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Effects of temperature fluctuations on charge noise in quantum dot qubits
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Silicon quantum dot qubits show great promise but suffer from charge noise with a 1/ f α spectrum, where
f is frequency and α � 1. It has recently been proposed that 1/ f α noise spectra can emerge from a few
thermally activated two-level fluctuators in the presence of sub-bath temperature fluctuations associated with
a two-dimensional electron gas (2DEG). We investigate this proposal by performing Monte Carlo simulations of
a single Ising spin in a bath with a fluctuating temperature. We find that to obtain noise with a 1/ f α spectrum
with α � 1 down to low frequencies, the duration of temperature fluctuations must be comparable to the inverse
of the lowest frequency at which the noise is measured. This result is consistent with an analytic calculation in
which the fluctuator is a two-state system with dynamics governed by time-dependent switching rates. In this
case we find that the noise spectrum follows a Lorentzian at frequencies lower than the inverse of the average
duration of the lowest switching rate. We then estimate relaxation times of thermal fluctuations by considering
thermal diffusion in an electron gas in a confined geometry. We conclude that temperature fluctuations in a
2DEG sub-bath would require unphysically long durations to be consistent with experimental measurements of
1/ f -like charge noise in quantum dots at frequencies extending well below 1 Hz.
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I. INTRODUCTION

Decoherence arising from charge noise presents a chal-
lenge to the use of silicon quantum dots (QDs) as quantum
bits. The charge noise spectrum in Si/SiGe quantum dots goes
as 1/ f α with α � 1 over many decades in frequency [1,2],
where f is the frequency and α is the noise exponent.

Charge noise in quantum dots arises due to coupling
to two-level fluctuators. Experiments have shown that each
quantum dot is coupled to a small number of fluctuators [3,4].
While initial experiments indicated that the noise in neighbor-
ing quantum dots is not correlated [5], more direct subsequent
experiments did find correlations [6]. With only a few two-
level fluctuators, a Lorentzian power spectra is expected, but
instead, noise with a 1/ f α power spectrum is observed with
α � 1. Typically, 1/ f -like noise is produced by an ensemble
of two-level fluctuators with a broad distribution of relaxation
rates [7,8].

Recently, Ahn et al. [4] have suggested that the quantum
dots are coupled to a small number of two-level fluctuators
that are each in turn coupled to a microscopic subsection of
the larger thermal bath that they take to be the 2D electron
gas (2DEG) in which the quantum dots are embedded. They
propose that temperature fluctuations in the sub-bath cause
the noise to have a 1/ f α spectrum over several decades of
frequency with α ∼ 1. They calculate the noise power spectral
density by performing a quenched average over a distribution
of temperatures and show that this average yields a 1/ f α noise
spectrum even for small numbers of fluctuators. However,
they did not specify the conditions under which the quenched
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average is justified. (By “quenched average”, we mean an
average over a distribution of temperatures where each tem-
perature is infinitely long lived.)

In this paper we show that the noise spectrum arising from
a two-level fluctuator (TLF) in the presence of a time-varying
temperature is described by a quenched average only if the
time scale of the temperature variations is longer than the
lowest frequency measured. We also estimate the time scale
of temperature variations in typical silicon qubit devices and
find that it is likely to be substantially faster than the lowest
frequencies at which a 1/ f α noise spectrum has been mea-
sured in qubit devices [5].

To illustrate these points, we represent the fluctuator by a
single Ising spin with thermally activated flips subjected to
temperature fluctuations. Using Monte Carlo simulations of
this spin, we find that a 1/ f magnetic noise spectrum requires
very slow temperature fluctuations, with each temperature
being extremely long-lived. To confirm this result, we perform
an analytical calculation where the fluctuator is a two-state
system that has a time dependent switching rate. We consider
the case where the switching rate is a sequence of constant,
but random, rates. Each rate has an average duration tav and
corresponds to a certain temperature. Changing the rate cor-
responds to changing the temperatures. We find that tav must
be very long in order to achieve 1/ f noise at low frequencies.
We use our results to reproduce the results of Ahn et al. [4]
where tav is infinite and show what happens when the temper-
ature fluctuations have a finite lifetime. We then estimate the
longest possible time scale of temperature fluctuations based
on thermal diffusion in the confined geometry of the device
and conclude that the temperature fluctuations in a sub-bath of
the 2DEG cannot live long enough to account for the observed
1/ f noise.
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II. MONTE CARLO SIMULATION
OF A SINGLE ISING SPIN

