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From Bloch oscillations to a steady-state current in strongly biased mesoscopic devices
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It has long been known that quantum particles moving in a periodic lattice and subject to a constant force field
undergo an oscillatory motion that is referred to as Bloch oscillations (BOs). However, it is also known that,
under quite general conditions, a biased mesoscopic system connected to leads should settle in a steady-state
regime characterized by a constant electric current (described by the Landauer formula). These two observations
naturally lead to the question: do BOs survive in some manner in mesoscopic devices in the presence of
a constant electric field? To answer this question, we explore the interface between these two regimes in
two-terminal devices and demonstrate theoretically that BOs can actually be observed in such apparatuses as
a transient phenomenon, which relaxes for long times to a steady-state current that agrees with the Landauer
formula. Furthermore, we also combine analytical and numerical time-evolution results for a one-dimensional
tight-binding model of a biased two-terminal mesoscopic system, in order to characterize the decay times of the
transient BOs and establish the conditions under which they can occur.
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I. INTRODUCTION

When electrons moving in a periodic lattice are acceler-
ated by a constant electric field, they give rise to oscillatory
currents. This long-established phenomenon is referred to as
Bloch oscillations [1,2] (BOs) and is expected for any quan-
tum particle that moves across a periodic background potential
in the presence of a uniform driving force (see Glück et al.
[3] for an extensive review). Despite being theoretically well
understood, the experimental observation of BOs remains an
outstanding challenge in solid-state systems [4]. The fragility
of electronic BOs in solid-state systems results from the fact
that their period (inversely proportional to the applied field) is
typically much larger than the electronic scattering times, thus
leading to a loss of phase-coherence before a single current
oscillation can be finalized and to the emergence of a direct
current, in accordance with the Esaki-Tsu relation [5,6]. As
such, to this day electronic BOs have only ever been detected
in synthetic semiconducting superlattices, initially predicted
in Ref. [7] and experimentally detected in Ref. [8] using
four-wave-mixing and in Ref. [9] by direct observation of
emission of coherent radiation, which is related to the current
via the electromagnetic dyadic Green’s functions [10]. A brief
overview of the topic is given in Ref. [11]. Analogs of BOs
have been observed in a variety of alternative platforms, such
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as modulated photonic waveguides [12–17], arrays of coupled
acoustic cavities [18,19], ultracold atoms in optical potentials
[20–22], and even in superconducting q-bit arrays [23].

On the other hand, it is also expected that in a mesoscopic
system connected to electrodes at different electrochemical
potentials, an electric current will begin to flow, which eventu-
ally reaches a steady-state regime. As first argued by Landauer
[24,25] and later generalized by Büttiker [26], the steady-state
current flowing between the electrodes is proportional to the
quantum transmittance of the sample: a nonlocal property
that is sample-specific and strongly depends on the precise
geometry of the device [27,28]. This result is the celebrated
Landauer formula, which was later demonstrated [29,30] to
yield the same steady-state current as the one derived by
Caroli et al. [31] in the absence of interactions, using a
nonequilibrium Green’s function formalism. It is important
to note that both these approaches assume that the system
reaches a nonequilibrium steady state, making no attempts to
describe how (or whether) this state is reached. It was latter
theoretically demonstrated that a nonequilibrium steady state
is reached provided the electrodes have a smooth nonzero
density of states [32] and that there are no bound states in
the mesoscopic device [33,34]. A smooth density of states in
the leads gives origin to a loss of memory of the initial state
of the system. Bound states, in turn, give origin to oscillating
behavior in the current. The establishment of a steady-state
in biased mesoscopic system after an initial transient regime
has been theoretically demonstrated in systems assuming that
the current is driven by either the lead-sample couplings
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(partitioned setup) [35] or a static electric field that is
suddenly applied across the device (partition-free setup)
[32,36,37]. Importantly, the steady-state current obtained
from either of these approaches coincides [32].

The dynamics of current in the transient regime that pre-
cedes the steady-state have been subject of increasing interest
[34,38–50]. The transient regime has been shown to unveil
exotic quantum effects that are otherwise washed out in the
steady state. Two remarkable examples of this are (i) the
ability to distinguish the signatures of Andreev and quasi-
Majorana states in quantum transport data of superconducting
nanowires [44], and (ii) the description of time-dependent
radiation from biased nano-antennas [48]. These studies were
made possible by the recent development of numerical time-
dependent Landauer-Büttiker methods [39,43,47,51–53].

Since the current dynamics of a biased mesoscopic system
naturally relax towards a steady-state current, the question of
whether BOs can be seen in these devices naturally arises. In
a prior work, Popescu and Croy [54] have shown theoretically
that persistent Bloch oscillations can occur in mesoscopic de-
vices at very strong electric fields. However, in this proposal,
BOs only exist when the applied electric field is such that there
is a total reflection of electrons with no net current flowing
through the device. Hence, one might ask if this is always the
case or whether a mesoscopic device can also exhibit Bloch
oscillations as a transient regime which eventually relaxes to
a steady-state, described by the Landauer formula. The goal
of this work is to determine the conditions in which such tran-
sient Bloch oscillations (tBOs) are possible in a mesoscopic
device. To do so, we study the quench dynamics of noninter-
acting particles in a one-dimensional (1D) tight-binding chain
at zero temperature by combining numerical quantum time
evolution [43,47,55] with quantum transmittance calculations
[56]. The results are then physically interpreted on the basis
of (i) Wannier-Stark localization induced by strong electric
fields within the mesoscopic sample, and (ii) scattering states
and wave function matching.

The remaining of this paper is structured as follows: In
Sec. II, we outline the model Hamiltonian considered and
the numerical method used for quantum time evolution. The
main numerical results showing the tBO regime are pre-
sented in Sec. III. The decay times of the tBOs are
computed within a quasiparticle approximation in Sec. IV. Fi-
nally, in Sec. V we summarize our key findings.

