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Thermal transfer enhancement by hydrodynamic plasmons in electron bilayers

Dmitry Zverevich,1 A. V. Andreev,2 and Alex Levchenko 1

1Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
2Department of Physics, University of Washington, Seattle, Washington 98195, USA

(Received 6 June 2023; revised 11 July 2023; accepted 7 August 2023; published 17 August 2023)

We develop a theory of heat transfer induced by thermal charge fluctuations in two-dimensional electron
double layers. We consider pristine systems comprised of identical layers and focus on the regime of sufficiently
high temperatures and interlayer distances d , where the relevant charge fluctuations may be described using
the hydrodynamic approach. In this limit heat transfer is dominated by the plasmon resonances. For systems
with Galilean-invariant electron dispersion the interlayer thermal conductance κ is proportional to the kinematic
viscosity of the electron liquid and decreases as 1/d4. In the absence of Galilean invariance κ ∝ σ/d3, where
σ is the intrinsic conductivity of the liquid. This strong enhancement can be traced to a drastically different
broadening of plasmon resonances in systems with and without Galilean invariance.
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I. INTRODUCTION

The Stefan-Boltzmann law [1,2] of radiative heat flux emit-
ted by a blackbody per unit area, W = σSBT 4, was explained
by Planck in the first quantum theory [3] to be determined
only by its temperature T with the universal constant σSB =
π2/60c2, where c is the speed of light [4]. This law holds
asymptotically at large distances from the body. In a geometry
where two bodies are separated by a finite distance heat be-
tween them can also be transferred by nonradiative evanescent
modes of the electromagnetic field [5–9]. At sufficiently small
separations d the contribution of this near-field energy transfer
(NFET) may greatly exceed that of blackbody. Physically,
NFET arises because electromagnetic fields produced by fluc-
tuating charges and currents in one system induce currents
in the other. In the presence of a temperature difference the
energy dissipated by these fluctuating fields in the other part
of the structure leads to a net heat transfer.

In metallic systems charge fluctuations may propagate
in the form of collective plasmon excitations. Mahan [10]
pointed out that surface plasmons in metal bilayers could lead
to enhanced interlayer heat transfer. While in bulk samples the
plasmons are gapped, in systems of reduced dimensionality
they have a gapless spectrum, leading to further enhancement
of NFET. Stimulated by the advances in the field of plasmon-
ics [11] and advent of two-dimensional (2D) van der Waals
materials [12], plasmonic tuning of NFET attracted consid-
erable attention recently [13–25]. There is a large number
of recent experiments [26–29] which report observations of
excess of heat flux in circuits between closely spaced elec-
tronic nanostructures. For recent reviews, see Refs. [30–32]
and references therein.

The broadening of the plasmon pole plays a crucial effect
on the magnitude of plasmon enhancement of NFET. The ex-
isting calculations focused on the collisionless regime, where
the plasmon attenuation arises from Landau damping and may
be evaluated using the random-phase approximation (RPA).
Here we focus on the opposite, collision-dominated regime,

in which the rate of electron-electron collisions, γee, exceeds
the plasmon damping rate. Furthermore, we specialize to the
hydrodynamic regime [33,34], in which γee exceeds not only
the damping rate, but the frequencies of charge fluctuations
responsible for energy transfer. Since the characteristic wave
vectors of such fluctuations may be estimated as 1/d the
conditions applicability of the hydrodynamic description can
be satisfied in modern high mobility devices at intermediate
temperatures.

Importantly, we find that the presence or absence of
Galilean invariance of the electron liquid drastically affects
the plasmon damping rate and consequently the magnitude of
NFET. Specifically, in Galilean invariant systems the plasmon
damping rate depends on the wave vector q as νq2, where
ν is the kinematic viscosity. In the absence of Galilean in-
variance the electron liquid acquires a nonvanishing intrinsic
conductivity σ and the plasmons decay with the Maxwell
relaxation rate 2πσq. The different momentum dependence of
the plasmon attenuation rate produces a different dependence
of the NFET interlayer thermal conductance κ on d . In the
Galilean invariant case κ ∝ ν/d4, while in the absence of
Galilean invariance we get (modulo ln d terms) κ ∝ σ/d3. It
is interesting to note that in the absence of Galilean invariance
the 1/d3 dependence of κ persists not only at a nonzero
electron density, but also at double charge neutrality, where
the plasmon resonances do not exist.