In the model of Ahn et al. [4], a thermally activated two-
level fluctuator is coupled to a quantum dot, with fluctuations
in the TLF leading to charge noise in the quantum dot. The
thermally activated time for the fluctuator to switch is given
by τ exp(U/T ) where U is barrier height and τ−1 is the
attempt frequency. While a single TLF with a characteristic
temperature-dependent relaxation rate produces a Lorentzian
noise power spectrum, if the TLF is coupled to a microscopic
subsection of the larger thermal bath, as Ahn et al. proposed
[4], then fluctuations in the sub-bath temperature have the
potential to give rise to multiple relaxation rates associated
with a single TLF, resulting in a 1/ f noise power spectrum.
Here, we wish to elucidate how the noise spectrum depends on
the nature of the time variation of the temperature fluctuations
of the bath.

To incorporate the time dependence of the bath, our sim-
ulations represent the thermally activated TLF by a single
Ising spin, which flips between Sz = −1 and Sz = +1 with a
probability Pi = e−U/Ti where U = 1 and Ti is the temperature
during the ith time interval, and time is measured in units of
τ . Since the temperature depends on time, there is a sequence
of different temperatures that are drawn from a Gaussian
distribution that is truncated to exclude negative temperatures
[4],

f (Ti, Tavg, σsb) = ξ
e−(Ti−Tavg )2/2σ 2

sb√
2πσsb

, (1)

where Tavg is the average sub-bath temperature, σ 2
sb the vari-

ance, and ξ is a normalization factor that accounts for the
truncation of the Gaussian. This distribution is the one used
by Ahn et al. [4]. Following Ahn et al., we set Tavg = 1 and
σsb = 0.3. In this case ξ ∼ 1.

The spin is reoriented according to standard Monte Carlo
dynamics. A random number between zero and 1 is generated
from a uniform distribution and if it is less than or equal to Pi,
the spin flips. The duration �i of the ith temperature is drawn
from an exponential distribution,

Pd (�) = 1

tav
e−�/tav , (2)

where tav is the characteristic duration of a given temperature.
The length of each run is 6 × 108 time steps. Noise power
spectra are calculated during the runs at 30 frequencies evenly
spaced on a logarithmic scale.

The low-frequency noise spectrum is dominated by low
temperatures that are in the tail of the distribution and are,
therefore, not often sampled by random draws. Therefore, we
divide the temperature range from T = 0.03 to T = 2.0 into
300 equal increments and start one run from each of these
300 temperatures. After the initial temperature of a run is
finished, i.e., after �1 steps, the subsequent temperatures in
that run are chosen randomly from the Gaussian distribution.
The noise spectrum from the resulting time series is given a
Gaussian weight corresponding to the initial temperature and
Eq. (1). This is how we average over the 300 noise spectra.
13 sets of 300 runs were performed. The results are shown in
Fig. 1 for tav = 105, 106, 1012. All the spectra are normalized

FIG. 1. Plot of the spectral power densities of the noise S(ω) vs
ωτ , where ω is the angular frequency and 1/τ is the attempt fre-
quency, for an Ising spin in the presence of temperature fluctuations
with average duration tav = 105 (red), 106 (green), and 1012 (blue) [as
defined in Eq. (2)]. All values of tav are measured in units of τ . The
noise spectra are averaged over 13 sets of 300 runs. Each run consists
of 6 × 108 Monte Carlo steps (MCS). These results demonstrate that
the noise spectral power density saturates at low frequencies, with the
saturation frequency decreasing as tav increases. The straight black
dashed line is proportional to 1/ω.

so that the total noise power is unity. One can see that as
tav increases, the knee moves to lower frequencies indicating
that slow, long-lived temperature fluctuations are needed to
observe 1/ f noise at low frequencies.

