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We investigate the emergence and corresponding nature of exceptional points located on exceptional hyper-
surfaces of non-Hermitian transfer matrices for finite-range one-dimensional lattice models. We unravel the
nontrivial role of these exceptional points in determining the system-size scaling of electrical conductance in
nonequilibrium steady state. We observe that the band edges of the system always correspond to the transfer
matrix exceptional points. Interestingly, albeit the lower band edge always occurs at wave vector k = 0, the
upper band edge may or may not correspond to k = π . Nonetheless, in all the cases, the system exhibits
universal subdiffusive transport for conductance at every band edge with scaling N−b with scaling exponent
b = 2. However, for cases when the upper band edge is not located at k = π , the conductance features interesting
oscillations with overall N−2 scaling. Our work further reveals that this setup is uniquely suited to generate
higher-order transfer matrix exceptional points at upper band edge when one considers finite-range hoppings
beyond nearest neighbor. Additional exceptional points other than those at band edges are shown to occur,
although interestingly, these do not give rise to anomalous transport.
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I. INTRODUCTION

Understanding of the emergence of exceptional points and
exceptional surfaces in non-Hermitian Hamiltonian systems
is an active and rapidly growing area of research [1–9].
Typically these exceptional points are extremely sensitive
to external perturbations and therefore are useful for poten-
tial applications in cavity quantum electrodynamics, spectral
filtering, sensing, lasing, and thermal imaging [4,7–9]. More-
over, exceptional hypersurfaces i.e., hypersurfaces hosting
exceptional points, are more beneficial than a discrete ex-
ceptional point. This is because, in realistic setups, tuning
and stabilizing a system to a discrete exceptional point, es-
pecially in large parameter space, is highly challenging and
often impossible [1–4]. Similar to non-Hermitian Hamilto-
nian, for one-dimensional (1D) nearest-neighbor tight-binding
systems, the underlying non-Hermitian transfer matrix of the
lattice is known to have exceptional points at the band edges
[10]. However exceptional hypersurfaces (i.e., higher dimen-
sional) of transfer matrices for such lattice systems have
not been reported earlier. Interestingly, beyond the nearest-
neighbor hopping model, due to the increased dimensionality
of the transfer matrix, there is a strong possibility of the emer-
gence of exceptional hypersurfaces and thereby higher-order
exceptional points. One of the main aims of this work is to
unravel the nature of transfer matrices for finite-range hopping
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model (involving n number of neighbors where n does not
scale with system size N).

Understanding nonequilibrium steady-state transport prop-
erties in low-dimensional lattice systems is another important
area of research [11–16]. This is crucial both from a fun-
damental perspective as well as from a technological point
of view. A deep understanding of transport behavior is
paramount to realize efficient quantum devices [17–20]. The
study of quantum transport in low-dimensional systems is
interesting as often it shows deviation from the normal dif-
fusive behavior or standard Ohm’s law/Fourier’s law which
is one of the reasons why low-dimensional systems have
been of fundamental interest [11–13]. Sample examples of
low-dimensional systems include 1D and 2D systems with
random and quasiperiodic disorder [21–32]. For the random
disorder case, Anderson localization occurs in 1D and 2D
which essentially unravels the exponential nature of localiza-
tion of all the single-particle states [21–23]. As a consequence
of exponentially localized single-particle states, the transport
exponentially decays as a function of system size N . Recall
that, in absence of disorder, transport is independent of system
size (ballistic transport) [11,15]. Therefore, both the clean and
disordered systems show deviations from normal diffusive
behavior akin to the Ohm’s law.

Quasiperiodic disordered systems in low dimensions are
known to show unusual and rich transport properties. The
study of transport properties in low-dimensional quasiperiodic
systems gained a lot of attention because of very success-
ful experimental realizations in various platforms [33–40].
These systems often show anomalous transport in different
cases [29,30,32,41–44]. Note that, in anomalous transport
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conductance G ∼ N−b where 0 < b �= 1. b = 1 is the limit
of diffusive transport. b > 1 refers to subdiffusive transport
whereas 0 < b < 1 refers to superdiffusive transport. Al-
though such quasiperiodic disordered systems often show
anomalous transport, the microscopic understanding of the
anomalous transport is far from being fully understood.

Interestingly, in a recent work, it was shown that for a 1D
nearest-neighbor tight-binding fermionic lattice with periodic
onsite potential, the conductance displays subdiffusive scaling
at the band edges of the system. The origin of this effect was
shown to be connected to the presence of exceptional points
corresponding to the non-Hermitian transfer matrices of the
lattice [10]. Moreover, such a subdiffusive scaling at the band
edges was also observed in long-range lattice systems with
power-law hopping (involving n numbers of neighbors where
n scales with system size N) [45] where the transfer matrix
approach is not well suited. The understanding behind this
effect for long-range systems is still lacking. To bridge the gap
between nearest-neighbor hopping systems and long-range
hopping systems, investigation of the transport properties of
finite-range hopping model and its connection with underly-
ing transfer matrices is crucial.

In this work, we provide an in-depth understanding of
emergence of exceptional hypersurfaces of transfer matrices
in finite-range hopping model and their impact on nonequilib-
rium steady-state (NESS) quantum transport properties. Our
main findings can be summarized as follows:

(1) We establish the nontrivial connection between
nonequilibrium steady-state (NESS) conductance and under-
lying (2n × 2n)-dimensional non-Hermitian transfer matrix
for finite-range lattice models.

(2) We always find the appearance of exceptional points of
various orders at the band edges of the lattice, which crucially
depends on n. It is important to note that by “points” we also
mean “hypersurfaces” in more general sense. We unravel the
nontrivial role played by these exceptional points in determin-
ing the universal system size scaling of NESS conductance
with scaling exponent b = 2. We further demonstrate that the
value of the scaling exponent is remarkably robust to the order
of the exceptional point.

(3) We find that for finite-range hopping model (n > 1) the
location of the upper band edge does not always correspond
to k = π . In such cases, we observed interesting oscillation
features in conductance with overall N−2 scaling.

The plan of the paper is as follows: In Sec. II, we provide
the lattice Hamiltonian and dispersion relation for the finite-
range hopping model. In Sec. III, we discuss the open-system
transport properties. First, we provide the nonequilibrium
steady-state (NESS) conductance in detail (Sec. III A). To
calculate conductance, it is important to compute the Green’s
function. It can be calculated using the transfer matrix ap-
proach. Thus, in Sec. III B we discuss the connection between
transfer matrices and NESS conductance. This connection
involves the exponents of transfer matrices. In Sec. IV, we
discuss the details of eigenvalues (Sec. IV A), eigenvectors
(Sec. IV B), and exponents of transfer matrices (Sec. IV C).
In Sec. V, we first provide the results for transfer matrix
properties for finite-range hopping model with n = 2 followed
by the scaling of NESS conductance (Sec. V A). Next, in
Sec. V B we provide generalizations of some results beyond

n = 2. Then, in Sec. V C we discuss the robustness of some
results. Finally, in Sec. VI, we conclude and discuss future
directions. In Appendix A we provide detailed calculations
establishing the connection between transfer matrix and con-
ductance. In Appendix B, we show the nature of transfer
matrix eigenvalues analytically for n = 2.

II. LATTICE HAMILTONIAN AND DISPERSION
RELATION

In this section, we introduce the tight-binding Hamiltonian
for the finite-range hopping model and provide the details of
the dispersion relation. The Hamiltonian for our setup is given
as

Ĥ = −
N∑

i=1

n∑
m=1

tmĉ†
i ĉi+m + H.c. (1)

Here ĉ†
i (ĉi ) is the fermionic creation (annihilation) operator.

tm is the hopping strength for mth neighbor. We consider the
lattice size as N with n being the total number of neighbors to
the left and to the right of a particular lattice site, if any. In the
thermodynamic limit, the dispersion relation for this setup is
given as

ω(k) = −2
n∑

m=1

tm cos mk. (2)

We immediately notice from Eq. (2) that the minimum value
of ω(k) which corresponds to the lower band edge always
occurs at wave-vector value k = 0. The value of the energy
at the lower band edge (k = 0) is

ω(k = 0) = −2
n∑

m=1

tm. (3)

Interestingly, the maximum value of ω(k) which corresponds
to upper band edge may or may not always occur at k = π

and crucially depends on the range of hopping n and strength
of hopping tm. We now find a condition which decides whether
or not k = π is an upper band edge. For that purpose, we
use Eq. (2) and demand (negative second derivative implying
maxima at k = π )

d2ω(k)

dk2

∣∣∣∣
k=π

= 2
n∑

m=1

(−1)mm2tm < 0. (4)

Note that, at the extremum (maxima or minima) of ω(k), the
first derivative of ω(k) always vanishes. Thus, from Eq. (4) we
immediately receive the condition for getting the upper band
edge at k = π which is given as∑

m∈even

m2tm <
∑

m∈odd

m2tm. (5)

Note that, the sum in Eq. (5) is over the range of hopping only.
With this condition [Eq. (5)] being satisfied and using Eq. (2),
we see that the value for upper band edge energy is given as

ω(k = π ) = 2
n∑

m=1

(−1)m+1tm. (6)
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Now, for the condition∑
m∈even

m2tm >
∑

m∈odd

m2tm, (7)

the upper band edge will occur at some different k = k1 �= π .
An interesting situation appears when∑

m∈even

m2tm =
∑

m∈odd

m2tm (8)

in which case the second derivative in Eq. (4) disappears.
Hence, one needs to look at the higher-order derivatives to
conclude about the upper band edge. Now, as the third deriva-
tive at k = π is always zero, we look at the fourth-order
derivative which is given as

d4ω(k)

dk4

∣∣∣∣
k=π

= 2
n∑

m=1

(−1)m+1m4tm. (9)

Interestingly, for even number of hoppings (n = even)
along with the condition in Eq. (9), we find that

d4ω(k)

dk4

∣∣∣∣
k=π

< 0 (10)

which implies a local maximum at k = π . Thus, in such a
scenario the ω(k) value given in Eq. (6) is the upper band
edge. However, for odd number of hoppings (n = odd), the
condition in Eq. (9) implies

d4ω(k)

dk4

∣∣∣∣
k=π

> 0 (11)

is greater than zero, ensuring a local minimum. But, since
k = 0 always corresponds to a global minimum (lower band
edge), in this situation k = π will not correspond to any band
edge and, therefore, the upper band edge will occur at some
different k = k1 where k1 �= π .

In summary, the above analysis points out that for finite-
range hopping model, k = 0 always corresponds to the lower
band edge. But, k = π may or may not correspond to the
upper band edge and depends crucially on the conditions as
given in Eqs. (5), (7), and (8). In what follows, we will see
interesting consequences of this fact in the NESS transport
properties. It is important to note that for the nearest-neighbor
hopping model, i.e., n = 1, the upper band edge is always at
k = π which is also clear from Eqs. (2) and (4).

III. OPEN QUANTUM SYSTEM TRANSPORT PROPERTIES

A. Nonequilibrium steady-state conductance

In this section, we are interested in computing the NESS
conductance when the finite-range hopping lattice chain is
connected with two fermionic baths at its two ends, i.e., at
site 1 and site N . The baths are modeled by infinite number
of fermionic modes and the associated spectral functions are
denoted by J1(ω) and JN (ω), respectively. At the initial time
t = 0, both the baths are kept at zero temperature (β = ∞)

but at slightly different chemical potentials μ and μ − δμ,
respectively. The finite lattice system can, however, be in any
arbitrary initial state. Note that, if the bandwidth of the baths
is larger than the bandwidth of the system, the lattice system
usually reaches a unique NESS in the long-time limit.