The presentation is organized as follows. In Sec. II we
summarize the theory of hydrodynamic fluctuations in elec-
tron liquids that form the basis of our analysis. Conceptually
it parallels with the methods of fluctuation electrodynamics
developed by Rytov [35] as we use macroscopic equations of
motion for electron fluid with inclusion of random Langevin
fluxes. The latter are supplemented by the fluctuation-
dissipation relation via kinetic dissipative coefficients of the
pristine fluid such as viscosity and thermoelectric matrix. In
Sec. III we use the Ehrenfest theorem to derive an expression
for the NFET flux. It provides an elegant methodological
step that enables us to make a connection to the commonly
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FIG. 1. Schematic representation of an electron double layer
under consideration. Thermally driven electron density fluctuations
in each layer δn1,2(r, t ) depicted by propagating plasmon waves
are coupled by the interlayer Coulomb potential �12. By virtue
of the continuity equation the conjugated hydrodynamic velocity
fluctuations are labeled by δv1,2(r, t ). Each layer is kept at different
temperatures T1,2 and wavy lines pointing up or down represent the
heat fluxes between the layers.

used Caroli formula [17–23]. Next we analyze our general
expression in several cases of interest. This includes the exam-
ples of Galilean invariant electron systems, such as electrons
in parabolic partially occupied quantum wells of semicon-
ductor heterostructures and generic liquids without Galilean
invariance, such as Dirac fluid in graphene. Furthermore, the
tunability of graphene-based systems motivates exploration of
the NFET in the crossover from the high doping to the dual
charge neutrality. We close in Sec. IV with the summary of
main results, comparison to related works, and also provide
relevant estimates.

II. HYDRODYNAMIC FLUCTUATIONS

We consider a planar geometry of two conducting two-
dimensional layers kept at different temperatures as shown in
Fig. 1. For simplicity we consider identical layers. We assume
that at the relevant frequencies and wave vectors the electron
liquids in each layer can be described using the hydrodynamic
approach. This requires that intralayer mean free path due to
electron-electron collisions l (T ) is shorter than the interlayer
separation, l � d . The latter sets a typical momentum transfer
q ∼ 1/d from one layer to the other thus leading to the mo-
mentum relaxation. The electrons in the two layers interact
via the dynamically screened Coulomb potential. As a result,
density fluctuations become strongly coupled. This produces
two branches of collective modes in the bilayer, the optical
and acoustic plasmons, corresponding to the electron density
oscillations, which are symmetric and antisymmetric in the
layer index. We show below that thermal fluctuations of these
plasmon resonances enhance NFET. To capture this physics
we use the theory of hydrodynamic fluctuations formulated
by Landau and Lifshitz [36] with an extension to include the
Coulomb law in charged fluids.

Quite generally, the hydrodynamic equations have the form
of continuity equations, expressing conservation of particle

number (charge), energy, and momentum [37]. It further as-
sumes local thermal equilibrium, so that the state of the liquid
is characterized by the local equilibrium parameters, such as
the hydrodynamic velocity v, temperature T , chemical poten-
tial μ, and pressure P(n, T ) that defines an equation of state.
Noting that the entropy production is quadratic in deviations
from equilibrium, it may be neglected for the purpose of
studying linear transport. Therefore, in this approximation,
energy conservation law can be replaced by the continuity
equation for the entropy current. It is convenient to combine
the continuity equations for the particle and entropy currents
into a single equation

∂t �x = −∇ · �J. (1)

Here, we introduced the column vector �x(r, t ) that consists
of the number density n and the entropy density s. Similarly,
we introduced the corresponding column vector �J(r, t ) of the
particle density current jn and the entropy density current js,
where the boldface letters denote the usual spatial vectors as
opposed to column vectors

�x =
(

n
s

)
, �J =

(
jn
js

)
, �X =

(−eE
∇T

)
. (2)

For future use we also introduced a column vector of ther-
modynamic forces �X , which consists of the electromotive
force (EMF) eE and the local temperature gradient, which
are thermodynamically conjugate [38] to the corresponding
densities �x.

