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Chiral molecules and magnets as efficient thermoelectric converters
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Thermoelectric effects allow replacing mechanical work with electric power, and the resulting devices can
be used as heat engines or refrigerators. In the former, a voltage is generated by connecting the device to
contacts at different temperatures, while in the latter electric power induces the heat flow from cold to hot
reservoirs. Thermoelectric nanoscale devices hold great technological potential due to the ability to integrate
them into chips. So far, however, their practical use is hindered by their low performance. We suggest here
a design for thermoelectric devices based on chiral organic molecules connected to two magnetic electrodes.
Our device utilizes the chiral-induced spin selectivity exhibited by such chiral systems and specifically its
main manifestation of strong spin-dependent transport. We analyze the figure of merit and generated power
of chiral-molecule-based heat engines and show that both can be significant with the potential to exceed other
existing designs.
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I. INTRODUCTION

Recent years have brought the discovery of various spin-
dependent effects in chiral organic molecules and structures.
All these phenomena, which are of the same origin, reside un-
der the umbrella of chirality-induced spin selectivity (CISS).
Two basic experimental observations of CISS include strong
spin-dependent scattering through self-assembled monolayers
of chiral molecules [1–3] and large asymmetric magnetore-
sistance of single molecules [3–5]. Other signatures of CISS,
extending beyond transport phenomena, include nontrivial
interaction with magnetic substrates, such as handedness-
dependent adsorption time [6] and significant transient spin
torque [7]. Theory suggests that CISS stems from a combina-
tion of the molecules’ geometry, spin-orbit coupling (SOC),
and strong electron-phonon interactions. The first two ele-
ments are essential to endow spin dependence [8–16], while
the interactions sustain the effect at room temperature. Un-
derstanding the mechanism leading to CISS is a matter of
importance for basic biological processes such as photosyn-
thesis and respiration. Apart from its fundamental aspects,
there are various suggestions for CISS-based applications.
For example, chiral organic molecules can be used instead of
ferromagnetic electrodes for spin injection purposes [17] or
for manipulation of magnetic memory [18,19]. Alternatively,
magnets can be used to purify a racemic mixture of artificially
synthesized molecules [6].

The aim of this paper is to explore a new field where CISS
holds potential for great improvement: thermoelectric engines
and refrigerators based on chiral molecules and magnets. As
climate change becomes an issue of critical importance to
humanity, the race for efficient generation of electricity and
alternative sources of energy increases in urgency. In 2020, in
the United Kingdom, for example, Fenwick and Jones cited
thermoelectric conversion as one of five pathways to reach-
ing zero net emissions of CO2 by the year 2050 [20]. The
reliability of thermoelectric devices is superior compared to
their mechanical counterparts, making them prime candidates

for robust technological applications. For example, typical
household refrigerators or CPU coolers have moving parts
that can malfunction over time due to degradation, unlike
their thermoelectric implementation [21]. So far, however, the
practical use of thermoelectric devices is hindered by their
poor performance. Current applications include stabilizing
laser wavelengths by maintaining a constant temperature and
climate-control seat systems that increase passenger comfort
in vehicles [22]. Nanoscale thermoelectric devices are of spe-
cial interest as they hold potential for integration on chips.
On a more fundamental level, such thermoelectric devices
constitute simple quantum machines where thermodynamics
and quantum mechanics must be treated in a unified manner.

The quality of thermoelectric machines is usually char-
acterized by their maximal efficiency and their efficiency at
maximal power. The efficiency of a heat engine is determined
by the ratio of work it produces to the thermal current flowing
out of the hot contact. The latter describes the heat flux that
needs to be externally supplied to the device to maintain the
temperature difference between the contacts. The efficiency
of a thermoelectric refrigerator is given by the inverse ratio.
In the regime of linear response, the efficiency of thermo-
electric machines is usually determined by a single material
parameter, the dimensionless figure of merit, ZT = α�/RK .
Here R and K−1 are the electrical and thermal resistances.
The Seebeck and Peltier coefficients, α and �, describe the
thermoelectric effects, and T is the reference temperature
for linear response. In time-reversal-symmetric systems, On-
sager’s relations impose the constraint � = αT . This reduces
the number of transport coefficients that determine the effi-
ciency to three. Specifically, the maximum efficiency of a heat
engine working between two temperatures Thigh and Tlow,

ηmax = ηC

√
1 + ZT − 1√
1 + ZT + 1

, (1)

depends solely and monotonously on the figure of merit, ZT .
The Carnot efficiency ηC = 1 − Tlow/Thigh is attained in the
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limit ZT → ∞. In this limit, the rate of entropy production,
the produced power, and the thermal current all vanish. Sim-
ilarly to ηmax, the efficiency at maximal power also increases
with ZT . Common wisdom states that a practical thermoelec-
tric engine should have ZT � 3 [22].

The quest for better bulk thermoelectric materials is on-
going and has expanded from semiconductors to include
Heusler alloys [23], half-Heusler alloys [24], and topological
insulators [25], reaching values of ZT � 10 under certain
conditions. The performance of such solutions in ambient
conditions is more modest, however, and is sensitive to fab-
rication conditions. Thus, simple mass production of highly
efficient thermoelectric devices is still out of reach. Nanoscale
and mesoscale thermoelectric devices currently exist only on
a theoretical level. Mahan and Sofo [26] showed that trans-
mission through resonance levels can maximize the figure of
merit, a concept that several works have since echoed [27,28].
As expected, operating at Carnot efficiency comes at the price
of vanishing power production, rendering such engines im-
practical and necessitating more delicate optimization. In the
absence of interactions, the Wiedemann-Franz law, the Mott
formula for the thermopower [29], and Onsager relation in
the absence of external fields strongly constrain the paths to
optimize ZT . Specifically, all transport coefficients entering
the figure of merit are proportional to the transmission prob-
ability of the free electron system. One way of breaching
these limitations is through the application of an external
magnetic field B. The more relaxed Onsager-Casimir [30]
relation α(−B)T = �(B) allows, in principle, for α(B)T �=
�(B), thus increasing the parameter space [31]. In systems
where the two thermoelectric coefficients strongly differ, high
efficiency is attainable at near-Carnot efficiency, without the
need for an infinite figure of merit. Theoretical models real-
izing α(B)T �= �(B) exhibit potential for better performance
[31–36], but require operating at low temperatures and high
magnetic fields. Other theoretical proposals [37–39] explore
the idea of realizing thermoelectric devices using systems
where both quantum effects and interactions play a significant
role.