In this study, we are interested in the linear response regime
and NESS conductance. Using the nonequilibrium Green’s
function (NEGF) [46–51], we can write the NESS conduc-
tance as [51]

G(μ) = 1

2π
J1(μ)JN (μ)|G1N (μ)|2. (12)

Here G(μ) is the N × N retarded NEGF matrix and is given
as

G(μ) = [μ I − H − �1 − �N ]−1, (13)

where H is the N × N single-particle lattice Hamiltonian ma-
trix corresponding to Ĥ in Eq. (1), I is a N × N identity
matrix, �1 and �N are the diagonal N × N self-energy ma-
trices for the left and right baths with nonzero entries only
at (�1)11 and (�N )NN . Thus, following Eq. (12), to infer the
scaling property of conductance G(μ) with system size N we
need to investigate the system-size scaling only for G1N (μ)
as the spectral functions, being the property of the baths,
are independent of N . Moreover, as the baths are attached at
the two ends of the lattice, the scaling of G1N (μ) with N is
directly governed by the scaling of the bare part of the retarded
Green’s function g1N (μ) [45] defined as

g(μ) = [μ I − H]−1. (14)

In Sec. III B, we focus on the calculation of g(μ) for the finite-
range model by introducing the transfer matrix approach.

B. Connection between retarded bare Green’s function and
transfer matrix

In this section to facilitate further discussion, we first pro-
vide the details of the transfer matrix for the finite-range
lattice model with hopping range n [52,53]. To construct the
transfer matrix, we write the discrete version of the time-
independent Schrödinger equation Ĥ |ψ〉 = ω|ψ〉 as

ωψ� = − t1ψ�+1 − t1ψ�−1 − t2ψ�+2 − t2ψ�−2 + · · ·
− tnψ�+n − tnψ�−n, (15)

where ψ� is the amplitude of wave function at the �th site. We
can rewrite Eq. (15) as

ψ�+n = − ω

tn
ψ� − t1

tn
[ψ�−1 + ψ�+1]

− t2
tn

[ψ�−2 + ψ�+2] + · · · − ψ�−n. (16)

Following Eq. (16), we can write how the amplitude of
wave function at (� + n), (� + n − 1), . . . (� − n + 2), (� −
n + 1)th sites are connected with (� + n − 1), (� + n − 2) . . .,
(� − n + 1), (� − n) th sites via a 2n × 2n transfer matrix
T(l )(ω), given as

075406-3



SAHA, KULKARNI, AND AGARWALLA PHYSICAL REVIEW B 108, 075406 (2023)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ�+n

ψ�+n−1
...

ψ�−n+3

ψ�−n+2

ψ�−n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− tn−1

tn
− tn−2

tn
. . . −ω

tn
. . . − tn−2

tn
− tn−1

tn
−1

1 0 0 . . . . . . 0 0 0
0 1 . . . 0 . . . 0 0 0
...

...
...

...
...

...
...

...

0 0 . . . . . . . . . . . . 0 0
0 0 . . . . . . . . . . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ�+n−1

ψ�+n−2
...

ψ�−n+2

ψ�−n+1

ψ�−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= T(�)(ω)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ψ�+n−1

ψ�+n−2
...

ψ�−n+2

ψ�−n+1

ψ�−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

It is clear from the above equation that the transfer matrix of the lattice T(l )(ω) connects the amplitude of the single-particle
wave function between (� + n)th site to (� − n)th site which results in connecting 2n number of total sites. As we are dealing
with clean system, the transfer matrix T(�)(ω) is independent of site �. Thus, we write the transfer matrix as T(ω) instead of
T(�)(ω). By defining

a(|m|) = ω/tn, |m| = 0

a(|m|) = t|m|/tn, |m| < n and |m| �= 0,

a(|m|) = 1, |m| = n and

a(|m|) = 0, |m| > n (18)

with m denoting the mth neighbor of a particular site, we can write the general form of 2n × 2n non-Hermitian transfer matrix
T(ω) in terms of the defined function a(|m|) as [54]

T(ω) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−a(n − 1) −a(n − 2) . . . −a(0) . . . −a(n − 2) −a(n − 1) −1
1 0 . . . . . . . . . . . . 0 0
0 1 . . . . . . . . . . . . 0 0
...

...
...

...
...

...
...

...

0 0 . . . . . . . . . . . . 0 0
0 0 . . . . . . . . . . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (19)

We now establish the connection between the bare Green’s function defined in Eq. (14) and the transfer matrix of the lattice,
introduced above in Eq. (19). We rescale the single-particle Hamiltonian H by tn where we recall that tn corresponds to the
hopping strength of a particular site to its furthest neighbor, as allowed by the model. With this rescaling, we can write g as

g(μ) = M(μ)−1/tn, (20)

where

M(μ) = 1

tn
[μI − H] (21)

is a symmetric-banded Toeplitz matrix which is also the case for H [54–56]. More explicitly, the (i, j)th matrix element of M(μ)
is given as

〈i|M(μ)| j〉 = a(|m|) (22)

with m = j − i and a(0) = μ/tn.
As shown in Appendix A, it turns out that one can write the matrix elements of M(μ)−1 given in Eq. (21) in terms of the

transfer matrix T(μ) given in Eq. (19) as [54]

〈i|M(μ)−1| j〉 =
{∑n

m=1〈n|T(μ)−i|n + m〉〈m|M(μ)−1| j〉, if j > i∑n
m=1〈n|T(μ)−i|n + m〉〈m|M(μ)−1| j〉 − 〈n|T(μ)−(i− j+1)|1〉, if j � i

(23)

with i, j = 1, 2, . . . , N . Any matrix element of M(μ)−1 in
Eq. (23) involves the information of 〈m|M(μ)−1| j〉 with m =
1, 2, . . . , n. To determine these unknown matrix elements we
use the following relation (see Appendix A for the details):

n∑
m=1

〈s + n|T(μ)−N |n + m〉 〈m|M(μ)−1| j〉

− 〈s + n|T(μ)−(N− j+1)|1〉 = 0, (24)

where s = 1, 2, 3, . . . , n. Therefore, using Eqs. (24) and (23)
one can determine all the matrix elements of the bare Green’s
function g(μ). Note that for the conductance calculation, we
only need the component g1N (μ) which can be directly cal-
culated using Eq. (24). Furthermore, it is worth noting that
Eq. (24) involves different powers of the transfer matrix T(μ)
which can be calculated by knowing the eigenspectra of the
matrix. In Sec. IV, we provide the relevant details on eigenval-
ues and eigenvectors of the transfer matrices considered here.
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Before proceeding further, we make the following remark.
It is to be noted that without invoking the notion of transfer
matrix (19), one can directly invert the Green’s function in
Eq. (13) to compute the steady-state conductance. However,
such an approach does not provide a clear picture of ex-
plaining different kinds of anomalous system-size scaling of
conductance. An alternate promising route to capture these
physics is by recasting the Green’s function in Eq. (14)
in terms of the underlying transfer matrix of the lattice
which is inherently non-Hermitian in nature. The appearance
of such transfer matrix can be understood by writing the
Schrödinger equation for the lattice Hamiltonian as can be
seen in Eqs. (15)–(17).

IV. TRANSFER MATRIX PROPERTIES

A. Transfer matrix eigenvalues and their relation with lattice
dispersion

In this section, we discuss the eigenvalues of the non-
Hermitian transfer matrix T(μ) given in Eq. (19) and its
connection with the lattice dispersion relation. The character-
istic equation for T(μ) turns out to be

2n∑
r=0

a(|n − r|)λr = 0, (25)

where we recall that a(|m|) is given in Eq. (18). λ denotes
the eigenvalues of the transfer matrix T(μ). We substitute r −
n = r′ and rewrite Eq. (25) as

n∑
r′=−n

a(|r′|)λn+r′ = 0. (26)

We write the eigenvalue in the form

λ = eiθ , where θ ∈ C. (27)

The characteristic equation in Eq. (26) then takes the form

einθ F (θ ) = 0, (28)

where we introduce

F (θ ) =
[

2
n−1∑
r′=1

a(r′) cos r′θ + 2 cos nθ + a(0)

]
. (29)

Since einθ �= 0 in Eq. (28), the eigenvalue spectra of the trans-
fer matrix T(μ) are obtained from the solution

F (θ ) = 0. (30)

Note that the function F (θ ) defined in Eq. (30) is an even
function of θ . Therefore, the eigenvalues of the transfer matrix
[Eq. (27)] always appear in the form eiθ and e−iθ . Interestingly,
if we associate the variable θ in Eq. (30) with the lattice wave
vector k (−π � k � π ), then Eq. (30) reads as

F (k) = 0 (31)

which remarkably is the dispersion relation of the finite-range
hopping model in Eq. (2) with ω(k) replaced by μ.

For example, with nearest-neighbor hopping model, i.e.,
n = 1, Eq. (31) reads as

F (k) = 2 cos k + μ

t1
= 0, for n = 1 (32)

which gives

μ = −2t1 cos k, −π � k � π for n = 1, (33)

and therefore matches with the dispersion relation given in
Eq. (2). The detailed discussion on finite-range hopping model
with n = 2 is given in Sec. V.

B. Eigenvectors of the transfer matrix T(μ)

In this section, we provide details about the left and
right eigenvectors of non-Hermitian transfer matrix T(μ).
Given 2n × 2n transfer matrix T(μ) with determinant 1, the
eigenvalues are λk and λ−1

k with k = 1, 2, . . . , n. Given an
eigenvalue λk , the corresponding left and right eigenvectors
of T(μ) satisfy the following equations:

〈φ(λk )|T(μ) = λk〈φ(λk )|,
T(μ) |ψ(λk )〉 = λk |ψ(λk )〉. (34)

More explicitly, the left and the right eigenvectors of the
transfer matrix corresponding to a given eigenvalue λk can be
written in a vector form as

|φ(λk )〉 =

⎛
⎜⎜⎝

φ1(λk )
φ2(λk )

...

φ2n(λk )

⎞
⎟⎟⎠ and |ψ(λk )〉 =

⎛
⎜⎜⎝

ψ1(λk )
ψ2(λk )

...

ψ2n(λk )

⎞
⎟⎟⎠. (35)

Given the transfer matrix T(μ) in Eq. (19), the components of
the left eigenvector can be obtained as

φ j (λk ) =
2n− j∑
r=0

a(|n − r|) λ
r+ j
k , j = 1, 2, . . . 2n. (36)

Interestingly, Eq. (36) with j = 0 is the characteristic polyno-
mial for the T(μ) and therefore matches with Eq. (25). The
similarity transformation S which diagonalizes the transfer
matrix T(μ) to its diagonal form

D = diag
[
λ1, λ2, . . . , λn . . . λ−1

1 , λ−1
2 , . . . , λ−1

n

]
(37)

can be written using the left eigenvector as

S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ1(λ1) φ2(λ1) . . . φ2n(λ1)
φ1(λ2) φ2(λ2) . . . φ2n(λ2)

...
...