Writing the momentum density in the form p = ρv, where
ρ is the mass density [39], we write the momentum evolution
equation in the form of Newton’s second law,

ρ∂tv = −∇ · 
̂ − en∇�. (3)

Here the electric potential � is related to the electron den-
sity n by the Poisson equation. It defines the EMF eE =
−∇(μ + e�) in Eq. (2). The form of Eq. (3) reflects the
fact that the flow of momentum comprises both long-range
Coulomb interactions between electrons and also local fluxes.
The corresponding flux tensor 
̂ ≡ 
i j has the form [37]


i j = Pδi j − �i j . (4)

It includes local hydrodynamic pressure P and viscous stress
tensor �i j . In the hydrodynamic approximation the fluxes of
conserved quantities are expanded to first order in the gra-
dients of equilibrium parameters. This leads to the standard
expression

�i j = η(∂iv j + ∂ jvi ) + (ζ − η)δi j∂kvk + �i j, (5)

where η and ζ are, respectively, the shear and bulk viscosi-
ties. In this framework hydrodynamic fluctuations rendered by
random forces are described by including Langevin sources
�ik (r, t ), whose correlation function is given by [36]

〈�ik (r, t )�lm(r′, t ′)〉 = 2T δ(r − r′)δ(t−t ′)[η(δilδkm + δimδkl )

+ (ζ − η)δikδlm]. (6)

To close the system of hydrodynamic equations we also
need expressions for currents �J. In Galilean-invariant liquids,
densities of both particle and entropy currents are uniquely
determined by the local hydrodynamic velocity v(r, t ). More
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generally, in the absence of Galilean invariance, additional
dissipative contributions to currents arise [40–42]. We thus
have

�J = �xv − ϒ̂ �X + �I. (7)

The first term on the right-hand side of the above equation is
the usual convective part of the current that describes trans-
port of charge and entropy in the macroscopic flow of the
fluid with the hydrodynamic velocity v. The second term
captures dissipative transport of charge and heat relative to
the fluid in response to driving forces �X . The matrix of kinetic
coefficients ϒ̂ characterizes the dissipative properties of the
electron liquid. It is defined by

ϒ̂ =
(

σ/e2 γ /T
γ /T κ/T

)
. (8)

The diagonal elements of this matrix are given by the in-
trinsic conductivity σ and the thermal conductivity κ . The
off-diagonal element is the thermoelectric coefficient γ . The
matrix form of ϒ̂ respects the Onsager symmetry condition.
In the Galilean invariant system (σ, γ ) → 0. We should also
note that in systems with parabolic and linear spectra bulk
viscosity is known to vanish, ζ → 0 [43]. The fluctuation-
dissipation relation dictates that the current must contain
fluctuating components in conjunction with the corresponding
dissipative transport coefficients. This is reflected by the third
term on the right-hand side of Eq. (7). It captures the thermally
driven spatial and temporal fluctuations of Langevin currents
�I(r, t ). Their variances are defined by the dissipative matrix ϒ̂

in a usual way [44,45],

〈�I(r, t ) ⊗ �IT (r′, t ′)〉 = 2T ϒ̂δ(r − r′)δ(t − t ′). (9)

The notation �A ⊗ �BT is used to denote the direct product of
two vectors and symbol T means vector transposition.

In the geometry of the bilayer this system of equa-
tions needs to be replicated for each layer. In other words,
we have to assign fluctuating densities δn1,2 and velocities
δv1,2 for each layer that are coupled together in the momentum
balance equation through the Coulomb potential. This hydro-
dynamic approach was recently used to address the related
problems of the Coulomb and thermal drag [46–49] and can
be readily applied to the NFET effect as we show in the next
section.