II. MODEL AND METHODS

A. Hamiltonian and initial state of the mesoscopic device

We will consider transport through a one-dimensional,
noninteracting mesoscopic system, which we described by a
tight-binding model given by

H(t ) = HC(t ) +
∑

α=L,R

Hα (t ), (1)

where HC describes the central sample, HL (HR) is the Hamil-
tonian for the left (right) lead, which includes the coupling
to the central region. Assuming that the central sample has

(a)

(b)

FIG. 1. (a) Depiction of the 1D mesoscopic device used through-
out this work. The red line represents the spatial profile of the applied
electric potential, with �V being the bias voltage and w (wl ) the
hopping parameter inside the central sample (each of the leads).
(b) The square-modulus of a Wannier-Stark state [Eq. (5) centered at
site m = 0] for two values of the applied electric field (corresponding
to �WS = 100a and 150a).

2L + 1 sites, the Hamiltonian of the central region reads

HC(t ) =
L∑

n=−L

V C
n (t )|n〉〈n| − w

L−1∑
n=−L

(|n〉〈n + 1| + H.c.), (2)

where |n〉 describes an electron at position n, w is the nearest-
neighbor hopping and V C

n (t ) = �(t )eEan (with a the lattice
spacing, −e the electron charge) is the potential due a constant
electric field, applied to the central region, that is switched
on at t = 0. It is important to recall here that when deal-
ing with charged particles, one must consider the difference
between electrochemical and electrostatic potentials. While
the electrochemical potential tends to be constant inside the
conducting channel, the electrostatic potential changes almost
linearly inside the sample [57], which justifies the form of the
potential we chose. The potential V C

n (t ) in our model is an
electrostatic potential, and it is this linear potential that cor-
responds to a constant electric field inside the sample which
ultimately will drive Bloch oscillations. The Hamiltonians of
the leads read

HL(t ) =
−L−1∑
n=−∞

[
V L

n (t )|n〉〈n| − wl |n + 1〉〈n| + H.c.
]
, (3)

HR(t ) =
+∞∑

n=L+1

[
V R

n (t )|n〉〈n| − wl |n − 1〉〈n| + H.c.
]
, (4)

where wl are the lead hoppings, which unlike in
Refs. [43,54,58] we will allow to be wl �= w, and
V L

n (t ) = −�(t )�V/2, V R
n (t ) = �(t )�V/2 are shifts in

the local energy of the lead sites, such that no electric field
is applied in the leads, with the potential difference related
to the electric field in the central region via �V = E (2La).
The Hamiltonian is illustrated in Fig. 1(a). In numerical
simulations, we will actually consider large, but finite leads,
instead of semi-infinite ones.
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At times t > 0 and in the limit L → ∞, the Hamiltonian
HC(t ) reduces to the Wannier-Stark Hamiltonian. It was first
shown by Wannier [59] that this model has an exact solution
consisting of a Wannier-Stark ladder spectrum made up of a
discrete set of nondegenerate and equally spaced energy lev-
els, εm = maeE , with m∈Z. The corresponding eigenstates
are the so-called Wannier-Stark states (WSSs) which, in a
real-space representation, are given by [60,61]

|�m〉 =
∞∑

n=−∞
ψm(n)|n〉 =

∞∑
n=−∞

Jn−m

(
2w

aeE

)
|n〉, (5)

where Jn(x) are Bessel functions of the first kind. State |�m〉 is
centered at the site m and has an effective half width of �WS =
2w/(aeE ). For |n − m| � �WS, the WSS decay exponentially
as |ψm(n)| ∼ e−|n−m|/ξWS , with ξ−1

WS = ln(�−1
WS ). It is important

to notice that for strong biases aE � w, we have that ξWS 

�WS, meaning that in theses conditions the central eigenstates
of a finite chain are well approximated by the WSSs of the
infinite system. In Appendix A, we review how WSSs give
origin to current BOs.

Following a partition-free approach to transport [36] for
times t < 0, the leads and central region are connected and in
thermodynamic equilibrium. The initial state is thus charac-
terized by the reduced density matrix

ρ0 = f (H0) =
∑

κ

f (ε0,κ )|ψ0,κ〉〈ψ0,κ |, (6)

where ε0,κ and |ψ0,κ〉 are the eigenenergies and eigenstates
of the initial Hamiltonian H0 ≡ H(t < 0). f (ε) = [eβ(ε−μ) +
1]−1 is the Fermi distribution function, with β−1 = kBT the
inverse temperature and μ the common Fermi energy. For
concreteness, we assume that the system is initially at half
filling, μ = 0, and restrict ourselves to the zero-temperature
limit. At t = 0, the electric field is switched on, driving the
system away from equilibrium and generating current flow.

B. Method of quantum time evolution

Our numerical study simulates the time-dependent charge
current that traverses a bond in the system, once the electric
field in the central region has been turned on. The local current
going from site n→n + 1 is represented by the operator

In,n+1 = −i(|n + 1〉〈n| − |n〉〈n + 1|), (7)

whose time-dependent expectation value is given by

In,n+1(t ) = Tr[ρ0eiH+tIn,n+1e
−iH+t ]

= 2Im〈n|eiH+tρ0e−iH+t |n + 1〉, (8)

where ρ0 is the initial reduced density matrix (6) for the
partition-free setup, and H+ ≡ H(t > 0) is the Hamiltonian
after the electric field is turned on, which is constant for t > 0.
By defining ∣∣�n+1

t

〉 = e−iH+t |n + 1〉, (9)

∣∣�n
t

〉 = e−iH+t |n〉, (10)

∣∣χn
t

〉 = f (H0)
∣∣�n

t

〉
, (11)

the expectation value of the current can be written as an inner
product

In,n+1(t ) = 2Im
〈
χn

t

∣∣�n+1
t

〉
. (12)

