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Exciton-phonon interaction in planar nitride nanostructures: The case of acoustic phonons
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A quantum mechanical theory which describes the exciton-acoustic phonon interaction in plane semiconductor
AlN/AlGaN nanosystems at nonzero temperatures has been developed. The theory of exciton states is con-
structed by applying the effective mass model to an electron and a hole, taking into account internal electric fields
due to the macroscopic value of polarization, which is a significant factor affecting the states of quasiparticles
in nitride nanosystems. The theory of acoustic phonons was developed on the basis of the elastic continuum
model by analytically obtained solutions of the equations describing the components of the deformation field
of a semiconductor medium. We have considered both relevant cases, when the semiconductors forming the
studied nanosystem have a wurtzite-type crystal lattice and a zinc-blende-type lattice. In addition, we obtained
analytical expressions that specify the deformation and piezoelectric potential created by acoustic phonons for
these cases. For each type of crystal lattice, the cases of exciton-phonon interaction through the deformation
and piezoelectric potentials have been separately and sufficiently investigated. The theory of exciton-phonon
interaction was developed and characteristics of the renormalized exciton states were investigated using the
method of temperature Green’s functions using and the Dyson equation. We found that for wurtzite nanosystems,
the mechanisms of interaction through the piezoelectric and deformation potentials contribute to the exciton-
phonon interaction, while for zinc-blende nanosystems, the main contribution to this interaction is due to the
deformation potential. It is found that the temperature shifts of the exciton spectrum are of negative sign for
all temperatures, and the absolute values of these shifts increase with the temperature increase. An analysis
of the calculated exciton basic band shape function and decay rates made it possible to establish that, in the
case of the zinc-blende nanosystem, the contribution of acoustic phonons to the exciton-phonon interaction is
smaller than that in the case of the wurtzite nanosystem. Calculations of the correlated exciton mass testify that
the interaction of an exciton with acoustic phonons at all temperatures results in its increase by maximum 8%
in the case of wurtzite nanosystems and by 5% in the case of zinc-blende nanosystems. We believe that the
obtained theory and results of calculations will be useful both for a more complete and broader understanding of
exciton-phonon interaction processes in nitride nanosystems as active elements of THz optoelectronic devices
and for the further development of the theory of exciton-phonon interaction in geometric nanosystems of different
symmetries.
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I. INTRODUCTION

Electronic processes occurring in multilayer plane nitride
nanostructures have direct practical applications in the opera-
tion of quantum cascade lasers (QCLs) and detectors (QCDs)
[1–4]. The importance of the influence of phonons on these
processes should be emphasized, that is, their impact on non-
radiative transitions with energies being close to the energies
of optical phonons to ensure the transport of a tunneled elec-
tron beam from one cascade of a nanodevice to another. For
mono- or two-layer nanostructures and multilayer QCL and
QCD cascades, created on the basis of arsenide or nitride
semiconductor compounds, the spectra of optical phonons and
their interaction with electrons have been investigated earlier
[5–17]. For acoustic phonons, the problem of investigating
their spectrum and interaction with electrons was considered
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quite a long time ago [18–20] on the basis of finite differ-
ence method for single-well nanosystems and recently using
a similar approach for multilayer nitride nanostructures [21].
In addition, the cases of such interaction both through the
deformation and through the piezoelectric potential [19,20]
were considered. As far as we know, the interaction of ex-
citons with acoustic phonons in low-dimensional systems has
not been studied thoroughly theoretically yet. This is due to
a number of reasons, the main reason being the lack of an
analytical theory of acoustic phonons in nitride nanosystems
and an arbitrary number of semiconductor layers (this the-
ory was proposed in Ref. [22]). As a result, the theoretical
models applied mainly to the study of thermal conductiv-
ity of a nanostructure and the factors accompanying these
phenomena, developed in Refs. [23–26], are based on the
numerical solution of equations describing phonon modes.
The second problem is the lack of a developed approach
to the renormalization of the exciton spectrum. However, to
single out a number of experimental papers where the exciton-
phonon interaction in AlN/GaN nanostructures with different
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geometrical symmetries was studied [27–31]. Moreover, at-
tention should be paid to two theoretical papers [32,33], where
the exciton-phonon interaction in anisotropic nonpolar 6H-
SiC crystals was studied.

The direct focus on the investigation of acoustic phonons
in the present paper is due to the reasons for the relevance
of developing the theory of electron-phonon and exciton-
phonon interaction, as well as the practical application of
such a theory to real nanostructures, due to these main rea-
sons. Plane resonant tunneling structures, which are precision
elements of QCLs or QCDs, should provide coherent tun-
neling electron transport. Despite the fact that the operation
of QCLs and QCDs is based only on electronic transitions,
there are a number of papers [34–37] devoted to nanosystems
in terms of their geometric and physical parameters, similar
to the active elements of these nanodevices, but the subject
of study in them are the exciton states. The present paper
is motivated by the need to understand coherency in plane
nanostructures’ resonant tunneling transport, which required
an understanding of exciton-phonon interactions. These in-
teractions manifest themselves in a temperature shift and
decay rate of the quantized levels. Among various electron-
phonon and exciton-phonon scattering effects, we here focus
on acoustic phonon interactions because the theory for it has
been least developed in detail for nitrides and because they are
the most relevant at low temperatures.

Thus, taking into account the current state of research, in
our paper we propose an analytical theory of the exciton-
phonon interaction in the case of acoustic phonons. The
proposed paper is structured as follows: the theory of sta-
tionary states of electrons and holes, an exciton problem for
nitride nanostructure, is considered in Sec. II. The theory of
acoustic phonons and deformation and piezoelectric potentials
created by them is presented in Sec. III A for zinc-blende
nanosystems and in Sec. III B for wurtzite nanosystems,
respectively. The theory of exciton-phonon interaction and
renormalization of the exciton spectrum, based on the tem-
perature Green’s function method and the Dyson equation,
is presented in Sec. IV. Analysis of the obtained theoretical
results and calculations performed on the example of a nitride
nanosystem is presented in Sec. V. Conclusions and most
important results are presented in Sec. VI.

II. SPECTRUM AND WAVE FUNCTIONS OF AN
ELECTRON AND A HOLE IN A MULTILAYER

NANOSTRUCTURE

First, we will establish the electron and hole spectrum of
the nanosystem under study. Its energy scheme, calculated
for an electron and a hole, along with a coordinate system
and notation for the boundaries between potential barriers and
wells, is demonstrated in Fig. 1. The exciton Hamiltonian, in
accordance with the notation in Fig. 1, is as shown:

Hex(ρ, ze, zh) = Eg + Ĥ(e)(ze) + Ĥ(h)(zh)

+ Ĥr (ρ, ze, zh) + V (|ze − zh|). (1)

The Coulomb interaction between an electron and a hole in
Eq. (1) is described by the constituent part of the Hamiltonian,

FIG. 1. The energy scheme of the nanosystem under study cal-
culated for an electron and a hole, respectively, together with the
squared moduli of their energy-level wave functions (solid lines
correspond to wurtzite semiconductors, dashed lines correspond
to zinc-blende semiconductors). The energy scale has a break in
the range from −600 meV to −3500 meV. The values of the
nanosystem layers from left to right in nanometers are as follows:
2.0/1.5/30.0/1.25/2.0 nm, where potential barriers are indicated in
bold font.

which is defined as follows:

V (|ze − zh|) = − e2

4πε0ε(α)(zα )
√

ρ2 + (ze − zh)2
, (2)

where ρ is the relative distance between an electron and a hole
in a plane perpendicular to the Oz axis. To describe the relative
motion of an electron and a hole, one should consider their
motion in a coordinate system referred to their center of mass.
Such motion is determined by the following component of the
Hamiltonian:

Ĥr (ρ, ze, zh) = − h̄2

2μ(ze, zh)

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ

)
, (3)

where the reduced exciton mass is calculated as follows:

μ(ze, zh) = m(e)(ze)m(h)(zh)

m(e)(ze) + m(h)(zh)
. (4)

The band gap as a function of temperature T is calculated
from the Varshni formula,

E (∗)
g (T ) = E (∗)

0 − a(∗)T 2/(b(∗) + T ),

E (∗)
0 = E (∗)

g (T )|T =0, ∗ = {AlN, GaN}, (5)

where a(α), b(α) are the Varshni parameters for AlN and GaN
semiconductors. Since in the nanosystem under study, some
of its layers are of a three-component semiconductor alloy,
the band gap depending on the content x of the AlN semicon-
ductor was calculated using the following condition:

Eg(x) = xE (AlN)
g + (1 − x)E (GaN)

g + cx(1 − x), (6)

where c is a fitting parameter [38] which is different for
wurtzite and zinc-blende layers. The energy scheme of the
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nanosystem for the electron and hole without taking into
account the influence of internal fields, i.e., strain-affected
offsets for valance and conduction bands is calculated using
Eqs. (5) and (6). This results are given in terms obtained by
the ratio of the conduction band to the valence band offset:

U (e)(ze) =
{

0, in GaN wells

0.765
(
E (AlGaN)

g − E (GaN)
g

)
, in AlGaN ,

U (h)(zh) =
{

0, in GaN wells

0.235
(
E (AlGaN)

g − E (GaN)
g

)
, in AlGaN.