We suggest here using chiral organic molecules exhibiting
CISS as building blocks for efficient thermoelectric nanoscale
devices. The spin-dependent transport properties of these sys-
tems are prominent at room temperature, and their natural
self-assembly on surfaces makes them easy to fabricate. The
strong asymmetry in magnetoresistance, which occurs upon
coupling chiral molecules to a weak magnet, suggests that
the constraint α(B)T = �(B) also breaks under the same
condition. The asymmetry in the magnetoresistance and in the
thermoelectric transport coefficients is only possible due to
strong interactions [40]. Various works [41–45] have pointed
to electron-phonon interactions as crucial for enhancing the
spin-dependent effects as well as giving rise to the robust
signature of CISS in transport. In particular, we have analyzed
[46] the role of polarons in enhancing the manifestation of
CISS in both scattering and magnetoresistance experiments.

Here we propose a design for a thermoelectric engine based
on chiral molecules connected to two magnetic electrodes.
The two leads are magnetized in an opposite direction and,
hence, electron transfer must involve a spin flip. The latter
is achieved through the mechanism that generates CISS: an

electron moving along a chiral structure gets spin polarized
in the presence of SOC [47]. Specifically, for chiral organic
molecules, the bare effect of the SOC is small and becomes
significant only when accompanied by the absorption or emis-
sion of phonons. As a result, the figure of merit is only
weakly tied to the electronic spectrum, via the magnitude
of the SOC. Rather, it is predominantly a function of the
phononic density of states and the strength of the electron-
phonon coupling. Thus, our device utilizes the combined
effect of strong electron-phonon interactions and CISS. By
contrast, it does not rely on the asymmetry between the Peltier
and the Seebeck coefficients. Calculating the deviation of the
ratio α(B)T/�(B) from unity, and designing a thermoelectric
device that exploits it, is beyond the scope of this paper.

Our proposal echoes the results of a previous work by Jiang
and co-workers [38] (referred to as JEWI below). They were
the first to show the enhancement in thermoelectric efficiency
due to phonon-assisted transport. JEWI analyzed the figure of
merit of a thermoelectric engine based on a semiconducting
n-i-p junction. In their proposal, particle current is gener-
ated in the intrinsic region by phonons creating electron-hole
pairs. Thus, the heat from the phononic bath is converted
into electrical power. Contrary to the suggestion of Mahan
and Sofo [26], where a small bandwidth for elastic transport
was key to enhancing thermoelectric conversion, in JEWI’s
device the figure of merit benefits from a low effective phonon
bandwidth. In this paper, we show the additional benefit of
a thermoelectric device based on the CISS effect. We first
perform a general analysis using a toy model of our proposed
device. We then calculate, using a diagrammatic approach, the
linear transport coefficients of chiral molecules.

The remainder of the paper is organized as follows. In
the next section, we discuss the general properties of three-
terminal machines comprised of two electron electrodes and
one phonon bath. In Sec. III we present a model for trans-
port through a chiral molecule connected to two oppositely
magnetized electrodes. In Sec. IV we present the framework
for the calculation of transport coefficients. In Secs. V and
VI we study the efficiency and power production of the
chiral-molecule-based thermoelectric device using the pro-
posed model. We conclude in Sec. VII.

II. GENERAL PROPERTIES OF THREE
TERMINAL DEVICES

Our proposed thermoelectric device is built from a chiral
molecule connected to two electrodes. Inside the molecule,
electrons interact strongly with phonons. Such a setup is
equivalent to a three-terminal device coupled to two electron
baths and one phonon bath. The electron baths define the
temperature Ti = β−1

i and chemical potential μi at the two
ends of the molecule, i = L, R. The phonon bath introduces
a third temperature Tph = β−1

ph in the middle of the molecule.
The three-terminal device can operate in refrigeration or heat
engine modes. In the former, the temperature of the phonon
bath is lower than that of the electronic leads, and energy is
removed from it by applying a voltage between the electrodes.
In the latter, the temperature of the phonon bath is higher than
that of the electronic leads, and the resulting electric current
flowing between the electrodes generates electrical power.
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According to the second law of thermodynamics, the non-
negativity of the sum of entropy productions in the reservoirs
ṠL/R/ph reads

0 � ṠL + ṠR + Ṡph = −J th
L βL − J th

R βR − J th
phβph. (2)

The thermal currents going into the reservoirs, J th
i , which

are by definition proportional to the flow of entropy, can be
extracted from the free energy. Thus, the thermal current out
of reservoir i is defined as J th

i = Jε
i − μiJe

i /e, where Jε
i and

Je
i are the energy and charge currents, respectively. For the

phonons, the chemical potential is zero. Equation (2) can be
simplified by using the charge and energy conservation laws

Je
L + Je

R = 0, (3a)

Jε
L + Jε

R + Jε
ph = 0. (3b)

The redundancy implied by these conservation laws allows us
to consider only three currents. We choose to study the electric
and thermal currents out of the left electronic reservoir, Je

L
and J th

L , as well as the thermal current out of the phonon
bath J th

ph = Jε
ph. Writing the entropy production rate in terms

of these currents yields

0 � ṠL + ṠR + Ṡph = − J th
L (βL − βR) − J th

ph(βph − βR)

+ Je
LβR

μL − μR

e
. (4)

The above expression for the entropy production rate helps
us identify the driving forces for the three currents: −�βL =
−(βL − βR), −�βph = −(βph − βR), and �μ = μL − μR.
The forces define the conductivity matrix in the regime of
linear response, ⎛

⎜⎝
Je

L

J th
L

J th
ph

⎞
⎟⎠ = L

⎛
⎜⎝

�μ/e

−�βL

−�βph

⎞
⎟⎠, (5)

with

L =
⎛
⎝ G αe αph

βR�e κLR κL,ph

βR�ph κph,L κph

⎞
⎠. (6)

Here G, αe, �e, and κLR are the direct electronic contri-
butions to the electric conductance, thermopower (Seebeck
coefficient), Peltier coefficient, and the thermal conductiv-
ity, respectively. The contributions due to the coupling of
electrons with the vibrational modes are αph, �ph, κL,ph, and
κph,L. Finally, κph is the direct contribution of the phononic
modes to the thermal current. The matrix L satisfies Onsager-
Casimir relations [30,48], Li j (B) = Lji(−B) when an external
magnetic field B is applied. Notice that the form of the
conductivity matrix is not unique. An alternative choice of
currents, for example, replacing J th

ph by J th
R , would result in

a different set of driving forces and a different conductiv-
ity matrix. Regardless of the choice of currents, correctly
identifying the corresponding driving forces (from the second
law of thermodynamics) guarantees that the Onsager-Casimir
relations hold [49].