To evaluate the current of the system, we consider finite leads,
such that the whole system (central region + leads) has N
sites. As shown by Santos Pires et al. [47], truncation of the
leads does not affect the current for times t < Ll/wl , where
Ll is the number of sizes of the lead, after which effects of
electron reflection at the chain boundaries start to manifest.
Truncation of the system allows for a simple expansion of
the time evolution operator eiH+t and initial reduced density
matrix ρ0 = f (H0) in terms of Chebyshev polynomials [62]
of H+ and H0, respectively. Explicitly we have

exp [−iH+t] ≈
Mt∑

m=0

2(−i)m

1 + δm,0
Jm(�εt )Tm

(H+

�ε

)
, (13)

f (H0) ≈
Mρ∑

m=0

2μρ
m

1 + δm,0
Tm

(H0

�ε

)
, (14)

where �ε is a positive-energy scale that normalizes the Hamil-
tonian spectrum to be within [−1, 1], Jm(x) is a Bessel
function of the first kind, Tm(x) is a Chebyshev polynomial
of the first kind, and Mρ/Mt indicate the truncation order of
each expansion. While the form of the expansion coefficients
for the time-evolution operator are know analytically [63], the
values of μρ

m must be determined by evaluating the integral

μρ
m =

∫ 1

−1
du

Tm(u)

π
√

1 − u2[1 + eβ(�εu−μ)]
, (15)

which can be easily done numerically. For times t > 0,
we evaluate the current at discrete mesh of Nt points—
{0, δt, 2δt, . . . , tmax}—with a time step of δt = tmax/Nt .
Therefore, we can write the short time evolution, |�n

kδt 〉 =
e−iH+δt |�n

(k−1)δt 〉k = 1, . . . , Nt , using Eq. (13). The applica-
tion of f (H0), in Eq. (11), is implemented using Eq. (14).
Crucial for the performance of the method is the fact that
it only requires the evaluation of the action of e−iH+δt and
f (H0) on states |�n

kδt 〉. When doing so, quantities of the
form |�n

kδt (m)〉 ≡ Tm(M)|�n
kδt 〉, with M = H+/0/�ε , can be

efficiently evaluated using the Chebyshev recursion∣∣�n
kδt (m + 2)

〉 = 2M
∣∣�n

kδt (m + 1)
〉 − ∣∣�n

kδt (m)
〉
, (16)

starting with |�n
kδt (0)〉 = |�n

kδt 〉 and |�n
kδt (1)〉 = M|�n

kδt 〉.
Therefore, the method only requires matrix-vector multiplica-
tions and has a computational complexity of O(Nt N Mt Mρ ),
for sparse Hamiltonians. The implementation scheme is illus-
trated in Fig. 2.

III. BLOCH OSCILLATIONS WITHIN A
MESOSCOPIC DEVICE

We start by studying the case when the hopping in the
leads and the central region are the same, wl = w, a case
which was previously discussed by Popescu and Croy [54].
We show the evaluated current for different values of the
electric field, measured inside the central region, in the top
panel of Fig. 3. For large values of the electric field (small
values of �WS) the current displays an oscillatory behavior
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FIG. 2. Scheme of the algorithm used to time-evolve the system
of Fig. 1.

with period TBO = 2π/(eaE ). As the electric field is reduced,
the oscillations become deformed (clipped) in time. Finally,
we observe that as the electric field is reduced such that
�WS > L, the Bloch oscillations disappear and the current
tends to a constant value. The current measured in the leads
is zero when Bloch oscillations are observed in the central
region, as shown in the bottom panel of Fig. 3. When Bloch
oscillations are absent, a steady state develops and the current
in the leads tends to the same constant value as the current
inside the central region. The condition for the observation of
BOs, �WS < L, can be interpreted in terms of the localization
properties of the WSSs. For strong electric field, the eigen-
states of H+ will be nearly indistinguishable from the WSSs
of an infinite Wannier-Stark chain. Since the current is a local
operator, we expect that its expected value will then have the
same oscillations as those of a Wannier-Stark chain. As the
electric field is reduced, eigenstates localized at the center of
the sample will remain largely unchanged, but the states closer
to the edges of the central region will start to leak into the
closest lead. As such, these states will not contribute to the
Bloch oscillations, which will thus become clipped. Finally,
if the bias becomes too small, the most central state of the
system will eventually become delocalized, bridging the two
leads and carrying a steady-state current. This mechanism is
illustrated in Fig. 4(a). Notice that the previous argument does
not tell us anything about the value of the current in leads.
In particular, it provides no explanation why the current is
zero there when BOs occur. To do so, we must analyze the
spectrum of the leads. The Landauer formula tells us that, to
obtain a steady-state current, we must have an electron in an
occupied state of one lead tunneling into an empty state of the
other lead. Therefore, the spectrum of the leads must over-
lap in energy. A one-dimensional tight-binding model with
nearest-neighbor hopping wl has a spectrum with a bandwidth
of 4wl . If the leads are half filled, the spectra of the left
and right leads overlap provided �V < 4wl , as depicted in
Fig. 4(b) and a nonzero steady-state current is possible. If
�V > 4wl , since there is no overlap between the spectra of
the two leads, there is no propagating state that connects both

FIG. 3. Current in mesoscopic device as a function of time
[measured in units of TBO = 2π/(eaE )] measured inside the central
region (top panel), and measured in the right lead (bottom panel),
for different values of the electric field in the central region. The
orange and purple arrows in the depiction of the system in the top
panel point to the bonds through where the current was measured in
the central sample and in the left lead, respectively. The dashed lines
represent the value of the steady-state current, for the cases in which
it exists. Inset of bottom panel is the Landauer steady-state current
as a function of the Wannier-Stark localization length divided by the
size of the sample, for various sizes. The vertical dashed line marks
the limiting value �WS = L, beyond which a nonzero steady-state
current emerges. A central region with 257 sites (L = 128), leads
with Ll = 16 000 sites and wl = w was used.

leads and the steady-state current must be zero. In this case,
incoming electrons from one lead suffer total reflection as the
other lead does not support propagating states at that energy.
If wl = w, and recalling �WS = 2w/(eEa), we have that the
condition for the observation of BOs, �WS < L, coincides
with the condition for zero steady-state current, �V > 4w,
a condition previously found by Popescu and Croy [54]. This
is in agreement with the results for the steady-state current in
Fig. 3 for different central sample sizes and different values of
�WS obtained using the Landauer formula, as implemented in
the KWANT package [56].