...
...

φ1(λn) φ2(λn) . . . φ2n(λn)
φ1(λ−1

1 ) φ2(λ−1
1 ) . . . φ2n(λ−1

1 )
φ1(λ−1

2 ) φ2(λ−1
2 ) . . . φ2n(λ−1

2 )
...

...
...

...

φ1(λ−1
n ) φ2(λ−1

n ) . . . φ2n(λ−1
n )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (38)

Using the similarity transformation, we can write

S T(μ) S−1 = D. (39)

Here, S−1 contains all the components of right eigenvector as

S−1=

⎛
⎜⎜⎜⎝

ψ1(λ1) . . . ψ1(λn) ψ1(λ−1
1 ) . . . ψ1(λ−1

n )
ψ2(λ1) . . . ψ2(λn) ψ2(λ−1

1 ) . . . ψ2(λ−1
n )

...
...

...
...

...
...

ψ2n(λ1) . . . ψ2n(λn) ψ2n(λ−1
1 ) . . . ψ2n(λ−1

n )

⎞
⎟⎟⎟⎠.

(40)
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C. Matrix elements of the exponents of transfer matrix T(μ)

In this section, we compute the exponents of the transfer
matrix that are required to obtain the conductance. If the
transfer matrix T(μ) is diagonalizable, then using Eq. (39) we
can write the mth exponent of T(μ) as

Tm(μ) = S−1 Dm S. (41)

Thus, the matrix elements of the mth exponent T(μ) are given
by

〈s|Tm(μ)| j〉 =
2n∑

k=1

ψs(λk ) φ j (λk ) λm
k

=
n∑

k=1

[
ψs(λk ) φ j (λk ) λm

k

+ψs
(
λ−1

k

)
φ j

(
λ−1

k

)
λ−m

k

]
. (42)

In cases when the transfer matrix T(μ) is no longer diagonal-
izable, one can bring it to a Jordan-normal form. One such
situation arises when at least two eigenvalues are the same.
Generally, this does not necessarily imply coalescing of two
eigenvectors. However, in the case of transfer matrix T(μ), the
analytical mathematical structure [Eq. (19)] facilitates one to
recast the eigenvectors in the form of Eq. (36). It is interesting
to note coalescing of eigenvalues in Eq. (36) also necessar-
ily implies coalescing of eigenvectors. If R is any similarity
transformation that converts T(μ) to a 2n × 2n Jordan-normal
form J then

R T(μ) R−1 = J. (43)

As a result, T(μ) = R−1 J R. Thus, in this case, we can cal-
culate the exponents as

Tm(μ) = R−1 Jm R. (44)

Up to now, all the descriptions are very general for the finite-
range hopping model. In Sec. V, we will describe the specific
examples in detail and look at the connection between non-
Hermitian properties of transfer matrix T(μ) and its relation
with open-system conductance.

V. RESULTS

In this section, we present our results for the finite-range
lattice model with a range of hopping n = 2 and unravel
the important role played by the eigenspectra of the transfer
matrix in comparison to the nearest-neighbor case, i.e., n = 1.
Before proceeding further, we would like to list certain impor-
tant and pertinent questions:

(1) Do the band edges for the finite-range hopping model
correspond to the exceptional points of the transfer matrix? If
yes, what is the consequence in terms of NESS transport?

(2) As discussed in Sec. II for finite-range hopping model
with n > 1, the upper band edge may or may not correspond to
k = π . What is the corresponding signature, if any, in NESS
transport?

(3) With increasing the hopping range, the dimension of
the transfer matrix also increases. Do these transfer matrices
support exceptional hypersurfaces with higher-order excep-

tional points and, if yes, are their consequences in NESS
transport?

To answer these questions, we now discuss a concrete
example of finite-range hopping model with n = 2 (next-
nearest-neighbor hopping model), without loss of generality
and comment on the case of general n.

A. An example of finite-range hopping model with n = 2

Dispersion and band edges. The dispersion relation for the
finite-range hopping model is given in Eq. (2). For n = 2,
with nearest-neighbor hopping t1 and next-nearest-neighbor
hopping t2, we get

ω(k) = −2t1 cos k − 2t2 cos 2k. (45)

FIG. 1. The figure represents a schematic phase diagram in the
μ-t2 plane. We fix t1 = 1 without loss of generality. The phase dia-
gram is constructed using the eigenvalues of transfer matrix T(μ) for
n = 2. We identify five different regimes denoted by (I) to (V) (or-
ange, yellow, gray, pink, and cyan) where each regime is associated
by the nature of complex eigenvalues. This is further elaborated in
Table I. The lines between the regimes denoted by A–E (blue, red,
green, purple, and brown) represent the exceptional lines. In other
words, at any given point on any of these lines at least two of the
four eigenvalues and eigenvectors coalesce. Remarkably, a special
point emerges in the phase plane as a result of intersection between
two exceptional lines and occurs at t2 = t1/4. This point is denoted
by �e (black filled circle) and all four eigenvalues and eigenvectors
evaluated at this point coalesce indicating a fourth-order exceptional
point. The blue line (A) corresponds to the lower band edge as given
in Eq. (3). Similarly, the red line (B), the fourth-order exceptional
point �e, and the green line (C) form the upper band edge given in
Eq. (47). The other two lines, i.e., purple line (D) and brown line (E)
albeit being exceptional point interestingly do not correspond to the
band edges. The NESS conductance inside the five regimes [(I)–(V)],
on the five lines (A to E) and the higher-order exceptional point (�e)
has been discussed in Tables I and II.
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TABLE I. The table represents details of various properties of
regimes [(I)–(V)] shown in Fig. 1. The second column gives the
allowed values of chemical potential μ in these regimes. The third
column gives the eigenvalues of the transfer matrix T(μ) evaluated
at the chemical potential μ. One can notice the change in the na-
ture of the eigenvalues when moving from one regime to another
regime. The last column gives the corresponding system-size scaling
of NESS conductance G(μ). It is important to emphasize that no
exceptional lines or points appear inside these regimes and, hence,
the transfer matrix is always diagonalizable. The scenario in which
exceptional lines or points appear is discussed in Table II.

Transfer matrix Conductance
Regimes μ eigenvalues G(μ)

Below μ < −2t1 − 2t2 λ1 = −eκ1 , e−N/ξ

lower λ2 = eκ2 , No transport
band edge λ−1

1 = −e−κ1 ,

(I) λ−1
2 = e−κ2

Within −2t1 − 2t2 < μ λ1 = −eκ1 , N0

band edge <2t1 − 2t2 λ2 = eiκ2 , Ballistic
(II) λ−1

1 = −e−κ1 ,

λ−1
2 = e−iκ2

Within 2t1 − 2t2 < μ λ1 = eiκ1 , N0

band edges <2t2 + t2
1

4t2
; λ2 = eiκ2 , Ballistic

(III) (valid only λ−1
1 = e−iκ1 ,

when t2 > t1/4) λ−1
2 = e−iκ2

Above μ > 2t2 + t2
1

4t2
λ1 = −eκ1+iκ2 , e−N/ξ

upper λ2 = −eκ1−iκ2 , No transport
band edge λ−1

1 = −e−κ1−iκ2 ,

(IV) λ−1
2 = −e−κ1+iκ2

Above 2t1 − 2t2 < μ λ1 = −eκ1 , e−N/ξ

upper <2t2 + t2
1

4t2
λ2 = −eκ2 , No transport

band edge (valid only λ−1
1 = −e−κ1 ,

(V) when t2 < t1/4) λ−1
2 = −e−κ2

Recall that the lower band edge is always at k = 0 and the
corresponding energy is given by

ω(k =0) = −2t1 − 2t2, lower band edge. (46)

In contrast, whether k = π is an upper band edge or not de-
pends on a condition between the two hoppings, as discussed
for the general case in Sec. II. The energy of the upper band
edge for three different scenarios mentioned in Eqs. (5), (7),
and (8) is given by

ω(k) =

⎧⎪⎨
⎪⎩

2t1 − 2t2, if t2 < t1/4 with k = π

2t1 − 2t2, if t2 = t1/4 with k = π
t2
1

4t2
+ 2t2, if t2 > t1/4 with k = cos−1

[− t1
4t2

]
.

(47)

Next, we discuss in detail the nature of the eigenvalues of the
transfer matrix T(μ).

Detailed description of nature of eigenvalues of transfer
matrix T(μ). The transfer matrix T(μ) for n = 2 is a 4 × 4

TABLE II. This table represents the scenario when transfer ma-
trix is not diagonalizable and this occurs at exceptional lines (EL)
or points (EP). The first column gives the different exceptional lines
(A–E) and a higher-order exceptional point (�e) shown in Fig. 1.
The second column gives the allowed values of chemical potential μ

in these lines and point. The third column gives the eigenvalues of
the transfer matrix T(μ) evaluated at the chemical potential μ. The
last column gives the corresponding system-size scaling of NESS
conductance G(μ).

Exceptional Transfer matrix Conductance
lines/points μ eigenvalues G(μ)

Lower μ = −2t1 − 2t2 λ1 = 1, 1/N2

band edge λ2 = −eκ1 , subdiffusive
A (EL) λ−1

1 = 1,

λ−1
2 = −e−κ1

Upper μ = 2t1 − 2t2 λ1 = −1, 1/N2

band edge λ2 = −eκ1 , subdiffusive
B (EL) (valid only λ−1

1 = −1,

when t2 < t1/4) λ−1
2 = −e−κ1

Upper μ = 2t1 − 2t2 λ1 = −1, 1/N2

band edge λ2 = −1, subdiffusive
�e (fourth (valid only λ−1

1 = −1,

order EP) when t2 = t1/4) λ−1
2 = −1

Upper μ = 2t2 + t2
1

4t2
λ1 = eiκ1 , 1/N2

band edge λ2 = e−iκ1 , subdiffusive
C (EL) (valid only λ−1

1 = e−iκ1 , envelope with
when t2 > t1/4) λ−1

2 = eiκ1 oscillations

Within μ = 2t1 − 2t2 λ1 = −1, N0

band edge λ2 = eiκ1 , Ballistic
D (EL) (valid only λ−1

1 = −1,

when t2 > t1/4) λ−1
2 = e−iκ1

Above μ = 2t2 + t2
1

4t2
λ1 = −eκ1 , e−N/ξ

upper λ2 = −e−κ1 , No transport
band edge (valid only λ−1

1 = −e−κ1 ,

E (EL) when t2 < t1/4) λ−1
2 = −eκ1

matrix and is given by [using Eq. (19)]

T(μ) =

⎛
⎜⎜⎝

− t1
t2

−μ

t2
− t1

t2
−1

1 0 0 0
0 1 0 0
0 0 1 0

⎞
⎟⎟⎠. (48)