We use the above conductivity matrix for the three-terminal
setup to analyze the performance of our chiral-molecule-
based thermoelectric device. We separate the calculation into

two steps. First, we show the advantage of limiting the number
of states through which phonon-assisted electron conduction
can occur. In particular, we find the figure of merit and power
production as a function of the density of states available
for charge transfer. We use a simple toy model that provides
important insight into the dominant scales in the problem.
Then, we replace the toy model with a microscopic effective
model of chiral molecule exhibiting CISS.

III. TOY MODEL

We start our analysis of the CISS-based thermoelectric de-
vice by considering a simple model consisting of a molecular
chain bridging between two electrodes. The left and right
leads are governed by a uniform nearest-neighbor hopping
Hamiltonian, i.e.,

HL/R = − ζ

∞∑
n=1

∑
s

[d†
L/R,n+1,sdL/R,n,s+ H.c.]. (7)

The operator d†
L/R,n,s (dL/R,n,s) creates (annihilates) an electron

in state s on site n of lead L or R. The left lead is realized
by a p-type semiconductor and the right lead by an n-type
semiconductor. The total Hamiltonian is

Htot =HL + Hmol + HR

+
∑

s

[
γ L

s c†
1,sdL,1,s+ γ R

s c†
N,sdR,1,s+ H.c.

]
. (8)

The operator c†
n,s (cn,s) creates (annihilates) an electron of spin

s on site n inside the chain 1 < n < N . The parameter γ i
s is

the coupling of the molecule to lead i. The index s allows
the implementation of a magnetic lead where the coupling is
spin dependent. Each site of the molecular chain hosts a single
electronic state per site and is coupled to a phonon bath:

Hmol =
∑
n,s

t̃[c†
n,scn+1,s + c†

n+1,scn,s] +
∑
q,n

�qa†
q,naq,n

+
∑
n,q,s

Mqc†
n,scn,s(a

†
q,n + aq,n). (9)

The first term describes nearest-neighbor hopping. We model
the phonon bath as a set of optical vibrational modes [50]; the
operator a†

q,n (aq,n) creates (annihilates) a phonon of frequency
�q on site n, and Mq is the coupling constant between the
electrons and the environment.

In the strong-coupling limit, polarons are the natural
quasiparticles of the system [51,52]. The Lang-Firsov trans-
formation

cn → eScne−S ≡ cnXn, (10a)

S =
∑
n,q,s

Mq

�q
c†

n,scn,s(a
†
q,n − aq,n), (10b)

transforms the Hamiltonian into the polaron basis. Conse-
quently, the molecule’s Hamiltonian, Eq. (9), becomes

H̄mol = eSHmole
−S = −U

∑
n,s

c†
n,scn,s

+
∑

q

�qa†
qaq + t̃

∑
s,n

[λn+1,nc†
n,scn+1,s + H.c.]

+ t̃
∑
s,n

[(X †
n Xn+1 − λn+1,n)c†

n,scn+1,s + H.c.]. (11)
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The operator Xn (X †
n ) annihilates (creates) the phonons’ cloud

accompanying the electrons, where Xn = exp{∑q,s Mq(aq,n −
a†

q,n)/�q}. In the absence of electrons, the average phononic

cloud’s fluctuations are given by λn,n+1 ≡ λ = 〈X †
n+1Xn〉 < 1

and U = ∑
q

M2
q

�q
is the corresponding polaron shift. The last

term in H̄mol corresponds to the phonon cloud rearranging
in conjunction with a hopping event, beyond its mean-field
state. We neglect here the phonon-mediated electron-electron
interaction term, which is induced by the transformation.
Since we are interested in transport through states residing in
the band gap, few electrons participate and their interactions
are negligible.

We consider here the effect of polaron fluctuations on the
thermoelectric transport properties beyond mean-field effects.
While mean-field theory only narrows the polaron bandwidth
by suppressing the hopping amplitude t = t̃λ, fluctuations
allow for phonon-assisted polaron hopping between sites.
Nevertheless, the band narrowing plays an important role in
our model—we study the role of bandwidth � in improving
the efficiency of our thermoelectric device. In our setup, the
top of the valence band of the left lead (p-type semiconductor)
resides below the conduction band of the molecule; the energy
gap between the two bands is denoted by the parameter �.
By contrast, the conduction band of the molecule overlaps
that of the right lead (n-type semiconductor). Consequently,
a polaron can transfer between the leads only by emitting
or absorbing phonons. Specifically, an incoming electron that
does not interact with the phonons cannot contribute to any
current due to the mismatch between the density of states in
the leads. See Fig. 1 for an illustration of the setup and the
energy scales in the problem.

An important ingredient of the engine is the suppression of
elastic transport, similar to the work of JEWI. This is achieved
by sandwiching the molecular chain between n- and p-type
semiconductors; i.e., an electron must change its energy while
transferring between the leads. This energy adjustment is
achieved by phonon absorption or emission.

IV. CALCULATION OF THE TRANSPORT COEFFICIENTS

The electric and heat currents through a system coupled to
two leads are given by the Landauer formula in the absence of
interactions. Meir and Wingreen [53] have generalized Lan-
dauer’s expression to interacting systems. Their expressions
for the currents are written in terms of the many-body Green’s
function (GF). Specifically, the current into the lead j is

Je,th
j = ie

h̄

∫
dε

∑
n,n′

ηε�
j
n′,n{G<

n,n′ (ε)[1 − f j (ε)]

+ G>
n,n′ (ε) f j (ε)}. (12)

The parameter ηε equals e for the electric current and ε −
μj for the thermal current. Here Gn′,n is the fully dressed
Keldysh GF [54], and < and > denote its lesser and greater
components. To ease notation, we combine indices into bold
notation, n = n, s. The bare (noninteracting) current vertex
of lead j is �

j
n′,n = 2πρ

j
s δs,s′δn, jδn′, j , and f j (ε) is the Fermi-

Dirac distribution function of the same lead. The parameter

FIG. 1. Illustration of the toy-model-based thermoelectric de-
vice. The figure shows the position in energy of the electronic bands
of the leads (red) and the molecular chain connecting them (pink).
The chemical potential is in the middle between the conduction and
the valence bands of the right and left leads, respectively. The narrow
window for transport (�, the “molecule”) fully overlaps with the
conduction band of the right lead, and is at energy � above the
valence band of the left lead. The turquoise rectangle and wavy lines
symbolize the phonon environment.

