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Upper bounds on collective light-matter coupling strength with plasmonic meta-atoms
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Ultrastrong coupling between optical and material excitations is a distinct regime of electromagnetic interac-
tion that enables a variety of physical phenomena. Traditional ways to ultrastrong light-matter coupling involve
the use of some sorts of quantum emitters, such as organic dyes, quantum wells, superconducting artificial
atoms, or transitions of two-dimensional electron gases. Often, reaching ultrastrong coupling requires special
conditions, including high vacuum, strong magnetic fields, and low temperatures. Recent reports indicate that a
high degree of light-matter coupling can be attained at ambient conditions with plasmonic meta-atoms—artificial
metallic nanostructures that replace quantum emitters. Yet, the fundamental limits on the coupling strength that
can be attained with this platform have not been identified. Here, using a Hamiltonian approach we theoretically
analyze spectra of polaritonic states and examine the upper limits of the collective plasmon-photon coupling
strength in dense assemblies of plasmonic meta-atoms. Starting off with spheres, we identify the universal
upper bounds on the normalized collective coupling strength η between ensembles of plasmonic meta-atoms
and free-space photons. Next, we examine spheroidal metallic meta-atoms and show that a strongly elongated
meta-atom is the optimal geometry for attaining the highest value of the collective coupling strength in the
array of meta-atoms. The results could be valuable for the field of polaritonics studies, quantum technology, and
modifying material properties.
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I. INTRODUCTION

Strong coupling between two harmonic oscillators—either
of classical or quantum nature—is one of the most basic
physical models that can be employed to understand the be-
havior of various mechanical and electromagnetic systems.
Polaritons—stationary eigenstates of a coupled system in the
strong coupling regime—are hybridized states whose wave
function is characterized by the photonic and the matter
component simultaneously [1,2]. In the optical domain, po-
laritonic states are often realized by means of coupling an
optical cavity mode with electronic or vibrational transitions
in resonant media [2–6]. Thanks to their hybrid composition,
optical polaritons manifest unique properties that are typical
of simultaneous excitations of light and matter [7]. This offers
new ways for modifying the microscopic properties of matter
[8–10] and even controlling the rates of chemical reactions
[11–16]. The extent to which these microscopic properties can
be modified is often determined by the interaction strength
between the two components of the coupled system [17–23].
This calls for finding the ways to improve the coupling
strength in polaritonic systems.

In the saturation limit—when the entire volume of the
cavity is filled with emitters—the key characteristic that de-
termines the resulting interaction constant is the reduced
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oscillator strength, which is proportional to the transition
dipole moment, and the volume density of oscillators in the
medium [24–26]. There is a solid theoretical evidence to
believe that it is not possible to boost the coupling strength
by confining the cavity mode volume—shrinking the cavity
mode volume increases the coupling strength with few to
individual emitters [27], up to the point where the mode will
excite less and less transitions as the volume becomes smaller
than the emitters themselves [28–30].

Recent theoretical and experimental efforts have shown
that it is possible to boost the coupling strength in polaritonic
systems by utilizing so-called meta-atoms—resonant metallic
nanoparticles hosting localized plasmonic resonances [31,32].
Despite not having a discrete anharmonic energy ladder like
quantum emitters, such meta-atoms participate in the coupling
process in a similar way, resulting in the emergence of hy-
brid polaritonic states with equally spaced (harmonic) energy
ladders [33,34]. An additional appeal of meta-atoms is the
possibility to design chiral resonant emitters [35,36], which
allows engineering and studying the physics of chiral polari-
tonic states [37,38]. This approach has enabled the exotic
regimes of ultrastrong (USC) [39–41] and even deep strong
coupling [42] at ambient conditions, which was previously
unavailable with more traditional quantum emitter platforms.
In these regimes, not only the excited states, but also the
ground state of the system experiences a modification upon
coupling [43–45].

The experimental progress in realizing polaritonic states
with artificial meta-atoms begs a natural question: What is
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FIG. 1. (a) A single spheroidal metallic nanoparticle as a meta-
atom, with semi-axes a, b, and c. The general Power-Zienau-Woolley
Hamiltonian [Eq. (2)] is used to describe the meta-atom with po-
larization P(r, t ) = αX(r, t ). The charge density α(r) is displaced
with a vector field X(r, t ). This system couples to the electric field
E = E‖ + E⊥, where E‖ = −∇� is the longitudinal field created
by the charge density and E⊥ is a divergence-less field from ei-
ther the radiation of the meta-atom or external waves. (b) In the
long-wavelength approximation, P ≈ μ01(b + b†)δ(r − r0 ) with μ01

denoting the transition dipole moment between two consecutive lev-
els of the meta-atom, which is described as a harmonic energy ladder.
(c) The same general Hamiltonian (2) is then used in the continuous
limit to model the meta-atom array as a density of dipoles per unit
volume Vcell with inputs ωpl and μ01 from the single meta-atom
description.

the upper bound on the coupling strength in polaritonic sys-
tems involving meta-atoms? Certain analytical models have
been proposed that describe polaritonic states of such system
using rigorous coupled-dipoles method [46]. However, that
particular model was developed for subwavelength spherical
meta-atoms, and as a result cannot be applied to study the lim-
its of plasmon-photon coupling in the case of large spherical
or nonspherical particles.

In this paper, using a Hamiltonian approach we theo-
retically analyze spectra of polaritonic states and examine
the upper limits of the collective plasmon-photon cou-
pling strength in dense assemblies of plasmonic meta-atoms.
Starting with the case of analytically solvable spherical
meta-atoms, we identify the universal upper bounds on the
normalized collective coupling strength (denoted η in the
following) between ensembles of plasmonic meta-atoms and
free-space photons. Then, with the aid of numerical simula-
tions, we examine the case of spheroidal meta-atoms. Our
results suggest that strongly elongated meta-atoms could be
the optimal geometry for attaining the highest value of the
collective coupling strength with the optical field.

II. SYSTEM UNDER STUDY

The system we analyze in this study is represented by an
ensemble of (generally) spheroidal metallic meta-atoms with
semi-axes a, b, and c, and permittivity εm(ω) distributed in
a host medium (air), Fig. 1. The meta-atoms are assumed to
be distributed in space periodically, with volume filling factor
f defined as a ratio of the volume occupied by the metallic
fraction to the total volume of the system, f = Vmetal/V .

The permittivity of metallic meta-atoms is described by the
Drude model,

εm(ω) = ε∞ − ω2
P

ω(ω + iγD)
, (1)

where ωP is the plasma frequency of the metal, ε∞ is the
high-frequency permittivity accounting for the interband tran-
sitions, and γD is the electron collision rate. For the sake of
simplicity, we will ignore dissipation in this study and assume
γD = 0. Each meta-atom supports a localized plasmon reso-
nance associated with oscillations of the electron density of
the particle. The resulting ensemble of plasmonic meta-atoms
interacts with a photon of energy h̄ωk propagating across the
surrounding medium, which is assumed to be air (ε = 1).