(7)

Next, we will calculate the strength of the internal electric
field that arises in the layers of the nanostructure due to the
arising spontaneous and piezoelectric polarizations [39–42].
For this purpose, we will use the boundary conditions for the
electric displacement field at the boundaries of the nanos-
tructure (Dk = Dk+1, Dk = εkFk + P(k)

total) and the condition
imposed on the total potential drop on the entire nanosystem
(
∑N

k=1 Fk�z(k) = 0) (see also Ref. [41]). This gives the fol-
lowing ratio:

Fp =
N∑

k=1; k �=p

[
P(k)

total − P(p)
total

]
�z(p)

α

ε
(α)
(p)ε

(α)
(k)

/
N∑

k=1

�z(k)
α

ε
(α)
(k)

, (8)

where the indices p and k specify the labels of the nanosys-
tem layers and, besides, p specifies the number of the layer
in which the electric field is calculated, whereas summation
takes place over the index k. The total polarization in Eq. (8) is
P(p)

total = P(p)
pz + P(p)

sp , �z(p)
α = z(p−1)

α − z(p)
α are the dimensions

of the nanosystem layer in which the magnitude of the electric
field strength is calculated, and the values ε

(α)
(p) specify the

dielectric constant of this layer. In general, the permittiv-
ity of nanostructure, nanostructure density, electron and hole
effective mass, and stiffness tensor can be presented as

follows:

A(α)(zα ) =
N∑

p=0

A(α)
p

[
θ
(
zα − z(p)

α

)− θ
(
zα − z(p+1)

α

)]
,

A(α) = [ε(α)(zα )m(α)(zα )Ciklm(z)ρ(z)]T ,

α = {e, h}, z(N+1)
α = +∞, (9)

where ε
(α)
0 , ε

(α)
1 is the permittivity of AlN and AlGaN semi-

conductors, respectively, θ (z) is the Heaviside unit function.
Therefore, using the components Ĥ(e)(ze) and Ĥ(h)(zh) corre-
sponding to the free electron and hole, taking into account
Eqs. (7) and (8), we find separately the spectrum and wave
functions of the free electron and hole. To do this, we find
solutions to the stationary Schrödinger equation:[

− h̄2

2

∂

∂zα

1

m(α)(zα )

∂

∂zα

+ U (α)(zα ) + U (α)
E (zα )

]
	 (α)(zα )

= E (α)	 (α)(zα ), (10)

where

U (α)
E (zα ) =

N∑
p=1

(−1)p−1q(α)Fp

(
zα − Fp−1z(p−1)

α

Fp

)

× [θ(zα − z(p−1)
α

)− θ
(
zα − z(p)

α

)]
, q(α)

=
{

q(e) = −e
q(h) = e.

(11)

We calculate the wave functions of an electron and a hole in
the model of a closed nanosystem. This directly means that
the spectra of these quasiparticles are stationary. Thus, the
obtained solutions of Eq. (10) are damped functions in the
outer regions, relatively the nanosystem. Inside the nanosys-
tem, taking into account that the potential U (α)

E (zα ) Eq. (11)
has a linear dependence on the coordinate zα , we find that
the solutions of the Schrödinger Eq. (10) in this case will be
presented by linear combinations of the Airy functions Ai(zα )
and Bi(zα ) inside it [43]. Thus,

	 (α)(zα ) = Aα
(0)e

χα
(0)zα θ (−zα ) + Bα

(N+1)e
−χα

(N+1)zα θ
(
zα − z(N+1)

α

)
+

N∑
p=1

{
Aα

(p)Ai
[
ζ α

(p)(zα )
]+ Bα

(p)Bi
[
ζ α

(p)(zα )
]}[

θ
(
zα − z(p−1)

α

)− θ
(
zα − z(p)

α

)]
;

ζ α
(p)(zα ) = 3

√
2(−1)p−1m(α)

p q(α)Fp

h̄2

[
U (α)(zα ) − E

q(α)
+ (−1)p−1

(
Fpzα − Fp−1z(p−1)

α

)]
;

χα
(0) = χα

(N+1) = h̄−1
√

2m(α)
0

(
U (α)(zα )|zα<0, zα>z(N+1)

α
− E

)
. (12)

Next, we use the boundary conditions that describe the continuity of the wave function and flows of its probability density at all
boundaries of the nanostructure,

	α
(p)

(
E , z(p)

α

) = 	α
(p+1)

(
E , z(p)

α

)
;

d	α
(p)(E , zα )

m(α)(zα )dzα

∣∣∣∣
z=z(p)

α −0

= d	α
(p+1)(E , zα )

m(α)(zα )dzα

∣∣∣∣
z=z(p)

α +0

, (13)
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then system Eq. (13) yields a dispersion equation, from
which the discrete electron and hole spectra are determined
(Eα

s , s = (n, m), where the indices n and m are the num-
bers of the levels of the discrete spectrum of an electron
and hole, respectively). Having applied boundary condi-
tions Eq. (13), we will successively express the coefficients
Aα

(0), Bα
(N+1), Aα

(p), Bα
(0) in solutions Eq. (12) in terms of one

of them, which is chosen arbitrarily. This coefficient is ob-
tained using the normalization condition∫ +∞

−∞
	 (α)∗

s

(
Eα

s , zα

)
	

(α)
s′
(
Eα

s′ , zα

)
dzα = δss′ , (14)

and thus the wave functions of a free electron and a hole are
completely defined.

Therefore, to obtain the spectrum and wave functions
of the exciton, one should find solutions to the stationary
Schrödinger equation:

Ĥex(ρ, ze, zh)	(ρ, ze, zh) = Eex	(ρ, ze, zh). (15)

Equation (15) in the general case does not have an exact
analytical solution, which is due to the complex form of the
complete exciton Hamiltonian with a contribution describing
the interaction of an electron and a hole. In this case, to
perform the calculation of the exciton binding energy, we will
provide the exciton wave function in the following way:

	nm(ρ, ze, zh) = 	 (e)
n (ze)	 (h)

m (zh)(ρ), (16)

where functions (ρ) are selected as follows [44,45]:

(ρ) =
√

2

π

e−ρ / λ

λ
, (17)

where λ is a variation parameter. Now the exciton bind-
ing energy in the ground state will be determined from the
minimization condition for the functional, relatively this pa-
rameter:

E ex
nm = min

λ

〈	nm(ρ, ze, zh)|Ĥex(ρ, ze, zh)|	nm(ρ, ze, zh)〉
〈	nm(ρ, ze, zh) | 	nm(ρ, ze, zh)〉 .

(18)

Now using the exciton binding energy in the ground state
obtained from Eq. (18), we calculate the exciton binding en-
ergy Eb

nm and the transition energy Eph = E (e,h)
nm between an

electron and a hole:

Eb
nm = E (e)

n + E (h)
m − E ex

nm;

E (e,h)
nm = E (e)

n + E (h)
m + Eg − E ex

nm. (19)

Using the wave functions of an electron and a hole, we calcu-
late the intensity of intersubband transitions:

I (e−h)
nm =

∣∣∣∣
∫ +∞

−∞
	 (e)

n (z)	 (h)
m (z)dz

∣∣∣∣
2

. (20)

Let us now introduce for the exciton a quantized wave func-
tion as follows:

	̂(ρ, ze, zh) =
∑
kkekh

	kkekh (ρ, ze, zh)âkkekh , (21)

where

kα =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

χα
(0), zα < 0, zα > z(N )

α√
2m(α)

p
[
U (α)(z(p)

α ) + U (α)
E (z(p)

α )
]
/h̄2

0 � zα � z(N )
α .

, (22)

Here âkkekh is bosonic state annihilation operator with the
commutation relation [âkkekh , â+

k′k′
ek′

h
] = δke,k′

e
δkh,k′

h
δk,k; then

the exciton Hamiltonian takes the canonical appearance,

Ĥex =
∫

dzedzh	̂
+(ρ, ze, zh)Hex(ρ, ze, zh)	̂(ρ, ze, zh)

=
∑
kkekh

Ẽkkekh (ke, kh)â+
kkekh

âkkekh , (23)

where Ẽkkekh (ke, kh) = Ekkekh (ke, kh) + h̄2k2/2μ(ze, zh) is
the dispersion law for excitons in the state (ke, kh), determined
from the dispersion equation defined by conditions Eq. (10),
where k is the exciton quasimomentum, which acquires all
values in the Brillouin zone.

III. SPECTRUM OF ACOUSTIC PHONONS OF A
MULTILAYER NANOSTRUCTURE. DEFORMATION AND
PIEZOELECTRIC POTENTIAL OF ACOUSTIC PHONONS

IN THE CASE OF SEMICONDUCTORS OF WURTZITE
AND ZINC-BLENDE CRYSTAL STRUCTURE

The piezoelectric effect due to the shear, as well as flex-
ural and dilatational types of acoustic phonons, were studied
in Refs. [46] and [19,47], respectively. However, this paper
and relevant ones were devoted only to nitride nanosystems
with a wurtzite-type crystal lattice, and such investigations
were not carried out for the case of a zinc-blende-type crystal
lattice. Therefore, we will focus only on the main points of
calculating the components of acoustic phonons for different
types of crystal lattices and the deformation and piezoelectric
potentials created by them.

Let us use the equation of motion for an elastic semicon-
ductor continuum, which is presented as follows:

ρ(z)
∂2ui(r, t )

∂t2
= ∂σik (r, t )

∂xk
; r = r|| + ez z i,

k = (1; 2; 3), (24)

where the stress tensor is σik (r) = Ciklm(z)[∂ui(r)/∂xk +
∂uk (r)/∂xi]/2. It provides the equation

ρ(z)
∂2ui(r, t )

∂t2
− ∂

∂xk

{
Ciklm(z)

2

[
∂ui(r)

∂xk
+ ∂uk (r)

∂xi

]}
= 0.

(25)

A. Theory of the acoustic phonons modes and the piezoelectric
potential created by them in the case of the zinc-blende

crystal lattice type

As far as we know, for nitride nanostructures with a zinc
blende crystal lattice, the theory of both acoustic phonons and
the piezoelectric potential is not available. Since the stiffness
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tensor and the piezoelectric tensor are

CZB(p)
i j =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C(p)
11 C(p)

12 C(p)
12 0 0 0

C(p)
12 C(p)

11 C(p)
12 0 0 0

C(p)
12 C(p)

12 C(p)
11 0 0 0

0 0 0 C(p)
44 0 0

0 0 0 0 C(p)
44 0

0 0 0 0 0 C(p)
44

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

;

eZB(p)
i j =

⎛
⎜⎝0 0 0 e(p)

14 0 0
0 0 0 0 e(p)

14 0
0 0 0 0 0 e(p)

14

⎞
⎟⎠, (26)

which is fundamentally different from similar tensors for a
wurtzite-type crystal lattice, one should expect differences in

the formation of deformation and piezoelectric potentials and
their effect on the exciton spectrum.