We can compare these power spectra to the one of Ahn
et al. [4]. Ahn et al. had infinitely long-lived temperature fluc-
tuations and so their results should be compared to our case
of tav = 1012. For shorter tav, one can see that there is a low-
frequency knee where the power spectra crosses over from
white noise at low frequency to 1/ f noise at higher frequen-
cies. The frequency at which this knee occurs is proportional
to 1/tav. Our contention that the temperature fluctuations must
be slow in order for the noise to have a 1/ f spectrum at
low frequencies is supported by our power spectra, where
increasing tav lowers the frequency of the knee. This knee
is not present in the power spectrum of Ahn et al. because
their calculation was a quenched average over an ensemble of
TLFs, each remaining at a different temperature forever.

III. SEQUENCE OF RANDOM FLUCTUATION RATES

To confirm our finding that a fluctuating temperature re-
sults in a 1/ f -like noise spectrum only when the time scale
of the thermal fluctuations are longer than the inverse of the
lowest frequency at which 1/ f noise is observed, we did an
analytic calculation where we consider a two state fluctuator
with a time-dependent transition rate γ̃ (t ) between two de-
generate minima at x = 0 and x = 1. The correlation function

(t ) = 〈x(0)x(t )〉 (where the angular brackets denote an aver-
age over realizations selected from the specified distribution)
is just half of p1(t ), the probability of the system being in state
1 at time t , given that it was in state 1 at t = 0. (The factor of
1/2 is the probability that the system is in state 1 at t = 0.)
The equation governing the evolution of p1(t ) is

d p1(t )

dt
= −γ̃ (t )p1(t ) + γ̃ (t )p0(t ) = γ̃ (t )(1 − 2p1(t )), (3)
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where p0(t ) = 1 − p1(t ) is the probability that the system is
in state 0 at time t and the initial condition is p1(0) = 1. The
solution of this equation is

p1(t ) = 1

2

(
1 + e−2

∫ t
0 γ̃ (t1 )dt1

)
. (4)

Since γ̃ (t ) > 0, the probability approaches 1/2 as t → ∞, as
it should in equilibrium when the states are degenerate. In the
following, we rescale γ̃ (t ) such that γ (t ) = 2γ̃ (t ). Since we
are interested in fluctuations about the mean, we define the
autocorrelation function accordingly,


(t ) = 〈(x(0) − 〈x〉)(x(t ) − 〈x〉)〉
= 〈x(0)x(t )〉 − 1/4

= 1

4
e− ∫ t

0 γ (t1 )dt1 , (5)

where we used 〈x〉 = 1/2.
The Fourier transform 
(ω) of the correlation function

p1(t )/2 is given by


(ω) = 1

2

∫ ∞

0
e− ∫ t

0 γ (t ′ )dt ′
cos(ωt )dt, (6)

where we have used the symmetry 
(t ) = 
(−t ). We can
replace γ (t ) by a discrete sequence of constant rates such
that the nth transition rate γn occurs during the time interval
�n = tn − tn−1. Writing tn = ∑n

i=1 �i, the integral Eq. (6) is
broken into these time intervals,


(ω) = 1

2

∫ ∞

0
e− ∫ t

0 γ (t ′ )dt ′
cos(ωt )dt

= 1

2

(∫ t1

0
e−γ1t cos(ωt )dt

+
∫ t2

t1

e−γ1�1−γ2(t−t1 ) cos(ωt )dt + · · ·

+
∫ tk+1

tk

e−(
∑k

i=1 γi�i )−γk+1(t−tk ) cos(ωt )dt + · · ·
)

= 1

2

∞∑
k=0

e−(
∑k

i=1 γi�i )
∫ tk+1

tk

e−γk+1(t−tk ) cos(ωt )dt

= 1

2

∞∑
k=0

e−(
∑k

i=1 γi�i )

×
∫ �k+1

0
e−γk+1t cos

(
ωt + ω

k∑
i=1

�i

)
dt . (7)

This can be further simplified by expressing the cosine in
terms of exponentials,


(ω) = Re

{ ∞∑
k=0

e−(
∑k

i=1(γi−iω)�i )
∫ �k+1

0
e−(γk+1−iω)t dt

}
. (8)

The time integral can then be performed,


(ω) = 1

2
Re

{ ∞∑
k=0

e−(
∑k

i=1(γi−iω)�i )
1 − e−(γk+1−iω)�k+1

γk+1 − iω

}
. (9)