III. NEAR-FIELD ENERGY TRANSFER

The near-field thermal conductance can be straightfor-
wardly evaluated with the help of the formalism presented
above. For that purpose, we calculate the energy flux from
layer 1 to layer 2 by computing the work per unit time done
by the density fluctuations in layer 1 on the electrons in layer
2. Using Ehrenfest’s theorem [38], we can write the heat flux
per unit area in the form [50]

W = e

2
〈δn2∂tδ�2 − δn1∂tδ�1〉, (10)

where 〈. . .〉 denotes thermal average. To evaluate this average
it is useful to pass to the Fourier space for all fluctuating
quantities, (δn, δv, δ�) ∝ exp(iqr − iωt ). This enables us to

express the heat flux

W = 1

2

∫
ω dω d2q

(2π )3

(
2π e2

εq

)
e−qd ImD(q, ω) (11)

in terms of the imaginary part of the dynamical structure
factor of density fluctuations

D(q, ω) = 〈δn+(−q,−ω)δn−(q, ω)〉. (12)

To arrive at Eq. (11) we took the Coulomb potential in the
form

δ�1(q, ω) =
(

2πe

εq

)
[δn1(q, ω) + δn2(q, ω)e−qd ], (13)

where ε is the dielectric constant of the material surrounding
the electron layers, and made an additional linear transforma-
tion to the symmetrized basis of density fluctuations δn± =
δn1 ± δn2. The knowledge of W naturally leads to the NFET
thermal conductance, which we will determine to linear or-
der in the temperature difference between the layers �T =
T1 − T2. We thus introduce

κ(T ) = lim
�T →0

W

�T
. (14)

The technical task now is to derive an analytical formula for
the density correlation function. This can be done by solving
linearized hydrodynamic equations and performing thermal
averages over the Langevin sources.

A. Dynamical structure factor

It suffices to consider fluctuations in the stationary fluid
v = 0. Note, however, that locally density fluctuations δn
trigger fluctuations of the velocity δv as it follows from the
continuity. Thus we linearize the continuity equation (1) and
find for the particle current fluctuations

−iωδn + in(q · δv) + σ

e2
(q2eδ�) + i(q · In) = 0. (15)

This equation applies to both layers. From the Navier-Stokes
equation (3) we find

−iρω(q · δv) = −i enq2δ� + iq · (q · δ�), (16)

where we additionally multiplied by momentum q to have a
scalar form of the equation. Here we neglected terms due to
pressure fluctuations

δP =
(

∂P

∂n

)
S

δn +
(

∂P

∂s

)
V

δs. (17)

Indeed, neglecting the first term is legitimate since density
variations from the local compressibility are significantly
smaller than the contribution to density fluctuations stemming
from the long-range Coulomb potential, which is retained
in Eq. (16). The second term in Eq. (17) couples particle
and entropy density fluctuations, which physically come from
the diffusive modes caused by temperature fluctuations and
thermal expansion of the electron liquid. Our analysis shows
that these contributions are small as compared to plasmons
driven by fluctuating longitudinal stresses in the fluid. The
linearization of the stress tensor in Eq. (5) gives

q · (q · δ�) = i(η + ζ )q2(q · δv) + q · (q · �). (18)
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Together with the form of the fluctuating potential in Eq. (13)
we can eliminate velocity fluctuations δv from Eqs. (15) and
(16) to arrive at two linear equations that describe coupled
density fluctuations in each layer. In the symmetrized basis
of normal modes these equations decouple and we find as a
result

δn±(q, ω) = δnσ
±(q, ω) + δnν

±(q, ω), (19a)

δnσ
±(q, ω) = (ω + iων )

(q · In±)

�±(q, ω)
, (19b)

δnν
±(q, ω) = (n/ρ)

q · (q · �±)

�±(q, ω)
. (19c)

The splitting of density fluctuations into two separate contri-
butions is natural since viscous stresses do not correlate with
the intrinsic fluctuations of currents. The resonant denomina-
tor of the polarization function of electron fluid in a double
layer is found in the form

�±(q, ω) = ω2 − ω2
± − χ±ων + iω(ων + χ±), (20)

where

ω2
± = ω2

p(1 ± e−qd ), χ± = χ (1 ± e−qd ). (21)