The solutions of Eq. (25), taking into account Eq. (26), will
be presented as follows:

u�(r, t ) = u�(q, z)ei(qr||−ωt ), � = 1, 2, 3, q =
√

q2
x + q2

y ,

(27)

which after simple transformations results in the following
matrix equation:

ρ (p)ω2u(p)
� (q, z) − D(p)(q, z)u(p)

� (q, z) = 0, (28)

with a differential operator of the following appearance:

D(q, z) =

⎡
⎢⎣−C(p)

44
d2

dz2 + q2C(p)
11 0 iq

(
C(p)

12 + C(p)
44

)
d
dz

0 −C(p)
44

d2

dz2 + q2C(p)
44 0

iq
(
C(p)

12 + C(p)
44

)
d
dz 0 −C(p)

11
d2

dz2 + q2C(p)
44

⎤
⎥⎦. (29)

Now, from Eq. (28), taking into account Eq. (29), we ob-
tain equations describing the flexural and dilatational phonon
modes:

− d2u(p)
1(3)(z)

dz2
+ iqc(p)

1(3)

du(p)
3(1)(z)

dz
+ (χ (p)

1(3)

)2
u(p)

1(3)(z) = 0;

c(p)
1(3) = (C(p)

12 + C(p)
44

)
C(p)

44(11);

χ
(p)
1(3) =

√(
q2C(p)

11 − ρ (p)ω2
)
C(p)

44(11), (30)

as well as the shear phonon modes:

d2u(p)
2 (z)

dz2
−
(

q2 − ρ (p)ω2

C(p)
44

)
u(p)

2 (z) = 0. (31)

System Eq. (30) is structurally similar to the system that
arises in the theory of acoustic phonons in nitride nanosys-
tems with a wurtzite-type lattice [18,19,21,22]. Using the
method developed by us in Ref. [22] (based on application
Cayley–Hamilton theorem), we obtain the final analytical
solution:

u(p)
1 (z) = −iqc(p)

1

2∑
s=1

(
A(p)

2s−1eλ
(p)
s z − A(p)

2s e−λ
(p)
s z
)/∥∥u(p)

s (q)
∥∥;

u(p)
3 (z) = −

2∑
s=1

{(
λ(p)

s

)2 + (χ (p)
1

)2}(
A(p)

2s−1eλ
(p)
s z + A(p)

2s e−λ
(p)
s z
)/∥∥u(p)

s (q)
∥∥,

∥∥u(p)
s (q)

∥∥ =
√∣∣qc(p)

1 λ
(p)
s

∣∣2 +
∣∣∣(λ(p)

s
)2 + (χ (p)

1

)2∣∣∣2, u(p)
2 (z) = A(p)

2 e−χz + B(p)
2 eχz, χ =

√
q2 − ρ (p)ω2

C(p)
44

,

(32)

where λ
(p)
s are the roots of the biquadratic equation

λ4 + [(χ (p)
1 )2 + (χ (p)

3 )2 + q2c(p)
1 c(p)

3 ]λ2 + (χ (p)
1 χ

(p)
3 )2 = 0;

moreover, here λ
(p)
1 = −λ

(p)
3 ; λ

(p)
2 = −λ

(p)
4 .

The coefficients in the first two solutions Eq. (32) are found
from the boundary conditions,

u(p)
1(3)(q, z)

∣∣
z=zp−0

= u(p+1)
1(3) (q, z)

∣∣
z=zp+0

;

σ
(p)
13(33)(q, z)

∣∣
z=zp−0

= σ
(p+1)
13(33)(q, z)

∣∣
z=zp+0

, (33)

where the Cauchy stress tensor components are as follows:

σ
(p)
13 (q, z) = 1

2
C(p)

44

(
−iqu(p)

3 (z) + du(p)
1 (z)

dz

)
ei(qr||−ωt ),

σ
(p)
33 (q, z) =

(
−iqC(p)

12 u(p)
1 (z) + C(p)

11

du(p)
3 (z)

dz

)
ei(qr||−ωt ),

(34)

combined with the normalization condition:

2S⊥ω

h̄

∫ +∞

−∞
ρ(z)[u1(q, ωq, z)u∗

1(q′, ωq′ , z)

+ u3(q, ωq, z)u∗
3(q′, ωq′ , z)] = δqq′ ; S⊥ = �lx�ly. (35)

In addition, conditions Eq. (33) give a dispersion equation
that determines the phonon spectrum �ac

n1
= h̄ωn1 . Simi-

larly, using the boundary conditions for the components
u2(q, z); σ23(q, z), we find the spectrum of shear phonons.
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Now our goal is to get an equation for determining the
piezoelectric potential. To do this, we use the fact that the
displacement vector is defined as

D(r, t ) = −ε0ε(z)∇φZB
pz (r, t ) + PZB

pz (r, t ) + Psp. (36)

It should be taken into account that the spontaneous polar-
ization is directed along the z axis (Psp = Pspk), and the
piezoelectric polarization is defined as follows [we immedi-
ately pass to the Voigt notation, since Eq. (26)]:

PZB
pz = eklmεlm = eZB

i j (z)(ε11 ε22 ε33 2ε23 2ε13 2ε12)T

= 2e14(z)(ε23 ε13 ε12)T , εi j = εi j (r, t ). (37)

We now use the explicit form for phonon modes Eq. (32) to
calculate the magnitudes of the strain tensor components εi j .
Moreover, we will take into account the fact that the nanosys-
tem is not affected by from external distributed charges, which
according to the Maxwell’s equation gives

ρext = (∇ · D) = 0. (38)

Having substituted expressions Eqs. (37) and (38) into
Eq. (36), we obtain the equation which describes piezoelectric

potential:

−ε0∇
[
ε(z)∇φZB

pz (r, t )
]+ ∇[2e14(z)(ε23 ε13 ε12)T

] = 0.

(39)

It should be noted that in Eq. (39) there is no contribution from
spontaneous polarization. Next we write this equation for a
single layer of the nanosystem, and perform the Fourier trans-
form for the components of phonon modes, as well as for the
generated deformation and piezoelectric potentials according
to the relations

u�(q, ωn1q, r, t ) =
∑
n1q

u�(q, ωn1q, z)ei(qr−ωn1qt );

φZB
pz (q, ωq, r, t ) =

∑
n1q

φZB
pz (q, ωn1q, z)ei(qr−ωn1qt ), (40)

then we will obtain

− ε0ε
(p)∇2φZB

pz (r, t )

+ 4e(p)
14

(
∂2u1(r, t )

∂y∂z
+ ∂2u2(r, t )

∂x∂z
+ ∂2u3(r, t )

∂x∂y

)
= 0.

(41)

Next, it is convenient to pass from the obtained Fourier com-
ponents to generalized coordinates and momenta, and then to
the occupation number operators, since, for the example in
Ref. [44,47], we obtain the operator for phonon modes in the
representation of occupation numbers:

û�(q, ωn1q, r) =
N∑

p=0

∑
n1q

√
h̄

2S⊥ρ (p)ωn1q
[b̂+

n1
(−q) + b̂n1 (q)]ŵ(p)

� (q, ωn1q, z)eiqr[θ (z − zp) − θ (z − zp+1)],

ŵ
(p)
� (q, ωn1q, z) =

√
ρ (p)û(p)

� (q, ωn1q, z), z0 = 0; zN+1 = +∞. (42)

Then, using Eqs. (32), (42) and separating the equation for the
component ϕZB

pz (z) = ϕZB
pz (q, ωq, z) in Eq. (41), we find [see

also Eq. (A1)]

d2ϕZB
pz (z)

dz2
− q2ϕZB

pz (z) − e(p)
14

ε0ε(p)

√
8h̄

S⊥ρ (p)ωn1q

×
[

qxqyw
(p)
3 (z) − i

(
qy

dw
(p)
1 (z)

dz
+ qx

dw
(p)
2 (z)

dz

)]
= 0.

(43)

To determine the coefficients A(p), B(p), the boundary con-
ditions for the potential ϕZB

pz (z) and electric displacement
DZB

pz (z) = ε0ε(z)dϕZB
pz (z)/dz are used:

φZB(p)
pz (z)

∣∣
z→zp−0

= φZB(p+1)
pz (z)

∣∣
z→zp+0

,

ε(z)dφZB(p)
pz (z)

/
dz
∣∣
z→zp+0

= ε(z)dφZB(p+1)
pz (z)

/
dz
∣∣
z→zp+0

.

(44)

By calculating the deformation potential for the entire valence
band, we obtain

φZB
def (q, ωq, r, t ) = �EZB

C (r, t ) = aZB
C [ε11(r, t ) + ε22(r, t ) + ε33(r, t )]

=
{

aZB
C∥∥u(p)

s (q)
∥∥
√

h̄

2S⊥ωn1q

2∑
s=1

[
qqxc(p)

1 + λ(p)
s

{(
λ(p)

s

)2 + (χ (p)
1

)2}](
A(p)

2s−1eλ
(p)
s z + A(p)

2s e−λ
(p)
s z
)

+aZB
C qy

(
A(p)

2 e−χz + B(p)
2 eχz

)]}
ei(qr−ωt ) =

∑
n1q

φZB
pz (q, ωn1q, z)ei(qr−ωt ), (45)

where aZB
C = aC is the deformation potential constant for the valence band.

075403-6



EXCITON-PHONON INTERACTION IN PLANAR NITRIDE … PHYSICAL REVIEW B 108, 075403 (2023)

Consequently, the Hamiltonians describing the interaction with phonons in terms of the piezoelectric and deformation
potentials in the case of a zinc-blende-type lattice are as follows:

Ĥpz =
∑
q n1

N∑
p=1

2∑
s=1

[
A(p)eqz + B(p)e−qz − e(p)

14

ε0ε(p)q

√
2h̄

S⊥ρ (p)ωn1q

{
eqz
∫ z

0
e−qξ(p)

s (q, ξ )dξ

−e−qz
∫ z

0
eqξ(p)

s (q, ξ )dξ

}]
[b̂+

n1
(−q) + b̂n1 (q)]eiqr[θ (z − zp) − θ (z − zp+1)];

Ĥdef = aZB
C

∑
q n1

N∑
p=1

2∑
s=1

√
h̄

2
∥∥u(p)

s (q)
∥∥2

S⊥ωn1q

[
qqxc(p)

1 + λ(p)
s

{(
λ(p)

s

)2 + (χ (p)
1

)2}](
A(p)

2s−1eλ
(p)
s z + A(p)

2s e−λ
(p)
s z
)

+qy
(
A(p)

2 e−χz + B(p)
2 eχz

)]
[b̂+

n1
(−q) + b̂n1 (q)]eiqr[θ (z − zp) − θ (z − zp+1)]. (46)

B. Theory of modes of acoustic phonons and the piezoelectric
potential created by them in the case of the

wurtzite-type crystal lattice

For nanosystems with a wurtzite crystal lattice, we de-
veloped a theory of acoustic phonons [22]. But taking into
account the form of the elastic constant tensor, the equa-
tions for phonon modes can be easily obtained without
using the results of Ref. [22] from Eq. (30) by replacing:
C(p)

12 → C(p)
13 ; C(p)

44 → C(p)
66 ; C(p)

11 → C(p)
33 . In addition, in the

last equation of Eq. (30) there must be (q2 − ρ (p)ω2/C(p)
44 ) →

(q2C(p)
66 /C(p)

44 − ρ (p)ω2/C(p)
44 ). Then, for the nanosystem under

study, solutions of Eq. (30) ũ(p)
1 , ũ(p)

2 , ũ(p)
3 can be represented

similar to (32) [see Eq. (A2)].
Now the piezoelectric polarization, taking into account the

Voigt notation, will be defined as follows:

PWZ
pz = eklmεlm = eWZ

i j (z)(ε11 ε22 ε33 2ε23 2ε13 2ε12)T

=
⎡
⎣ 2e15(z) ε13

2e15(z)ε23

e31(z)(ε11 + ε22) + e33(z)ε33

⎤
⎦, εi j = εi j (r, t ).