ρ
j
s (ε) is the density of states in the lead j per spin s at energy

ε, which is also a function of the parameters γ
j

s appearing in
the Hamiltonian.

We calculate the current perturbatively, keeping terms up
to second order in the electron-phonon coupling. Hence, the
Green’s function Gn′,n is approximated to be

GR,A = gR,A + gR,A · �R,A · gR,A. (13)

The bare Green’s function and the self-energy are

gR,A =
[
ε − H el

sub ± i

2
[�L + �R]

]−1

, (14a)

�R,A
n,n′ (ε) = i

∑
q,p,p′

∫
dω

2π

[
D>

n,p;p′,n′ (q, ω)gR,A
p,p′ (ε − ω)

+DR,A
n,p;p′,n′ (q, ω)g<

p,p′ (ε − ω)
]
, (14b)

where the Hamiltonian H el
sub describes the electrons of

the finite subsystem within the polaron mean-field ap-
proximation, i.e., in the absence of phonon fluctuations.
The propagation of the phonon cloud can be written as
Dn,p;p′,n′ (q, ω) = Vn,pUn,p;p′,n′ (q, ω)Vp′,n′ . The matrix Vn,p =
t[δn,p−1 + δn,p+1] appears because the polaron fluctua-
tion terms are nondiagonal in the coordinate. The func-
tion Un,p;p′,n′ = −i[〈T [X †

n (t )Xp(t )X †
p′ (0)Xn′ (0)]〉 − λ2] is the

(time-ordered) four-point correlation function of the phonon
cloud. An additional simplification of the propagator is ob-
tained by neglecting the renormalization of the phonon modes
by the electrons. Such a scenario occurs for a large boson
bath, i.e., in the presence of a large number of phonons, as we
expect to have in organic molecules. Consequently, the corre-
lation function of the phonon cloud maintains a simple form:

U R,A
n,p;n′,p′ (q, ω) = 2λ2

∞∑
m=1

[
1

ω − m�q ± iδ
− 1

ω + m�q ± iδ

]

× [Im(−y)|δn,p′ − δn′,p| + Im(y)|δn,n′−δp,p′ |
+ Im(−2y)δn,p′δn′,p + Im(2y)δn,n′δp,p′ ]

× sinh

(
m�q

2T

)
. (15)
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(a) (b) (c)

(d) (e)

FIG. 2. Diagrammatic representation of contributions to the
transport coefficients appearing in Eq. (6). The curved lines are the
bare electronic Green’s function. We use the color code to indicate
the retarded (blue) and advanced (red) GFs. The indices L and R
denote the lead from which the GFs end or start, and ε1 = ε − ω. The
wavy line represents the combination DR − DA. The nointeracting
bubble (a), corrections to the polaronic Green’s function [(b) and (c)],
and vertex corrections, one describing passage along the molecule (d)
and one describing reflection (e). Feynman diagrams are drawn using
TikZ-Feynman [55].

The index m counts the number of excitations in the cloud, and
Im(y) is the modified Bessel function of order m with y−1 =
(ωq/Mq)2 sinh(ωq/2T ). The lesser and greater components of
the bosonic propagator are D<(ω) = N (ω)[DR(ω) − DA(ω)]
and D>(ω) = [1 + N (ω)][DR(ω) − DA(ω)], where N (ω) is
the Bose-Einstein distribution.

Similarly, we can find the lesser and greater components of
the polaron’s Keldysh GF to the same order:

G< = i
∑
j=L,R

f j
[
gR · � j · gA + gR · �R · gR · � j · gA

+gR · � j · gA · �A · gA
] + gR · �< · gA, (16a)

�<
n,n′ (ε) = i

∑
q,p,p′

∫
dω

2π
D<

n,p;p′,n′ (
k, ω)g<
p,p′ (ε − ω). (16b)

To simplify notation, we use dots to denote the product of
matrices, i.e., [A · B]εn,n′ = ∑

p An,p(ε)Bp,n′ (ε). To find G>(ε)
we exchange between the lesser and greater indices and re-
place the distribution function by −1 + f j . See Ref. [46] for a
detailed derivation of the self-energy.

The expressions for the various components of the Keldysh
Green’s function and self-energy allow us to write the electric
and heat currents up to second order in the electron-phonon
coupling using its diagrammatic representation (Fig. 2):

Je,th
L = − 1

h̄

∫
dε

2π
ηεIa

[
f ε
R − f ε

L

] − 1

2h̄

∫
dεdω

(2π )2

× [ηεIb + ηε−ωIc + 2iηε−ωId ]
[

f ε
R − f ε−ω

L

]
× [

Nph
ω − Nmix

ω

] + 1

2h̄

∫
dεdω

(2π )2 [ηεIb − 2iηε−ωIe]

× [
f ε
L − f ε−ω

L

][
Nph

ω − NL
ω

] + 1

2h̄

∫
dεdω

(2π )2 ηε−ωIc

× [
f ε
R − f ε−ω

R

][
Nph

ω − NR
ω

]
. (17)

Here, Iα refers to the product of electron and phonon GFs
as indicated by diagram α. The explicit expressions for these
functions are given in Appendix A. The temperature entering
the Fermi-Dirac distribution function of the left (right) lead

is always TL (TR). The Bose-Einstein distribution functions
N j can, on the other hand, depend on the temperature of
either the leads j = L/R or the phonons Nph. In addition,
we use the shorthand notation Nmix

ω = N[(ε − μR)/TR − (ε −
ω − μL)/TL], which arises from the identity f R

ε ( f L
ε−ω − 1) =

Nmix
ω ( f R

ε − f L
ε−ω ). The above expressions for the currents are

written for arbitrary temperature difference and voltage. To
calculate the transport coefficients, we expand the currents to
linear order in the driving fields we indicated previously.