In order to describe the polaritonic spectrum of the sys-
tem, we will develop in the following a Hamiltonian model
involving the matter polarization. For simplicity, we describe
the interaction of the localized oscillators’ dipolar transitions
with the transverse photonic field, which can be generalized
to multipolar transitions.

III. HAMILTONIAN MODEL OF THE SYSTEM

A. General Power-Zienau-Woolley Hamiltonian

To describe the interaction between the cubic lattice of
meta-atoms and the transverse photonic field, we use a
Hamiltonian formulation in the Power-Zienau-Woolley rep-
resentation of the Coulomb gauge. The authors of Ref. [46]
previously developed a model of the plasmon-photon interac-
tion in the Coulomb gauge that accurately takes into account
the near-field Coulomb interaction between meta-atoms. The
resulting model, in particular, captures the anisotropy of
the polaritonic modes induced by the internal anisotropy of
the cubic lattice of the meta-atoms. However, the limits to the
plasmon-photon coupling have not been analyzed.

Here, we are aiming at a simplified model that would
allow us to easily characterize the strength of plasmon-photon
coupling in densely packed cubic arrays. To that end, we
start from the Power-Zienau-Woolley (or multipolar) repre-
sentation, wherein the mutual multipolar interactions between
the meta-atoms are accounted for by the quadratic self-
polarization term. Considering an ensemble of meta-atoms,
each of volume Vj and single resonance frequency ω j , we
show in Appendix A that the Hamiltonian

H =
∑

j

∫
Vj

d3r

(
�2

j

2ρ
+ 1

2
ρω2

j X
2
j

)
︸ ︷︷ ︸

meta-atoms

+
∫
R3

d3r

(
�2

A

2ε0
+ (∇ × A)2

2μ0

)
︸ ︷︷ ︸

radiation

+
∑

j

∫
Vj

d3r
P2

j

2ε0︸ ︷︷ ︸
P2-term

+
∑

j

∫
Vj

d3r
P j · �A

ε0︸ ︷︷ ︸
interaction

(2)

generates the source-free Maxwell’s equations ∇ · D = 0,∇ ·
B = 0,∇ × E = − ∂

∂t B,∇ × H = ∂
∂t D, as well as the equa-

tion of motion of the macroscopic polarization P = ∑
j P j ,(

∂2

∂t2
+ ω2

j

)
P j (r, t ) = β j (r)E(r, t ), (3)
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where β j (r) = α j (r)/ρ, ρ being the carrier volumic mass in
the medium of the resonators, and α j (r) being the displaced
carrier density in resonator j, Fig. 1(a). The displacement of
the carriers is contained in the vector field X j (r, t ), whose
canonical momentum is � j = ρ ∂

∂t X j . The radiation field with
vector potential A and canonical momentum �A = −D is
purely transverse in the Coulomb gauge. We emphasize that in
the picture given by Hamiltonian (2), Ohmic dissipation is dis-
regarded. A more rigorous treatment with additional degrees
of freedom in the Hamiltonian would provide a description of
the Ohmic losses, but is beyond the scope of this paper. The
general form of Hamiltonian (2) is used to treat both the cases
of (1) a single meta-atom coupling to the radiation field, and
(2) a periodic array of densely-packed meta-atoms, with input
parameters from the single meta-atom description.

We emphasize that in determining upper bounds for the
collective coupling strength of an array of meta-atoms, we
restrict our study to dipolar plasmonic modes of the individual
meta-atoms. In the limit of close packing, however, higher-
order multipoles and their mutual interaction must generally
be accounted. A first, natural step would consist in including
quadrupoles [47]. However, the inclusion of multipoles intro-
duces many coupling strengths to be investigated, which is
beyond the scope of this paper.

B. Meta-atom transition dipole moments

One important ingredient of the Hamiltonian model of the
optical field–meta-atom interaction is the transition dipole
moment of an individual meta-atom. To that end, we consider
a single meta-atom in free space and employ the classical
theory of light scattering in order to evaluate its transition
dipole moment matrix element.

The quasinormal mode of a single plasmonic meta-atom
can essentially be described as a harmonic oscillator with an
equidistant energy ladder, see Fig. 1(b). In the spirit of cavity
QED dealing with subwavelength two-level quantum emit-
ters, such as electronic and vibrational transitions of atoms
and molecules, we will characterize the transitions between
each pair of eigenstates n → n + 1 by the transition dipole
moment (TDM) matrix element μmn. We restrict our analysis
to the low-energy domain of the oscillator represented by the
0 → 1 transition of the meta-atoms. Particularly, the radiative
transition between the ground |0〉 and the first excited |1〉 Fock
states of the plasmonic meta-atom is quantified by

μ01 = 〈0|qr|1〉, (4)

where r is the position operator corresponding to the center-
of-mass motion of the electron cloud for the dipolar plasmon,
with total charge q.

Although the system, generally, consists of spheroidal
meta-atoms, we begin our analysis with the special case
of spherical meta-atoms, whose properties can be described
by closed-form analytical expressions. To quantify these
dipole transitions, we first find complex eigenfrequencies of
the TM1 quasinormal modes of the metallic sphere. These
eigenfrequencies can be found numerically as roots of the
characteristic equation [48]

nψl (nx)ξ ′
l (x) − ξl (x)ψ ′

l (nx) = 0, (5)

where x = k0r, ψl (x) = x jl (x), and ξl (x) = xh(1)
l (x) are

Ricatti-Bessel functions, and jl (x) and h(1)
l (x) are spherical

Bessel and Hankel functions of the first kind, respectively.
Once the complex-valued eigenfrequencies ω̃ ≡ ωpl −

iγpl/2 of the electric dipole quasinormal modes of the meta-
atoms are determined, one can calculate their transition
dipole moments |μ01| by applying the spontaneous decay rate
formula [49]

γpl = ω3
pl

3π h̄ε0c3
|μ01|2. (6)

Although this expression is traditionally used to describe ra-
diative decay rate of two-level systems, it can be equally
applied to describe the transition rates between the equidistant
levels of a harmonic multi-level emitter. Using Fermi’s golden
rule, we show in Appendix B that restricted to a single meta-
atom, the Hamiltonian (2) yields Eq. (6).