(47)

Now using equation this solutions Eq. (A2) in relation
D(r, t ) = −ε0ε(z)∇φWZ

pz (r, t ) + PW Z
pz (r, t ) + Psp, taking into

account expressions Eq. (47), we obtain

− ε0∇
[
ε(z)∇φWZ

pz (r, t )
]+ ∇[2e15(z) ε13 2e15(z)ε23 e31(z)

× (ε11 + ε22) + e33(z)ε33]T = 0, (48)

taking into account the fact that φWZ
pz (r, t ) = φWZ

pz (z)ei(qr−ωt )

giving the following equation for a separate layer of the
nanosystem:

− ε0ε
(p)∇2φWZ

pz (r, t ) + (e(p)
15 + e(p)

31

)( ∂2u1

∂x∂z
+ ∂2u2

∂y∂z

)

+ e(p)
15

(
∂2u3

∂x2
+ ∂2u3

∂y2

)
+ e(p)

31

∂2u3

∂z2
= 0. (49)

Having substituted Eqs. (42) and (A2), we obtain an equa-
tion for the component ϕWZ

pz (z) = ϕW Z
pz (q, ωq, z) [see also

Eq. (A3)]:

d2φWZ
pz (z)

dz2
− q2φWZ

pz (z)

= 1

ε0ε(p)

√
h̄

2S⊥ρ (p)ωn1q

[
i
(
e(p)

15 + e(p)
31

)(
qx

dw
(p)
1 (z)

dz
+ qy

dw
(p)
2 (z)

dz

)
+ e(p)

15 q2w
(p)
3 (z) − e(p)

31

d2w
(p)
3 (z)

dz2

]
= 0. (50)

For the deformation potential, we obtain in our case the following expression:

φWZ
def (q, ωq, r, t ) = �EWZ

C (r, t ) = (a1C − D1)ε33(r, t ) + (a2C − D2)(ε11(r, t ) + ε22(r, t ))

=
√

h̄

2S⊥ωn1q

{
2∑

s=1

[
(a2C − D2)qqxc(p)

1 − (a1C − D1)λ(p)
s

{(
λ(p)

s

)2 + (χ (p)
1

)2}]

× (Ã(p)
2s−1eλ

(p)
s z − Ã(p)

2s e−λ
(p)
s z
)/∥∥u(p)

s (q)
∥∥

+ qy
(
Ã(p)

2 e−χ̃z + B̃(p)
2 eχ̃z

)}
ei(qr−ωt ) =

∑
n1q

φW Z
def (q, ωn1q, z)ei(qr−ωt ), (51)

where a1C, a2C, D1, D2 - are the deformation potential constants for the valence band.

075403-7



IGOR BOYKO PHYSICAL REVIEW B 108, 075403 (2023)

Thus, the Hamiltonians describing the interaction with phonons in terms of the deformation and piezoelectric potentials in
the case of a wurtzite-type lattice are as follows:

ĤWZ
pz =

∑
q n1

N∑
p=1

2∑
s=1

(
Ã(p)eqz + B̃(p)e−qz − 1

ε0ε(p)

√
h̄

2S⊥ρ (p)ωn1q

{
eqz
∫ z

0
e−qξ ̃(p)

s (q, ξ )dξ

)

−e−qz
∫ z

0
eqξ ̃(p)

s (q, ξ )dξ

}
[b̂+

n1
(−q) + b̂n1 (q)]eiqr[θ (z − zp) − θ (z − zp+1)];

ĤWZ
def =

∑
q n1

N∑
p=1

2∑
s=1

√
h̄

2
∥∥u(p)

s (q)
∥∥2

S⊥ωn1q

{[
(a2C − D2)qqxc(p)

1 − (a1C − D1)λ(p)
s

{(
λ(p)

s

)2 + (χ (p)
1

)2}]

× (Ã(p)
2s−1eλ

(p)
s z − Ã(p)

2s e−λ
(p)
s z
) +qy

(
Ã(p)

2 e−χ̃z + B̃(p)
2 eχ̃z

)]}
[b̂+

n1
(−q) + b̂n1 (q)]eiqr[θ (z − zp) − θ (z − zp+1)], (52)

where the coefficients Ã(p), B̃(p) are found from the conditions similar to the conditions Eq. (44).

IV. HAMILTONIAN OF THE EXCITON-PHONON SYSTEM. RENORMALIZATION OF THE EXCITON SPECTRUM BY
INTERACTION WITH ACOUSTIC PHONONS. CORRELATED EFFECTIVE MASS OF THE EXCITON TACKING INTO

ACCOUNT THE EXCITON-PHONON INTERACTION

We start using bosonic operators b̂+
n1

and b̂n1 representing the phonon Hamiltonian as follows:

Ĥac
ph =

∑
n1q

h̄ωn1q

(
b̂+

n1q(q)b̂n1q(q) + 1

2

)
,
[
b̂+

n1q, b̂n′
1q′
] = δn1n′δqq′ (53)

Next, the renormalized positions of the ground and excited electronic states, the exciton lifetimes in these states, and the effect
of phonons on the effective exciton mass are studied. It is assumed that the system has a weak exciton-phonon coupling. It
should be mentioned that the exciton band is separated from other bands in such a way that their influence is that which can be
neglected.

To obtain the Hamiltonian describing the interaction of excitons with acoustic phonons, in this case it will be assumed that an
electron and a hole interact independently with acoustic phonons through the mechanisms of both deformation and piezoelectric
potentials established above. It results in the following Hamiltonians describing this interaction:

Ĥdef(pz)
ex−ph =

∫
dredrh	̂

+(ρ, re, rh)
(
Ĥdef(pz)

e−ph + Ĥdef(pz)
h−ph

)
	̂(ρ, re, rh)

=
∑

kkekhqn1

F def(pz)
kkekhqn1

(q)â+
k+q kekh

âkkekh [b̂+
n1

(−q) + b̂n1 (q)], (54)

where the corresponding binding functions are calculated using expressions Eqs. (45), (46), (51), and (52) due to the relations

F def(pz)
kekhqn1

(q) =
N∑

p=1

[∫∫ ∣∣(p)(ρ)
∣∣2dρ2

∫ zp

zp−1

	
(e)
(p)(Ekke , ze)

(
	

(e)
(p)(Ekke , ze)

)∗
dze

×
∫ zp

zp−1

	
(h)
(p) (Ekkh , zh)φZB(WZ)

def(pz) (q, ωn1q, zh)eiqr||
(
	

(h)
(p) (Ekkh , zh)

)∗
dzh

][
θ (z − zp) − θ (z − zp+1)

]
, zN+1 = +∞.

(55)

So, the complete Hamiltonian of the Wannier-Mott exciton system with acoustic phonons is as follows:

Ĥ = Ĥex + Ĥac
ph + Ĥdef

ex−ph + Ĥpz
ex−ph =

∑
kkekh

Ekkekh (ke, kh)â+
kkekh

âkkekh +
∑
n1q

h̄ωn1q

(
b̂+

n1q(−q)b̂n1q(q) + 1

2

)

+
∑

kkekhqn1

[
F def

kkekhqn1
(q) + F pz

kkekhqn1
(q)
]
â+

k+q kekh
âkkekh [b̂+

n1
(−q) + b̂n1 (q)]. (56)

Let us now introduce the retarded temperature Green’s function of the exciton state, built on the stationary states of the electron
|n〉 and hole |m〉, respectively, and n and m are the numbers of the levels of the spectrum of these quasiparticles. It is defined as
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follows:

Gnm(k, ω′) = {h̄ω′ − Ẽkkekh (ke, kh) − M(k, ω′)
}−1

, ω′ = ω + iη, η → 0. (57)

The mass operator in Eq. (57), which takes into account the contribution from the one-phonon process is obtained as follows:

M(k, ω′) =
∑
qn1

F def(pz)
kekhqn1

(q)
[
F def(pz)

n1qkhke
(q)
]∗{ 1 + νn1 (q)

h̄ω′ − Ekkekh (ke, kh) − h̄2(k − q)2
/

2μ(ze, zh) − �n1 (q)

+ νn1 (q)

h̄ω′ − Ekkekh (ke, kh) − h̄2(k + q)2
/

2μ(ze, zh) + �n1 (q)

}
. (58)

The value νn1 (q) = {exp(�n1 (q)/kBT ) − 1}−1 is the average value of the occupation numbers of the acoustic phonons in the
state with number n1.