V. CHARACTERISTICS OF THE THERMOELECTRIC
DEVICE: TOY MODEL CALCULATION

The toy model described above is constructed to allow only
phonon-assisted electron transport between leads at tempera-
tures lower than the band gap β� � 1. An incoming electron
that does not interact with the phonons cannot contribute to
any current due to the mismatch between the densities of
states in the leads. Consequently, out of the different contri-
butions to the current described in Eq. (17) and Fig. 2 only the
vertex correction term Id is important. In linear response, this
contribution becomes

Je,th
L ≈ i

βRh̄

∫
dεdω

(2π )2 ηε−ωId
[

f ε
R − f ε−ω

R

]∂NR
ω

∂ω

× [βR�μ − �βL(ε − ω − μR) − �βphω]. (18)

To find the various components of the three-terminal conduc-
tivity matrix (6), we need to find the thermal current in the
phonon bath. For this purpose, we calculate the currents in the
right lead and use the conservation laws given in Eq. (3). To
find the current in the right lead, we replace the index L with
R in the expression for Je,th

L in Eq. (17). In the regime of linear
response, this current becomes

Je,th
R ≈ i

βRh̄

∫
dεdω

(2π )2 ηεĪd
[

f ε
R − f ε−ω

R

]∂NR
ω

∂ω

× [−βR�μ + �βL(ε − ω + μR) + �βphω]. (19)

Īd is derived from Id by replacing the L and R indices and
performing the transformation ε → ε + ω and ω → −ω.

To further simplify the toy model, we assume the polaron
Green’s function has two different possible values as a func-
tion of energy: it is large for energies inside the conduction
band and exponentially suppressed otherwise, i.e.,

gR
n,n′ (ε) =

{
g0, �/2 < ε < �/2 + �

δg0  g0, otherwise. (20)

Under these assumptions, the conductivity matrix obtains
a simple form

Li, j = i
∫

dεdω

(2π )2 B(ω)
∂NR

ω

∂ω
Li, j (ε, ω)�ε

R�ε−ω
L

× [
f ε
R − f ε−ω

R

]|g0|2|δg0|2[θ (ε − �/2)

− θ (ε − �/2 − �)]. (21)

Here, the parameter B(ω) holds information on the phonon
properties, such as their density of states and the strength
of their coupling to the electrons. θ (x) is the Heaviside step
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function, and

Li, j (ε, ω) = 1

βRh̄

⎛
⎝ e2 e(ε − ω) eω

eβR(ε − ω) (ε − ω)2 (ε − ω)ω
eβRω ω(ε − ω) ω2

⎞
⎠.

(22)

For clarity of the derivation, we fix the origin of energy to
the chemical potential, i.e., μR = 0. Notice that the density of
states in the leads is energy dependent: �ε

L ∝ θ (−ε − �/2)
and �ε

R ∝ θ (ε − �/2). As a result, the product of four Green’s
functions in Id must describe an electron injected from the left
lead at an energy outside the molecule’s conduction band, i.e.,
ε − ω < −�/2. After absorbing a phonon, the electron, now
with energy ε, may enter the conduction band and pass into
the right lead. Using the explicit density of states of the leads
yields

Li, j =
∫

dεdω

(2π )2 B(ω)
∂NR

ω

∂ω
θ (ω − �)Pi, j (ε, ω), (23a)

Pi, j (ε, ω) = Li, j (ε, ω)
[

f ε
R − f ε−ω

R

]|g0|2|δg0|2[θ (ε − �/2)

−θ (ε − min{ω − �/2,�/2 + ω})]. (23b)

The expressions for the transport coefficients embody
the limitation that phonon absorption is necessary to move
between the leads and that only a restricted window of en-
ergy can participate in transport per value of ω. Performing
the integration over the electronic degree of freedom (ε) is
straightforward at low temperatures.

We focus here on the performance of a heat engine
operating under the regime of TL = TR, and Tph > TR.
Thus, the second column of the conductivity matrix L
[Eq. (6)] is irrelevant. The efficiency of the three-terminal
heat engine is the ratio between the generated electric
power and the heat current going out of the phonon bath,
η = −Je

L(�μ/e)/J th
ph. Consequently, the relevant transport

coefficients are

(
JL

J th
ph

)
= L̃

(
�μ/e
−�βph

)
, (24a)

L̃ =
(

G αph

βR�ph κph

)
. (24b)

The maximum efficiency, ηmax, which is given by Eq. (1),
is a monotonic function of the figure of merit, ZT =
αph�ph/GK [31,33]. Importantly, the thermal conductivity
entering the figure of merit, which is defined in the absence
of electric current, is a function of all transport coefficients,
K = κph − αph�ph/G.

To analyze the maximal efficiency and the maximal power
for our model, we perform the integral over ε in Eq. (21).
As a result, the reduced conductivity matrix takes a simple
form,

L̃ = G�

( 〈1〉� 〈ω/e〉�
βR〈ω/e〉� 〈ω2/e2〉�

)
, (25)

where the average stands for

〈A(ω)〉� = e2|g0|2|δg0|2
4π2βR h̄G�

∫ ∞

�

dωA(ω)B(ω)

× min {ω − �,�}
(

−∂NR
ω

∂ω

)
, (26a)

G� = e2|g0|2|δg0|2
4π2βR h̄

∫ ∞

�

dωB(ω) min {ω − �,�}

×
(

−∂NR
ω

∂ω

)
. (26b)

The equivalent expressions for the complete 3×3 conduc-
tivity matrix are given in Appendix B. Following the above
derivation, the figure of merit,

ZT = [〈ω2〉�/〈ω〉2
� − 1]−1, (27)

acquires the same form as in the work of JEWI [38]. The
novelty of their result is in coupling the efficiency to the
phonon density of states instead of the electronic one. Mahan
and Sofo’s “best” thermoelectric [26] was based on narrowing
the electronic density of states toward zero. By contrast, JEWI
showed that the efficiency can be enhanced by narrowing the
phonon band, especially when elastic transport is suppressed.
The advantage of our device is that the finite electronic
spectrum acts as an energy filter, reducing the weight given
to higher frequencies, i.e., effectively narrowing the phonon
bandwidth. Consequently, our proposal has the potential to
implement thermoelectric devices with high figure of merit.