We now unravel the properties of this transfer matrix. In
Fig. 1, we first construct a phase diagram in the μ-t2 plane, by
setting t1 = 1 without loss of generality. The phase diagram
is constructed by using the different nature of the eigenvalues
of T(μ). The eigenvalues of T(μ) are obtained analytically
following Eq. (30) (see Appendix B for the details). It turns
out that the lower band edge, as given in Eq. (46), is an
exceptional line in the μ-t2 plane. This implies that at any
given point on this line at least two of the four eigenvalues
and eigenvectors of T(μ) coalesce. This line is denoted by
the symbol A (blue solid line). Similarly, following Eq. (47),
the upper band edge also turns out to yield exceptional lines
denoted by B (purple solid line) and C (green solid line) and
a higher-order exceptional point denoted by �e (black filled
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FIG. 2. Plots for real (solid line) and imaginary parts (dashed line) of the eigenvalues of 4 × 4 transfer matrix T(μ) for n = 2 as a function
of μ. We set the value t1 = 1. (Left panel) Here we consider the case t2 < t1/4, with t2 = 0.15. This is an example of making a vertical cut in
Fig. 1 in the zone where t2 < 0.25. Note that such a cut in Fig. 1 passes through four regimes (I), (II), (V), and (IV) which are also marked
here. Additionally, this cut encompasses three exceptional points out of which two correspond to the lower and the upper band edges. Recall
that these lower and upper band edges are denoted by and B, respectively, in Fig. 1. The other exceptional point which does not correspond to
any band edges is denoted by E . In this figure, we represent the exceptional points corresponding to band edges by black dotted vertical lines
and the exceptional points that do not correspond to the band edges by black solid vertical lines. The nature of the eigenvalues is consistent
with that summarized in Table I. In regime (I), the eigenvalues (real part) represented by red and green solid lines are inverse of each other.
Likewise, there is an inverse corresponding to the purple line which, for the sake of clarity, is not represented here as it falls way outside the
presented y-axis range. In the same manner, even in other regimes and cases when data values fall outside the presented y-axis range, we do not
present them here. (Middle panel) Here we consider the case t2 = t1/4 = 0.25 which spans three regimes (I), (II), and (IV) and two exceptional
points corresponding to two band edges according to Fig. 1. Note that the exceptional point corresponding to the upper band edge is denoted
by �e which is a fourth-order exceptional point. As can be seen in the figure, at the point �e, all four eigenvalues become real and coalesce at
the value −1. (Right panel) Here we consider the case t2 > t1/4 with t2 = 0.4. Similar to the top panel, a corresponding appropriate vertical
cut passes through regimes (I), (II), (III), and (IV). It is worth noting that regime (III) is characterized by a scenario where all four eigenvalues
are complex with absolute value 1. As a consequence, the eigenvalues when plotted as a function of μ in this regime appear dense.

circle). The other two lines in the phase plane, i.e., D (purple
solid line) and E (brown solid line), do not correspond to band
edges although remarkably still remain as exceptional lines.
These exceptional lines A–E yield five different regimes, de-
noted by (I) to (V) (orange, yellow, gray, pink, and cyan).
Figure 1 sets the stage for a more quantitative summary of our
main findings which are gathered in Tables I and II. The dif-
ferent regimes and associated properties of T(μ) are described
in Table I. In Table II we present the findings for different
exceptional lines and the higher-order exceptional point. In
addition to the properties of T(μ), we further summarize in
the last columns of Tables I and II the system size scaling of
NESS conductance which we will be discussed in depth later.
The third columns of Tables I and II can be nicely visualized
via appropriate vertical cuts in Fig. 1. This is presented in
detail in Fig. 2.

In what follows, we first present the direct numerical re-
sults for the NESS conductance G(μ) following Eqs. (12) and
(13) and its system-size scaling at different regimes (I)–(V)
and at the exceptional lines/point. We further provide an in-
depth analysis of these scalings in terms of the transfer matrix
eigenspectra.

NESS conductance and its scaling with system size. In
Fig. 3, we show the results for conductance G(μ) as a function
of μ for different system sizes N . Different relative values of
t1 and t2 are chosen. These correspond to appropriate vertical
cuts (t2 < t1/4, t2 = t1/4, t2 > t1/4) in the μ-t2 phase plane in
Fig. 1. In all three cases, G(μ) displays nonanalytic changes at
both upper and lower band edges. It is evident that within the
band edges, i.e., regime (II) in the left and middle panels and
regimes (II) and (III) in the right panel, G(μ) is independent

of system size and therefore implies ballistic transport. It is
worth noting that the black solid vertical line that separates
regimes (II) and (III) in the right panel of Fig. 3, represents an
exceptional point on the line (D) of Fig. 1. Despite this point
being exceptional, ballistic transport behavior is observed and
is shown in Fig. 4(d). Outside of both the lower and upper
band edges, i.e., regimes (I), (V), and (IV) in the left panel,
regimes (I) and (IV) in the middle and last panels of Fig. 3,
G(μ) decays exponentially with system size. Once again, the
black solid vertical line that separates regimes (V) and (IV)
in the left panel of Fig. 3, despite being exceptional, displays
exponentially decaying transport and is shown in Fig. 4(e).

In striking contrast, at both the band edges which cor-
respond to exceptional lines A, B, and C or point �e as
elucidated in Fig. 1, G(μ) shows interesting anomalous trans-
port with 1/N2 scaling. This is clearly demonstrated in
Figs. 4(a), 4(b), 4(c), and 4(f). Moreover, in Fig. 4(c) in
addition to overall, 1/N2 envelope, there are interesting oscil-
lations whose cause is rooted in the fact that exceptional point
albeit occurring at the band edge does not correspond to k = π

[see Eq. (47)]. Recall that albeit Fig. 4(f) is associated with a
fourth-order exceptional point �e, nonetheless, the robustness
of 1/N2 scaling of NESS conductance is observed, indicating
remarkable universality in anomalous transport. Our findings
provide strong evidence that the cause of anomalous transport
is rooted not only in the existence of exceptional points, but
also in the fact that they have to be associated with the band
edges. In what follows, we bolster our findings by using suit-
able analytical arguments based on transfer matrices.

Analytical approach to NESS conductance scaling in terms
of non-Hermitian transfer matrix. As mentioned earlier, the
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FIG. 3. Plot for conductance G(μ) as a function of μ for three different and appropriate vertical cuts (t2 < t1/4, t2 = t1/4, t2 > t1/4) in the
μ-t2 phase plane in Fig. 1 for different system sizes N . We set the values t1 and t2 exactly the same as in Fig. 2. In all the figures, we represent
the exceptional points corresponding to band edges by black dotted vertical lines and the exceptional points that do not correspond to the band
edges by black solid vertical lines. In all cases, we see nonanalytic changes in G(μ) at the two band edges and this is discussed in more detail
in Fig. 4. (Left panel) Here we consider the case t2 < t1/4 with t1 = 1 and t2 = 0.15. The behavior of conductance in four different regimes (I),
(II), (V), and (IV) is shown. In regimes (I), (V), and (IV) which correspond to outside the band edges, the conductance decays exponentially
with system size N . In regime (II) which corresponds to within the band edges, ballistic behavior (system-size independence) is observed.
(Middle panel) Here we consider the case t2 = t1/4 with t1 = 1 and t2 = 0.25. Regime (II) shows ballistic transport and regimes (I) and (IV)
show exponentially suppressed transport. (Right panel) Here we consider the case t2 > t1/4 with t1 = 1 and t2 = 0.4. Regimes (II) and (III)
show ballistic transport and regimes (I) and (IV) show exponentially suppressed transport.

(a) (b) (c)

(d) (e) (f)

FIG. 4. Plot for system-size scaling of NESS conductance G(μ) at exceptional lines A–E and point �e as elucidated in Fig. 1. (a) We
choose a point that lies on line A (lower band edge) in Fig. 1 and observe subdiffusive scaling G(μ) ∼ 1/N2. (b) We choose a point that lies on
line B (upper band edge with t2 < t1/4) and once again observe subdiffusive scaling with the same exponent. (c) We choose a point that lies
on line C (upper band edge with t2 > t1/4) which exhibits interesting oscillating behavior with an overall 1/N2 envelope. This therefore can
also be regarded as an anomalous behavior that is subdiffusive in nature. (d) We choose a point that lies on line D (within the band edges with
t2 > t1/4) and observe system-size-independent scaling (ballistic transport) despite being an exceptional point. (e) We choose a point that lies
on line E (outside the upper band edges with t2 < t1/4) and observe exponentially decaying scaling of conductance with system size despite
being an exceptional point. (f) We choose the �e point which occurs at t2 = t1/4 and corresponds to upper band edge. We observe subdiffusive
transport with the same exponent despite being a higher-order exceptional point. These six plots reveal that the cause of the anomalous transport
is rooted in the existence of exceptional points at the band edges.
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system-size scaling of NESS conductance G(μ) is entirely
governed by the bare Green’s function of the system, i.e.,
|g1N (μ)|2 with g(μ) being defined in Eq. (14). Using Eq. (24)

the g1N (μ) component can be obtained via the transfer matrix.
Recall that g(μ) is related to M(μ)−1 via Eq. (20). According
to Eq. (24), M(μ)−1 obeys the following relations for n = 2:

〈3|T(μ)−N |3〉〈1|M(μ)−1| j〉 + 〈3|T(μ)−N |4〉〈2|M(μ)−1| j〉 − 〈3|T(μ)−(N− j+1)|1〉 = 0,

〈4|T(μ)−N |3〉〈1|M(μ)−1| j〉 + 〈4|T(μ)−N |4〉〈2|M(μ)−1| j〉 − 〈4|T(μ)−(N− j+1)|1〉 = 0.
(49)

Equation (49) can be recast to a matrix form(〈3|T(μ)−N |3〉 〈3|T(μ)−N |4〉
〈4|T(μ)−N |3〉 〈4|T(μ)−N |4〉

)(〈1|M(μ)−1| j〉
〈2|M(μ)−1| j〉

)
=

(〈3|T(μ)−(N− j+1)|1〉
〈4|T(μ)−(N− j+1)|1〉

)
. (50)

As for the NESS conductance calculation, we require g1N (μ) component which in turn requires us to evaluate 〈1|M(μ)−1|N〉.
We therefore set j = N and obtain from Eq. (50)(〈1|M(μ)−1|N〉

〈2|M(μ)−1|N〉
)

=
(〈3|T(μ)−N |3〉 〈3|T(μ)−N |4〉

〈4|T(μ)−N |3〉 〈4|T(μ)−N |4〉
)−1(〈3|T(μ)−1|1〉

〈4|T(μ)−1|1〉
)

. (51)

Using Eq. (51), one can easily evaluate g1N (μ) =
〈1|M(μ)−1|N〉/t2 with T(μ) as given in Eq. (48). By
performing the inverse of T(μ) in Eq. (48), it is easy to check
that 〈3|T−1(μ)|1〉 = 0 and 〈4|T−1(μ)|1〉 = −1. To this end,
we obtain a simplified expression for g1N (μ) as

g1N = 1

t2

〈3|T−N |4〉
〈4|T−N |4〉〈3|T−N |3〉 − 〈3|T−N |4〉〈4|T−N |3〉 . (52)

For the sake of brevity we omit the argument μ from both T
and g1N in Eq. (52).

Equation (52) is one of the central equations of this work.
Thus, to calculate |g1N |2, the main task is to calculate T−N

using its eigenspectra. Recall that, in Tables I and II, we
summarize the nature of the eigenvalues of the transfer matrix
according to the different regimes of Fig. 1. From the nature of
these eigenvalues, one can extract the system-size dependence
of NESS conductance G(μ) using Eq. (52), as we discuss
below.