The previous discussion makes clear that the simultaneous
observation of BOs in the central region and zero steady-state
current in leads is an artifact of having the hoppings in the
central region and leads be the same, wl = w. Otherwise, the
condition for the observation of BOs, �WS < L/2 ⇔ 4w <

�V , and the condition for observation of a nonzero steady-
state current, �V < 4wl , become distinct. Therefore, if we
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FIG. 4. Visualization of the conditions for (a) observation of
Bloch oscillations, (b) formation of a nonzero steady-state current.

are in a regime where 4w < �V < 4wl , we can expect to
simultaneously observe BOs and a steady-state nonzero cur-
rent. Indeed, this is what occurs, as can be seen in Fig. 5,
where we show the current for a case where wl = w, with
persistent BOs (a small modulation of the oscillations can be
observed, which is discussed in Appendix B) and another with
wl �= w, for which BOs acquire a finite lifetime and coexist
with a nonzero steady-state current. As an oscillating current
precludes the formation of a steady state, BOs that coexist
with a steady-state cannot be persistent and must instead be
a transient phenomena with a characteristic decay rate, which
we refer to as transient Bloch oscillations (tBOs).

IV. QUASIPARTICLE APPROXIMATION TO TRANSIENT
BLOCH OSCILLATIONS

A. Quasiparticle states of the central region

Having established the possibility of transient BOs, we
now develop an approximate theory to describe their decay
times. Our starting point is the Caroli formula [31], which
expresses the transmittance T (ε) at an energy ε in terms of
Green’s function as

T (ε) = Tr[G†(ε) · �R(ε) · G(ε) · �L(ε)], (17)

FIG. 5. Plots of the local electric current measured over time in
the central bond of the mesoscopic sample composed of 69 sites
(L = 34) and a bias potential �V = 5w. We showcase two examples:
(i) a mesoscopic device supporting stable clipped BOs if wl = 1.15w

(wl < �V/4), and (ii) a mesoscopic device having wl = 1.94w

(wl > �V/4) that now supports tBOs that decay exponentially in
time. Such decay is seen to correspond to a decay time given by
(1/τ0 + 1/τ1)−1 (dashed black line) for long times.

where is a trace over the central sample’s Hilbert space, G(ε)
is the retarded Green’s function of the central sample when
connected to the leads

G(ε) = [ε − HC − �R(ε) − �L(ε)]−1, (18)

in terms of the isolated central sample’s Hamiltonian HC

[Eq. (2) for t > 0] and the self-energies introduced by the
connected semi-infinite leads, �R(ε) and �L(ε), and the
quantities �R(ε) = i[�R(ε) − �†

R(ε)] and �L(ε) = i[�L(ε) −
�†

L(ε)], are the level-width matrices. For semi-infinite tight-
binding chains, one can analytically determine the self-energy,
thus arriving at the expressions [47,64],

�R/L(ε) = wl�

(
ε ± �V/2

2wl

)
|±L〉〈±L| (19)

where �(ε) = ε − i[1 − (ε + i0+)2]1/2. The Green’s function
of the central region G(ε) can be expressed in terms of its
right, |�R

n (ε)〉, and left, 〈�L
n (ε)|, eigenvectors of the effective

(non-Hermitian) Hamiltonian of the central region connect to
the leads, Heff(ε) = HC + �R(ε) + �L(ε).1 We have that

G(ε) =
∑

n

∣∣�R
n (ε)

〉〈
�L

n (ε)
∣∣

ε − εn(ε) + iγn(ε)
, (20)

where the summation is over the entire Hilbert space of
the central sample, and εn(ε) − iγn(ε) are the eigenvalues of
Heff(ε), separated into their real and imaginary parts. Notice
that both the eigenvectors |�R

n (ε)〉 and 〈�L
n (ε)| and the eigen-

values εn(ε) − iγn(ε) are a function of the energy ε.

1We define the left and right eigenvectors of Heff(ε) =
HC + �R(ε) + �L(ε) as Heff(ε)|�R

n (ε)〉=λn(ε)|�R
n (ε)〉 and

〈�L
n (ε)|Heff(ε) = 〈�L

n (ε)|λn(ε), with the eigenvalue written as
λn(ε) = εn(ε) − iγn(ε). We have that 〈�L

n (ε)| form a dual basis
to |�R

n (ε)〉, 〈�L
n (ε)|�R

m(ε).〉 = δn,m. However, since Heff(ε) is
non-Hermitian, we have that |�R

n (ε)〉 �= [〈�L
n (ε)|]†. Notice that

[〈�L
n (ε)|]† ≡ |�L

n (ε)〉 are the right eigenstates of H†
eff(ε).