This expression for the frequency dependence of the
noise must then be averaged over all possible realiza-

tions of �i and γi, which we assume to be indepen-
dent, i.e., P(�1..�nγ1..γn) = Pd (�1) · .. · Pd (�n)Pg(γ1) · .. ·
Pg(γn), where Pd (�i) and Pg(γi ) are the respective distribu-
tions of individual �i and γi. We model Pd (�i ) as the arrival
time in a queue, i.e., an exponential distribution,

Pd (�) = 1

tav
e−�/tav , (10)

where tav is the mean duration of a given value of the relax-
ation rate, i.e., it is the mean time between changes in the
relaxation rate. With this distribution, the average over the �′

is
in Eq. (9) can be done. The average over the distribution of γi

is left as a formal average 〈..〉γ for now. We can rewrite 
(ω)
in Eq. (9) as


(ω) = 1

2
Re

{ ∞∑
k=0

μk
0(ω)μ1(ω)

}
, (11)

where μ0 is independent of i since Pd is the same for all i as
can be seen in the following expression:

μ0(ω) =
〈

1

tav

∫ ∞

0
e−(γi−iω)�i−�i/tav d�i

〉
γ

=
〈

1

1 + γ tav − iωtav

〉
γ

. (12)

Note also that |μ0(ω)| < 1. The average in μ1(ω) is given by

μ1(ω) =
〈

1

γk+1 − iω
·
(

1 − 1

tav

×
∫ ∞

0
e−(γk+1−iω)�k+1−�k+1/tav d�k+1

)〉
γ

=
〈

1

γ − iω

(
1 − 1

1 + γ tav − iωtav

)〉
γ

=
〈

tav

1 + γ tav − iωtav

〉
γ

= tavμ0(ω), (13)

which is independent of k. The geometric sum can now be
carried out,


(ω) = tav

2
Re

{ ∞∑
k=0

μk
0(ω)μ0(ω)

}

= tav

2
Re

{
μ0(ω)

1 − μ0(ω)

}

= tav

2
· Re[μ0(ω)] − (Re[μ0(ω)])2 − (Im[μ0(ω)])2

1 − 2Re[μ0(ω)] + (Re[μ0(ω)])2 + (Im[μ0(ω)])2 ,

(14)

where we have used the definition μ0(ω) = Re[μ0(ω)] +
iIm[μ0(ω)]. Explicit formulas for μ0 from Eq. (12) for a
discrete distribution of relaxation rates specified by m values

075303-3



MICKELSEN, CARRUZZO, COPPERSMITH, AND YU PHYSICAL REVIEW B 108, 075303 (2023)

FIG. 2. Comparison of noise spectra on the time scale on which
the transition rates vary, obtained using the analytic theory. The plot
shows the noise power vs angular frequency on a log-log plot with
a rate change on average every tav = 20 (blue solid line) and every
tav = 104 (black solid line). Straight dashed lines are guides to the
eye. The red dashed line corresponds to 1/ω and the cyan dashed line
corresponds to 1/ω2. The discrete distribution of γ is discussed in the
text. The 1/ f -like behavior of the spectrum is cut off at frequencies
below 1/tav.

γ1..γm, equally weighted for simplicity, are

Re[μ0(ω)] = 1

m

∑
l

1 + γl tav

(1 + γl tav)2 + (ωtav)2
, (15)

Im[μ0(ω)] = ωtav
1

m

∑
l

1

(1 + γl tav)2 + (ωtav)2
, (16)

where the sum over l runs from 1 to m. Equation (14) together
with Eqs. (15) and (16) is the main result of this section. It is a
bit difficult to see the overall behavior in this expression since
it depends on the values chosen for the γl in the formulas for
the averages entering the power spectra. However, the limit
tav → ∞ is easy to obtain and gives


(ω) = 1

2m

∑
l

γl

ω2 + γ 2
l

, (17)

which is the quenched limit. With appropriate values for γl ,
this easily produces a 1/ω noise spectrum spanning decades
in frequency.