C. Densely packed meta-atom array Hamiltonian

Next we consider a three-dimensional array of identical
meta-atoms whose individual transition dipole moments μ01
are assumed to be aligned, Fig. 1(c). Assuming a densely
packed array, we are going to derive the Hamiltonian of the
system in the continuous limit, but we first need to express the
polarization operator. The latter corresponds to the density of
dipoles per unit volume, and since the system is periodic, it is

P(r) =
N∑

j=1

μ01

Vcell
(a j + a†

j ), (7)

where Vcell is the unit-cell volume of the lattice, N =
f Vcell/( 4

3πabc) is the number of meta-atom in the unit cell,
and a j, a†

j are the (bosonic) annihilation and creation oper-

ators satisfying the commutation relations [a j, a†
k] = δ jk and

corresponding to the dipolar excitation of an individual meta-
atom. All the dipoles within the unit cell can be viewed as a
single effective dipole μN = √

Nμ01, by defining a collective
bosonic operator b = 1√

N

∑N
j=1 b j , yielding

P(r) = μN

Vcell
(b + b†). (8)

We now perform the continuous limit, i.e., we describe the
array as a density of dipoles with a polarization expanded in
the plane-wave basis [50]

P(r) =
∑

Q

μN

Vcell
e−iQ·r(bQ + b†

−Q) (9)

In the above formula, bQ, b†
Q are bosonic annihilation and

creation operators for a matter excitation propagating with
wave vector Q in the array. The matter Hamiltonian Hmat,
containing the bare meta-atom and P2 parts of Eq. (2) is then,
for a given Q,

Hmat = h̄ωplb
†
QbQ + μ2

N

2ε0Vcell
(bQ + b†

−Q)(b−Q + b†
Q), (10)

where ωpl ≡ ω j is the resonance frequency of a single meta-
atom when ignoring its interaction with light.
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TABLE I. The list of different energetic quantities involved in the
problem of collective meta-atom-photon coupling.

Quantity Physical meaning

ωk Photon frequency
ωpl Meta-atom resonant frequency
γpl Meta-atom decay rate
�pl Renormalized meta-atom frequency
gk Collective coupling strength
η Normalized collective coupling strength
g̃k Rescaled coupling strength
�± Polaritonic transition frequencies
� Mode splitting
ω Upper edge of polariton gap
ω Lower edge of polariton gap
�pol Polariton gap

Diagonalization of the matter Hamiltonian, Hmat →
h̄�plB

†
QBQ, yields the renormalized eigenfrequency of the

meta-atom array,

�pl =
√

ω2
pl + 2

μ2
N

h̄ε0Vcell
ωpl . (11)

For reference, Table I lists the physical meaning of different
energetic quantities involved in the problem.

D. Collective light-matter coupling

We next focus on the light-matter interaction term, assum-
ing the array is homogeneous in the dipole orientation, along
the z axis. In the original basis, involving the operators bQ, b†

Q,
the interaction term corresponding to the last term of Eq. (2)
takes the form

Hlight-mat = −ih̄gk(ak − a†
−k )(b−k + b†

k ), (12)

where ak is the annihilation operator for a transverse magnetic
photon with wave vector k and frequency ωk = c|k|, and the
array excitation wave vector Q must now match the photon
wave vector k. The collective coupling constant is given by

h̄gk = Evac(k)μN · εk (13)

where

Evac(k) =
√

h̄ωk/(2ε0Vcell ) (14)

is the vacuum electric field of the photonic mode confined
to the quantization box of volume Vcell and εk is the unit
transverse magnetic polarization vector. Plugging the vacuum
field into Eq. (13) allows us to express the collective coupling
constant via the photon frequency, transition dipole moment,
and the meta-atoms spatial density,

gk =
√

f

V0

ωk

2h̄ε0
μ01 · εk (15)

where V0 is the geometric volume of a single meta-atom. In
turn, Eq. (15) allows us to express the renormalized meta-
atom eigenfrequency in a more compact form

�pl =
√

ω2
pl + 4g2

res, (16)

(      )

ωP = 5 eV

(a)

(  
   

   
   

  
   

 )

(b)

(  
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ωP = 5 eV
ωP = 10 eV
ωP = 15 eV

r/λP

|µ
/r

|

FIG. 2. (a) Magnitude of the transition dipole moment |μ01| of
spherical plasmonic meta-atoms as a function of the meta-atom ra-
dius r described by the Drude permittivity, Eq. (1), for ωP = 5 eV
and ε∞ = 1. The values were calculated by locating poles of the
characteristic equation, Eq. (5), and applying Eq. (6). (b) Normalized
transition dipole moments |μ01|/r as a function of the dimensionless
radius r/λP for three values of the plasma frequency.

where gres is the resonant coupling constant at zero detuning,
ωk = ωpl , and when the photon polarization εk is aligned with
the dipole moment μ01 of the meta-atoms.

In the new basis involving the diagonalized matter part, the
Hamiltonian is, for a given wave vector k,

H = h̄ωka†
kak + h̄�plB

†
kBk − ih̄̃gk(ak − a†

−k )(B−k + B†
k ),
(17)

where g̃k = gk
√

ωpl/�pl is the rescaled coupling strength
resulting from the first diagonalization step. The full diago-
nalization of the light-matter Hamiltonian is detailed in the
Appendixes C and D. The eigenenergies of the total Hamilto-
nian take the form

E = Evac + h̄n�+ + h̄m�−, n, m = 0, 1, 2, ... (18)

where �± denote the resonant transition frequencies of the
polaritonic system given by the eigenvalues of the Hopfield
matrix associated to the Hamiltonian (17),

�± =

√
ω2

k + �2
pl ±

√(
ω2

k − �2
pl

)2 + 16̃g2
kωk�pl

√
2

, (19)

and Evac = h̄(�+ + �−)/2 is the zero-point energy. The
mode splitting � calculated as the energy difference between
the two polaritonic modes at zero detuning takes the form

� = �+ − �− = 2gres. (20)

IV. RESULTS

A. Transition dipole moments of spherical meta-atoms

Figure 2(a) shows the resulting transition dipole moments
of a spherical metallic meta-atom as a function of the meta-
atom radius evaluated for the value of plasma frequency
ωP = 5 eV. The plot reveals a nearly linear dependence of the
transition dipole moment on the meta-atom radius. The result
for a series of other plasma frequencies (10 and 15 eV) shows
an analogous behavior (see Fig. S1 within the Supplemental
Material, SM [51]). This linear dependence is confirmed by
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the fit of the dipole moment in the double-logarithmic scale,
Fig. S1. We have checked that the linear dependence remains
valid at large meta-atom radius, up to 5 microns, see Fig. S2
within the SM [51]. For completeness, we also show in Fig. S3
within the SM [51] the corresponding resonant frequencies
Re[ω̃] = ωpl of the electric dipole quasinormal modes of
meta-atoms.

One can notice that for any fixed value of filling factor f
there are only two independent dimensional parameters with
units of length entirely determining the problem with an in-
dividual meta-atom: the meta-atom’s radius r, and the plasma
frequency ωP, which can be translated to the corresponding
plasma wavelength λP = 2πc/ωP. This suggests that the nor-
malized radius r/λP may play the role of a dimensionless
parameter, which could determine all dimensionless charac-
teristics of the meta-atom. To verify this hypothesis, we plot
in Fig. 2(b) the normalized transition dipole moment μ01/r as
a function of the dimensionless radius r/λP, and merge the
data series for all three plasma frequencies we have studied.
The result clearly shows that the normalized transition dipole
moments follow the same dependence with variation of r/λP,
and approach a universal constant for large r/λP irrespective
of the plasma frequency of the underlying material.