We introduced here several characteristic energy scales in
the problem: viscous diffusion ων = νq2 with the kine-
matic viscosity ν = (η + ζ )/ρ, plasma frequency ωp =√

2π (n e)2q/ρε, and Maxwellian relaxation rate χ =
2πσq/ε. Zeros of �± define dispersion relations of collective
modes propagating in the system [51]. If we set all dissipative
kinetic coefficients to zero, then ω = ω±(q) gives us two low-
lying gapless collective excitations which are plasmon poles
as expected: ω+ ∝ √

q and ω− ∝ q as q → 0. The imaginary
part of the plasmon dispersion defines attenuation of electron
density oscillations. For example, in the Galilean invariant
case Imω = ων ∝ q2; therefore, fluctuations with sufficiently
low q have long mean free path and as such plasmons remain
well-defined excitation in the hydrodynamic regime. In the
generic case of systems with broken Galilean invariance one
finds instead that attenuation of plasmons is dominated by
the Maxwell mechanism of charge relaxation, Imω = χ±, due
to finite intrinsic conductivity in the systems. This behav-
ior should also be contrasted to the high-frequency (kinetic)
regime, ω 
 vF q, where plasmon attenuation is dominated
by the decay into two particle-hole pairs. The corresponding
rates for both Galilean invariant and Dirac systems scale as
Imω ∝ q2 [52,53].

To complete the derivation of the dynamic structure factor
we need to perform thermal averages. This is easily done with
the help of correlation functions defined by Eqs. (6) and (9).
After a simple algebra we find

〈q · (q · �±)q · (q · �∓)〉 = 4q4(η + ζ )�T, (22a)

〈(q · In±)(q · In∓)〉 = 2q2 σ

e2
�T . (22b)

Using these relations we can express the density structure
factor in Eq. (12) in the following form:

D(q, ω) = Dν (q, ω) + Dσ (q, ω), (23a)

FIG. 2. Plot shows the integrand of Eq. (11) denoted as
F (x, y, β ) in the dimensionless units of momenta x = qd and fre-
quency y = ω/ωp. Plasmon frequency ωp is calculated at q = 1/d .
The first plot is for the Galilean invariant system and the second is for
the generic case. The sharp ridges on the plot correspond to disper-
sions of the symmetric and anisymmetric plasmon modes ω±. In the
long wavelength limit x � 1 they disperse as ∝√

x and ∝x, merge
at x ∼ 1, and gradually disappear at x > 1. The spectral weight
becomes small at q → 0 so resonances are not clearly visible. The
dimensionless parameter β controls the width of plasmon branches
and is defined by Eqs. (26) and (33) in each case, respectively.

Dν (q, ω) = 4
�+�∗

−
|�+|2|�−|2

ων (nq)2

ρ
�T, (23b)

Dσ (q, ω) = 2
�+�∗

−
|�+|2|�−|2 (ω2 + ω2

ν )q2 σ

e2
�T . (23c)

Here Dν (q, ω) denotes the contribution to the structure factor
that arises from random thermal stresses and Dσ (q, ω) denotes
the contribution caused by random currents associated with
the intrinsic conductivity. In the above expressions we made
use of the obvious symmetry properties of �±(q, ω), namely
�±(q, ω) = �±(−q, ω) and �±(q,−ω) = �∗

±(q, ω). We also
observe that the product �+�∗

− obeys the standard properties
of response functions; its imaginary part is odd in frequency
and positive for positive frequencies. This makes the integrand
in Eq. (11) sign-definite, resulting in the thermal conductance
that is manifestly positively definite.

In order to highlight the importance of the plasmon reso-
nance contribution to the heat flux we plotted the integrand
of Eq. (11) in the two-dimensional parameter spaces of fre-
quencies and momenta. As is clear from the structure of
Eq. (11) this integrand is the product of the imaginary part
of the dynamical structure factor, phase space volume, and
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FIG. 3. Plasmon dispersion laws ω = ω±(q) shown by dashed
lines are superimposed on top of the color plot that defines contours
of the F (x, y, β ) function from Fig. 2. This plot is made for exactly
the same choice of parameters as in Fig. 2.