To demonstrate the advantage of our heat engine relative
to that of JEWI, we turn now to analyze ZT as a function of
the electronic bandwidth �. We offer an intermediate solution
between JEWI and Mahan and Sofo—limiting the effective
phonon bandwidth through the electronic spectrum. Below
we refer to the JEWI proposal as one that has unlimited
electronic bandwidth, while ours will vary. The figure of merit
is inversely proportional to ζ� − 1, where ζ� = 〈ω2〉�/〈ω〉2

�.
Probability theory guarantees that ZT is always positive.
Moreover, ZT grows as ζ� becomes closer to unity from
above. The efficiencies of the two devices, ours and JEWI’s,
coincide in the limit � → ∞. Therefore, we start by expand-
ing ζ� at large �,

ζ� ≈ζ∞

[
1 − e−β(�+�)(� + �)γ+2

4π2G∞β2〈ω2〉∞

]
. (28)

For the purpose of illustration, we assumed here that B(ω) ∼
ωγ . As expected, we find that ζ� becomes smaller with de-
creasing �. Thus, we established that our device exhibits an
improved maximal efficiency once the bandwidth is reduced.
To complete the analysis, we also expand ζ� in the limit of
vanishing �,

ζ� =ζ0

[
1 − β�

2

2

(β�)2

]
. (29)

Interestingly, this result indicates that the maximal efficiency
grows with electron bandwidth near � = 0. Hence, it must
have a maximum at an intermediate value of �. In Fig. 3 we
demonstrate the full dependence of the figure of merit (and
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FIG. 3. The figure of merit, ZT , and power factor (normalized
by its value at � → ∞) for our model as function of the bandwidth
�. The power factor is a monotonic function of the bandwidth, as
it is mainly determined by the mean 〈ω〉�. The figure of merit, on
the other hand, displays the expected maximum. Near the maximum
of the figure of merit, the power factor loses only about 30% of its
maximum value, improving the engine’s efficiency without signifi-
cant power loss. Parameters chosen are β = 2.5, � = 1 in arbitrary
units, and γ = 1.

hence the maximal efficiency) on � for γ = 1. Since ther-
moelectric conversion (〈ω〉) contributes to the figure of merit,
while thermal conductance (〈ω2〉) hinders it, their competition
as � varies results in the appearance of a maximum, clearly
seen in the plot. We refer the reader to Appendix B for a
detailed derivation of ζ� in the various limits.

The maximal efficiency is not always sufficient to charac-
terize thermoelectric devices. The maximum power Pmax and
the efficiency at maximum power η(Pmax) = ηC

2
ZT

2+ZT are often
equally or even more important. The material dependence of
the maximum power Pmax = L̃2

12/L̃11(�βph)2/4 is contained
in the so-called power factor L̃2

12/L̃11. The dependence of
η(Pmax) on ZT is similar to ηmax, and therefore benefits from
our architecture as well. By contrast, the power factor, here
taking the form G�〈ω〉2

�, grows monotonically with �, ap-
proaching its highest value for � → ∞. Thus, it is clear
that reducing the electronic bandwidth � lowers the power
production of our heat engine. However, a more quantitative
analysis of the power factor allows more delicate optimiza-
tion of the engine. In particular, the rate at which it changes
with decreasing � determines whether operating at maximum
efficiency must come at the cost of low power. Applying the
same assumptions we used in our calculation of ZT , we find
the power factor and plot them together in Fig. 3. Indeed,
the power factor remains significant near the maximum. In
addition, we analyze the limits of � going to zero and to
infinity:

G�〈ω〉2
� ≈

⎧⎪⎨
⎪⎩

G∞〈ω〉2
∞

[
1 − e−β(�+�)�γ+1

2πβ2〈ω〉∞βG∞

]
, � → ∞

� e−β��γ+2

β(2π )2

[
1 + γ+2

β�

]
, � → 0.

(30)

We find that the strongest change in the power factor occurs at
� � �. Consequently, our device is optimal in systems where
the figure of merit has a maximum at � > T .

To conclude this section, our simple analysis reveals that
a limited electronic bandwidth is beneficial for thermoelectric
conversion in systems where elastic transport is suppressed.
However, the power factor in such engines tends to be smaller
than the one obtained for an unrestricted electronic band. Nev-
ertheless, we obtained that the reduction in the power factor
can still be moderate near the maximum of the figure of merit
(see Fig. 3). Therefore, we can benefit from the improved
efficiency with only a small loss in the generated power. In the
next section, we show that our thermoelectric device can be
implemented by a chiral molecule exhibiting CISS bridging
two magnetic leads.

VI. MODEL FOR CISS-BASED
THERMOELECTRIC DEVICE

The CISS effect has been observed in many different chiral
structures, ranging from short organic molecules to super-
helical polymer microfibers [56], and even two-dimensional
chiral hybrid organic-inorganic perovskites [57–59]. To model
CISS, we need a simple model that captures universal fea-
tures such as the molecule’s helical structure, and realizes
spin-dependent transport. In a previous work [46], we showed
that a helix-shaped atomic chain gives rise to a strong
spin-dependent transport in the presence of SOC and electron-
phonon interactions. Importantly, the low-energy degrees of
freedom of the chain must include at least two orbital modes
with the same total angular momentum but different |�|. To
connect the toy model analyzed in the previous section and a
more realistic model of systems supporting CISS, we follow
the model of Ref. [46] and replace the first term in Eq. (9) by

Hel
mol =

∑
n,�,s

t̃[c†
n,�,scn+1,�,s + c†

n+1,�,scn,�,s] + �SOC

×
∑

n,�,s,s′
�

[
χ sin

2πn

R̃
σx − cos

2πn

R̃
σy − b

2πR
σz

]
.

(31)

Here the quantization axis of the electron spin s is along the
center of the helix, which we denote as the z direction, and
σi are the Pauli matrices. The first term describes the kinetic
energy associated with hopping between neighboring atoms
along the helix. The second term is the atomic SOC that on the
helical lattice simply favors spin alignment of a state with � �=
0 in the direction of the chemical bonds. The parameters b and
R are the pitch and radius of the helix, R̃ =

√
(2πR)2 + b2,

and χ = ± denotes the handedness of the atomic helix. In
this model, only � �= 0 bands, which are typically responsible
for charge transfer via organic molecules, experience SOC. To
simplify our calculation, we focus here on states with � = ±1,
i.e., on transport through px and py orbitals. In addition, we
neglect the last term of the SOC in Eq. (31), since it has a
limited influence on the strength of the CISS effect. The above
Hamiltonian is the low-energy limit of the models used in
Refs. [47,60–62] for demonstrating spin-dependent transport
through chiral molecules.