Overall, the data presented above indicates that the tran-
sition dipole moment of large plasmonic meta-atoms scales
linearly with radius. To corroborate this asymptotic behavior,
we propose a simple analytical estimation of the transition
dipole moment. In the limit of large radii of the metallic
sphere its fundamental TM1 (electric dipole) resonance grad-
ually shifts towards long wavelengths, λpl → ∞. In this limit
Drude metal described by Eq. (1) turns into a perfect electric
conductor with Re[ε] < 0, |ε| 
 1, and the metallic nanores-
onator turns into a dipole antenna [52]. Correspondingly, all
dimensional characteristics of the antenna’s resonance—such
as the resonant wavelength and inverse linewidth—start to
scale linearly with the radius [53,54]: λpl = Ar, 2πc/γ = Br,
where A and B are dimensionless parameters.

Since they are dimensionless and at this point there is only
one quantity with the units of length left—plasma wavelength
λP—the constants A and B cannot depend on the plasma
frequency of the Drude metal. In turn, this scaling leads to
a constant quality factor of the resonance for large radii,

Q = ωpl

γpl
→ B

A
= const, (21)

which is independent of the plasma frequency. Figure S5
(within the SM [51]) showing the radius dependence of the
Q factors of spherical meta-atoms, confirms this statement.

Plugging these asymptotic dependencies into Eq. (6) and
resolving it with respect to μ01, we obtain the linear scaling
of transition dipole moment of the metallic sphere with radius,

μ01 =
√

A3

B

3h̄ε0c

4π
r, (22)

which agrees with the behavior shown in Fig. 2. Alternatively,
we can express the transition dipole moment from Eq. (6) in
terms of the meta-atom Q factor. The result takes the form

μ01 =
√

AB
3h̄ε0c

4π

r

Q
. (23)

P = 10 eV

(  
   

 )

(      )

k

±

pol
pl

k

(     )
(  

   
)

P = 10 eV
r = 500 nm

(a) (b)

(c) (d)

P = 5 eV
P = 10 eV

P = 15 eV

r/ P

P = 5 eV
P = 10 eV

P = 15 eV

pl

r/ P

2rL

L
L

FIG. 3. (a) Collective light-matter coupling strength gk in the
array of densely packed spherical plasmonic meta-atoms as a func-
tion of the meta-atom radius r for the fixed filling factor of
f = 0.74. Inset: Geometry of the periodic system incorporating
spherical meta-atoms: a periodic ensemble of metallic spherical
meta-atoms of radius r forming an FCC lattice with the lattice
constant L. (b) Normalized collective coupling strength η = gk/ωpl

for spherical meta-atoms as a function of the dimensionless radius
r/λP. The values for a series of plasma frequencies are shown.
(c) An exemplary spectrum of polaritonic eigenenergies, Eq. (19),
calculated for an array of spherical meta-atoms for ωP = 10 eV and
the meta-atom radius r = 500 nm. Shaded area denotes the polariton
gap with no allowed real-valued energies. (d) Normalized value of
the polariton gap �pol/ωpl as a function of the dimensionless radius
r/λP for three values of the plasma frequency.

This expression will be useful in the following analysis
of the collective coupling strength in the arrays of meta-
atoms. Additionally, Fig. S6 (within the SM [51]) shows the
diameter-to-resonant wavelength ratio 2r/λpl for spherical
meta-atoms, confirming linear scaling of the resonant wave-
length with radius.

B. Polaritonic spectra with spherical meta-atoms

Having calculated transition dipole moments of individual
meta-atoms, we now turn to the analysis of the collective po-
laritonic states in densely packed meta-atom ensembles. For
the following we assume that spherical meta-atoms occupy
the sites of a three-dimensional face centered cubic (FCC)
lattice with a lattice constant L, Fig 3(a). For the FCC lattice of
spheres of radius r and center-to-center distance L, the filling
factor is given by

f = 4
4πr3

3L3
. (24)

The closest configuration of spheres in such lattice can be
reached for L = 2r

√
2, when Eq. (24) recovers the famous
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filling factor of an array of closely packed spheres, f0 =
π/(3

√
2) ≈ 0.74. The resulting system closely resembles the

structure realized in Ref. [42].
Figure 3(a) shows the resulting unscaled collective

plasmon-photon coupling strength gk as a function of
the meta-atom radius evaluated for ωP = 10 eV at the
zero-detuning condition (ωk = ωpl ). The resulting coupling
strength monotonically decreases with the radius of single
meta-atom. A more interesting behavior is found when we
plot the normalized coupling strength η = gk/ωpl versus the
normalized radius r/λP for all three plasma frequencies,
Fig. 3(b).

Similarly to Fig. 2(b), normalized coupling strengths ob-
tained for different plasma frequencies follow the same
common dependence. This plot clearly shows that even rela-
tively small meta-atoms easily reach the regime of ultrastrong
light-matter coupling with η > 0.5. This is the regime of
interaction in which the standard quantum optical approxi-
mations, such as the rotating wave approximation, fail. Thus
so-called fast-rotating terms, as well as the quadratic P2 term
(or, alternatively, the A2 term of the Hamiltonian before the
PZW transformation) must be taken into account in order
to correctly describe the system’s behavior [43,55–57]. More
remarkably, Fig. 3(b) reveals even more exotic domain of deep
strong coupling, commonly defined as the regime of interac-
tion with η > 1 [44,58,59]. The data suggests that transition
to this regime occurs close to r = λP; whether this is the exact
threshold or not, should be the subject of a more accurate
analytical treatment.

Another remarkable feature of the data in Fig. 3(b) is that
the normalized coupling strength η asymptotically approaches
a constant (the same for all plasma frequencies) in the limit of
large radius,

η � 1.2. (25)

Since the data points obtained for different plasma frequencies
follow the same dependence, this suggests that this upper
bound is universal for all plasma frequencies and depends
only on the filling factor and the meta-atom shape, which we
are going to address below.

This asymptotic behavior can be understood on account of
the linear scaling of transition dipole moments in the limit
of large radii that is reported in Fig. 2. Indeed, taking into
account the asymptotic behaviors of the resonant meta-atom
energy ω0, transition dipole moment μ, and combining it
with the physical meta-atom volume V0, we obtain that the
normalized coupling strength approaches a constant,

gk

ωpl
→ 3Ah̄

8π

√
B

π

√
f

Q
= const. (26)

This simple argument does not, however, allow us to estimate
the exact value of the upper limit for the normalized collective
coupling strength, which would require a more microscopic
treatment of the problem.