Coulomb potential. The upper graph on Fig. 2 corresponds
to the Galilean invariant case, whereas the lower plot is for
the generic case. To generate these plots we normalized all
momenta in units of interlayer separation and all frequencies
in units of plasma frequency ωp at q = 1/d . In these dimen-
sionless variables the integrand in each case depends on a
single parameter (defined later in the text) that controls the
shape of the plot. In both cases plasmon branches are clearly
visible and sharpest at q ∼ 1/d . It is apparent from the plot
that density fluctuations are strongly suppressed everywhere
away from the plasmon resonances. This is further empha-
sized in the contrast plot of Fig. 3 that shows the same data as
in Fig. 2 projected to the ω-q plane.

B. Galilean invariant systems

We proceed to analyze the expression for the heat flux
Eq. (11) beginning with the case of Galilean invariant electron
systems. We thus set σ → 0. Only the Dν part of the structure
factor from Eq. (23) contributes in this case. From the defini-
tion of the NFET thermal conductance given in Eq. (14) we
obtain

κ =
∫

dω d2q

(2π )3

(
4π e2

ερq

)
e−qd ω2

νω
2(ω2

+ − ω2
−)(nq)2

|�+|2|�−|2 . (24)

The frequency integral can be evaluated analytically using the
residue method,∫ +∞

−∞

ω2dω

|�+|2|�−|2 = 2π/ων

(ω2+ − ω2−)2 + 2ω2
ν (ω2+ + ω2−)

. (25)

We then use the explicit forms of the dispersion relations
Eq. (21) to simplify the remaining momentum integral. Intro-
ducing dimensionless variable x = qd we arrive at the result

κ = ν

2πd4
f (βν ), βν = ν

d2ωp
. (26)

It should be understood that in the definition of the parameter
βν the plasma frequency ωp is taken at q = 1/d . The dimen-
sionless function f (β ) is defined by the following integral:

f (β ) =
∫ ∞

0

x3e−2xdx

e−2x + β2x3
. (27)

FIG. 4. Plot of the dimensionless function f (β ) defined by
Eq. (27). The solid line represents the result of numerical integration
and the dashed line corresponds to the approximate analytic formula
in Eq. (28) applicable for β < 1.

In the physically relevant regime of parameters βν � 1. We
are able to extract an asymptotic form of f (β ) in that limit.
With the logarithmic accuracy we find

f (β ) ≈ � ln

(
1

β
√

�

)
, � = ln3

(
1

β ln3/2(1/β )

)
. (28)

To verify the validity of this approximation we compare it
with the result of numerical integration in Fig. 4.

C. Systems with broken Galilean invariance

In generic systems, where both viscosity and intrinsic
conductivity of the electron liquid are nonzero, the density
fluctuations responsible for NFET are generated not only by
random stresses but also by random intrinsic currents. We
begin by examining the latter contribution, as it is found to
be dominant, and comment on the modification to the vis-
cous contribution later on. The discussion presented in this
section pertains to double-layer devices consisting of, e.g.,
graphene monolayer or bilayer sheets.

Using Dσ from Eq. (23) in the expression for the energy
flux Eq. (11) we obtain the following expression for the con-
tribution of intrinsic conductivity to the thermal conductance:

κ = σ

e2

∫
dω d2q

(2π )3

(
2π ė2

εq

)
e−qd q2

(
ω2 + ω2

ν

)
ω Im(�+�∗

−)

|�+|2|�−|2 .