075402-5



PINHO, PIRES, JOÃO, AMORIM, AND LOPES PHYSICAL REVIEW B 108, 075402 (2023)

If the states of the central region are only weakly per-
turbed by the hybridization with the leads, the eigenvalues
|�R/L

n (ε)〉 and eigenstates εn(ε) − iγn(ε) will be weakly de-
pendent on the energy ε. Furthermore, if the electric field
is strong enough, �WS 
 L, the eigenstates and eigenvalues
of Heff(ε) will be well approximated by WSSs. We refer to
these approximations as the weak-coupling and strong-field
approximations. With these considerations, we can employ
a quasiparticle approximation (QPA) to the Green’s function
G(ε) in which we approximate |�R/L

n (ε)〉 � |�R/L
n (εC,n)〉 ≡

|�R/L
n,QPA〉 and εn(ε) − iγn(ε) � εn(εC,n) − iγn(εC,n) ≡ εQPA

n −
iγ QPA

n , where εC,n are the eigenstates of the isolated central
region, HC.2 Therefore, εn(εC,n) are the corrected energy lev-
els and γn(εC,n) the corresponding broadenings or decay rates
induced by the hybridization of the central region with the
leads. Within the QPA we have that

G(ε) � GQPA(ε) =
∑

n

∣∣�R
n,QPA

〉〈
�L

n,QPA

∣∣
ε − ε

QPA
n + iγ QPA

n

. (21)

Within the weak-coupling and strong-field approximations,
we also have that |εQPA

n − ε
QPA
n+1 | � γ QPA

n , γ
QPA
n+1 , which allows

us to further approximate the transmission, which can be
written as T (ε) = �L(ε)�R(ε)|〈−L|G(ε)|L〉|2, as a sum of
Lorentzians:

T (ε) � TQPA(ε)

= �L(ε)�R(ε)
∑

n

∣∣〈L∣∣�R
n,QPA

〉∣∣2∣∣〈�L
n,QPA

∣∣ − L
〉∣∣2

(
ε − ε

QPA
n

)2 + (
γ

QPA
n

)2 ,

(22)

where �L/R(ε) = [(2wl )2 − (ε ± �V/2)2]1/2. In Fig. 6, we
show the real and imaginary parts of 〈−L|G(ε)|L〉 and
of the transmission computed both exactly and within the
QPA. The exact results for the transmittance were obtained
using the KWANT package [56]. We can see that the QPA works
remarkably well provided we are in the conditions for strong
field and weak coupling (�WS 
 L) for the most central states
of the device (which are the least hybridized with the leads).
We can see that the transmittance indeed approaches a sum of
Lorentzian functions centered at the QPA energies εQPA

n and
with width given by γ QPA

n . As we will see in the next section,
the decay rate of the tBOs are related to γ QPA

n . Interestingly,
we see that the width of the Lorentzians reduces with and
increasing wl .

B. Transient current due to quasiparticle states

We now develop a time-resolved theory for tBOs based on
the QPA. We start by arguing that the tBO are a phenomena
that depends on the local properties of the central region that is
subjected to the electric field. This is illustrated by the results

2In practice, to obtain the QPA to G(ε) we proceed as follows:
(i) For each energy of the isolated central region, εC,n, we start by
computing the left (right) eigenstates and eigenvalues of Heff(εC,n).
(ii) Then we select the eigenpair |�R/L

m (εC,n)〉, εm(εC,n) − iγm(εC,n)
with εm(εC,n) closest to εC,n. (iii) Sum over the contributions obtained
in this way for each eigenenergy of the isolated central region εC,n.

FIG. 6. (top panel) Real and imaginary parts of the Green’s func-
tion 〈−L|G(ε)|L〉 as a function of energy for a system with L = 12,
�V = 4.3w and two values of wl . The full lines represent exact
results and the dashed lines represent results obtained within the
QPA. (bottom panel) Transmittance T (ε) as a function of energy,
for the same system as in the top panel. The vertical lines, represent
the energies of the inner most WSS, εm = eEam, m = 0, ±1, ±2.

of Fig. 3, where we can see that BOs can be observed in the
current measured in the central region, but not on the leads.
Furthermore, we know that the steady-steady current depends
only on the occupation of the leads, with effects due to the
occupation of the central region being washed out. Therefore,
this further reinforces the notion that tBO depend mostly on
the occupation of states in the central region. Therefore, we
approximate the current measured in the central region as

In,n+1(t ) � ILand + ITrans
n,n+1(t ), (23)

where ILand is the Landauer steady-state current, which is
controlled by the occupation of the leads, and

ITrans
n,n+1(t ) = h̄2Tr[ρC,0G†(t )In,n+1G(t )] (24)

approximates the current due to the occupation of the central
region, which capture the tBOs. In the above expression ρC,0

is the projection of the initial (partition-free) reduced density
matrix onto the central region, and G(t ) is the projection of
the full time evolution operator e− i

h̄ H+t into the central region,
which is nothing more than the retarded Green’s function of
the central region. Within the QPA, we use Eq. (21), which
leads to

G(t ) =
∫

dε

2π h̄
e−iεt/h̄G(ε)

� − i

h̄
�(t )

∑
n

e−i(εQPA
n −iγ QPA

n )t/h̄
∣∣�R

n,QPA

〉〈
�L

n,QPA

∣∣. (25)
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FIG. 7. Current measured in the central region computed exactly
(solid, red line) and within the QPA (dashed, blue line) [Eq. (26)].

We therefore, obtain the approximate equation for the tran-
sient current inside the central region

ITrans
n,n+1(t ) �

∑
m,r

e−(γ QPA
m +γ QPA

r )t/h̄e−i(εQPA
m −εQPA

r )t/h̄

× 〈
�L

m,QPA

∣∣ρC,0

∣∣�L
r,QPA

〉〈
�R

r,QPA

∣∣In,n+1

∣∣�R
m,QPA

〉
.

(26)

In Fig. 7, we compare the exact result of the time-resolved
current with the estimation of the transient current within
the QPA. We see that for large enough times we obtain
an excellent agreement. For shorter times we see significant
differences. We attribute these differences to the fact that
at short timescales, the current will be dominated by states
strongly hybridized with the leads, for which the QPA fails.
For large enough times, the decay of the tBOs is well ap-
proximated by a single exponential. To estimate its effective
decay time, we first notice that deep inside the central region,
the quasiparticle eigenstates are well approximated by the
WSS, which are purely real, which allow us to conclude that
〈�R

m,QPA|In,n+1|�R
m,QPA〉 � 0. In addition, we also expect the

inner most states of the central region will have the smallest
decay rates, as these are more weakly coupled to the leads.
Finally, the diagonal contributions to the transient current in
equation (26) will not contribute with an oscillatory dynamic,
since the power of the complex exponential will vanish for
these terms. For these reasons, we conclude that, for relatively
long times, the sum in Eq. (26) will be dominated by the con-
tributions from (m, r) = (0,±1), (±1, 0), which leads to an
effective decay time for the tBOs of τeff = (γ QPA

0 + γ
QPA
1 )−1,

where we used the fact that γ
QPA
1 = γ

QPA
−1 . As shown in Figs. 5

and 7, the decay of the tBO for large times is well captured by
τeff.