Using the obtained coupling strengths we present a typical
spectrum of polaritonic eigenenergies �± of an fcc array of
meta-atoms with ωP = 10 eV and r = 500 nm, Fig. 3(c).
The dispersion features a familiar anticrossing picture with a
mode splitting of � = 2g ≈ 0.8 eV. Figure 3(c) also exhibits

(  
   

)

L/r

ωP = 10 eV
r = 500 nm

FIG. 4. Mode splitting � in an array of r = 500 nm and
ωP = 10 eV spherical meta-atoms as a function of the center-to-
center distance L/r. Even for diluted structures with L/r > 10 the
mode splitting remains well above the characteristic nonradiative
plasmon decay rate of 50 meV.

a polaritonic gap—a region of energies with no polaritonic
states within it [60]. Polariton gap can be interpreted as the
Reststrahlen band of the material: the domain of energies
wherein the real part of the permittivity becomes negative,
thus forbidding propagation of plane waves [25,55].

The lower edge of this gap ω is found to be ω =√
�2

pl − 4g2
res�pl/ωpl . The upper edge ω is obtained by cal-

culating the upper polariton energy in the limit k = 0 and is
found to be exactly the rescaled matter frequency ω = �pl .
The width of the polariton gap therefore is

�pol = ω − ω. (27)

Figure 3(d) presents the normalized width of the polariton
gap �pol/ωpl as a function of the normalized radius r/λP

for the three studied plasma frequencies. Like in other in-
stances, all data series follow a common dependence, once
again highlighting the key role of the dimensionless radius of
the meta-atom in this coupling problem.

Although our Hamiltonian model does account for the
interparticle Coulomb interactions, it may become less suit-
able for closely packed lattices with touching particles, when
the higher-order multipole interactions beyond the dipole-
dipole one may become dominating. For this reason we apply
the developed formalism for meta-atom lattices with smaller
filling factors. Figure S7 (within the SM [51]) shows more
examples of polaritonic energy spectra calculated for the
same meta-atoms using smaller values of filling factor f .
Expectedly, the mode splitting get smaller with decreasing
filling factor as less and less meta-atoms occupy the same
volume. Figure 4 shows the mode splitting � as a function
of the center-to-center interparticle distance a/r. Even for the
center-to-center interparticle distance a = 10r corresponding
to the moderate value of the filling factor f = 0.0167 the
mode splitting in the ensemble of r = 500 nm meta-atoms
reaches a sizable fraction of the resonant energy, � ≈ 0.2ωpl ,
and remains well above 50 meV, which is the characteristic
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η
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2 5

ε∞

r/λP

FIG. 5. The effect of the screening dielectric constant ε∞ on
the collective coupling strength of spherical meta-atoms for closely
packed lattice with f = 0.74.

nonradiative decay rate for plasmonic metals such as Ag and
Au.

Similarly, the geometry of the unit cell will affect the
polaritonic spectrum; however, it can be easily accounted for
by plugging an appropriate filling factor f in the coupling
constant gk .

Before moving on to nonspherical meta-atoms, we briefly
investigate the effect of the screening constant ε∞ on the
collective coupling strength. Figure 5 presents the resulting
normalized collective coupling η as a function of the normal-
ized meta-atom radius r/λP for a few values of ε∞ typical
for plasmonic metals. For small meta-atoms, r < λP, the
collective coupling is affected significantly by the dielectric
screening. In the limit of large meta-atoms, however, the nor-
malized coupling constant asymptotically approach the same
value of ≈1.2 irrespective of the screening constant ε∞. It
can be understood by the virtue of the “perfect conductor”
argument: in this limit the lossless metal permittivity is mostly
determined by the ω2

P/ω2 term, so the screening constant ε∞
barely plays any role. In addition, Fig. S7 (within the SM [51])
presents the absolute (non-normalized) value of the coupling
constant as a function of the meta-atom resonant frequency.

C. Polaritonic spectra with spheroidal meta-atoms

Next we analyze the behavior of the collective coupling
constant in arrays of closely packed spheroidal meta-atoms,
Fig. 6. This geometry is a good analytical approximation
for elongated nanorods or nanodisks, which have been em-
ployed in a number of studies analyzing strong and ultrastrong
coupling in systems of meta-atoms [32,39]. Elongating one
of the axes of the spherical meta-atom affects its reso-
nant properties and thus the collective coupling constant.
The filling factor [Eq. (24)] of the lattice remains the same
due to proportional scaling of the dimensions of the ar-
ray. Violated spherical symmetry of a spheroidal meta-atom,
however, couples orthogonal vector spherical harmonics of
the electromagnetic field, which is why the quasinormal
modes of a spheroidal meta-atom cannot be determined from a

b b AR
b

FIG. 6. The attainable maximum η̄ of normalized collective cou-
pling strength between the fundamental electric dipole transition of
spheroid meta-atoms and free-space photonic field for closely packed
arrays of metallic spheroids ( f = 0.74) as a function of the spheroid
AR. The data is obtained for a fixed plasma frequency ωP = 10 eV.
Inset: Geometry of the modified meta-atom, represented by a prolate
spheroid metallic meta-atoms with the long axis a and shorter axis b.

single characteristic equation, as in Eq. (5). Instead, an infinite
chain of coupled equations must be used [61], which presents
an excruciating problem.

For this reason, we obtain the eigenfrequency spectra of
spheroidal meta-atoms numerically with the use of finite-
element software COMSOL Multiphysics along with the
specialized MAN package (Modal Analysis of Nanores-
onators) [62]. The usage of additional software is desired
because the built-in COMSOL eigenfrequency solver demon-
strates insufficient convergence in problems with highly
dispersive materials. We employ the QNMEig solver, which
implements auxiliary-field technique for finding quasinor-
mal modes (QNMs) [63]. The solver yields a set of modes,
from which we select a valid QNM with lowest real part of
eigenfrequency separating it from redundant so-called PML-
modes. To that end we implement techniques described in
Refs. [63,64] based on the locations of eigenfrequencies of
different types in the complex plane.

Unlike the case of spherical meta-atoms with three fre-
quency degenerate dipole transitions producing isotropic
(direction-independent) energy spectra, the three orthogonal
dipolar transitions of a spheroidal meta-atom are not, gener-
ally, degenerate, and would couple to the photon with different
coupling strengths depending on its wave vector (propagation
direction). Consequently, the resulting spectrum of polaritonic
modes will be dependent on the propagation direction. How-
ever, in the case of large aspect ratios AR 
 1, only one of
the three dipolar transitions will interact substantially with
the photon, as the other dipole resonances polarized along the
shorter axes of the spheroid will be highly detuned from the
relevant photonic energies. To keep the analysis simple, in the
following we focus on coupling of the longer semi-axis dipole
transition with the photonic field, and ignore the short-axis
resonances of prolate meta-atoms.