Let us now consider a situation when the transfer matrix T
does not have any exceptional points [regimes (I), (II), (III),
(IV), and (V) in Fig. 1] and therefore is a diagonalizable
matrix. This scenario is summarized in Table I. There-
fore, one can use Eq. (42) to explicitly write the elements
of T−N as

〈3|T−N |3〉 = ψ3(λ1)φ3(λ1)λ−N
1 + ψ3

(
λ−1

1

)
φ3

(
λ−1

1

)
λN

1 + ψ3(λ2)φ3(λ2)λ−N
2 + ψ3

(
λ−1

2

)
φ3

(
λ−1

2

)
λN

2 ,

〈4|T−N |4〉 = ψ4(λ1)φ4(λ1)λ−N
1 + ψ4

(
λ−1

1

)
φ4

(
λ−1

1

)
λN

1 + ψ4(λ2)φ4(λ2)λ−N
2 + ψ4

(
λ−1

2

)
φ4

(
λ−1

2

)
λN

2 ,

〈3|T−N |4〉 = ψ3(λ1)φ4(λ1)λ−N
1 + ψ3

(
λ−1

1

)
φ4

(
λ−1

1

)
λN

1 + ψ3(λ2)φ4(λ2)λ−N
2 + ψ3

(
λ−1

2

)
φ4

(
λ−1

2

)
λN

2 ,

〈4|T−N |3〉 = ψ4(λ1)φ3(λ1)λ−N
1 + ψ4

(
λ−1

1

)
φ3

(
λ−1

1

)
λN

1 + ψ4(λ2)φ3(λ2)λ−N
2 + ψ4

(
λ−1

2

)
φ3

(
λ−1

2

)
λN

2 .

(53)

Now, collecting all terms in Eq. (53) together, the denominator of Eq. (52) takes a form

A1 + B1λ
N
1 λN

2 + C1λ
−N
1 λ−N

2 + D1λ
N
1 λ−N

2 + E1λ
−N
1 λN

2 , (54)

where all the prefactors (A1, B1,C1, D1, E1) in front of the eigenvalues λi, λ
−1
i , i = 1, 2, are N independent. The subscript 1 here

represents the coefficients associated with the denominator. Analogously, the numerator can be expressed as

A2λ
N
1 + B2λ

−N
1 + C2λ

N
2 + D2λ

−N
2 , (55)

where once again all the prefactors (A2, B2,C2, D2) are N independent and the subscript 2 represents the coefficients associated
with the numerator. It is important to note that the expression for the denominator in Eq. (54), terms such as λ2N

i and λ−2N
i , i =

1, 2, do not appear and exactly cancel out. In what follows, we now discuss the scaling of g1N with N for different cases
corresponding to different values of μ with no exceptional points.

Below lower band edge [regime (I), μ < −2t1 − 2t2]. For n = 2, the regime below the lower band edge corresponds to
μ < −2t1 − 2t2. In Fig. 1 this regime is indicated by the symbol (I). In this regime, transfer matrix eigenvalues are always real
and therefore are of the form λ1 = −eκ1 = eiπ eκ1 and λ2 = eκ2 , where κ1, κ2 > 0, and two other eigenvalues being λ−1

1 , λ−1
2 (see

Table I). Thus, from Eq. (52) we get

g1N ∼ A2eκ1N + B2e−κ1N + C2eκ2N + D2e−κ2N

A1 + B1e(κ1+κ2 )N + C1e−(κ1+κ2 )N + D1e(κ1−κ2 )N + E1e(−κ1+κ2 )N
. (56)
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Choosing κ1, κ2 such that κ1 > κ2 and neglecting the exponentially decaying terms in the large-N limit, we obtain

g1N ∼ A2

B1eκ2N
∼ e−κ2N (57)

which implies

|g1N |2 ∼ e−2κ2N ∼ λ−2N
2 . (58)

As a result, below the lower band edge, the NESS conductance always decays exponentially with the system size N . The
corresponding localization length is set by κ2 where κ2 is related to the smallest eigenvalue λ2 of the transfer matrix T, i.e.,
λ2 = eκ2 .

Within the band edges [regimes (II) and (III)]. Let us now discuss the scaling of conductance when the chemical potential μ

is within the band edge. Recall that the lower band edge always occurs at energy −2t1 − 2t2 (see Fig. 1). However, the energy
corresponding to the upper band edge depends on relative values of t1, t2 as given in Eq. (47). Thus, two distinct regimes [regimes
(II) and (III)] emerge within the band edges which is clearly shown in Fig. 1.

For regime (II) of Fig. 1 with −2t1 − 2t2 < μ < 2t1 − 2t2, the transfer matrix T eigenvalues are λ1 = −eκ1 , λ2 = eiκ2 , λ−1
1

and λ−1
2 , where κ1, κ2 > 0 (see Table I). We therefore obtain from Eq. (52)

g1N ∼ A2eκ1N + B2e−κ1N + C2eiκ2N + D2e−iκ2N

A1 + B1e(κ1+iκ2 )N + C1e−(κ1+iκ2 )N + D1e(κ1−iκ2 )N + E1e(−κ1+iκ2 )N
. (59)

In the large-N limit, Eq. (59) simplifies to

g1N ∼ A2

B1eiκ2N + D1e−iκ2N
, (60)

thus implying |g1N |2 ∼ N0 or ballistic transport. For regime (III) in Fig. 1, 2t1 − 2t2 < μ < 2t2 + t2
1

4t2
with t2 > t1/4, the

eigenvalues of T are all complex and given as λ1 = eiκ1 and λ2 = eiκ2 (see Table I). Thus, all the terms in Eq. (52) will have
oscillatory dependence on N indicating once again ballistic transport.

An interesting situation arises for μ = 2t1 − 2t2 corresponding to line D in Fig. 1 with t2 > t1/4. Any point along this line
corresponds to a second-order exceptional point of T. Nonetheless, despite being an exceptional point, the corresponding NESS
conductance is ballistic and this will be elaborated on later.

Above the upper band edge [regimes (IV) and (V)]. Once again depending on the relative values of hopping t1 and t2, two
distinct regimes [regimes (IV) and (V)] appear above the upper band edge (see Fig. 1). Above the upper band edge when

μ > 2t2 + t2
1

4t2
, it corresponds to the regime (IV) of Fig. 1. In this case, the eigenvalues of T are λ1 = −eκ1+iκ2 and λ2 = −eκ1−iκ2

where κ1, κ2 > 0 (see Table I). Now following Eq. (52) we can write

g1N ∼ A2e(κ1+iκ2 )N + B2e−(κ1+iκ2 )N + C2e(κ1−iκ2 )N + D2e−(κ1−iκ2 )N

A1 + B1e2κ1N + C1e−κ1N + D1e2iκ2N + E1e−2iκ2N
. (61)

In the large-N limit, Eq. (61) reduces to

g1N ∼ (A2eiκ2N + C2e−iκ2N ) e−κ1N , (62)

implying exponentially decaying transport.
With t2 < t1/4, 2t1 − 2t2 < μ < 2t2 + t2

1 /4t2, corresponds
to the above upper band edge, i.e., regime (V) of Fig. 1. Eigen-
values of transfer matrix T are λ1 = −eκ1 and λ2 = −eκ2 ,
where κ1, κ2 > 0 (see Table I). This is exactly like the situ-
ation below the lower band edge, i.e., regime (I) of Fig. 1 and
therefore shows exponentially decaying conductance G(μ)

with system size. For t2 < t1/4, at μ = 2t2 + t2
1

4t2
corresponds

to another interesting situation and is an exceptional line E in
Fig. 1. Nonetheless, despite being an exceptional point, the
corresponding NESS conductance is exponentially decaying
and this will be elaborated on later.

To summarize, we have provided a detailed analytical un-
derstanding of NESS conductance scaling within and outside
the band edges following the transfer matrix eigenspectra that
perfectly match with direct numerics as shown in Figs. 3 and
4. In other words, we analytically show the ballistic transport
within the band edges and exponentially decaying transport

outside the band edges of the lattice system. Next, we discuss
a situation when the transfer matrix T has exceptional points,
i.e., along the lines A, B, C, D, and E and the point �e

and is therefore nondiagonalizable in nature. Recall that this
scenario is summarized in Table II.

At the lower band edge (exceptional line A of Fig. 1). Let
us now discuss the NESS conductance scaling with system
size at the lower band edge which always occurs at k = 0 with
energy μ = −2t1 − 2t2, as given in Eq. (46). This corresponds
to the exceptional line A of Fig. 1. Interestingly, for any
point on this line, the eigenvalues of T are given as λ1 = 1,
λ2 = −eκ1 = eiπ eκ1 , λ−1

1 , λ−1
2 where κ1 > 0 (see Table II).

Note that κ1 in general is a function of μ. Therefore, the lower
band edge corresponds to a second-order exceptional line, and
hence the transfer matrix T can be brought to a Jordan-normal
form J [see Eq. (43)]. This is given by

J =

⎛
⎜⎜⎝

eiπ eκ1 0 0 0
0 e−iπ e−κ1 0 0
0 0 1 1
0 0 0 1

⎞
⎟⎟⎠ (63)
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and

J−N =

⎛
⎜⎜⎝

e−κ1N e−iπN 0 0 0
0 eκ1N eiπN 0 0
0 0 1 −N
0 0 0 1

⎞
⎟⎟⎠. (64)

In Eq. (64) one of the matrix elements is −N which plays a pivotal role in dictating the scaling of the NESS conductance as we
will see now. Using Eq. (52), we can obtain an expression for g1N as

g1N ∼ A2 + B2eκ1N + C2e−κ1N + D2N

A1 + B1eκ1N + C1e−κ1N + D1Neκ1N + E1Ne−κ1N + F1N
. (65)

Now, taking the large-N limit, we obtain

g1N ∼ 1

N
. (66)

As a result, |g1N |2 ∝ 1/N2, implying subdiffusive scaling of NESS conductance at the lower band edge. Our analytical findings
are rigorously verified by direct numerics as shown in Fig. 4(a).

At the upper band edge (exceptional lines B and C and exceptional point �e of Fig. 1). We now discuss the conductance
scaling when the chemical potential μ is located at the upper band edge. This band edge is comprised of three parts: exceptional
line B, exceptional line C, and exceptional point �e. Let us discuss NESS scaling for each of these cases separately. For the case
t2 < t1/4, the upper band edge is located at k = π with corresponding energy μ = 2t1 − 2t2. This corresponds to line B of the
phase diagram Fig. 1. In this case, the eigenvalues of T are λ1 = −1, λ2 = eiπ eκ1 , λ−1

1 , and λ−1
2 and hence once again it is a

second-order exceptional point (see Table II). Here κ1 > 0. Therefore, exactly like the lower band edge case, one can show that
the NESS conductance scales subdiffusively as 1/N2. This is also clearly shown in Fig. 4(b).