C. Quasi-analytic estimation of the transient Bloch oscillation
decay time

We now provide a quasi-analytic expression for the decay
time of the inner most quasiparticle states of the central re-
gion. To do so, we start by noticing that within the QPA the
decay rates can be approximated by

γ QPA
n � −Im

〈
�L

n,QPA

∣∣�R(εC,n) + �L(εC,n)
∣∣�R

n,QPA

〉
. (27)

In the previous equation, we might be tempted to further ap-
proximate the quasiparticle states by the WSS. However, even
though the quasiparticle eigenstates are well approximated
by WSS deep within the central region, closer to the edges
significant differences can be observed. We make instead the
following ansatz:

γ QPA
n � − 1

Cn(wl ,�V )
Im〈�n|�R(εC,n) + �L(εC,n)|�n〉,

(28)

where |�n〉 are the WSS [Eq. (5)] and we assumed that
Cn(wl ,�V ) is independent of the central region size. We can
now evaluate analytically

Im〈�n|�R(εC,n) + �L(εC,n)|�n〉
= 1

2�L(εC,n)J2
L+n(�WS) + 1

2�R(εC,n)J2
L−n(�WS). (29)

To make progress, we recall that the QPA is only valid
in the strong field and weak-coupling limit, �WS 
 L.
Furthermore, we focus on the decay rate of the three in-
nermost states, n = 0,±1, which dominate the decay rate
of the tBOs for long enough times. Specializing to n =
0,±1 in the limit �WS → 0+, we approximate �L(εC,n) �
�R(εC,n) = (4w2

l − �V 2)1/2 + O(n/L)2 and approximate the
Bessel functions as (see Abramowitz and Stegun [65])

JL+n(�WS) � 1√
2π (L + n)

(
e�WS

2(L + n)

)L+n

. (30)

We therefore obtain the approximate expression for the decay
times

τQPA
n

4π
= 1

4π

1

γ
QPA
n

� Cn(δ,�V )(L − |n|)
(2 − δ0n)

√
δ(δ + 2)

[
L − |n|

4e(L + 1)

]2(L−|n|)

�V 2(L−|n|)−1,

(31)

where we introduced the parameter δ = 4wl/�V − 1 that de-
scribes the overlap between the bands of propagating states in
both leads. Note that tBOs only exist if δ > 0 and, as shown in
Eq. (31), the lifetimes associated with the central most WSSs
of the mesoscopic sample diverge as δ → 0+. At the same
time, we were able to extract analytically that τQPA

n has a very
steep power-law dependence on the bias potential, with an ex-
ponent that grows linearly with the sample size. Note that this
is a consequence of the exponential tails of the WSSs which,
if �WS 
 L, fully determine the way in which they are affected
by the presence of the leads. We assume that Cn(δ,�V ) =
An(δ + 1)2�V νn , An and νn depend only on n and can be deter-
mined to fit the numerical data (this assumption is numerically
validated in Appendix C). Note that the dependence of τQPA

n
on the parameter δ is fully fixed, which is to say that the
dependence on wl is completely determined. Furthermore, the
extra power-law dependence on �V coming from Cn(δ,�V )
is much weaker than the one coming from Eqs. (29) and (30),
as the coefficients νn were determined to be 0.41 and 0.28 for
n = 0, 1 respectively. We cannot say if the correction coming
from the functions Cn(δ,�V ) to the overall dependence of
equation (31) on �V is truly a power law or a logarithmic
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FIG. 8. Lifetimes of the WSSs centered on the central (τ0) and
first off-center sites (τ1 = τ−1) of the mesoscopic sample, as a func-
tion of the potential bias �V . The dots mark the numerical values
extracted from the HWHW of the central Lorentzian in quantum
transmittance of the biased central sample. Two mesoscopic devices
are considered, having δ = 3 (upper panels) and δ = 5, with the
black lines representing a fit of the numerical data to the semi-
empirical expressions of Eq. (31). The corresponding values of An

and νn are shown in the panels.

correction, since we have not probed these functions with a
large enough �V interval. Nevertheless, this should not matter
in the limit of large L because this correction is dominated by
the power-law that comes from equation (29). In Fig. 8 we
compare this semi-analytic expression with results obtained
within the fully numeric QPA and those obtained by fitting
Lorentzian functions to the calculated transmission function
for τ0 and τ1.

D. Numerical extraction of decay times

Having devised a theoretical model to analyze the decay-
ing current oscillations in the strong field and weak-coupling
regime, we are now in position to complete the analysis of the
numerical simulation results first shown in Fig. 5. In Fig. 9(a),
we show results for the time-dependent current crossing the
central bond of a mesoscopic sample (25 sites) subject to
different potential biases, �V . In all the case, the bandwidths
of the leads was adjusted such that δ = 4wl/�V − 1 = 0.25
remains constant, thus guaranteeing the existence of tBOs in
the central sample. First, we see that in all cases the current
displays damped oscillations that decay towards a constant
value after a few periods of oscillation. By applying the
two-terminal Landauer formula, we further conclude that the
asymptotic current corresponds to the Landauer current, ILand,
of each strongly biased sample. Second, we also observe that
the decay time of these oscillations (as well as the pseu-
doperiod) increase with �V as expected from our theoretical
understanding of this phenomenon. In fact, as depicted in