Figures S8 and S9 (within the SM [51]) show the re-
sulting transition dipole moments and normalized collective
coupling strengths of prolate spheroids as a function of longer
semi-axis a for a fixed plasma frequency ωP = 10 eV and
varying aspect ratio (AR) (the special case of spherical meta-
atoms is included as AR = 1). Overall, they demonstrate
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FIG. 7. Absolute values of the collective coupling strength in
closely packed arrays of metallic spheroids as a function of the
resonant meta-atom frequency ω0. The data is obtained for a fixed
ωP = 10 eV.

the behavior qualitatively similar to the ones obtained for
spherical meta-atoms. Similarly to spheres, the normalized
coupling constants quickly approaches an upper limit η̄ with
increasing longer semi-axis. This upper limit, however, is
clearly different for every aspect ratio. Given the behavior
of this constant for spherical meta-atoms, we expect it to be
universal for any value of plasma frequency and only depend
on the geometric AR of meta-atoms.

To that end, we study how the upper limit of the nor-
malized coupling strength η̄ depends on the spheroid aspect
ratio. We approximately determine this limit as the maximal
value of η for each AR from our data points, which is a
good measure given how quickly the normalized coupling
strength approaches the plateau. The resulting behavior of η̄

shown in Fig. 6 reveals a nearly linear dependence of the
upper limit of normalized coupling with the meta-atom aspect
ratio, in particular reproducing the ultimate value of η̄ ≈ 1.2
obtained for spherical meta-atoms. This suggests that prolate
plasmonic meta-atoms are more efficient for achieving deep
strong coupling between light and matter.

The above analysis clearly suggests that prolate spheroids
are beneficial for reaching higher values of normalized cou-
pling strength η. However, elongating a metallic nanoparticle
comes at a price of red-shifting its resonances. Therefore,
a natural question arises: What is the optimal shape (aspect
ratio) of the metallic meta-atom that maximizes the absolute
coupling constant gk for a given resonant frequency ωpl?

To that end, we utilize the same data and present the
absolute value of the collective coupling constant in eV for
all studied meta-atom aspect ratios (including the spherical
case with AR = 1) as a function of the meta-atom resonant
frequency, Fig. 7. The data allows to conclude that not only
prolate spheroids offer high normalized coupling constant, but
also yield the highest absolute value of the collective coupling
constant for any given resonant energy. This observation sug-
gests that highly elongated metallic meta-atoms are, perhaps,
the optimal geometry for the purpose of realizing collective
polaritonic states with the largest coupling constant and the
mode splitting [34]. This behavior of elongated meta-atoms
may be explained by a simple geometric argument. Transition
dipole moment of the meta-atom μ01 is formed by the collec-
tive oscillations of the electron density inside the nanoparticle.

better alignment of electron trajectories with the electric field
of the photon therefore favors the collective coupling constant.

The data presented in Figs. 6 and S8 (within the SM [51])
may seem counterintuitive. Note that the data in Fig. S8 is
plotted as a function of the longer semi-axis a for a se-
ries of aspect ratios. Correspondingly, in a meta-atom with
a larger aspect ratio, although the electrons trajectories are
better aligned with the electric field of the photon, the meta-
atom contains fewer electrons. In turn, the transition dipole
moment of an individual meta-atom actually decreases as a
function of AR for fixed a. However, when these meta-atoms
are combined in a lattice with a given volume filling factor f ,
elongated meta-atoms perform better in terms of the collective
coupling strength.

Before concluding, we would like to emphasize the value
of our results despite the number of crude simplifications and
assumptions we have made in the model. Indeed, we assumed
only electric dipole field-matter coupling, and included only
the dipole-dipole interparticle interactions in the total Hamil-
tonian (mediated by the self-polarization P2 term). At the
same time, all the values of the collective coupling strength
have been obtained in the limit of densely packed particles,
where the multipolar interactions may become crucial. How-
ever, the developed formalism easily allows one to recalculate
the coupling strength for less dense arrays with f � 1, where
the interparticle interactions may be ignored. In this case,
all the quantities will be equally scaled by a factor of

√
f

[see Eqs. (14) and (26)]. Therefore, the conclusion about the
prolate meta-atoms yielding the highest coupling strength will
remain true for any given filling factor of the meta-atom array,
which is one the central findings of our paper.

V. CONCLUSIONS

To conclude, we have studied collective polaritonic states
formed by arranged plasmonic meta-atoms interacting with
the free space optical field. Almost linear scaling of the tran-
sition dipole moment of spherical meta-atom with its radius
causes the collective coupling constant to quickly enter the ul-
trastrong and deep strong coupling regime before approaching
a universal upper bound. The resulting bound is universal for
all plasma frequencies and is determined only by the geom-
etry of the meta-atom. The corresponding polaritonic energy
spectra, calculated with the use of the developed Hamiltonian
model, exhibit large values of mode splitting and polariton
gaps. Similar analysis of the arrays of spheroid meta-atoms
showed that the normalized collective coupling constant and
it upper bound increases with the aspect ratio of elongated
metallic meta-atoms. Furthermore, for any given resonant
energy highly elongated spheroidal meta-atoms exhibit the
highest absolute coupling constant. These results should open
up prospects for realizing polariton states with artificial
meta-atoms.

ACKNOWLEDGMENTS

Authors acknowledge fruitful discussion with Timur She-
gai and Andrey Bogdanov. B.R. acknowledges fruitful
discussions with Prof. Hans-Rudolf Jauslin and Prof. Gérard
Colas des Francs. The Laboratoire Interdisciplinaire Carnot de

075417-8



UPPER BOUNDS ON COLLECTIVE LIGHT-MATTER … PHYSICAL REVIEW B 108, 075417 (2023)

Bourgogne is a member of EIPHI Graduate School (Contract
No. ANR- 17-EURE-0002). D.G.B. acknowledges support
from the Ministry of Science and Higher Education of
the Russian Federation (Agreement No. 075-15-2021-606),
Russian Science Foundation (Grant No. 21-12-00316), and
BASIS Foundation (Grant No. 22-1-3-2-1).