Using the mass operator Eq. (58), the temperature dependence of the exciton states is calculated, which is determined by the
basic shape function for the light absorption band, following the general theory of excitons [48], which is determined as follows:

I (k, ξ , T ) = ρ(k, ξ , T )

2
= − ImM(k, ξ )

[ξ − Ẽkkekh (ke, kh) − Re(k, ξ )]2 + [ImM(k, ξ )]2 , ξ = h̄ω. (59)

Let us take into account the fact that the discrete part of the spectrum is renormalized in the case of weak exciton-phonon
interaction. To specify the influence of this factor, we perform the Fourier transform of the Green’s function Eq, (57), passing
from summation over the wave vector q to integration by the rule

∑
q ⇒ S⊥/(2π )2

∫∫
dq2 and using the Dirac relation:∫∫

d2q
F (q) + iη

= P
∫∫

d2q
F (q)

− iπ
∫∫

δ[F (q)]d2q, (60)

where P is a symbol for an integral calculated in the sense of Cauchy principal value. The shifts �nm and decay rates γnm

obtained from the dispersion equation h̄ω′ − Ẽnm − M(k, ω′) = 0 are as follows:

�nm = Re M(k, ω′)
∣∣
k=0 = S⊥

(2π )2

∑
ñ m̃

∑
n1

P
∫∫ [

νn1 (q) + 1

2
± 1

2

]F def(pz)
kekhqn1

(q)
[
F def (pz)

n1qkhke
(q)
]∗

Enm − Eñm̃q + �n1 (q)
d2q;

γnm = −2Im M(k, ω′)
∣∣
k=0

= S⊥
2π

∑
ñ m̃

∑
n1

P
∫∫ [

νn1 (q) + 1

2
± 1

2

]
F def(pz)

kekhqn1
(q)
[
F def (pz)

n1qkhke
(q)
]∗

δ[Enm − Eñm̃q + �n1 (q)]d2q. (61)

In addition, our goal is to study the effect of temperature on
the effective exciton mass in the nanostructure under study. As
it is known from experimental and partially theoretical papers
[27–29] that the presence of temperature does not result in
a strong extinction of the exciton band,; then, in this case,
the description of the exciton as a quasiparticle remains valid,
moreover, we can neglect the imaginary part of the mass oper-
ator Eq. (58). Let us now expand the equation obtained from
the pole of the Green’s function for the exciton Eq. (57) into a
series in terms of the quasi-momentum k, while retaining only
the quadratic term:

h̄ω′ − Ẽnm − h̄2k2

2μ
− Re M(k, ω′)

∣∣
k=0

− ∂2M(k, ω′)
∂k2

∣∣∣∣
k=0

k2 = 0; μ = μ(ze, zh). (62)

Therefore, the renormalized value of the effective exciton
mass is as follows:

μ̃ = μ

1 + ∂2M(k, ω′)
/

∂k2
∣∣
k=0

(63)

and the renormalized exciton dispersion law looks like

Ẽnm = Enm + Re M(k, ω′)
∣∣
k=0 + h̄2k2

2μ̃
. (64)

V. RESULTS AND DISCUSSION

The calculations were performed using the geometric pa-
rameters of a nitride nanosystem with geometric parameters
typical for recently created quantum cascade detectors [4]. In
accordance with the notation of the coordinate system pre-
sented in Fig. 1, the nanosystem consists of three Al0.4Ga0.6N
potential barriers of �1 = 2.0 nm, �2 = 30.0 nm, �3 =
2.0 nm thickness and two GaN potential wells of d1 = 1.5 nm
and d2 = 1.25 nm width, respectively. The physical parame-
ters (which are taken from Refs. [34,38,49,50]) used in the
calculations are similar to those presented in Tables I and II
(the effective masses of an electron m∗

e and a hole m∗
h are

given in units of the mass of a free electron me). The choice
of just these geometric parameters of the studied nanostruc-
ture and the approach to performing calculations described
below is due to the fact that considerable attention is paid
to short-period quantum cascade detectors, the cascades of
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TABLE I. Physical parameters of the GaN and Al0.4Ga0.6N wurzite semiconductors.

Material m∗
e m∗

h ρ(kg/m3) C11(GPa) C12(GPa) C13(GPa) C33(GPa) C44(GPa) C66(GPa)

GaN 0.186 0.270 6150 390 145 106 398 105 122.5
Al0.4Ga0.6N 0.266 0.342 4992 392.4 141.8 106.8 388 109.4 129.5
Material e33(C/m2) e31(C/m2) e15(C/m2) a1C (eV) a2C (eV) D1(eV) D2(eV)
GaN 0.73 −0.49 −0.40 −4.9 −11.3 −3.7 8.2
Al0.4Ga0.6N 1.06 −0.53 −0.43 −4.3 −11.5 −9.1 8.4

which are usually nanostructures with two or three potential
wells [4,51,52]. It makes it possible to study sequentially
a number of typical nanostructure configurations, the often
considered cases of nanosystems with a single potential well,
in particular.

The energy scheme of the nanosystem calculated for an
electron and a hole, together with all the discrete spectra
(En, Em) of these quasiparticles formed by size quantization
are presented in Fig. 1. Here we present the results of calcu-
lations for semiconductors with both a wurtzite-type lattice
(solid lines) and a zinc-blende-type lattice (dashed lines). For
clarity of the presented results, the energy scale is detailed
and has a break from −600 meV to −3500 meV. As can be
seen from Fig. 1 in the nanosystem under study in both cases,
there are ten electronic and nine hole discrete stationary levels
available. In this case, the energies of electrons and holes for
semiconductors of the two types considered are close, but in
the case of a wurtzite-type lattice, they are somewhat higher
than in the case of a zinc-blende type. The localization of these
electron and hole states is shown by the squared moduli of
the wave functions given for each of the states. It should be
noted that the oscillating part of the electron wave functions
is located above the potential line, while in the case of holes
it is located below the potential line. As can be seen from
Fig. 1, the oscillating parts of the electronic functions end at
the point corresponding to the intersection with the potential
line, while for holes this point actually corresponds to their
beginning.

We will carry out subsequent calculations of the studied
physical quantities as follows. We fix the value of the thick-
ness of potential barriers and perform calculations in such a
way that the value of the left potential well changes from
0 to d1 + d2, and the value of the right well changes from
d1 + d2 to 0. Then, in fact, the value of 0 � d � d1 + d2 will
specify the position of the internal potential barrier regarding
external ones. It should also be noted that the trivial case of
a nanosystem with one quantum well can also be obtained in
our calculations, moreover, this case is always presented on
the calculated dependencies at d → 0 and d → d1 + d2. In
addition, we will further assume that the value d (exp) indicated
on the dependencies given in the paper corresponds to the
above parameters of the nanosystem geometric configuration.

This principle of calculation clearly demonstrates the spec-
trum of electron and hole states of the nanosystem under
study, calculated as a function of the value of d , which is
presented in Fig. 2. The scale break in this figure is in the
range −100 meV to −3600 meV. As can be seen from Fig. 2
in this approach, one can clearly observe the formation of the
bottleneck effect in the calculated dependencies for stationary
electronic states, and this effect is the most evident for the
lower levels of the spectrum. Thus, considering how the hole
states of the nanostructure are localized (in fact, in the area of
the internal potential barrier), it is obvious that the hole energy
levels do not actually depend on the value of d , which is
confirmed by the calculated dependencies in Fig. 2, which are
almost straight lines. It should also be noted that for wurtzite
and zinc-blende type semiconductors, the dependencies of
both quasiparticles on d are similar.

Before proceeding to the study of the acoustic phonons’ in-
fluence on exciton states of the nanosystem, let us find out the
etymology of the formation for the values of the deformation

FIG. 2. The electron E (e)
n and hole E (h)

m spectra calculated as
functions of the internal barrier position (0 � d � d1 + d2) in the to-
tal potential well (solid lines correspond to wurtzite semiconductors,
dashed lines correspond to zinc blende semiconductors). The energy
scale has a break in the range from −100 meV to −3600 meV.

TABLE II. Physical parameters of the GaN and Al0.4Ga0.6N zinc-blende semiconductors.

Material m∗
e m∗

h ρ(kg/m3) C11(GPa) C12(GPa) C44(GPa) e14(C/m2) aC (eV)

GaN 0.190 0.290 6150 293 159 159 0.50 −6.71
Al0.4Ga0.6N 0.246 0.362 4992 297.4 159.4 172.6 0.54 −5.8
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FIG. 3. Displacements u1(z) (black lines) and u3(z) (red lines)
localized in the nanosystem at qx = qy = q = 10 nm−1 (solid lines
correspond to wurtzite semiconductors, dashed lines correspond to
zinc-blende semiconductors).

and piezoelectric potentials in the studied nanosystem. For
this purpose, we calculated the values of the displacements
u1 and u3 included in the mentioned potentials according
to expressions Eqs. (44), (45), (51), and (52). An example
of the result of such calculations for u1 and u3, when they
are localized within the entire area of the nanosystem, is
presented in Fig. 3, respectively, for wurtzite semiconductors
(solid lines) and zinc-blende semiconductors (dashed lines).
The energies’ acoustic phonon spectrum obtained from the
dispersion equation determined by the boundary conditions
Eq. (33) must satisfy the limits of application of the elastic
continuum model, which imposes a condition on their value:
�ac

n1
� 35 meV [18–20,22]. Taking this fact into account and

without loss of generality, to establish differences between the
dependencies obtained for different types of crystal structure,
the value of the wave number were taken fixed: qx = qy =
q = 10 nm−1. In this case, the calculated acoustic phonon
energies belong to the interval from 10 meV to 29 meV. As
can be seen from Fig. 3, the dependencies u1 and u3 testify
a similar behavior, forming the same number of nodes in the
nanostructure region, but they differ in amplitude and phase
both among themselves and in both cases of the crystal struc-
ture of semiconductors.

Further, the results presented in Fig. 4 demonstrate the
behavior of the deformation and piezoelectric potentials in the
area of the nanosystem. These quantities were calculated for
the same value of the wave number qx = qy = q. As can be
seen from Fig. 4, all potential values acquire only negative
values inside the nanosystem, having a clear tendency to de-
crease from left to right in the scale of z values. In this case,
the largest modulo value of the studied potentials is formed in
the region of the right quantum well at the boundary with the
initial potential barrier. As can be seen from Fig. 4, in the case
when the nanosystem is formed by wurtzite-type semiconduc-
tors, the absolute values of the deformation potential dominate
the absolute values of the piezoelectric potential by 2–5 times.

FIG. 4. Deformation potential (black lines) and piezoelectric po-
tential (red lines) calculated at qx = qy = q = 10 nm−1 (solid lines
correspond to wurtzite semiconductors, dashed lines correspond to
zinc blende semiconductors).

However, in the case of a zinc-blende nanosystem, this fact
is not satisfied: the value of the deformation potential is the
dominant value, exceeding the equal absolute value of the
piezoelectric potential by 18–20 times. We obtain that the es-
tablished fact remains valid for all nanosystem configurations
determined in our calculations by the value 0 � d � d1 + d2

introduced above. Thus, we can conclude that in the case
of a wurtzite nanosystem, the effect of acoustic phonons on
exciton states is due to both deformation and piezoelectric
potentials, while in the case of a zinc-blende nanosystem,
the exciton–phonon interaction is determined mainly by the
deformation potential.

Taking into account the localization of electron and hole
states in the nanosystem, in further calculations we calculate
the displacements �nm and decay rates γnm for the first three
exciton states (n = m = 0..2). At the same time, the tem-
perature range from 50 K to 300 K will be relevant for us,
which will make it possible to cover a variety of temperature
conditions for existing semiconductor devices. To compare,
we will first consider the dependencies for displacements
�nm = �nm(d ) for different types of crystal lattices, and then,
in the same vein, we will analyze the dependencies for γnm =
γnm(d ).

