch,x](�k,λ);(�k,λ′ )[ jch,x](�k,λ′ );(�k,λ)

×
{

(2τe )−1

ξ 2
�k,λ

+ (2τe )−2

(2τe )−1

ξ 2
�k,λ′ + (2τe )−2

}
(E4)

with w being the sample width along the z direction, which
we drop from our calculation, as we are only interested in the
dependence of σs on the chemical potential μ. The electric
current operator matrix elements [ jch,x](�k,λ);(�k,λ′ ) are derived
by acting with the transformation in Eq. (5) over the operator

[ jch,x](�k,σ );(�k,σ ′ ) = e[ ∂Height-band (�k)
∂kx

]σ,σ ′ = e[vx]σ,σ ′ .
Along the same guidelines leading to Eq. (E4), we derive

the contribution to the sheet conductance arising from the
vertex corrections σs;B. This is given by

σs;B = e2

2πwV

∑
�k

∑
λ,λ′

[vx](�k,λ);(�k,λ′ )[δv
x](�k,λ′ );(�k,λ)

×
{

1

ξ�k,λ
+ i(2τe )−1

1

ξ�k,λ′ − i(2τe )−1

}
. (E5)

The quantity δvx in Eq. (E5) is the correction to the interaction
vertex [vx](�k,λ);(�k′,λ′ ), which we numerically compute through
an iterative process in the impurity interaction strength, as we
outline in Appendix B. Doing so, we explicitly verified that
σs;B, is several orders of magnitude lower than the contribution
σs;A in Eq. (E4). We therefore used only this last contribution
to estimate σs and to accordingly draw the plot in Fig. 4.

To compute the spin-Hall conductance σ z
xy we proceed

in the same way. First of all, we split again σ z
xy as σ z

xy =
σ z

xy;A + σ z
xy;B, with σ z

xy;A taking into account the finite self-
energy of the single-particle Green’s functions and σ z

xy;B
accounting for the impurity-induced vertex corrections. To
perform our derivation, we need the retarded Green’s func-

tions of the operators jz
sp,x = 1

2 { ∂H8−band (�k)
∂kx

, I4 ⊗ σz} and

jch,y = e ∂Height-band (�k)
∂ky

. By direct inspection we verified that
Re{[ jz

sp,x](�k,λ);(�k,λ′ )[ jch,y](�k,λ′ );(�k,λ)} = 0. Therefore, σ z
xy;A is

only contributed by the term in Eq. (A13), while the contri-
bution from Eq. (A12) is equal to 0. Specifically, we obtain

σ z
xy;A = − i

2V

∑
�k

∑
λ,λ′

× Im
{[

jz
sp,x

]
(�k,λ);(�k,λ′ )

[
jch,y

]
(�k,λ′ );(�k,λ)

}
×

∫
dω̄

2π

{[
gA

(�k,λ)
(ω̄) − gR

(�k,λ)
(ω̄)

]
×∂ω̄

[
gA

(�k,λ′ )
(ω̄) + gR

(�k,λ′ )
(ω̄)

]
f (ω̄)

}
(E6)

with (see Appendix A for details)

gR/A

(�k,λ)
(ω̄) = 1

ω̄ − ξ�k,λ
± i

2τe

, (E7)

and f (ω̄) being the Fermi distribution function.

(a)

(b)

FIG. 12. (a) σs as a function of μ computed with the parameters
listed in Table I, and with τImp = 3 ps, τImp = 6 ps (red curve), and
τImp = 9 ps (green curve). (b) σ z

xy;A as a function of μ computed with
the parameters listed in Table I, and with τ−1

Imp = 0 (black curve),
τImp = 3 ps, τImp = 6 ps (red curve), and τImp = 9 ps (green curve).

The contribution from vertex corrections σ z
xy;B takes a form

similar to σs;B in Eq. (E5), provided the operators entering the
corresponding equation are pertinently replaced. As a result,
we obtain

σ z
xy;B = 1

2πV

∑
�k

∑
λ,λ′

[
δ jz

sp,x

]
(�k,λ);(�k,λ′ )

[
jch,y

]
(�k,λ′ );(�k,λ)

×
{

1

ξ�k,λ
+ i(2τe)−1

1

ξ�k,λ′ − i(2τe)−1

}
(E8)

with the vertex correction δ jz
sp,x computed according to

Eqs. (B22)–(B24) and the self-consistent expression for τe

implemented as discussed above.
Equations (E4) and (E5) and (E6) and (E7) provide the

expressions we used in the main text to draw the plots of the
sheet conductance and of the spin-Hall conductance, in the
clean limit, as well as in the presence of impurities.

Before concluding this Appendix, we briefly investigate
how changing the density of impurities and/or the impurity
interaction potential affects σs and σ z

xy. To do so, it is worth
pointing out that, throughout our derivation, we lump all
the details about the density of impurity and the impurity
interaction into the parameter τImp, which we regard as a
phenomenological parameter, fitted from the data of Ref. [16].
Therefore, we analyze the effects of changing the density of
impurities and/or the impurity interaction potential by simply
computing the conductances as functions of μ for different
values of τImp. In Fig. 12(a) we plot the corresponding results
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for σs as a function of μ computed using the parameters listed
in Table I, for τImp = 3, 6, and 9 ps. As expected, at a given μ,
σs increases monotonically, as a function of τImp, with no par-
ticular additional features in the main behavior (for τImp = 6
and 9 ps), compared to the case τImp = 3 ps, corresponding to
the value estimated from the data of Ref. [16]. In Fig. 12(b)

we plot σ z
xy;A as a function of μ for the same values of τImp

as we used for σs and, in addition, for τ−1
Imp = 0. The overall

main trend shows how, varying τImp, the plot in the clean limit
evolves into the one at finite τImp, with no particular features
emerging at values in between τ−1

Imp = 0 (the clean limit) and
the experimentally estimated value τImp = 3 ps.
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