APPENDIX A: HAMILTONIAN DESCRIPTION
OF A SINGLE META-ATOM

Let us first consider the case of an isolated spheroid
nanoparticle as a single meta-atom, whose center-of-mass
is placed at the origin. We start with the medium-assisted
Maxwell equations,

∇ · D = 0, ∇ · B = 0,

∇ × E = − ∂

∂t
B, ∇ × H = ∂

∂t
D. (A1)

with the constitutive relations D = ε0E + P and B = μ0H.
The medium is assumed to be finite and enclosed in a volume
Vm, constituting a single meta-atom. Moreover, we assume the
macroscopic polarization P having the form

P(r, t ) = α(r)X(r, t ), (A2)

where α(r) is a charge density corresponding to displaced
charges and X is the associated vector field displacement. The
polarization P(r, t ) is localized within the volume Vm of the
meta-atom, hence α(r) can be set to zero for r /∈ Vm. We also
define the conjugate momentum �X of the displacement as

�X (r, t ) = ρ
∂

∂t
X(r, t ), (A3)

where ρ is the volumic mass of the displaced electrons. The
meta-atom is assumed to carry a single resonance at frequency
ω0 with neglected nonradiative damping, and the equation of
motion for the meta-atom variables X,�X is

∂

∂t
�X (r, t ) + ω2

0X(r, t ) = α(r)

ρ
E(r, t ), (A4)

so the polarization obeys, introducing β(r) = α2(r)/ρ,(
∂2

∂t2
+ ω2

0

)
P(r, t ) = β(r)E(r, t ). (A5)

Since ∇ · B = 0, Poincaré’s lemma implies that B = ∇ ×
A, where A is the vector potential. The same lemma applied
to the Maxwell-Faraday equation implies that E + (∂/∂t )A =
−∇�, with the scalar potential �. Taking the divergence of
this equality and using ∇ · D = 0, we obtain

∂

∂t
(∇ · A) = ∇ ·

(
P‖
ε0

− ∇�

)
, (A6)

where P‖ is the irrotational (or longitudinal) part of
the Helmholtz decomposition P = P‖ + P⊥. In virtue of
Poincaré’s lemma, the scalar potential can be chosen arbitrar-
ily without changing Maxwell’s equations. Hence we choose

a potential � such that

∇� = P‖
ε0

, (A7)

so ∇ · A is time independent. To complete the construction
of the Coulomb gauge, a gauge transformation A′ = A +
∇F (r, t ) can be found such that ∇ · A(r, t0) = 0 at some
initial time t0, ensuring that ∇ · A = 0 at all times. For the
Maxwell’s equations (A1), the Coulomb gauge is therefore set
by the two relations,

∇ · A = 0,

∇� = P‖
ε0

. (A8)

We define the conjugate momentum �A = −D of the vec-
tor potential A, and we are going to show that the Hamiltonian

H =
∫

Vm

d3r

(
�2

X

2ρ
+ 1

2
ρω2

0X2

)
︸ ︷︷ ︸

meta-atom

+
∫
R3

d3r

(
�2

A

2ε0
+ (∇ × A)2

2μ0

)
︸ ︷︷ ︸

radiation

+
∫

Vm

d3r
P2

2ε0︸ ︷︷ ︸
P2-term

+
∫

Vm

d3r
P · �A

ε0︸ ︷︷ ︸
interaction

, (A9)

using the Hamilton equations, generates the dynamical equa-
tions (A1) and (A4). The Hamilton equations are

∂

∂t
A = ∂H

∂�A
= �A + P

ε0
= −E⊥, (A10a)

∂

∂t
�A = −∂H

∂A
= ∇2A

μ0
, (A10b)

∂

∂t
X = ∂H

∂�X
= �X

ρ
, (A10c)

∂

∂t
�X = −∂H

∂X
= −ρω2

0X + αE. (A10d)

Taking the curl of Eq. (A10a), we easily find the
Maxwell-Faraday equation ∇ × E⊥ ≡ ∇ × E = −(∂/∂t )B,
while Eq. (A10b) retrieves the Maxwell-Ampère equa-
tion ∇ × H = (∂/∂t )D, using �A = −D and ∇2A = −∇ ×
∇ × A, since ∇ · A = 0. The two remaining equations give
identically the definition of the canonical momentum �X and
Eq. (A4).

In fact, Hamiltonian (A9) corresponds to the famous
Power-Zienau-Woolley Hamiltonian [65–67]. The kinetic
term in �2

X corresponds to the motion of charges, while the
potential term in X2 accounts for the restoring forces of in-
finitesimal dipoles. This term can in fact be injected in the P2

term when viewing the system solely as a localized system
of charges. The Hamiltonian (A9) describes rigorously the
interaction between a single meta-atom and electromagnetic
radiation.
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Next, we consider the case of a meta-atom whose size is
negligible compared to the resonant wavelength λ0, i.e., the
quasistatic limit. Equation (A9) then reduces to

H ≈ Hqs =
∫

Vm

d3r

(
�2

X

2ρ
+ 1

2
ρω2

0X2

)
+

∫
Vm

d3r
P2

‖
2ε0

.

(A11)

The P2
‖ term, involving the longitudinal part P‖ of the polariza-

tion, depends only on the charge displacement, hence on the
dynamical variable X. Therefore, the quasistatic Hamiltonian
can be formally diagonalized and has the form

Hqs =
∫

Vm

d3r

(
�̃

2
X

2ρ
+ 1

2
ρω2

pl X̃
2

)
≡ h̄ωplb

†b, (A12)

where b, b† are annihilation and creation operators for the
corresponding dipolar plasmonic excitation of frequency ωpl .
We underline that this description does not involve any nonra-
diative processes such as Ohmic losses.

APPENDIX B: SINGLE META-ATOM COUPLED
TO THE FREE-SPACE RADIATION FIELD

Using Hamiltonian (A12) and reintroducing the light-
matter coupling, the total Hamiltonian (A9) takes the form

H ≈ h̄ωplb
†b +

∑
k,λ

h̄ωka†
kλakλ − μ̂ · E(r0), (B1)

where akλ, a†
kλ are annihilation/creation operators for the ra-

diation field, with wave vector k and transverse polarization
index λ = 1, 2, and the polarization field operator of the
meta-atom is approximated as a point dipole, P ≈ μ̂δ(r − r0).
The light-matter interaction term in P · �A then turns into
−μ̂ · E(r0), where the electric field E(r) is expressed in terms
of the annihilation and creation operators

E(r) = i
∑
k,λ

√
h̄ωk

2ε0V
εkλe−ik·r(akλ − a†

−kλ). (B2)

In (B1), we also have neglected the Lamb shift induced by the
term proportional to P2

⊥. We write Fermi’s golden rule formula
in the form

γpl = 2π

h̄2

∑
k,λ

|〈0, 1kλ|μ̂ · E(r0)|1, {0}〉|2δ(ωpl − ωk ), (B3)

where we introduced the eigenstates |n, mkλ〉 ≡ |n〉 ⊗ |mkλ〉,
n, m = 0, 1, where |1kλ〉 = a†

kλ|{0}〉 for the radiation field and
|1〉 = b†|0〉 for the meta-atom. Since we focus on collective
ultrastrong light-matter coupling of a meta-atom supercrystal,
we assume the effect of the ultrastrong light-matter coupling
of a single meta-atom to be negligible and allow ourselves
to use (B3). Next, injecting μ̂ = μ01(b + b†) and Eq. (B2) in
(B3), we obtain the formula (6) in the main text.