When t2 > t1/4, the location of the upper band edge does not occur at k = π . The corresponding energy is μ = 2t2 + t2
1 /4t2

which is represented by line C in Fig. 1. Interestingly, in this scenario, the eigenvalues of T are λ1 = eiκ1 and λ2 = e−iκ1 , λ−1
1 , and

λ−1
2 (see Table II). Here κ1 > 0. As a result, the four eigenvalues form two complex-conjugate pairs of two each. This implies

that there are two second-order exceptional points that are complex, unlike the case when the upper band edge is located at
k = π , i.e., line B. Thus, once again the transfer matrix T can be brought to a Jordan-normal form given as

J =

⎛
⎜⎜⎝

eiκ1 1 0 0
0 eiκ1 0 0
0 0 e−iκ1 1
0 0 0 e−iκ1

⎞
⎟⎟⎠ (67)

and

J−N =

⎛
⎜⎜⎝

e−iκ1N −Ne−iκ1(N+1) 0 0
0 e−iκ1N 0 0
0 0 eiκ1N −Neiκ1(N+1)

0 0 0 eiκ1N

⎞
⎟⎟⎠. (68)

With this result, Eq. (52) can be written as

g1N ∼ B2e−iκ1N + C2eiκ1N + D2Ne−iκ1(N+1) + E2Neiκ1(N+1)

A1 + B1N2 + C1Ne−iκ1 + D1Neiκ1 + E1eiκ1(2N+1) + F1e−iκ1(2N+1)
. (69)

In the large-N limit, Eq. (69) simplifies to

g1N ∼ D2e−iκ1N + E2eiκ1N

B1N
(70)

and, as a result, the NESS conductance shows interesting oscillations set by κ1 along with overall 1/N2 subdiffusive scaling.
This is another central finding of this paper. Our analytical results have been corroborated with the direct numerical simulations
shown in Fig. 4(c).

Let us now discuss the conductance scaling at the exceptional point �e in Fig. 1. This special point occurs for t2 = t1/4
and corresponds to the upper band edge energy μ = 2t1 − 2t2. At this special point, all four eigenvalues and eigenvectors of
T coalesce (see Table II), thereby yielding a fourth-order exceptional point. The corresponding Jordan-normal form at this
fourth-order exceptional point �e is given by

J =

⎛
⎜⎜⎝

−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1

⎞
⎟⎟⎠ (71)
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and

J−N =

⎛
⎜⎜⎝

e−iπN Ne−iπN e−iπN 1
2 N (N + 1) e−iπN 1

6 N (N + 1)(N + 2)
0 e−iπN Ne−iπN e−iπN 1

2 N (N + 1)
0 0 e−iπN Ne−iπN

0 0 0 e−iπN

⎞
⎟⎟⎠. (72)

It is interesting to note that the matrix elements J−N in Eq. (72) contain terms up to O(N3) which is in stark contrast with all
the other cases where exceptional points were of second order. However, the final system-size scaling of NESS conductance still
shows 1/N2 subdiffusive scaling and therefore extremely robust against the order of the exceptional points of transfer matrices
indicating a strong presence of universality. Below we provide the details. In this case, to determine the scaling of conductance,
we need to know the explicit form of the transformation matrix R, as defined in Eq. (43). We obtain

R =

⎛
⎜⎜⎝

0 0 0 1
0 0 1 1
0 1 2 1
1 3 3 1

⎞
⎟⎟⎠. (73)

Thus, using this form of R, we obtain the different matrix elements for T as

〈
3|T −N |3〉 = e−iπN

2
(2 + N − 2N2 − N3),

〈
3|T −N |4〉 = −e−iπN

6
N (N + 1)(N + 2),

〈
4|T −N |3〉 = e−iπN

2
N (N + 1)(N + 3),

〈
4|T −N |4〉 = e−iπN

6
(6 + 11N + 6N2 + N3). (74)

Substituting the expressions obtained in Eq. (74) in Eq. (52), we receive

g1N ∼ A1N3 + B1N2 + C1N + D1

A2N4 + B2N3 + C2N2 + D2N + E2
(75)

which in the large-N limit gives g1N ∼ 1/N . Thus, conductance scales as 1/N2 like the other band edges, i.e., exceptional lines
A, B, and C even though the transfer matrix has a higher-order exceptional point. This analysis also matches with our numerical
findings as shown in Fig. 4(f).

Within the band edge (along the exceptional line D of Fig. 1). The exceptional line D emerges for t2 > t1/4 which separates
regimes (II) and (III) of Fig. 1. This line always occurs within the two band edges at μ = 2t1 − 2t2. The transfer matrix
eigenvalues in this case are given as λ1 = −1, λ2 = eiκ1 , λ−1

1 , and λ−1
2 (see Table II). Here κ1 > 0. As a result, once again

the transfer matrix T is not diagonalizable and can be brought to a Jordan-normal form given by

J =

⎛
⎜⎜⎝

eiκ1 0 0 0
0 e−iκ1 0 0
0 0 −1 1
0 0 0 −1

⎞
⎟⎟⎠ (76)

and J−N is given by

J−N =

⎛
⎜⎜⎝

e−iκ1N 0 0 0
0 eiκ1N 0 0
0 0 e−iπN Ne−iπN

0 0 0 e−iπN

⎞
⎟⎟⎠. (77)

As a result, following Eq. (52) we obtain

g1N ∼ A2 + B2eiκ1N + C2e−iκ1N + D2N

A1 + B1eiκ1N + C1e−iκ1N + D1Neiκ1N + E1Ne−iκ1N + F1N
. (78)

In the large-N limit, Eq. (78) simplifies to

g1N ∼ D2

D1eiκ1N + E1e−iκ1N + F1
(79)

which produces ballistic transport and is further supported by
direct numerics and shown in Fig. 4(d). It is worth noting that
this ballistic behavior occurs even in presence of exceptional
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(a) (b) (c) (d)

FIG. 5. Plot for system-size scaling of NESS conductance for n = 3 at various exceptional points of the exceptional hypersurfaces. In all
these figures we set t1 = 1, t3 = 1

9 , and the values of t2 are displayed in the corresponding plots. (a) Subdiffusive 1/N2 scaling is reported at
the lower band edge that corresponds to k = 0, (b) subdiffusive 1/N2 scaling at k = π that corresponds to the upper band edge, (c) ballistic
N0 scaling with system size at k = π which does not correspond to the upper band edge, and (d) oscillatory behavior with an overall envelope
that is subdiffusive in nature with 1/N2 scaling. This occurs at the upper band edge with k ≈ 1.92 (i.e., k �= π ).

points. This further implies that albeit the points are excep-
tional in nature, the fact that they appear within the band edge
causes ballistic transport.

Above the band edge (along the exceptional line E of
Fig. 1). The exceptional line E emerges for t2 < t1/4 sepa-
rating regimes (IV) and (V) of Fig. 1. This line always occurs
above the upper band edge and corresponds to energy μ =
2t2 + t2

1 /4t2. The transfer matrix eigenvalues are λ1 = eiπ eκ1

and λ2 = eiπ e−κ1 where κ1 > 0 (see Table II). Interestingly,
here the transfer matrix has a pair of second-order exceptional
points. The Jordan-normal form is given by

J =

⎛
⎜⎜⎝

eiπ eκ1 1 0 0
0 eiπ eκ1 0 0
0 0 e−iπ e−κ1 1
0 0 0 e−iπ e−κ1

⎞
⎟⎟⎠ (80)

and

J−N =

⎛
⎜⎜⎝

e−iπN e−κ1N −Ne−(iπ+κ1 )(N+1) 0 0
0 e−iπN e−κ1N 0 0
0 0 eiπN eκ1N −Ne(iπ+κ1 )(N+1)

0 0 0 eiπN eκ1N

⎞
⎟⎟⎠. (81)

With that, Eq. (52) can be written as

g1N ∼ B2e−κ1N + C2eκ1N + D2Ne−κ1(N+1) + E2Neκ1(N+1)

A1 + B1N2 + C1Ne−κ1 + D1Neκ1 + E1eκ1(2N+1) + F1e−κ1(2N+1)
(82)

which in the large-N limit gives g1N ∼ e−κ1N . Thus, conduc-
tance shows exponentially decaying scaling with system size
which also matches with the direct numerics as shown in
Fig. 4(e). Note that, albeit the points along line E are excep-
tional in nature, the fact that they appear outside the band edge
causes exponentially suppressed transport.

Next in Sec. V B, we comment on the NESS conductance
scaling for general finite-range hopping systems.

B. Comment on general finite-range hopping system

It is possible to generalize the study performed in
Sec. V A for any finite-range hopping systems, i.e., n =
3, 4, 5, . . . . Accordingly, following Eq. (16) the 2n × 2n
transfer matrix T(μ) can be constructed and its eigenspectra
can be subsequently analyzed. The NESS conductance and
its system-size scaling behavior can then be addressed using
Eqs. (20) and (24). We note that there is a general framework
obeyed by all finite-range models irrespective of the range of

hopping parameter n which we elaborate on below. Without
loss of generality, we again set t1 = 1:

(1) At k = 0, the transfer matrix T(μ) needs to be eval-
uated at the lower band edge energy μ = −2

∑n
m=1 tm [see

Eq. (3)]. This naturally defines a (n − 1)-dimensional hy-
persurface and when T(μ) is evaluated at any point on this
hypersurface it will have an exceptional point. This can be
understood as follows: at the lower band edge, θ = 0 where
recall that θ is related to the eigenvalue of T(μ) by λ = eiθ

[see Eq. (27)] is always a solution of Eq. (30). Thus, at least
two eigenvalues with value 1 and corresponding eigenvectors
of T(μ) coalesce and hence an exceptional point. It then turns
out that the corresponding NESS conductance is subdiffusive
with universal 1/N2 scaling, irrespective of the value n. We
illustrate this for the case n = 3 in Fig. 5(a).

(2) At k = π , T(μ) needs to be evaluated at μ = ω(k =
π ) following Eq. (6). This once again forms a (n − 1)-
dimensional hypersurface and if T(μ) is evaluated at any point
on this hypersurface, it will have an exceptional point. How-
ever, interestingly this point may not always correspond to the
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(a) (b) (c)

FIG. 6. Figures supporting the robustness of our finding of anomalous transport to various kinds of disorder. (a) The figure shows the gap
�N [for a clean system, i.e., εi = 0 in Eq. (84)] between the upper or lower (blue or orange, respectively) band energy of a finite-size system
(i.e., finite N) to that of its corresponding thermodynamic limit (i.e., N → ∞). The gap �N for a clean system decreases with system size N
as 1/N2. This figure plays a pivotal role in getting an estimate of allowed disorder that does not destroy anomalous transport. This estimate
is made as follows: The vertical black and brown dotted lines represent four pairs (�∗

N , N∗) shown by four black circles. The right element
of each pair (�∗

N , N∗) gives an estimate of N∗ up to which anomalous transport is robust. The left element of each pair (�∗
N , N∗) gives the

corresponding estimate for the allowed disorder strength, i.e., δ ∼ �N∗. (b) The figure shows the robustness of the anomalous transport in
presence of weak disorder δ = 10−5 both in onsite potential in Eq. (84) and in the chemical potential μ = ωb + br where br is a random
number chosen from a uniform distribution [−δ, δ]. We have plotted the conductance for 100 different realizations (represented by light color
lines) as well as the mean value (represented by dots). The deviation from anomalous behavior occurs approximately near N∗ (represented by
dotted vertical lines) that is estimated using the plot in the left panel of the same figure. Likewise, the left panel of the same figure gives an
estimate of δ which in this case is δ = 10−5. (c) Figure similar to the middle panel (b) for the pairs (�∗

N , N∗) which yield δ = 10−3. Note that
a similar analysis will hold even when similar disorder is present in the hopping parameters t1 and t2.

upper band edge. This, therefore, yields two different scenar-
ios: When k = π corresponds to the usual upper band edge
we obtain subdiffusive scaling 1/N2 for NESS conductance
for reasons similar to that for n = 2 case. We illustrate this
for the case n = 3 in Fig. 5(b). In contrast, when k = π does
not correspond to the upper band edge, it naturally implies that
k = π point is located inside the band edges. Therefore, albeit
being an exceptional point, the NESS conductance will show
ballistic behavior N0 and this is illustrated explicitly for the
n = 3 case in Fig. 5(c). In the scenario when the upper band
edge is located at some other value of k �= π , the eigenvalues
of T(μ) come in complex-conjugate pairs and are exceptional
in nature. This gives rise to an oscillatory behavior with an
overall envelope of 1/N2 scaling for NESS conductance. This
is illustrated in Fig. 5(d).