More insight requires the specification of values for γl .
Choosing γl to be γl = 2l where l = −10,–9, …, 7, 8, gives
a fairly good approximation to a 1/ω noise power spectrum
over several decades in frequency when averaging over the
Lorentzian noise spectra for each γl ; this is the quenched
limit. Figure 2 shows the resulting spectra for a large tav = 104

(black line), which is indistinguishable from the quenched
average and can be seen to follow a 1/ω power law (red line).
At a much shorter switching time of tav = 20 (blue line), the
power spectra turns flat at low frequencies sooner, when going
from high to low frequencies, than in the quenched limit.
One can see a short range of frequencies where the power
spectra goes roughly as 1/ω before going over to 1/ω2 when
ω exceeds the largest rate.

A continuous distribution for γ can also be considered.
For instance, P1(γ ) = λ−1/γ with λ = log(γmax/γmin) and

FIG. 3. Noise power spectra vs angular frequency on a log-log
plot for a continuous distribution of rates with a rate change on
average every tav = 108 (black), tav = 1000 (magenta), and tav = 1
(blue) respectively. γmin is 10−6 and γmax is 106. Straight dashed
lines are guides to the eye. The red dashed line goes as 1/ω and
the cyan dashed line goes as 1/ω2. The spectrum is 1/ f -like at
intermediate frequencies when the characteristic time tav describing
the rate variations is long, so that max[γmin, 1/tav] 	 ω 	 γmax.

γmin < γ < γmax will give a 1/ω spectrum in the quenched
limit. Using this distribution instead of the sums in Eqs. (15)
and (16) yields

Re[μ0(ω)] = D(ω) − ωtavE (ω),

Im[μ0(ω)] = ωtavD(ω) + E (ω), (18)

with

D(ω) = 2λ − B(ω)

2λC(ω)
,

E (ω) = A(ω)

2λC(ω)
, (19)

A(ω) = 2

(
arctan

(
γmintav + 1

ωtav

)
− arctan

(
γmaxtav + 1

ωtav

))
,

(20)

B(ω) = log

(
ω2t2

av + γ 2
maxt2

av + 2γmaxtav + 1

ω2t2
av + γ 2

mint2
av + 2γmintav + 1

)
, (21)

and

C(ω) = ω2t2
av + 1 . (22)

A plot of the power spectra is shown in Fig. 3 for γmin =
10−6 and γmax = 106. The black curve corresponds to a mean
time of tav = 108 between rate changes. At frequencies below
the lowest rate in the system, 10−6, the noise becomes flat.
At frequencies higher than the largest rate, the response goes
over to 1/ω2. The magenta curve shows the effect of a faster
mean switching time of 1000, flattening at frequencies below
ω · 1000 ∼ 1, instead of at the slowest rate of 10−6. At the
still lower mean switching time of 1, shown by the blue curve,
the crossover occurs at higher frequencies, again dictated by
ωtav ∼ 1.

The overall behavior of the system is best seen with
the limit γmaxtav 
 1 and γmintav 	 1. This eliminates
the 1/ω2 behavior at high frequencies as well as the
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FIG. 4. Approximate noise spectra for a continuous distribution
of rates, obtained from Eq. (23). The quenched limit (tav → ∞) is
shown in black, the magenta line corresponds to a rate change on
average every tav = 1000 and the blue line corresponds to tav = 1.
λ = log(γmax/γmin) = log(1012). The straight red dashed line is pro-
portional to 1/ω.

low-frequency flattening of the noise. In that limit, A(ω) re-
duces to −2 arctan(tavω). B(ω) has a logarithmic dependence
on ω and is small so it can be neglected entirely. This removes
minor details of the frequency dependence of the noise. The
expression for the power spectra is then greatly simplified,


(ω) ∼ 1

2

tav arctan(ωtav)/λ

ωtav − arctan(ωtav)/λ

∼ arctan(ωtav)

2λω
. (23)

Now in the limit ωtav 
 1, 
(ω) → π/(4λω). In this regime,
the power spectra goes as 1/ω. In the limit ωtav 	 1, the noise
becomes independent of frequency, i.e., 
(ω) → tav/(2λ).
The crossover between these two behaviors occurs around
ωtav ∼ 1 as expected. 
(ω), as approximated by Eq. (23), is
shown in Fig. 4 for a few values of tav.

Thus we see that in order to observe 1/ f noise in a given
frequency range, the average duration tav of a fluctuation rate
must exceed the inverse frequency of the lower limit of that
range.