Figures 5(a)–5(f) present the results of calculating the
shifts of the exciton spectrum, which were performed for four
temperature values: 50 K, 100 K, 200 K, 300 K. Figures 5(a)–
5(c) correspond to the case of wurtzite semiconductors (WZ),
and Figs. 5(d)–5(f) correspond to zinc-blende semiconductors
(ZB), respectively. As can be seen from the given dependen-
cies �nm = �nm(d ) in the low-temperature regime (50 K), all
shifts have a negative sign, i.e., the interaction with acoustic
phonons results in a shift of exciton energy levels to lower en-
ergies range. At the same time, we do not set ourselves the task
of considering the simplest case when T = 0 K; moreover,
this case cannot be obtained by passing to the limit T → 0 K
within the proposed theory. It should be noted that increasing
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FIG. 5. Shifts of the exciton spectrum calculated as functions of d for various temperatures. (a)–(c) correspond to a wurtzite semiconductors
and (d)–(f) correspond to a zinc-blende semiconductors.

temperature does not result in an increase in the absolute
values of the shifts and the formation in the dependencies’
�nm(d ) intervals of d values, in which the values of the shifts
depend on d sufficiently and such intervals, where such de-
pendence is not great. For example, for �WZ

00 (d ) and �ZB
00 (d ),

this interval of strong dependence on d is actually the same:
0 nm � d � 1.3 nm, however, in the case of �WZ

00 (d ) the max-
imum absolute value of the shift at T = 300 K is two times
greater than in the case of �ZB

00 (d ). In the interval 1.5 nm �
d � 2.75 nm, both values of shifts depend on d insufficiently.
It can be seen from Figs. 5(b) and 5(e) that the dependencies of
the shifts �WZ

11 (d ) and �ZB
11 (d ) are quite similar to each other

in the interval 0 nm � d � 0.35 nm. For the remaining values
of d , it is clear that �WZ

11 (d ) > �ZB
11 (d ). Taking into account

now the dependencies in Figs. 5(c) and 5(f), it is estab-
lished that the shifts �WZ

22 (d ) and �ZB
22 (d ) in a narrow interval

1.45 nm � d � 1.55 nm form its maximum absolute values.
In addition, despite the formal similarity of the dependencies,
�WZ

22 are clearly different from each other: �ZB
11 |T =300 K >

�ZB
11 |T =200 K > �ZB

11 |T =100 K > �ZB
11 |T =50K, and in the case of

�ZB
22 the values are quite close to each other for all temperature

values.
Further in Figs. 6(a)–6(f), the results of calculations and

the decay rates for exciton states are presented, the shift of
which was calculated above. The temperature values at which
the calculations were performed are the same as in the case
of the dependencies presented in Fig. 5. As can be seen from
the comparisons of Fig. 6(a)–6(c) and Figs. 6(d)–6(f), they
are quite similar to the case of both types of crystal lattice,
but a number of differences should be noted. The maximum

values of decay rates are somewhat higher for the case of
wurtzite semiconductors; moreover, the temperature increase
does not affect the dependencies for zinc-blende semiconduc-
tors to a less extent, which at all temperatures will remain
symmetrical relative to the value d = (d1 + d2)/2. Special
attention is paid to providing the condition: γ WZ(ZB)

nm |T =50 K <

γ WZ(ZB)
nm |T =100 K < γ WZ(ZB)

nm |T =200K < γ WZ(ZB)
nm |T =300K for all

possible nanosystem configurations d . Having summarized
the dependency analysis in Figs. 5 and 6, it should be con-
cluded that the lower absolute values of shifts and decay
rates in the case of zinc-blende semiconductors are due to
the dominance of only the mechanism of interaction with
acoustic phonons through the deformation potential, while
in the case of wurtzite semiconductors, both mechanisms of
such interaction are beneficial, which, in fact was predicted
by analyzing the dependencies in Fig. 4.

Further, the dependencies presented in Fig. 7 result in
calculations for the energies of electron-hole transitions and
exciton basic band-shape function, which were calculated for
the above temperatures in the vicinity of these energy values.
As can be seen from Fig. 7(a), the energies of electron-hole
transitions in the case of zinc-blende-type semiconductors
somewhat predominate on results obtained in the case of
wurtzite-type semiconductors, and the dependencies on d
themselves are quite similar. The values of these energies,
obtained at d = dexp, to be clear, correspond to the val-
ues of the maxima of the exciton basic band-shape function
L11, L22, L33. It can be seen from Figs. 7(b) and 7(c) that
the dependencies L11, L22, L33 on energy ξ are of quasi-
Lorenz curves. With the temperature increase, the effect of the
widths increase for the obtained curves and a decrease of their
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(a) (b) (c)

(d) (e) (f)

. . . . . . . . . . . . . . . . . . . . .

. . . . . . .. . . . . . .. . . . . . .

FIG. 6. Decay rates of the exciton states calculated as functions of d for various temperatures. (a)–(c) correspond to a wurtzite semicon-
ductors and (e)–(f) correspond to a zinc-blende semiconductors.

maxima values is observed, which is additionally explained by
the dependencies shown in Fig. 6. It should be noted that for
all calculated temperature values, the maximum value of the
function Lnm(ξ ) is always observed in the case of a nanostruc-
ture based on zinc-blende semiconductors. This is explained
by the effect established above, when for zinc-blende-type
semiconductors, the contribution of acoustic phonons to the
exciton-phonon interaction is mainly due to the deformation
potential and is smaller than in the case of wurtzite semicon-
ductors. In addition, as seen from Figs. 6(c) and 6(d), at T =
50 K the following condition is satisfied: Lnm(ξ )|T =50 K �
Lnm(ξ )|T =100 K, Lnm(ξ )|T =200 K, Lnm(ξ )|T =300 K. Thus, we can
say that there is an approximation to the theory at T = 0 K

when γnm = 0, according to the general theory of excitons
[45], however, it is clear that we do not mean the direct
convergence of these results and the theory at T = 0 K should
be considered separately.

At the final stage, we will study the effect of acoustic
phonons on the renormalization of the exciton effective mass
in the nanosystem under study. Since the effective mass of an
exciton is different in different semiconductor layers, then in
relation Eq. (65) we will consider the value of the reduced
mass of the exciton μ the value of its mass averaged over the
contribution of the layers of the nanosystem (this approach
was used in Ref. [53] for the electronic problem). In our case,
the expression for the average exciton mass is as follows:

〈μ〉 = 〈μnm〉 =
[∫ +∞

−∞

{
m(e)(ze) + m(h)(zh)

}∣∣	 (e)
n (ze)

∣∣2
m(e)(ze)

dze

∫ +∞

−∞

∣∣	 (e)
m (zh)

∣∣2
m(h)(zh)

dzh

]−1

. (65)

In addition, expression Eq. (64) clearly shows that the average
exciton mass depends on the numbers n and m of the corre-
sponding bound electron and hole states.

In Fig. 8, the temperature dependencies of the average
effective exciton masses are presented, demonstrating their
renormalization due to the influence of acoustic phonons for
a nanosystem with wurtzite and zinc-blende semiconductor
layers, respectively. As can be seen from Fig. 8, the exciton
effective masses 〈μ11〉, 〈μ22〉, 〈μ33〉 are close to each other
at T = 50 K. In this case, for all temperature values, the
following condition is satisfied: 〈μ11〉 > 〈μ22〉 > 〈μ33〉 and
always 〈μWZ

nm 〉 > 〈μZB
nm〉, and the observed effect is an increase

of the exciton effective mass due to the exciton-phonon in-
teraction. It should be noted that at temperatures T < 200 K
the dependencies of 〈μ11〉 on T are of a quadratic type,
which is weakly expressed for 〈μ22〉 and even weaker for
〈μ33〉. At temperatures T > 200 K, a quasilinear dependence
of the renormalized effective exciton masses on temperature
is already observed, which is a consequence of the actual
implementation of the approximation: νn1 (q) ≈ kBT/�n1 (q).
In general, it should be noted that in the case of wurtzite
semiconductors, the renormalized effective mass of an exciton
increases more than in the case of semiconductors of the
zinc-blende type [54] and amounts to the maximum possible
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(a) (b)

(c) (d)

FIG. 7. The energies of electron-hole transitions E (e,h)
nm as functions of d (a) and exciton basic band shape functions (b)–(d), calculated

in the vicinity of these energies for various temperatures. Solid lines correspond to wurtzite semiconductors and dashed lines correspond to
zinc-blende semiconductors.

FIG. 8. Temperature dependencies of the effective exciton mass
〈μnm〉 in the case when layers of nanosystem are of wurtzite semi-
conductors (solid lines) and zinc blende (dashed lines).

about 8% and 5%, respectively; for 〈μ11〉, for 〈μ22〉 and 〈μ33〉,
these values are even less. Thus, it can be summarized that as
the number of levels of electron and hole states increases, the
effective mass of the exciton formed by these states is less and
less renormalized due to interaction with acoustic phonons.

VI. SUMMARY

Summing up, it should be noted that the following main
statements of the developed theory and results obtained on
its basis were presented. A consistent analytical theory of
the interaction of excitons with acoustic phonons in planar
semiconductor nitride nanosystems have been developed. This
theory takes into account both possible cases of orientation
of the crystal lattice of nitride semiconductor nanosystems,
the wurtzite type and zinc-blende type, respectively, and can
be applied for arbitrary nonzero temperatures. First, using the
model of effective masses for an electron and a hole, the exci-
ton states were investigated and the exciton Hamiltonian was
obtained in the representation of the second quantization. The
theory is qualitatively specified by the use of exact analytical
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expressions for the phonon modes obtained in the elastic con-
tinuum model, which determines its flexibility and variability
and also makes it possible to be presented in the secondary
quantization image of Hamiltonians, which are responsible
for the interaction mechanisms through the deformation and
piezoelectric potentials. Having performed the calculation
of mass operators and applying the method of temperature
Green’s functions together with the Dyson equation, the prob-
lem of renormalizing the exciton spectrum was solved to
obtain the characteristics of this spectrum: temperature shifts
and decay rates. In addition, expressions were obtained for
the exciton basic band-shape function and the renormalized
exciton effective mass averaged over the nanosystem layers.
Having performed calculations using the proposed theory, the
following results were obtained.

We have found that for the energy levels of electrons and
holes and the energies of electron-hole transitions in the case
of a wurtzite nanosystem, their values somewhat prevail in the
case of a zinc-blende nanosystem.

We have found that the deformation and piezoelectric po-
tentials are of negative sign, but in the case of a wurtzite
nanosystem these potentials are of the same order of mag-
nitude, while for a zinc-blende nanosystem the deformation
potential significantly exceeds the piezoelectric potential, be-
ing in this case the predominant factor contributing to the
exciton-phonon interaction.