FIG. 9. (a) Average current evolution divided by the respective
Landauer value for different potential biases (in units of w) for a sam-
ple of size 25 (L = 12). (b) Same current evolutions with time scaled
by the inverse of half width half max (HWHM) coefficients and am-
plitudes adjusted. The dashed brown line denotes Current/Landauer
= 1. (b1) Real and (b2) complex part of the Fourier transform of
the current for different potential biases (in units of w) for a system
of size 25 (L = 12). The dashed lines are the corresponding fits of
the functions in Eqs. (33) and (34). (c1) � values obtain from the
fit for different �V (blue points) compared with the frequency of
BOs for the corresponding �V (dashed blue line). (c2) τeff values
obtain from the fit for different �V (blue points) compared with the
corresponding values of τ0τ1/(τ0 + τ1) (dashed blue lines).

the inset of Fig. 9(a), a rescaling of the time variable by the
corresponding τeff serves to collapse the decaying envelope of
all the curves, which proves that this is the indicated timescale.

While the previous analysis seemingly demonstrated that
our theoretical model for the tBOs serves to explain the be-
havior of the current inside a strongly biased mesoscopic
sample, we can perform a more precise analysis of the current
oscillations in Fig. 9(a). We focus on the current measured
at the center of the sample between sites 0 and 1, I0,1(t ).
For that purpose, we begin by Fourier transforming I0,1(t )
into the frequency-domain (ω-domain) which gives rise to the
data points plotted in Fig. 9(b). If our model for the tBOs is
accurate, then the local current at the center of the sample for
long enough times, as per equations (8) and (26), is given by

I0,1(t � 0) � A cos (�t + φ)e−t/τeff + ILand, (32)

which, upon removal of the corresponding asymptotic Lan-
dauer current, should give rise to the following complex
components of the Fourier transform:

Re[I0,1(ω)] = Aτeff
cos φ + τeff sin φ(ω − �)

1 + τ 2
eff(ω − �)2 , (33)

Im[I0,1(ω)] = Aτeff
sin φ − τeff cos φ(ω − �)

1 + τ 2
eff(ω − �)2 . (34)
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Having Eqs. (33) and (34) as a template, we can now
find the values of � and τeff by fitting the numerical data
for I0,1(ω) to these expressions. The corresponding fits are
presented in Fig. 9(b) and the values of � and τeff acquired
for various biases are shown in the panels of Fig. 9(c). From
the presented results it is clear that (i) the oscillating current is
very well described as a single-frequency oscillation with an
exponentially decaying envelope, and (ii) the values obtained
for the oscillation frequency and decay time perfectly agree
with the theoretical predictions of our strong bias model, i.e.,
� = 2π/TBO and τeff == τ0τ1/(τ0 + τ1).

V. CONCLUSIONS AND OUTLOOK

We have demonstrated how Bloch oscillations can coex-
ist with the formation of a steady-state current in biased
mesoscopic devices through decaying but oscillatory currents
dubbed transient Bloch Oscillations. Contrasting with Bloch
oscillations in the Wannier-Stark model, these oscillating cur-
rents acquire a finite lifetime due to the hybridization to the
device leads.

We performed a theoretical analysis of the occurrence of
current Bloch oscillations in a one-dimensional mesoscopic
system in a two-terminal configuration. We focused on a
nearest-neighbor tight-binding model with a partition-free ini-
tial condition and at half filling and a constant electric field
applied to its central region. We conclude that Bloch oscil-
lations can be observed provided �WS < La, where �WS =
2w/(eEa) is the localization length of WSSs, with w nearest-
neighbor central region hopping and E the electric field that
is applied to a region of length (2L + 1)a. In terms of applied
bias voltage, this condition is equivalent to �V > 4w. If the
hopping in the leads is the same as the hopping in the central
region, the spectral bandwidth of the leads is 4w, and the
condition �V > 4w implies that no steady-state current can
emerge, as previously found [54]. In this regime, no current-
carrying scattering states can be constructed, and bound states
localized in the central region are observed. These bound
states are similar to the Wannier-Stark states of an infinite
chain subject to a constant electric field. For �V < 4w, a brief
buildup transient is followed by the emergence of a ballistic
steady-state Landauer current that flows through the device,
but no Bloch oscillations are observed.

The aforementioned scenario in which Bloch oscillations
and Landauer steady-state transport are mutually exclusive
quantum transport processes gets drastically changed once
the leads are permitted to have a wider bandwidth than the
sample. In particular, if the hoppings in the leads, wl , differs
from the hoppings in the central region, w, is possible to
observe the coexistence of Bloch oscillations with the forma-
tion of a steady-state current provided 4w < �V < 4wl . In
this regime no true bound states localized in the central re-
gion exist. Instead, we wave quasiparticle states that resemble
Wannier-Stark states but with a finite lifetime. As such, Bloch
oscillations exist as a transient phenomena, decaying in time
until a constant and nonzero steady-state current is formed.
Crucially, these transient Bloch oscillations display the same
frequency of Bloch oscillations in a Wannier-Stark ladder.
Numerical simulations based on the unitary time evolution of
the local electric current in a system coupled to finite leads, in

FIG. 10. Diagram that summarizes the four different dynamical
phases of the strongly biased mesoscopic device as a function of
the relative bandwidth of the leads, wl , and the overlap between the
bands, �B = δ × �V . Four nonequilibrium regimes are identified:
(i) persistent in-sample BOs, (ii) tBOs [decaying towards a Landauer
steady-state current after, at least one Bloch period], (iii) a Landauer
transport steady state, and (iv) a regime of blocked transport (with a
chaotic current inside the sample).

conjunction with a quasiparticle approximation scheme, were
used to demonstrate the validity of these claims. The phase
diagram of Fig. 10, which depicts the various dynamical
phases of the mesoscopic device as a function of the relative
bandwidth of the leads (wl ) and the overlap between the bands
(�B = 4w − �V ) summarizes the results.