As a point of reference, we can put the rates used by Ahn
et al. [4] into our formulation Eq. (14). Ahn et al. assumed
thermally activated rates,

γ = 1

τ
e− E

kBTsb (24)

with a sub-bath temperature distribution Tsb given by a Gaus-
sian that was truncated to remove negative temperatures,

f (Tsb, Tavg, σsb) = ξ
e−(Tsb−Tavg )2/2σ 2

sb√
2πσsb

, (25)

where Tavg is the average sub-bath temperature, σ 2
sb the vari-

ance, and ξ is a normalization factor that accounts for the
truncation of the Gaussian. With the parameters used in this
section, ξ ∼ 1. Here we adopt Ahn’s notation (except that we
use Tavg rather than T ). Equation (3) of Ahn et al. [4], written

in terms of rates, is

S(ω)

�2τ
=

∫ ∞

0
dTsb f (Tsb, Tavg, σsb)

2γ̃

ω2τ 2 + γ̃ 2
, (26)

where γ̃ = exp(−E/kBTsb). � is the total variance of the
signal produced by the switching events. Since our fluctuator
jumps between x = 0 and x = 1, �2 = 1/4. Note that � is not
the time interval that the system is at a given temperature; this
use of � differs from that used earlier. Our Eq. (26) differs
from Ahn’s Eq. (3) by a factor of 2, which is likely due to
Ahn’s folding of the power spectra, i.e., Ahn assumes that the
frequency is positive and includes the negative frequencies by
multiplying the power spectrum by 2. We can write Eq. (26)
using the explicit definitions of γ̃ and f (Tsb, Tavg, σsb) from
Eq. (25),

S(ω)

�2τ
=

∫ ∞

0
dTsbξ

e−(Tsb/Tavg−1)2/2(σsb/Tavg )2

√
2πσsb

· 2e− E
kBTavg

Tavg
Tsb

ω2τ 2 + (
e− E

kBTavg

Tavg
Tsb

)2
. (27)

A change of integration variable from Tsb to y = Tsb/Tavg gives

S(ω)

�2τ
=

∫ ∞

0
dy f (y, 1, σ̃sb)

2e−a/y

ω2τ 2 + (e−a/y)2 , (28)

where σ̃sb = σsb/Tavg and a ≡ E/kBTavg. Ahn et al. assumed
that each temperature lasts for an infinite amount of time,
i.e., tav = ∞. This corresponds to the Lorentzians in Eq. (17).
We can generalize Eq. (28) to include a finite duration for
temperature fluctuations by using Eq. (14) multiplied by 4 to
account for the factor �2 = 1/4,

S(ω)

�2τ
= 2tav · Re[μ0(ω)] − (Re[μ0(ω)])2 − (Im[μ0(ω)])2

1 − 2Re[μ0(ω)] + (Re[μ0(ω)])2 + (Im[μ0(ω)])2

(29)

with

Re[μ0(ω)] =
∫ ∞

0
dy f (y, 1, σ̃sb)

1 + tave−a/y

(1 + tave−a/y)2 + (ωtav)2
,

(30)

Im[μ0(ω)] = ωtav

∫ ∞

0
dy f (y, 1, σ̃sb )

1

(1 + tave−a/y )2 + (ωtav)2
,

(31)

with tav and 1/ω measured in units of τ . Using the above equa-
tions with the values of Ahn et al., namely, a = E/kBTavg = 1
and σ̃sb = 0.3, the effect of finite-temperature fluctuations
lifetimes is shown in Fig. 5. The noise for tav = 1012 is in-
distinguishable from the quenched limit tav → ∞ shown in
Fig. 1 of Ahn et al. [4] in the frequency range displayed. We
see that shorter average durations of the temperature cause the
curves to flatten off at higher frequencies where ωtav ∼ 1. This
reiterates our finding that low-frequency 1/ f noise requires
very slow fluctuations. In the next section, we make estimates
to see if this is physically reasonable in a 2DEG.
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FIG. 5. Noise power spectra vs ωτ on a log-log plot for three
different average switching times: tav = 1012 (blue), tav = 106 (red),
and tav = 105 (green). These plots show the effect of finite temper-
ature fluctuations lifetimes on the noise spectra of Ahn et al. The
straight black dashed line is proportional to 1/ω.