We have shown that the temperature shifts of the exciton
spectrum calculated depending on the geometric configuration

of nanosystems have a negative sign, and the absolute values
of the shifts have a clear tendency to increase with tempera-
ture increase. Similarly, we have established the temperature
increase in the decay rates of the exciton states. We also
found that the values of temperature shifts and decay rates
for the same exciton states in the case of a wurtzite nanosys-
tem are dominated by the same values for the zinc-blende
nanosystem.

By analyzing the function of the absorption band calcu-
lated for temperatures from 50 K to 300 K, it was found
that the effect of acoustic phonons suppresses electron-hole
transitions, and this effect is much more sufficient for wurtzite
nanosystems. In addition, for the half-width γnm in the case of
zinc-blende nanosystems, we observe the effect that γ22 → 0
and γ33 → 0 if T → 0 K.

We have found that the value of the renormalized exciton
effective mass increases due to the interaction with acoustic
phonons for all calculated temperatures, and the value of such
an increase is up to 8% in the case of a wurtzite nanosystem
and up to 5% in the case of a zinc-blende nanosystem. In this
case, the temperature dependencies of the effective exciton
mass are at first quasiquadratic, and at temperatures above
200 K they are quasilinear.

We hope that the proposed theory and results of calculation
on its basis will be helpful for researchers working both in
the field of theoretical and experimental investigation of the
interaction of quasiparticles in nanosystems and in the field of
optoelectronic devices such as QCLs and QCDs.

APPENDIX: ACOUSTIC PHONON MODES, CALCULATIONS OF PIEZOELECTRIC POTENTIAL

The solutions of Eq. (43) are as follows:

φZB
pz (z) = A(p)eqz + B(p)e−qz − e(p)

14

ε0ε(p)q

√
2h̄

S⊥ρ (p)ωn1q

{
eqz
∫ z

0
e−qξ(p)(q, ξ )dξ − e−qz

∫ z

0
eqξ(p)(q, ξ )dξ

}
;

(p)
s (q, ξ ) = qxqyw

(p)
3 (z) − i

(
qy

dw
(p)
1 (z)

dz
+ qx

dw
(p)
2 (z)

dz

)

= −
√

ρ (p)qy∥∥u(p)
s (q)

∥∥
2∑

s=1

[
qc(p)

1 λ(p)
s + qx

{(
λ(p)

s

)2 + (χ (p)
1

)2}](
A(p)

2s−1eλ
(p)
s z + A(p)

2s e−λ
(p)
s z
)

+ iqxχ
(
A(p)

2 e−χz − B(p)
2 eχz

)
.

(A1)

Acoustic phonon modes in the case of wurtzite semiconductors, which are solutions of Eq. (30), are as follows:

ũ(p)
1 (z) = −iqc(p)

1

2∑
s=1

(
Ã(p)

2s−1eλ
(p)
s z − Ã(p)

2s e−λ
(p)
s z
)/∥∥u(p)

s (q)
∥∥,

ũ(p)
3 (z) = −

2∑
s=1

{(
λ(p)

s

)2 + (χ (p)
1

)2}(
Ã(p)

2s−1eλ
(p)
s z + Ã(p)

2s e−λ
(p)
s z
)/∥∥u(p)

s (q)
∥∥,

∥∥ũ(p)
s (q)

∥∥ =
√∣∣qc(p)

1 λ
(p)
s

∣∣2 +
∣∣∣(λ(p)

s
)2 + (χ (p)

1

)2∣∣∣2, ũ(p)
2 (z) = Ã(p)

2 e−χ̃z + B̃(p)
2 eχ̃z, χ̃ =

√√√√q2
C(p)

66

C(p)
44

− ρ (p)ω2

C(p)
44

. (A2)
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Solutions of Eq. (50) look like the following:

φWZ
pz (z) = Ã(p)eqz + B̃(p)e−qz − 1

ε0ε(p)

√
h̄

2S⊥ρ (p)ωn1q

{
eqz
∫ z

0
e−qξ ̃(p)

s (q, ξ )dξ − e−qz
∫ z

0
eqξ ̃(p)

s (q, ξ )dξ

}
;

̃(p)
s (q, ξ ) = i

(
e(p)

15 + e(p)
31

)(
qx

dũ(p)
1 (z)

dz
+ qy

dũ(p)
2 (z)

dz

)
+ e(p)

15 q2ũ(p)
3 (z) − e(p)

31

d2ũ(p)
3 (z)

dz2

=
√

ρ (p)
{
i
(
e(p)

15 + e(p)
31

)
qyχ̃
(
Ã(p)

2 e−χ̃z − B̃(p)
2 eχ̃z

)
+

2∑
s=1

{(
e(p)

15 + e(p)
31

)
qc(p)

1 qxλ
(p)
s − [e(p)

15 q2 + e(p)
31

(
λ(p)

s

)2][(
λ(p)

s

)2 + (χ (p)
1

)2]}

×(Ã(p)
2s−1eλ

(p)
s z + Ã(p)

2s e−λ
(p)
s z
)/∥∥u(p)

s (q)
∥∥}. (A3)

[1] S. Chin, V. Mitev, E. Giraud, R. Maulini, S. Blaser, and D. L.
Boiko, Electrically driven frequency blue-chirped emission in
Fabry–Perot cavity quantum cascade laser at room temperature,
Appl. Phys. Lett. 118, 021108 (2021).

[2] K. Wang, T. Grange, T. Lin, L. Wang, Z. Jéhn, S. Birner, J. Yun,
W. Terashima, and H. Hirayama, Broadening mechanisms and
self-consistent gain calculations for GaN quantum cascade laser
structures, Appl. Phys. Lett. 113, 061109 (2018).

[3] P. Quach, A. Jollivet, A. Babichev, N. Isac, M. Morassi, A.
Lemaitre, P. A. Yunin, E. Frayssinet, P. de Mierry, M. Jeannin,
A. Bousseksou, R. Colombelli, M. Tchernycheva, Y. Cordier,
and F. H. Julien, A 5.7 THz GaN/AlGaN quantum cascade
detector based on polar step quantum wells, Appl. Phys. Lett.
120, 171103 (2022).

[4] P. M. Mensz, B. Dror, A. Ajay, C. Bougerol, E. Monroy, M.
Orenstein, and G. Bahir, Design and implementation of bound-
to-quasibound GaN/AlGaN photovoltaic quantum well infrared
photodetectors operating in the short wavelength infrared range
at room temperature, J. Appl. Phys. 125, 174505 (2018).

[5] J. Gleize, M. A. Renucci, J. Frandon, and F. Demangeot,
Anisotropy effects on polar optical phonons in wurtzite
GaN/AlN superlattices, Phys. Rev. B 60, 15985 (1999).

[6] J.-j. Shi, Interface optical-phonon modes and electron–
interface-phonon interactions in wurtzite GaN/AlN quantum
wells, Phys. Rev. B 68, 165335 (2003).

[7] L. Li, D. Liu, and J.-J. Shi, Electron quasi-confined-optical-
phonon interactions in wurtzite GaN/AlN quantum wells, Eur.
Phys. J. B 44, 401 (2005).

[8] J. T. Lü and C. J. C, Confined optical phonon modes and
electron-phonon interactions in GaN/ZnO wurtzite quantum
wells, Phys. Rev. B 71, 155304 (2005).

[9] A. Cros and F. Pomer, Phonon dispersion in GaN/AlN non-
polar quantum wells: Confinement and anisotropy, Phys. Status
Solidi C 4, 2515 (2007).

[10] L. Zhang, Full optical phonon states and their dispersive spectra
of a wurtzite GaN/AlGaN superlattice: Quantum size effect,
Phys. Status Solidi B 248, 2120 (2011).

[11] W. D. Huang, Y. J. Ren, J. F. Yan, Q. Wu, and S. H.
Zhang, Propagating optical phonons and their properties in

GaN/AlN quantum wells, Eur. Phys. J. Appl. Phys. 54, 11301
(2011).

[12] F. Q. Zhao and M. Zhang, Bound polarons in wurtzite
GaN/AlGaN quantum well, Phys. Status Solidi C 8, 62
(2011).

[13] W. D. Huang, Y. J. Ren, C. X. Xia, and S. Y. Wei, Dispersions of
propagating optical phonons and electron-phonon interactions
in wurtzite GaN/ZnO quantum wells, Eur. Phys. J. Appl. Phys.
57, 11301 (2012).

[14] Y. Qu and S. L. Ban, Electron mobility in wurtzite nitride quan-
tum wells limited by optical-phonons and its pressure effect,
Eur. Phys. J. B 69, 321 (2009).

[15] J. Zhu, B. S. L., and S. H. Ha, Phonon and electron-hole plasma
effects on binding energies of excitons in wurtzite GaN/InGaN
quantum wells, Eur. Phys. J. B 85, 67 (2012).

[16] K. Park, A. Mohamed, M. Dutta, M. A. Stroscio, and C.
Bayram, Electron scattering via interface optical phonons with
high group velocity in wurtzite GaN-based quantum well het-
erostructure, Sci. Rep. 8, 15947 (2018).

[17] X. Zhou, Z. Wang, Y. Qu, and S. Ban, Electron mobility in-
fluenced by optical phonons in AlGaN/GaN MISHEMTs with
different gate dielectrics, Appl. Phys. A 126, 825 (2020).

[18] E. P. Pokatilov, D. L. Nika, and A. A. Balandin, Phonon
spectrum and group velocities in AlN/GaN/AlN and related
heterostructures, Superlattices Microstruct. 33, 155 (2003).

[19] E. P. Pokatilov, D. L. Nika, and A. A. Balandin, Con-
fined electron-confined phonon scattering rates in wurtzite
AlN/GaN/AlN heterostructures, J. Appl. Phys. 95, 5626
(2004).

[20] E. P. Pokatilov, D. L. Nika, A. S. Askerov, and A. A. Balandin,
Size-quantized oscillations of the electron mobility limited by
the optical and confined acoustic phonons in the nanoscale
heterostructures, J. Appl. Phys. 102, 054304 (2007).

[21] Y. H. Zan, S. L. Ban, Y. J. Chai, and Y. Qu, Acoustic
phonon modes in asymmetric AlGaN/GaN/AlGaN quantum
wells, Superlattices Microstruct. 102, 64 (2017).

[22] I. Boyko, M. Petryk, and J. Fraissard, Spectrum and normalized
modes of acoustic phonons in multilayer nitride-based nanos-
tructure, Eur. Phys. J. B 93, 57 (2017).