(29)

Let us first focus on the limit of charge neutrality, n → 0.
In this case the expressions simplify greatly; �± ≈ ω(ω +
iχ±) and Im(�+�∗

−) ≈ ω3(χ+ − χ−). Notice that the dynam-
ics of charge fluctuations is overdamped and corresponds to
Maxwell charge relaxation with the intrinsic conductivity of
the electron liquid. The important point that there are no
hydrodynamic plasmons in undoped graphene was thoroughly
discussed in the literature recently [54,55]. Using an integral

∫ +∞

−∞

ω2dω

(ω2 + χ2+)(ω2 + χ2−)
= π

χ+ + χ−
, (30)
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FIG. 5. Plot of the dimensionless function g(β ) defined by
Eq. (33). The solid line represents the result of numerical integration,
whereas the dashed line corresponds to the approximate analytical
expression in Eq. (34) applicable for β < 1.

we arrive at the following expression:

κ = σ

e2

∫
q2d2q

(2π )2

(
π e2

εq

)
e−qd χ+ − χ−

χ+ + χ−
. (31)

Note that the ω2
ν term in the numerator of Eq. (29) can be

neglected as it contains four more powers of q, while each
power brings a factor of 1/d after the momentum integration.
Therefore, this piece will be subleading in powers of 1/d as
compared to the main contribution. As the final step, using
explicit forms of χ± from Eq. (21), we find after the remaining
momentum integration

κ = σ

8εd3
. (32)

This is in agreement with the earlier analysis of NFET at the
dual neutrality point [49].

Given the degree of tunability of graphene devices we
investigate further how NFET depends on the carrier con-
centration. In order to analyze the high doping regime
we can approximate �± ≈ ω2 − ω2

± + iωχ± and notice
that Im(�+�∗

−) ≈ ω3(χ+ − χ−) still holds since χ−ω2
+ −

χ+ω2
− = 0. While the frequency integral in Eq. (29) can be

evaluated analytically the resulting expression is too cumber-
some to present here. We establish the final result in the form

κ = σ

πεd3
g(βσ ), βσ = χ

ωp
, (33)

where the dimensionless function g(β ) can be efficiently
computed numerically; see Fig. 5. In the limit βσ � 1 a
rather accurate estimate can be found analytically:

g(β ) ≈ π�

16
ln

( √
2

β
4
√

�

)
, � = ln2

(
2

β ln1/2(1/β )

)
. (34)

We see that as compared to Eq. (32) the intrinsic contribution
has only a modest (logarithmic) density dependence encoded
by a parameter βσ .

The viscous contribution is also present in this case. The
analysis based on the form of Dν shows that κ is given by the
expression similar to Eq. (26) with the difference f (βν ) →
h(βσ ), where h(β ) is yet another logarithmically slow di-
mensionless function. In view of the fact that this viscous

term scales ∝1/d4 it remains parametrically smaller than the
contribution of intrinsic conductivity given by Eq. (33).

D. Discussion

Let us now obtain estimates for NFET thermal conductance
κ(T ) in the hydrodynamic regime and discuss their implica-
tions for the general picture of temperature dependence on
NFET thermal conductance in high mobility electron double
layers.

1. Temperature regimes

As alluded above, the hydrodynamic description applies at
intermediate-to-high temperatures where the intralayer mean
free path limited by electron-electron scattering is short as
compared to interlayer distance d . For Fermi liquids with
the typical rate of electron-electron scattering given by γee ∝
T 2/EF , where EF is the Fermi energy, we have T > Tc ∼
EF /

√
kF d with kF being Fermi momentum. The scale of Tc

marks the onset of the collision-dominated regime for the
relevant density fluctuations in the particle-hole continuum.
The crossover to the collision-dominated regime for plas-
mons, γee > ωp, occurs at a higher temperature scale, Th ∼√

EF ωp ∼ EF / 4
√

kF d . The consideration of the crossover
regime, Tc < T < Th, is beyond the scope of this work. It
requires a more detailed theory based on the kinetic equation,
so-called Boltzmann-Langevin approach [45]. The contribu-
tion of the particle-hole continuum to the NFET thermal
conductance at lower temperatures, T < Tc, is comprehen-
sively covered in the literature; see, for example, Ref. [20].
Thus we focus on temperatures Th < T < EF .