(3) Similar to n = 2, exceptional hypersurface may likely
emerge above the upper band edge. However, the transfer
matrix T(μ) evaluated at points on this hypersurface have real
eigenvalues (not equal to 1) and are exceptional in nature. The
resulting conductance will be exponentially suppressed with
system size.

(4) It is worth mentioning that fourth-order exceptional
points will always emerge at k = π when the hopping
strengths satisfy the condition in Eq. (8). For n � 2, the
fourth-order exceptional point �e will become a (n − 2) hy-
persurface of fourth-order exceptional points. With odd n,
in presence of such fourth-order exceptional points in the
transfer matrix, NESS conductance will always show ballistic
behavior as k = π does not correspond to the upper band
edge as discussed in Eq. (11). Whereas with even n, at k = π

the NESS conductance will show subdiffusive transport with
scaling 1/N2 as it corresponds to the upper band edge.

Having established a strong sense of universality in NESS
transport properties with respect to range of the hopping
parameter, an important question is that of robustness to im-

perfections in realistic systems. In Sec. V C we address this
point.

C. Robustness

In this section, we discuss the fate of anomalous transport
that occurs at the band edges of the clean lattice system at
zero temperature with respect to (i) weak disorder within
the system, (ii) chemical potential fixed near the band edge
energies, and (iii) finite but low temperature. Let us first
discuss the situation when the clean lattice Hamiltonian Ĥ in
Eq. (1) is subjected to weak onsite disorder of strength δ. The
Hamiltonian for such a disordered system takes the form

Ĥ = Ĥ + Ĥd, (83)

where Ĥd describes the onsite disorder given as

Ĥd =
N∑

i=1

εi ĉ†
i ci (84)

with εi chosen randomly from a uniform distribution [0, δ].
In presence of such onsite disorder system, we investigate
the fate of subdiffusive behavior. Additionally, we also shift
the chemical potential across the band edge by an amount
br where br is a random number chosen from a uniform
distribution [−δ, δ]. In other words, we set

μ = ωb + br . (85)

Before discussing the fate of anomalous transport when
subject to disorder we will analyze the gap �N between
the upper or lower band energy of a finite-size system (i.e.,
finite N) to that of its corresponding thermodynamic limit
(i.e., N → ∞) for a clean system, i.e., εi = 0 in Eq. (84). In
Fig. 6(a), we plot this gap parameter �N with system size N .
We see that �N decays as N−2. For a chosen value of N∗,
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there is a �N∗ shown by the black circles in Fig. 6(a). This
�N∗ provides an estimate for disorder strength δ for which
anomalous scaling is observed approximately up to system
size N∗. In Figs. 6(b) and 6(c), we display the robustness
of subdiffusive 1/N2 scaling with respect to weak disorder
δ = 10−5 [Fig. 6(b)] and δ = 10−3 [Fig. 6(c)] by plotting
100 different disorder realizations as well as their disorder-
averaged values. Note that each disorder realization stands for
a particular chemical potential μ Eq. (85)] and onsite energy
εi [Eq. (84)]. The deviation from the subdiffusive behavior
occurs near a critical finite system size N∗ which can be
clearly seen from Figs. 6(b) and 6(c).

We end this section by making a comment regarding fi-
nite (but low) temperature. The robustness of the anomalous
transport (up to a critical finite system size) despite having a
window around the band edge as per Eq. (85) also suggests a
possible window of temperature (albeit small) where one does
not destroy the subdiffusive nature of scaling. We expect sub-
diffusive behavior of conductance up to a inverse temperature
β δ > 1 or β�N∗ > 1.

From the above detailed analysis, one can conclude that
the NESS scaling of conductance with system size at both
the band edges with or without oscillations remains robust in
presence of (i) weak onsite disorder, (ii) fine-tuned energies
across the band edges, and (iii) low temperatures.

VI. SUMMARY AND OUTLOOK

In summary, we have performed a detailed analysis of
the non-Hermitian properties of transfer matrices and ex-
ceptional hypersurfaces and their impact on the scaling of
NESS conductance for arbitrary finite-range hopping model
(Tables I and II). We have established the connection between
nonequilibrium steady-state (NESS) conductance and under-
lying non-Hermitian transfer matrix for these lattice models.
We unravel the nontrivial role played by exceptional points
in determining the universal system-size scaling of NESS
conductance at the band edges (Table II, Figs. 4 and 5). We
further provide evidence that the value of the scaling exponent
is remarkably robust to the order of the exceptional point. The
signature of the upper band edge not being located at k = π

shows up in the conductance as an interesting oscillation with
overall N−2 envelope. It is interesting to note that though
the exceptional points appear at very specific energies (and
therefore sensitive), nonetheless, the NESS conductance is
robust (Fig. 6) against weak onsite energy and small shift
in chemical potential and temperature. Although, the entire
analysis has been done for the linear response regime look-
ing at the conductance behavior, in the nonlinear response
regime also, NESS current shows similar nonanalytic change
(exponentially decaying with system size to ballistic behavior
via subdiffusive transport at the band edges) at one of the
band edges. Needless to mention, understanding the micro-
scopic origin of anomalous transport is far from being well
understood. The non-Hermitian properties of transfer matrix
provide a transparent approach towards understanding the
emergence of anomalous scaling of conductance at the band
edges and is therefore of extreme relevance to understand the
physics of quantum transport.

Having done a detailed investigation on the consequence
of non-Hermitian transfer matrices and exceptional points
in NESS conductance, a natural interesting question is the
role of external perturbations such as Büttiker voltage probes
[20,31,57–60] which models incoherent processes within the
system without directly taking part in the transport process.
Such studies are especially fascinating because usually ex-
ceptional points are sensitive to external perturbations and
the sensitivity crucially depends on the order of the excep-
tional points. Hence, it is an interesting and challenging task
to see the impact of higher-order exceptional points (that
were reported in this work) on conductance due to incoherent
processes induced by such probes. Another fascinating and
challenging problem is investigating anomalous transport at
such exceptional points starting from a many-body interacting
Hamiltonian with finite-range hopping.
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APPENDIX A: DETAILS ABOUT BARE GREEN’S
FUNCTION FOR THE FINITE-RANGE HOPPING MODEL

In this Appendix, we provide the details about calculating
the bare Green’s function g(μ), given in Eq. (20), for a finite-
range lattice model with system size N and range of hopping
n. The details of this calculation can be found in Ref. ([54]).
Here we summarize the main points of the derivation to obtain
g(μ). The calculation of g(μ) involves calculating the inverse
of M(μ), as defined in Eq. (21). To obtain the inverse, we use
the identity M(μ)M(μ)−1 = I which gives

N∑
j=1

〈i|M(μ)| j〉〈 j|M(μ)−1|k〉 = δi,k . (A1)
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Now using Eq. (22), we can write Eq. (A1) as

η(i)∑
m=α(i)

a(|m|)〈i + m|M(μ)−1|k〉 = δi,k, (A2)

where the sum runs from α(i) = Max{1 − i,−n} and η(i) =
Min{N − i, n}. We now define a vector Vi( j) with dimension
2n × 1 given as

Vi( j) =

⎛
⎜⎜⎜⎜⎜⎝

〈i − n + 1|M(μ)−1| j〉
〈i − n + 2|M(μ)−1| j〉
〈i − n + 3|M(μ)−1| j〉

...

〈i + n|M(μ)−1| j〉

⎞
⎟⎟⎟⎟⎟⎠. (A3)

Here, 1 � i, j � N , otherwise 〈i|M(μ)−1| j〉 is zero. Using the
transfer matrix T(μ) of dimension 2n × 2n in Eq. (19), we can

rewrite Eq. (A2) as

T(μ)Vi( j) = Vi−1( j) − δi, jI|1〉, (A4)

where |1〉 is a column matrix of dimension 2n × 1 with the
first element 1 and all other elements are 0. By iterating
Eq. (A4), we can obtain

Vi( j) =
{

T(μ)−iV0( j), if j > i
T(μ)−iV0( j) − T(μ)−(i− j+1)|1〉, if j � i.

(A5)

Note that the vector V0( j) in Eq. (A5) contains zeros in its first
n elements. Therefore, using Eqs. (A3) and (A5) we finally
obtain

〈i|M(μ)−1| j〉 =
{∑n

m=1〈n|T(μ)−i|n + m〉〈m|M(μ)−1| j〉, if j > i∑n
m=1〈n|T(μ)−i|n + m〉〈m|M(μ)−1| j〉 − 〈n|T(μ)−(i− j+1)|1〉, if j � i.

(A6)

Equation (A6) shows that any matrix element of M(μ)−1 involves the information of 〈m|M(μ)−1| j〉 with m = 1, 2 . . . , n. These
matrix elements can be determined by noting that the vector VN ( j) has zeros in its last n elements. Using this fact in Eq. (A6),
we obtain

n∑
m=1

〈s + n|T(μ)−N |n + m〉〈m|M(μ)−1| j〉 − 〈s + n|T(μ)−(N− j+1)|1〉 = 0, (A7)

where s = 1, 2, 3 . . . , n. Equation (A7) provides n linear
equations for n unknown matrix elements 〈m|M(μ)−1| j〉 with
m = 1, 2 . . . , n and therefore can be uniquely determined
which in turn helps to determine the rest of the matrix ele-
ments 〈i|M(μ)−1| j〉 following Eq. (A6).

APPENDIX B: TRANSFER MATRIX EIGENVALUES IN
DIFFERENT REGIMES, EXCEPTIONAL LINES, AND

POINTS FOR n = 2

In this Appendix, we discuss the nature of eigenvalues
of the transfer matrix T(μ) for n = 2, given in Eq. (48), in
different regimes, exceptional lines, and points as marked in
Fig. 1. We find the eigenvalues analytically by solving for
F (θ ) = 0 with F (θ ) defined in Eq. (29). The analytical results
obtained in this section are summarized in Tables I and II
(third column).