In the absence of electron-phonon interactions, the energy
spectrum corresponding to the Hamiltonian in Eq. (31) has a
narrow partial gap of width ∼2�SOC. The remaining states
within this partial gap, which results from the SOC term,

075407-7



DAN KLEIN AND KAREN MICHAELI PHYSICAL REVIEW B 108, 075407 (2023)

FIG. 4. Transmission through the molecule as a function of
energy for various magnetization strengths of the leads, M. Trans-
mission outside the partial gap is largely suppressed as the leads
become more spin polarized in opposite directions. The transmission
remains effective only at energies where the possibility of a spin flip
is available, i.e., within the partial gap of width ∼2�SOC near the
bottom of the band. Notice that we add a small disorder potential to
smooth out resonances in the transmission, a result of the molecule
being finite.

support spin-dependent transport. An electron carrying a
given spin has unequal probabilities of passing from left to
right and from right to left. Equivalently, the spin of an elec-
tron passing through the system at the energies of the partial
gap gets polarized according to the direction of propagation.
In Ref. [46], we showed that in the strongly interacting po-
laron limit, significant spin-dependent transport is obtained
even when the chemical potentials of both leads are far be-
low the bottom of the molecule’s conduction band. Charge
transport at energies within the band gap is supported solely
by phonon absorption. With the additional energy from an
absorbed phonon, the polaron energy can reach the band and
propagate through the molecule. In this case, spin-dependent
transport is observed if the polaron’s final energy ε coincides
with the partial energy gap ε0 − �SOC < ε < ε0 + �SOC,
with ε0 being the middle of the gap.

To implement the physics of the previous toy model, the
electrodes should be strongly magnetized in opposite direc-
tions. As before, the left lead has states only below the
molecule spectrum, and the right lead has states only at en-
ergies overlapping the molecule spectrum and above. The
chemical potentials in both leads are fixed to the band gap.
In Fig. 4 we plot the noninteracting transmission through
the molecule as the magnetization in the leads M ≡ ML =
(�L

↑ − �L
↓ )/�L

↑ = −MR becomes stronger. Electron transmis-
sion though the molecule is strongly suppressed outside the
partial energy gap (located near the bottom of the band). Since
the chemical potentials of the leads are far below the band,
the conductivity in the absence of interactions is negligible.
Significant transport occurs only in the presence of interac-
tions. An electron may enter the molecule through a decaying
polaron state at energies within the band gap, and encounter a

FIG. 5. The integrand of the electric conductance P(ε, ω) in
the presence of interactions as a function of energy ε for various
strengths of the leads magnetization. For strongly spin-polarized
leads, the main contribution to the conductance is from electrons that
can reach the partial gap by absorbing a phonon, ε0 − �SOC − ω �
ε � ε0 + �SOC − ω.

phonon fluctuation. Then, absorption of a phonon may take
the polaron into energies in the window ε0 − �SOC < ε <

ε0 + �SOC, where a spin flip allows it to pass and relax into
the opposite lead. Importantly, this is the main mechanism
for conduction through the system. As a consequence, our
system implements the toy model by having a narrow effective
conduction band of width 2�SOC.

We demonstrate these properties of the system by calculat-
ing the main contribution to the conductance from Eqs. (18)
and (19). In Fig. 5 we show the integrand P1,1(ε, ω0) in
Eq. (23b) as a function of energy for different magnetization
strengths of the leads and a single optical phonon frequency
ω0. As expected, increasing the imbalance between spins in
the leads strongly reduces P1,1(ε, ω0) at energies above the
partial gap, while contributions from ε0 − �SOC < ε + ω0 <

ε0 + �SOC remain relatively large. The only difference be-
tween the contribution to the currents from the toy model
and the chiral molecule is that the polaron Green’s function
is not constant for the latter. We expect such a modification
to have only a small qualitative effect. The purpose of this
work is to qualitatively show the potential benefits of using
chiral molecules for thermoelectric applications. We leave
more accurate calculations based on specific microscopic
models of the molecules for future work. Nevertheless, we
have provided a general framework for characterizing CISS-
based thermoelectric devices that requires only derivation of
the noninteracting properties of the molecule.

We focus in this work on the effect of optical phonons
on thermoelectric transport through chiral molecules since
the majority of vibrations in these systems are of localized
charges. Furthermore, Peralta et al. have shown that optical
phonons are more dominantly coupled to electron transport in
molecules [63].

We note that our focus here is the analysis of transport
in the case of strongly polarized magnetic leads. When the
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magnetization is not so strong, the chiral molecules also ex-
hibit an asymmetry in thermopower, whose advantages were
first explored in Ref. [31]. Such asymmetry is theorized to
occur also in Aharonov-Bohm interferometers connected to
several reservoirs [32,35], chiral quantum Hall edge states
[64], and more generally in systems where interactions or
dephasing affect transport properties [65].

VII. CONCLUSIONS

We have shown that chiral molecules mounted between
two opposite magnets can implement efficient thermoelectric
machines due to their nontrivial transport properties. In such
systems, absorption and emission of phonons by incoming
electrons becomes correlated with the possibility to flip spin,
thus generating a thin window for conduction on the order
of the SOC. Specifically, the figure of merit can increase by
30% compared to similar systems studied in the past, without
significant loss of power.

Our results are not limited to single-molecule engines, but
can also be applied to materials containing chiral components,

e.g., chiral hybrid organic-inorganic perovskites [57,59]. The
multitude of alternatives presented here make chiral thermo-
electric engines a highly realizable solution to the removal
of heat from microprocessors, one of the major limiting
factors of further miniaturization. In addition, as a heat en-
gine, our proposal can make use of waste heat to efficiently
generate electricity. Finally, magnetoresistance measurements
involving chiral structures are usually performed at ambient
conditions, with magnet strengths ranging on the order of 1 T.
While the efficiency of the thermoelectric engine grows with
the lead magnetic moment, as shown in Fig. 5, it is already
significant at moderate magnetization. In fact, using mag-
netic leads of intermediate magnetization level is beneficial
for achieving a reasonable efficiency without compromising
much on the power production.
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APPENDIX A: EXPRESSIONS FOR TRANSPORT COEFFICIENTS