APPENDIX C: COLLECTIVE COUPLING

We proceed in deriving the Hamiltonian for a lattice of
meta-atoms, regularly spaced and whose dipole moment is
oriented along the same axis. In fact, the Hamiltonian has

exactly the same form as (A9), if we assume that X, �X , and
P describe all the meta-atoms at once. But since this vector
field distribution is localized within each volume Vj of the jth
meta-atom, we can express the Hamiltonian as

H =
∑

j

∫
Vj

d3r

(
�2

j

2ρ
+ 1

2
ρω2

j X
2
j

)

+
∫
R3

d3r

(
�2

A

2ε0
+ (∇ × A)2

2μ0

)

+
∑

j

∫
Vj

d3r
P2

j

2ε0
+

∑
j

∫
Vj

d3r
P j · �A

ε0
, (C1)

where, this time, the variables X j,� j, P j are vector fields
being localized only in meta-atom j. Since in this paper, we
consider an infinite lattice with closely-packed meta-atoms
(i.e., with the lattice constant being smaller than the resonant
wavelength), it is convenient to perform the continuous limit
by defining the collective polarization operator,

P =
∑

Q

μN

Vcell
e−iQ·r(bQ + b†

−Q), (C2)

where μN is the dipole moment enclosed in the lattice volume
Vcell. The polarization is expanded in a plane-wave basis,
the operators bQ, b†

Q annihilate/create matter excitations with

wave vector Q and they satisfy [bQ, b†
Q′ ] = δQQ′ . In this limit,

and assuming that all meta-atoms are identical with ω j = ωpl ,
the Hamiltonian (C1) may be approximated as

H ≈
∑

Q

∫
R3

d3r

(
�2

Q

2ρ
+ 1

2
ρω2

pl X
2
Q

)

+
∫
R3

d3r

(
�2

A

2ε0
+ (∇ × A)2

2μ0

)

+
∫
R3

d3r
P2

2ε0
+

∫
R3

d3r
P · �A

ε0
, (C3)

where this time all integrals run over all three-dimensional
space R3. We also emphasize that the P2 term here repre-
sent the contact interaction between “point-like” meta-atoms,
in contrast with the P2 term in, e.g., (A11), representing
the dipole-dipole interaction between infinitesimal dipoles
formed by the charge distribution within a single meta-atom.

Proceeding to the principle of correspondence to quantize
the field, we identify∫

R3
d3r

(
�2

A

2ε0
+ (∇ × A)2

2μ0

)
=

∑
k,λ

h̄ωka†
kλakλ, (C4a)

D = −�A = i
∑
k,λ

√
ε0h̄ωk

2V
εkλe−ik·r(akλ − a†

−kλ), (C4b)

where akλ, a†
kλ are annihilation/creation operators for the ra-

diation field, with wave vector k and transverse polarization
index λ = 1, 2. Writing the light-matter coupling term of
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(C3), we find∫
R3

d3r
P · �A

ε0
= −i

∑
k,λ

√
h̄ωk

2ε0V
(μN · εkλ)

× (akλ − a†
−kλ)(b−k + b†

k ), (C5)

where we have used
∫

d3r exp ( − i(Q + k)) = V δQ,−k. We
see that the light-matter coupling implies that k vectors of the
radiation field and of the matter excitations must coincide. We
rewrite the Hamiltonian (C3) as

H =
∑

k

h̄ωplb
†
kbk +

∑
k,λ

h̄ωka†
kλakλ

+ μ2
N

2ε0V

∑
k

(bk + b†
−k )(b−k + b†

k )

− i
∑
k,λ

h̄gkλ(akλ − a†
−kλ)(b−k + b†

k ). (C6)

APPENDIX D: HOPFIELD-BOGOLYUBOV
DIAGONALIZATION

The Hamiltonian (C6), describing the interaction between
the lattice of meta-atoms and electromagnetic radiation, can
be written in the form H = Hmat + Hlight + Hlight-mat, where
the matter part is

Hmat =
∑

k

(
h̄ωplb

†
kbk + μ2

N

2ε0V
(bk + b†

−k )(b−k + b†
k )

)
.

(D1)

We next diagonalize Hmat with a Hopfield-Bogolyubov pro-
cedure. It consists in introducing the new (bosonic) operators
Bk = xbk + yb†

k, with the normalization constraint x2 − y2 =
1 (assuming x, y ∈ R), such that the eigenoperator prob-
lem [Bk, Hmat] = �plBk is satisfied. This yields the 2 × 2

eigenvalue problem,(
ωpl + U − �pl −U

U −ωpl − U − �pl

)(
x
y

)
= 0, (D2)

where U = μ2
N

h̄ε0V . This is trivially solved by keeping the posi-
tive eigenfrequency solution,

�pl =
√

ω2
pl + 2μ2

Nωpl

h̄ε0V
. (D3)

The diagonalized Hamiltonian is then

Hmat =
∑

k

h̄�plB
†
kBk, (D4a)

Bk = 1

2
√

ωpl�pl
((ωpl + �pl )bk + (ωpl − �pl )b

†
k ).

(D4b)

Having diagonalized the matter part, the Hamiltonian (C6)
becomes

H =
∑

k

h̄�plB
†
kBk +

∑
k

h̄ωka†
kak (D5)

− i
∑

k

h̄gk

√
ωpl

�pl
(ak − a†

−k )(B−k + B†
k ). (D6)

Because all meta-atoms are assumed to be dipoles with the
same orientation, μN = μN uz, we have eliminated the index
λ from the Hamiltonian, since only the transverse magnetic
polarization is interacting with the lattice. We can now di-
agonalize the full light-matter Hamiltonian by defining the
polaritonic operators �±k = x±ak + y±a†

k + m±Bk + h±B†
k,

satisfying the eigenoperator equation [�±k, H] = �±�±k,
with the normalization constraint on the Hopfield coefficients:
x2
± − y2

± + m2
± − h2

± = 1. The eigenvalue problem is then

⎛⎜⎜⎜⎝
ωk − �± 0 −ĩgk ĩgk

0 −ωk − �± ĩgk −ĩgk

ĩgk ĩgk �pl − �± 0

ĩgk ĩgk 0 −�pl − �±

⎞⎟⎟⎟⎠
⎛⎜⎜⎝

x±
y±
m±
h±

⎞⎟⎟⎠ = 0, (D7)

where we introduced the shorthand notation g̃k =
gk

√
ωpl/�pl . This eigenvalue problem is solved analytically.

The polaritonic eigenfrequencies �± are shown to be
governed by a biquadratic equation(

�2
± − ω2

k

)(
�2

± − �2
pl

) − 4̃g2
kωk�pl = 0, (D8)

whose positive solutions are

�±(k) = 1√
2

√
ω2

k + �2
pl ±

√(
ω2

k − �2
pl

)2 + 16̃g2
kωk�pl .

(D9)
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