2. Galilean invariant systems

Recall that shear viscosity of the Fermi liquid is η ∼
n(EF /T )2 [56], where logarithmic corrections specific to the
2D case were disregarded for brevity. Therefore, based on
Eq. (26) we conclude that NFET thermal conductance dimin-
ishes as ∝1/T 2. In contrast, at the lowest temperatures where
the thermal charge fluctuations responsible for NFET corre-
spond to electron-hole pairs in the collisionless regime, the
interlayer thermal conductance increases with temperature.
Thus the overall temperature dependence of κ is nonmono-
tonic. We expect κ to have a peak at T ∼ Th as dominated by
plasmons, which can be easily estimated from Eq. (26):

κ(Th) ∼ EF k2
F (kF d )−7/2. (35)

In the same range of parameters we also estimate that param-
eter βν that enters Eq. (26) is of the order

βν ∼
√

εvF

e2

1

kF d
� 1. (36)

This estimate justifies approximations made in the derivation
of the asymptote of f (β ) function in Eq. (28).

3. Graphene devices

In generic systems with broken Galilean invariance tem-
perature dependence of the NFET thermal conductance is
primarily governed by the intrinsic conductivity σ (T ) at all
densities. For instance, for graphene monolayers—Dirac fluid
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near charge neutrality—the known results [57–59] of the
perturbative renormalization group give an estimate

σ (T ) ∼ σQ ln2 U

T
, n → 0, (37)

where σQ is the conductance quantum and U is a cutoff energy
scale of the order of the electronic bandwidth. Somewhat sur-
prisingly, the presence of the plasmon resonances at a nonzero
density leads only to modest logarithmic modifications of the
result as compared to an undoped limit [per Eq. (33)]. The
parameter βσ in Eq. (33) that determines the enhancement
factor in Eq. (34) can be estimated to be of the order of

βσ ∼ σ

e2

√
e2

εvF

1√
kF d

� 1. (38)

Consequently, for a double-layer system comprised of
graphene monolayers at nonzero density, the comparison of
the estimate of Eq. (33),

κ(Th) ∼ EF k2
F (σ/εvF )(kF d )−3, (39)

with Eq. (35), shows that the plasmon enhancement of NFET
is enhanced by the parameter

√
kF d 
 1, as compared to the

Galilean invariant systems.

IV. SUMMARY

In this work we developed a theory of near-field energy
transfer between two-dimensional electron systems in the
hydrodynamic regime. In this regime the interlayer thermal
conductance is expressed in terms of the dissipative coeffi-
cients of the electron liquid, namely its viscosity and (in the
absence of Galilean invariance) intrinsic conductivity. Ap-
plicability of the hydrodynamic description requires that the
range of temperatures, particle density, and carrier mobility
are such that the electron mean free path is the shortest length
scale in the problem. These conditions can be realized in mod-
ern semiconductor quantum-well heterostructures and van der
Waals materials. We considered both Galilean invariant liq-
uids and electron systems where this invariance is broken,
such as in graphene devices.

Using Ehrenfest’s theorem, we obtained a general for-
mula for the NFET conductance in terms of the dynamical
structure factor of the fluid, Eq. (11). We then obtained the
hydrodynamic expression for NFET thermal conductance by
evaluating the contribution of hydrodynamic thermal fluctua-
tions to the structure factor. We found that plasmon resonances
produce a strong enhancement of NFET. We note that tem-
perature fluctuations can also be described in this framework,
but produce a subleading effect because they correspond to
diffusive spreading at quasineutrality. In Galilean-invariant
systems NFET conductance κ, as well as the plasmon life-
time, is determined by the kinematic viscosity ν of the
electron fluid. Modulo logarithmic corrections [see Eq. (26)]
κ falls off with interlayed distance as 1/d4 and follows
the same temperature dependence as ν. In systems without
Galilean invariance charge fluctuations relax exponentially
with the Maxwell rate [see Eq. (29)]. As a result, κ is gov-
erned by the intrinsic conductivity of the electron liquid and
falls off as 1/d3 with interlayer distance. The strong NFET
effect survives even at charge neutrality where plasmons are
absent. At finite density this effect persists with further en-
hancement by plasmons [Eq. (33)].

The nonperturbative character of our results makes them
applicable to strongly correlated systems. We believe that
NFET effect could prove fruitful in further exploration of
strongly interacting electron systems, including anomalous
metals [60], strongly correlated 2D systems [61], and strange
metals [62].
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