The expressions for the electric and heat currents in the left lead are written in Eq. (17). Similarly, we can find the contributions
to the currents flowing into the right lead by substituting R ↔ L. The transport coefficients can be extracted from the currents
in both leads as well as the conservation laws in Eq. (3). For this purpose, we consider the regime of linear response; i.e., we
expand the current up to the first order in �βL, �βph, and �μ. The corresponding transport coefficients are

G = −e2

h̄

∫
dε

2π
Ia

d f

dx
βR + e2

2h̄

∫
dεdω

(2π )2
[Ib + Ic + 2iId ][ f ε − f ε−ω]

dN

dx
βR, (A1a)

α1 = − e

h̄

∫
dε

2π
Ia(ε − μ)

d f

dx
+ e

2h̄

∫
dεdω

(2π )2
[ f ε − f ε−ω]

dN

dx

×{(ε − μ)Ib + (ε − ω − μ)(Ic + 2iId ) − 2iωIe}, (A1b)

αph = e

h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx
{iω(Id + Ie)}, (A1c)

�1 = − e

h̄

∫
dε

2π
Ia(ε − μ)

d f

dx
+ e

2h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx
{(ε − μ)Ib + (ε − ω − μ)(Ic + 2iId )}, (A1d)

κLR = −1

h̄

∫
dε

2π
Ia(ε − μ)2 d f

dx
+ 1

2h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx

×{(ε − μ)2Ib + (ε − ω − μ)2(Ic + 2iId ) − 2i(ε − ω − μ)ωIe}, (A1e)

κL,ph = 1

h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx
{(ε − ω − μ)ω(iId + iIe)}, (A1f)

�ph = − e

2h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx
{ε(Ib − Īc − 2iĪd ) + (ε − ω)(Ic − Īb + 2iId )}, (A1g)

κph,L = 1

2h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx

×{−ε(ε − μ)(Ib − Īc) + (ε − ω)(ε − ω − μ)(−Ic − 2iId + Īb) + 2i(ε − ω)ωIe + ε(ε − ω − μ)2iĪd}, (A1h)

κph = 1

h̄

∫
dεdω1

(2π )2
[ f ε − f ε−ω]

dN

dx
{−(ε − ω)ω(iId + iIe) + εω(iĪd + iĪe)}. (A1i)

Above and in the main part of the text, the currents and the corresponding transport coefficients are written using a
diagrammatic representation. Here, we provide explicit expressions for the various diagrams entering Eq. (17):

Ia = [gR · �R · gA · �L]εn,s;n,s, (A2a)

Ib = [gR · �R · gA · �L · gR − gA · �L · gR · �R · gA]εn,s;n′,s′ [DR − DA]ωn′,p′;p,n · [gR · �L · gA]ε−ω
p′,s′;p,s, (A2b)
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Ic = [gR · �R · gA · �L · gR − gA · �L · gR · �R · gA]ε−ω
n,s;n′,s′ [DR − DA]ωn′,p′;p,n · [gR · �R · gA]εp′,s′;p,s, (A2c)

Id = [gA · �L · gR]ε−ω
n,s;n′,s′ [DR − DA]ωn′,p′;p,n · [gR · �R · gA]εp′,s′;p,s, (A2d)

Ie = [gA · �L · gR]ε−ω
n,s;n′,s′ [DR − DA]ωn′,p′;p,n · [gR · �L · gA]εp′,s′;p,s. (A2e)

We note that we neglect real corrections to the self-energy since their contribution is negligible for transport below the
conduction bands. Similarly, we find the contributions to the currents flowing into the right lead by substituting R ↔ L and
performing the transformations ε → ε + ω as well as ω → −ω in Eq. (17) and in all of the above diagrams. We denote the
corresponding diagrams by Īα .

APPENDIX B: CALCULATION OF THE FULL CONDUCTIVITY MATRIX FOR THE TOY MODEL

In the main text, we write the reduced 2×2 conductivity matrix L̃ that determines the properties of the three-terminal
thermoelectric devices. For completeness, we give here the expression for the full 3×3 conductivity matrix obtained after
performing the integral over ε in Eq. (21):

L = G�

⎛
⎝ 〈1〉� 〈 f1(ω)/e〉� 〈ω/e〉�

βR〈 f1(ω)/e〉� 〈 f2(ω)/e2〉� 〈 f3(ω)/e2〉�
βR〈ω/e〉� 〈 f3(ω)/e2〉� 〈ω2/e2〉�

⎞
⎠. (B1)

The functions fi are

f1(ω) =
{−ω/2, � < ω < � + �

−ω + (� + �)/2, � + � < ω,
(B2)

f2(ω) =
{

(ω2 − ω�/2 + (�/2)2)/3, � < ω < � + �

(3ω2 − 3ω(� + �) + �2 + 3(�/2)2 + 3��/2)/3, � + � < ω,
(B3)

f3(ω) =
{−ω2/2, � < ω < � + �

−ω2 + ω(� + �)/2, � + � < ω.
(B4)

Next, we derive the asymptotic expressions for the various transport coefficients in the limits � → ∞ and � → 0. For this
purpose, it is sufficient to examine the generic form of the integral

Mn(�) = 1

2πβ

∫ ∞

−∞

dω

2π
ωnθ (ω − �) min {ω − �,�}

(
−dN

dω

)
B(ω), (B5)

where the power n is different for each component of the conductivity matrix. For example, n = 0 and n = 2 for the electric and
thermal conductance, respectively. At large �, the above integral can be written as

Mn(�) = G∞〈ωn〉∞ + 1

2π

∫ ∞

�+�

dω

2πβ
ωn(� + � − ω)

(
−dN

dω

)
B(ω). (B6)

In the limit of low temperatures, β� � 1, the Bose function may be approximated to be N (ω) ∼ e−βω. Then, assuming B(ω) ∼
ωγ and performing the integral by parts, we find

1

2πβn+γ+2

∫ ∞

β(�+�)

d(βω)

2π
(βω)n+γ (β(� + �) − βω)e−βω ≈ −e−β(�+�)(� + �)n+γ

(2π )2β2
. (B7)

Similarly, we can find the Mn(�) in the limit � → 0,

Mn(�) ≈ �

∫ ∞

β�

d(βω)

4π2βn+γ+2
(βω)n+γ e−βω = �

�(n + γ + 1, β�)

4π2βn+γ+2
, (B8)

where �(a, z) is the incomplete gamma function.
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