To summarize, we have found a regime in which Bloch
oscillations can be observed as a transient phenomena in bi-
ased mesoscopic systems. It is worth noticing that this system
could be realized for cold fermionic atoms in one-dimensional
optical lattices, where interactions can be suppressed [66].
In addition, the standard measurement technique, which is
used to detect Bloch oscillations in tilted optical lattices [22],
can also be used to observe the temporal Bloch oscillations
discussed in this work.
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APPENDIX A: BLOCH OSCILLATIONS
AND THE WANNIER-STARK STATES

At the start of Sec. II, we revised essential aspects of the
exact solution for the tight-binding chain subject to a uniform
electric field. This turned out to be a crucial theoretical cor-
nerstone for our study because the shape of the WSSs greatly
aided in our comprehension of the various regimes of current
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FIG. 11. Plots of the local electric current measured over time in
the central bond of the mesoscopic sample composed of 69 sites (L =
34) and a bias potential �V = 5w. We showcase three examples:
(i) a mesoscopic device supporting stable clipped BOs displaying
a beat pattern with wl = 0.8w, (ii) a mesoscopic device supporting
stable clipped BOs displaying a beat pattern with wl = w, and (iii)
a mesoscopic device supporting stable clipped BOs with no beat
pattern with wl = 1.15w.

dynamics in a strongly biassed mesoscopic device. We did
not, however, fully examine all ramifications of this exact
solution, particularly how it relates to the presence of Bloch
oscillations in this model. For the sake of completeness, we
provide more thorough discussion in this Appendix, referring
to Hartmann et al. [67] for an in-depth approach.

Like before, we start from the Hamiltonian of the system
in the presence of a longitudinal electric field E , which reads

HWS =
+∞∑

n=−∞
(−w|n〉〈n + 1| + |n + 1〉〈n| + aeEn|n〉〈n|),

(A1)

|n〉 being local orbitals, w the nearest-neighbor hopping, and
a the lattice parameter. We have seen that the spectrum of HWS

forms a so-called Wannier-Stark ladder with discrete energy
levels, εm = maeE (for m ∈ Z), and that the corresponding
eigenstates are localized wave functions in real space [quoted
in Eq. (5)]. In place of repeating the real-space representation,
we now highlight that the WSSs can also be nicely represented
in momentum space as follows [67]:

|�m〉 =
√

a

2π

∑
k

exp

[
−iamk + 2w

iaeE
sin ka

]
|φk〉, (A2)

where |φk〉 are the lattice momentum eigenstates with −π �
ka < π . Using the eigenstates of the full Hamiltonian, we can
write down the exact time-evolution operator,

U (t ) =
∫ π

a

− π
a

dk exp

[
2w

iaeE
sin

(
ka − eaEt

h̄

)]

× exp

[
− 2w

iaeE
sin ka

]
|φk−eEt/h̄〉〈φk|, (A3)

where t is the time parameter, and which can now be used
to determine the dynamics of any quantum state in which this
system may start. For example, if it starts from a thermal state,

in the absence of the electric field, as described by the reduced
density matrix:

ρ0 =
∫ π

a

− π
a

dk f (εk )|φk〉〈φk|, (A4)

where f (ε) is the Fermi-Dirac distribution function, and εk =
−2w cos ka are the energy eigenvalues if E = 0. In such a
case, the time-dependent expectation value of the total electric
current operator,

I = 2eaw

h̄

∫ π
a

− π
a

dk sin ka|φk〉〈φk|, (A5)

explicitly yields

J (t ) = Tr[ρ0U (t )IU†(t )]

= −ea

h̄
sin

(
eEat

h̄

) ∫ π
a

− π
a

dk f (εk )εk . (A6)

Surprisingly, Eq. (A6) demonstrates that, upon the applica-
tion of a uniform and static electric field, the electric current
oscillates in time with a period

TBO = 2π h̄

aeE
, (A7)

which is inversely proportional to the applied electric field.

APPENDIX B: APPEARANCE OF A BEAT PATTERN IN
BLOCH OSCILLATIONS

In Fig. 5 we showcased stable BOs and tBOs by changing
the leads hoppings appropriately. For the sake of brevity, we

FIG. 12. Plots of the inverse of the functions C0(δ, �V, L) and
C1(δ, �V, L) (multiplied by �V 2 and �V 5 respectively for visualiza-
tion purposes) as a function of δ for different values of �V and L (top
and bottom panels, respectively). The obtained points correspond
very well to the universal curves Cn(δ, �V ) = An(δ + 1)2�V νn .
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have omitted another effect from the main text, which we
explain in this Appendix instead. By setting wl = w, the origi-
nated BOs display a beat. This effect points to the introduction
of new time scales other than the Bloch period TBO. Such time
scales appear due to the shift in the energy of the states cen-
tered near the boundaries of the sample. This shifts makes it
so that the energetic difference between neighboring states is
no longer equal to a multiple of eEa. However, by increasing
wl , we can get these states to couple to propagating ones in the
leads, thereby allowing them to escape the sample and making
them not contribute to the central current. Thus, setting wl to a
sufficiently high value but still below �V/4 shall eliminate the
beat while maintaining the BOs stable. In Fig. 11 we show the
central current evolution for three different values of wl below

the tBO threshold �V/4: 0.8w, w, and 1.15w. We notice that
the beat is suppressed with the increase of wl , corroborating
our hypothesis.

APPENDIX C: STUDY OF FUNCTIONS Cn(δ, �V )

In Sec. IV C, we said that the functions Cn(δ,�V ) have
a fixed dependence on δ, a weak power-law dependence on
�V , and do not depend on L. To back our claim, we plot these
functions for different values of L, δ, and �V in Fig. 12. It
is clear that these functions do not in fact depend on L and
their behavior is congruent with universal curves of the form
Cn(δ,�V ) = An(δ + 1)2�V νn . The coefficients An and νn are
obtained from these plots.
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