Regime (I) in Fig. 1. The regime (I) of Fig. 1, i.e., below the
lower band edge corresponds to μ < −2t1 − 2t2. To check the
corresponding eigenvalues of the transfer matrix T(μ), we set
μ = −2t1 − 2t2 − ε with ε > 0. Note that ε > 0 is introduced
to indicate that we are accessing regime (I). The condition
F (θ ) = 0 then provides

−2t1 − 2t2 − ε = −2t1 cos θ − 2t2 cos 2θ. (B1)

The solution of θ can be written using Eq. (B1) as

θ = cos−1

[
− t1

4t2
±

√(
1 + t1

4t2

)2

+ ε

4t2

]
. (B2)

For the case when we have negative sign in the argument of
Eq. (B2), the argument inside the cos−1 is always less than −1.
For the case when we have positive sign in the argument of

Eq. (B2), as
√

(1 + t1
4t2

)2 + ε
4t2

> 1 + t1
4t2

, thus, the argument

inside cos−1 is always greater than 1. As a result, in this
below lower band edge regime, the argument inside cos−1 is
either greater than 1 or less than −1. Therefore, the allowed
solutions for θ is of the form θ = c + id where c can either
be 0(mod 2π ) or π and d ∈ real. Thus, the solution θ does
not match with any wave-vector k value for the lattice. As a
consequence, all the transfer matrix eigenvalues, given by eiθ ,
are real with an absolute value not equal to 1.

Regime (II) in Fig. 1. In a similar way, let us consider a
small number ε > 0 to check the transfer matrix eigenvalues
in regime (II) of Fig. 1 where −2t1 − 2t2 < μ < 2t1 − 2t2.
For this case, we set μ = −2t1 − 2t2 + ε with 0 < ε < 4t1.
The condition F (θ ) = 0 provides

−2t1 − 2t2 + ε = −2t1 cos θ − 2t2 cos 2θ. (B3)

Using Eq. (B3), we can write the solution of θ as

θ = cos−1

[
− t1

4t2
±

√(
1 + t1

4t2

)2

− ε

4t2

]
. (B4)

075406-17



SAHA, KULKARNI, AND AGARWALLA PHYSICAL REVIEW B 108, 075406 (2023)

The second term in the argument of Eq. (B4) is always positive
in the regime 0 < ε < 4t1 and is bounded as ε by

t1
4t2

− 1 <

√(
1 + t1

4t2

)2

− ε

4t2
< 1 + t1

4t2
, if t2 < t1/4

0 <

√(
1 + t1

4t2

)2

− ε

4t2
< 2, if t2 = t1/4

1 − t1
4t2

<

√(
1 + t1

4t2

)2

− ε

4t2
< 1 + t1

4t2
, if t2 > t1/4.

(B5)

With Eq. (B5), for the case when we have positive sign in
the argument of Eq. (B4), then the quantity inside cos−1 is
bounded between −1 to 1. This leads to one real solution θ

which matches with wave vector k of the lattice. In a similar
way, for the case when we have negative sign in the argument
of Eq. (B4), then the quantity inside cos−1 is always less than
−1. This leads complex solution of θ of the form θ = c + id
where c = π and d ∈ real. As a result, transfer matrix will
have two real eigenvalues and two complex-conjugate pairs.

Regime (III) in Fig. 1. Now, to explain the nature of the
eigenvalues of transfer matrix T(μ) in regime (III) in Fig. 1

which is between 2t1 − 2t2 < μ <
t2
1

4t2
+ 2t2 with t2 > t1/4,

we set μ = 2t1 − 2t2 + ε with 0 < ε < εc. At the transition
point given by

εc = 4t2

(
1 − t1

4t2

)2

, (B6)

the chemical potential μ corresponds to the upper band edge
line D of Fig. 1. With that, F (θ ) = 0 provides

2t1 − 2t2 + ε = −2t1 cos θ − 2t2 cos 2θ. (B7)

From Eq. (B7), we can easily write the solution for θ as

θ = cos−1

[
− t1

4t2
±

√(
1 − t1

4t2

)2

− ε

4t2

]
. (B8)

Thus, the second term in Eq. (B8) is bounded as

0 <

√(
1 − t1

4t2

)2

− ε

4t2
< 1 − t1

4t2
. (B9)

With Eq. (B9) and since t1/4t2 < 1, following Eq. (B8) for
both the cases when we have positive and negative signs in the
argument, the entire quantity inside the argument in cos−1 is
bounded between −1 to 1. Thus, θ will have two real solutions
which matches with wave vector k of the lattice. Thus, transfer
matrix eigenvalues will have two complex-conjugate pairs.

Regime (IV) in Fig. 1. Now, to analyze regime (IV) of Fig. 1,

i.e., μ >
t2
1

4t2
+ 2t2, we set μ = 2t1 − 2t2 + εc + ε with ε > 0

and recall that εc is defined in Eq. (B6). The solutions for
F (θ ) = 0 gives

2t1 − 2t2 + εc + ε = −2t1 cos θ − 2t2 cos 2θ. (B10)

Using Eq. (B10), we can write the solution for θ as

θ = cos−1

[
− t1

4t2
±

√(
1 − t1

4t2

)2

−
(

εc + ε

4t2

)]
. (B11)

Using the value of εc [Eq. (B6)], Eq. (B11) can be simplified
to

θ = cos−1

[
− t1

4t2
± i

√
ε

4t2

]
. (B12)

Thus, for any ε > 0, the solutions of θ are complex numbers
of the form θ = c + id with c, d ∈ real. This leads to complex
solutions of transfer matrix eigenvalues with absolute value
never equal to 1.

Regime (V) in Fig. 1. To understand the transfer matrix

eigenvalues in regime (V), i.e., 2t1 − 2t2 < μ < 2t2 + t2
1

4t2
of

Fig. 1 with t2 < t1/4. We therefore set μ = 2t1 − 2t2 + ε with
0 < ε < εc. At the value εc [Eq. (B6)] μ hits the exceptional
line E of Fig. 1. Then the solution F (θ ) = 0 gives

2t1 − 2t2 + ε = −2t1 cos θ − 2t2 cos 2θ. (B13)

Using Eq. (B13), the solution for θ can be written as

θ = cos−1

[
− t1

4t2
±

√(
t1
4t2

− 1

)2

− ε

4t2

]
. (B14)

Since t1/4t2 > 1, the second term of Eq. (B14) is bounded as

0 <

√(
t1
4t2

− 1

)2

− ε

4t2
<

t1
4t2

− 1. (B15)

From Eq. (B15), for both the cases when we have positive
and negative signs in the argument of Eq. (B14), then the
entire argument in cos−1 is less than −1. Thus, the solutions
of θ have the form θ = c + id with c = π and d ∈ real and
therefore these eigenvalues do not match with wave vector k
of the lattice. Thus, all the eigenvalues of transfer matrix T(μ)
are real with absolute value not equal to 1.

Exceptional line A in Fig. 1. When chemical potential μ is
at the lower band edge μ = −2t1 − 2t2 along line A of Fig. 1,
F (θ ) = 0 gives

−2t1 − 2t2 = −2t1 cos θ − 2t2 cos 2θ. (B16)

Equation (B16) can be simplified to

4 sin2 θ

2

(
t1 + 4t2 cos2 θ

2

)
= 0. (B17)

Thus, the solutions for θ ’s are

θ = 0, cos−1

[
−

(
1 + t1

2t2

)]
. (B18)

As transfer matrix eigenvalues are eiθ , θ = 0 will give two
eigenvalues as 1. Thus, we immediately see that any point
corresponding to the lower band edge (line A of Fig. 1) is
always an exceptional point of underlying transfer matrix.
Now, as the ratio of t1/t2 is always positive, the argument in
cos−1 is always less than −1. Thus, the other solution for θ

has form θ = c + id with c = π and d ∈ real. Thus, at the
lower band edge, transfer matrix has exceptional point with
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two eigenvalues 1 and two other eigenvalues are real with
absolute value not equal to 1.

Exceptional line B in Fig. 1. When chemical potential μ at
the upper band edge, i.e., μ = 2t1 − 2t2 with t2 < t1/4 along
line B in Fig. 1, F (θ ) = 0 gives

2t1 − 2t2 = −2t1 cos θ − 2t2 cos 2θ. (B19)

Equation (B19) can be simplified to

4 cos2 θ

2

(
− t1 + 4t2 sin2 θ

2

)
= 0. (B20)

Thus, the solutions for θ ’s are

θ = π, cos−1

[
1 − t1

2t2

]
. (B21)

As transfer matrix eigenvalues are eiθ , θ = π will give the
two eigenvalues as −1. Thus, once again we immediately
see the upper band edge also corresponds to transfer matrix
exceptional point. Now, since t1/t2 > 4, the other solution of
θ has the form θ = c + id with c = π, d ∈ real. Thus, along
line B of Fig. 1, transfer matrix has exceptional point with two
eigenvalues −1 and two other eigenvalues are real numbers
with absolute value not equal to 1.

Exceptional line C in Fig. 1. When the chemical potential μ

is along the line C of Fig. 1, i.e., μ = t2
1

4t2
+ 2t2 with t2 > t1/4,

it corresponds to the upper band edge with wave vector k �= π .
Along this line, F (θ ) = 0 gives

t2
1

4t2
+ 2t2 = −2t1 cos θ − 2t2 cos 2θ. (B22)

Using Eq. (B22), the solution of θ ’s is

θ = cos−1

[
− t1

4t2

]
. (B23)

Since the transfer matrix eigenvalues are e±iθ , using Eq. (B23)
we can write the eigenvalues as

− t1
4t2

+ i

√
1 −

(
t1
4t2

)2

, − t1
4t2

− i

√
1 −

(
t1
4t2

)2

. (B24)

Since t1/4t2 < 1, these eigenvalues are complex with absolute
value 1. Thus, the upper band edge along line C of the Fig. 1

has two pairs of complex exceptional points as mentioned in
Eq. (B24).

Exceptional line D in Fig. 1. When the chemical potential
μ = 2t1 − 2t2 with t2 > t1/4 along line D of Fig. 1, from
Eqs. (B19) and (B20), in a similar way, the solution of θ is

θ = π, cos−1

[
1 − t1

2t2

]
. (B25)

Thus, two transfer matrix eigenvalues are −1 (exceptional
points) along this line D. Since 0 < t1/t2 < 4, the other so-
lution for θ is bounded between −1 to 1. Thus, the other two
eigenvalues of the transfer matrix are complex-conjugate pairs
with an absolute value 1.

Exceptional line E in Fig. 1. To understand the transfer

matrix eigenvalues along line E, i.e., μ = t2
1

4t2
+ 2t2 of Fig. 1

with t2 > t1/4, we have to follow the same analysis as done
for the case along exceptional line C. Thus, eigenvalues of
transfer matrix are

− t1
4t2

+
√(

t1
4t2

)2

− 1, − t1
4t2

−
√(

t1
4t2

)2

− 1. (B26)

Since t1/4t2 > 1, all the eigenvalues are real with absolute
value not equal to 1.

Exceptional point �e in Fig. 1. When the chemical potential
μ is at the upper band edge, i.e., μ = 2t1 − 2t2 with t1/4t2 = 1
(at �e point of Fig. 1), F (θ ) = 0 gives

4 cos2 θ

2

(
− t1 + 4t2 sin2 θ

2

)
= 0. (B27)

This is exactly same as Eq. (B20) with t2 = t1/4. Thus, exactly
like Eq. (B21) the solution for θ ’s is

θ = π, cos−1

[
1 − t1

2t2

]
. (B28)

Since t2 = t1/4, all the transfer matrix eigenvalues are −1.
Thus, at this point, transfer matrix has fourth-order excep-
tional point.

We have given the analytical results of transfer matrix
eigenvalues for all the cases in Tables I and II. Also specif-
ically, we have shown the plot for transfer matrix eigenvalues
in Fig. 2.
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