075403-16

https://doi.org/10.1063/5.0033030
https://doi.org/10.1063/1.5029520
https://doi.org/10.1063/5.0086641
https://doi.org/10.1063/1.5079408
https://doi.org/10.1103/PhysRevB.60.15985
https://doi.org/10.1103/PhysRevB.68.165335
https://doi.org/10.1140/epjb/e2005-00139-x
https://doi.org/10.1103/PhysRevB.71.155304
https://doi.org/10.1002/pssc.200674731
https://doi.org/10.1002/pssb.201046602
https://doi.org/10.1051/epjap/2010100340
https://doi.org/10.1002/pssc.201000628
https://doi.org/10.1051/epjap/2011110276
https://doi.org/10.1140/epjb/e2009-00166-7
https://doi.org/10.1140/epjb/e2012-20887-6
https://doi.org/10.1038/s41598-018-34441-4
https://doi.org/10.1007/s00339-020-04005-3
https://doi.org/10.1016/S0749-6036(03)00069-7
https://doi.org/10.1063/1.1710705
https://doi.org/10.1063/1.2777105
https://doi.org/10.1016/j.spmi.2016.12.016
https://doi.org/10.1140/epjb/e2020-100597-x


EXCITON-PHONON INTERACTION IN PLANAR NITRIDE … PHYSICAL REVIEW B 108, 075403 (2023)

[23] A. Balandin and K. L. Wang, Significant decrease of the lattice
thermal conductivity due to phonon confinement in a free-
standing semiconductor quantum well, Phys. Rev. B 58, 1544
(1998).

[24] J. Wang, L. Zhu, and W. Yin, Effects of heterogeneity and pre-
stress field on phonon properties of semiconductor nanofilms,
Comput. Mater. Sci. 145, 14 (2018).

[25] L. Zhu and H. Luo, Phonon properties and thermal conductivity
of textscGaN nanofilm under prestress and surface/interface
stress, J. Alloys Compd. 685, 619 (2016).

[26] L. Huang, S. Fan, L. Sang, Y. Mei, L. Ying, B. Zhang, and H.
Long, Thermal conductivity and phonon scattering of AlGaN
nanofilms by elastic theory and Boltzmann transport equation,
Semicond. Sci. Technol. 37, 055003 (2016).

[27] M. Smith, J. Y. Lin, H. X. Jiang, A. Khan, Q. Chen, A. Salvador,
A. Botchkarev, W. Kim, and H. Morkoc, Exciton-phonon inter-
action in InGaN/GaN and GaN/AlGaN multiple quantum wells,
Appl. Phys. Lett. 70, 2882 (1997).

[28] A. K. Viswanath, J. I. Lee, D. Kim, C. R. Lee, and J. Y. Leem,
Exciton-phonon interactions, exciton binding energy, and their
importance in the realization of room-temperature semiconduc-
tor lasers based on GaN, Phys. Rev. B 58, 16333 (1998).

[29] S. J. Xu, L. X. Zheng, S. H. Cheung, M. H. Xie, and S. Y. Tong,
Comparative study on the broadening of exciton luminescence
linewidth due to phonon in zinc-blende and wurtzite GaN epi-
layers, Appl. Phys. Lett. 81, 4389 (2002).

[30] I. A. Ostapenko, G. Hönig, S. Rodt, A. Schliwa, A. Hoffmann,
D. Bimberg, M.-R. Dachner, M. Richter, A. Knorr, S. Kako,
and Y. Arakawa, Exciton acoustic-phonon coupling in single
GaN/AlN quantum dots, Phys. Rev. B 85, 081303(R) (2012).

[31] M. Bouzidi, S. Soltani, I. Halidou, Z. Chine, and B. El Jani,
Photoreflectance investigation of exciton-acoustic phonon scat-
tering in GaN grown by GaN grown by MOVPE, Solid State
Sci. 54, 59 (2016).

[32] N. Grigorchuk, Exciton-phonon coupling functions in uniaxial
crystals, Phys. Rev. B 55, 888 (1997).

[33] N. I. Grigorchuk, Exciton-phonon coupling and exciton damp-
ing due to acoustic phonons in anisotropic nonpolar crystals, J.
Phys.: Condens. Matter 11, 417 (1999).

[34] A. Sedhain, J. Li, J. Y. Lin, and H. X. Jiang, Probing exciton-
phonon interaction in AlN epilayers by photoluminescence,
Appl. Phys. Lett. 95, 061106 (2009).

[35] I. A. Aija, P. R. Edwards, Z. Liu, J. C. Yan, R. W. Martin, and
I. S. Roqan, Excitonic localization in AlN-rich multi-quantum-
well grain boundaries, Appl. Phys. Lett. 105, 122111 (2014).

[36] D. Bayerl and E. Kioupakis, Room-temperature stability of
excitons and transverse-electric polarized deep-ultraviolet lumi-
nescence in atomically thin GaN quantum wells, Appl. Phys.
Lett. 115, 131101 (2019).

[37] G. Staszczak, W. Trzeciakowski, E. Monroy, A. Bercha, G.
Muzioł, C. Skierbiszewski, P. Perlin, and T. Suski, Hydro-
static pressure dependence of indirect and direct excitons in
InGaN/GaN quantum wells, Phys. Rev. B 101, 085306 (2020).

[38] I. Vurgaftman and J. R. Meyer, Band parameters for nitrogen-
containing semiconductors, J. Appl. Phys. 94, 3675 (2003).

[39] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Spontaneous
polarization and piezoelectric constants of III-V nitrides, Phys.
Rev. B 56, R10024(R) (1997).

[40] F. Bernardini and V. Fiorentini, Macroscopic polarization and
band offsets at nitride heterojunctions, Phys. Rev. B 57,
R9427(R) (1998).

[41] F. Bernardini and V. Fiorentini, Spontaneous versus piezo-
electric polarization in III-V nitrides: Conceptual aspects and
practical consequences, Phys. Status Solidi B 216, 391 (1999).

[42] A. Zoroddu, F. Bernardini, P. Ruggerone, and V. Fiorentini,
First-principles prediction of structure, energetics, formation
enthalpy, elastic constants, polarization, and piezoelectric con-
stants of AlN, GaN, and InN: Comparison of local and
gradient-corrected density-functional theory, Phys. Rev. B 64,
045208 (2001).

[43] A. D. Polyanin and V. F. Zaitsev, Handbook of Ordinary Differ-
ential Equations Exact Solutions, Methods, and Problems (CRC
Press, Boca Raton, NewYork, London, 1995).

[44] H. Wang, G. A. Farias, and V. N. Freire, Interface-related
exciton-energy blueshift in GaN/AlGaN zinc-blende and
wurtzite single quantum wells, Phys. Rev. B 60, 5705 (1999).

[45] J. Zhu, S. L. Ban, and S. H. Ha, Binding energies of excitons in
strained [0001]-oriented wurtzite AlGaN/GaN double quantum
wells, Phys. Status Solidi B 248, 384 (1999).

[46] I. V. Boyko, M. R. Petryk, and J. Fraissard, Theory of the shear
acoustic phonons spectrum and their interaction with electrons
due to the piezoelectric potential in AlN/GaN nanostructures of
plane symmetry, Low Temp. Phys. 47, 141 (2021).

[47] I. V. Boyko, M. R. Petryk, and J. Fraissard, Investigation of
the electron-acoustic phonon interaction via the deformation
and piezoelectric potentials in AlN/GaN resonant tunnel-
ing nanostructures, Superlattices Microstruct. 156, 106928
(2021).

[48] R. S. Knox, Theory of Excitons (Academic Press, New York,
1963).

[49] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, Band pa-
rameters for III-V compound semiconductors and their alloys,
J. Appl. Phys. 89, 5815 (2001).

[50] A. E. Romanov, T. J. Baker, S. Nakamura, and J. S. Speck,
Strain-induced polarization in wurtzite III-nitride semipolar
layers, J. Appl. Phys. 100, 023522 (2006).

[51] S. Sakr, E. Giraud, M. Tchernycheva, N. Isac, P. Quach,
E. Warde, N. Grandjean, and F. H. Julien, A simplified
GaN/AlGaN quantum cascade detector with an alloy extractor,
Appl. Phys. Lett. 101, 251101 (2012).

[52] S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N.
Grandjean, and F. H. Julien, Two-color GaN/ALGaN quantum
cascade detector at short infrared wavelengths of 1 and 1.7 μm,
Appl. Phys. Lett. 100, 181103 (2012).

[53] X. Gao, D. Botez, and I. Knezevic, X-valley leakage in
GaAs-based midinfrared quantum cascade lasers: A Monte
Carlo study, J. Appl. Phys. 101, 063101 (2007).

[54] N. Bannov, V. Mitin, and M. Stroscio, Confined acoustic
phonons in a free-standing quantum well and their interaction
with electrons, Phys. Status Solidi B 183, 131 (1994).

075403-17

https://doi.org/10.1103/PhysRevB.58.1544
https://doi.org/10.1016/j.commatsci.2017.12.058
https://doi.org/10.1016/j.jallcom.2016.05.314
https://doi.org/10.1088/1361-6641/ac5293
https://doi.org/10.1063/1.119030
https://doi.org/10.1103/PhysRevB.58.16333
https://doi.org/10.1063/1.1526450
https://doi.org/10.1103/PhysRevB.85.081303
https://doi.org/10.1016/j.solidstatesciences.2016.01.002
https://doi.org/10.1103/PhysRevB.55.888
https://doi.org/10.1088/0953-8984/11/2/008
https://doi.org/10.1063/1.3206672
https://doi.org/10.1063/1.4896681
https://doi.org/10.1063/1.5111546
https://doi.org/10.1103/PhysRevB.101.085306
https://doi.org/10.1063/1.1600519
https://doi.org/10.1103/PhysRevB.56.R10024
https://doi.org/10.1103/PhysRevB.57.R9427
https://doi.org/10.1002/(SICI)1521-3951(199911)216:1<391::AID-PSSB391>3.0.CO;2-K
https://doi.org/10.1103/PhysRevB.64.045208
https://doi.org/10.1103/PhysRevB.60.5705
https://doi.org/10.1002/pssb.201000615
https://doi.org/10.1063/10.0003176
https://doi.org/10.1016/j.spmi.2021.106928
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.2218385
https://doi.org/10.1063/1.4772501
https://doi.org/10.1063/1.4707904
https://doi.org/10.1063/1.2711153
https://doi.org/10.1002/pssb.2221830109