IV. ESTIMATE OF THERMAL RELAXATION
TIME DUE TO DIFFUSION

Experimentally measured charge noise exhibits 1/ f behav-
ior down to 1 Hz and even lower frequencies [5], implying that
if thermal fluctuations play an important role, the relaxation
time of these thermal fluctuations must be significantly longer
than the relaxation time of the fluctuators coupled to the
quantum dots, i.e., the thermal fluctuations must last at least a
few seconds or longer. To see whether this is reasonable, we
can estimate the duration of temperature fluctuations in the
2DEG. Temperature fluctuations in a sub-bath imply spatial
inhomogeneities in the temperature of 2DEG. Thermal dif-
fusion would smooth out these inhomogeneities. Long-lived
fluctuations are difficult to achieve in typical electronic sys-
tems without some kind of activated behavior. An exception
exists when a quantity satisfies a conservation law. Then long
relaxation times can exist for large scale fluctuations. This
possibility was investigated by Voss and Clark [9] for energy
fluctuations (equivalently temperature fluctuations via �E =
Cv�T where Cv is the heat capacity in metal films). Since the
slowest relaxation occurs for the largest spatial fluctuations,
the dimensions of the system introduce key frequencies in
the problem: fi = D/(4π l2

i ) where D is the thermal diffusion
constant and li, with i = x, y, z, are the dimensions of the
system. There are no fluctuations that will last longer than 1/ fi

and therefore all that is needed is to evaluate fi for the largest
dimension, which is about 1 µm for the 2DEG in the work
of Connors et al. [5]. (In [9], the dimensions of the conductor
were quite large, of the order of millimeters, and together with
a diffusion constant equal to D ∼ 2 × 10−5 m2/s, produced
minimal frequencies of the order of 1 Hz or less.) To estimate
the lowest frequency in the present system, the diffusion con-
stant D must be evaluated at low temperatures for the 2DEG.
In what follows, the diffusion constant is expressed in terms
of quantities measured in the Si/SiGe 2DEG of Ref. [10].

In a diffusive regime (which is assumed to be the case
here), the diffusion constant D is related to the thermal con-
ductivity κ via

D = κ

C
, (32)

where κ is the thermal conductivity in W/K (in two dimen-
sions) and C is the specific heat in J/(K m2). For the 2DEG,
the specific heat is given by [4]

C = πmk2
BT

3h̄2 , (33)

where the carrier’s mass is m = 0.19me, and me is the mass of
the electron.

The thermal conductivity is rarely available experimen-
tally. Using the Wiedemann–Franz law, it is possible to relate
the thermal conductivity to the electric conductivity σ ,

κ

σT
= π2

3

(
kB

e

)2

, (34)

where e is the electric charge. The final piece is to compute
the electrical conductivity, which is given by

σ = e · n · μ, (35)

where n is the carrier number density and μ is the carrier mo-
bility, which is usually available. Combining Eqs. (32)–(35)
gives the diffusion constant in terms of measured quantities,

D = πnμh̄2

em
. (36)

Using the values n = 2.2 × 1015/m2 and μ = 16 m2/

(Volt s) reported in Ref. [10], Eq. (36) gives D = 4.4 ×
10−2 m2/s.

Using this value for D, we estimate the lowest frequency in
the problem to be

fmin = D

4π l2
= 4.4 × 10−2

4π (10−6)2
Hz = 3.5 GHz. (37)

It is therefore highly unlikely that a 2DEG bath can satisfy the
assumption underlying the calculations of Ahn et al. [4].

We can obtain a slightly different estimate in a different
2DEG (AlN/GaN) system where the Wiedemann-Franz law
was verified [11]. This paper measured the specific heat as
well as thermal and electrical conductivity of the 2DEG. The
thermal conductivity has the form κ = 90T/275 W/(K m)
(where T is temperature) while the specific heat is C = 0.05T
in J/(kg K). (Note that the units are appropriate for 3D
quantities; Ref. [11] measured the thickness of the electron
gas for the conversion.) The diffusion constant is then D =
κ/ρC where ρ is the density of the material (GaN) and is
equal to 6150 kg/m3. The temperature dependencies cancel
out and the diffusion constant is found to be approximately
10−3 m2/s. This value is somewhat smaller than what has
been estimated for the Si/SiGe case but does not change the
conclusion.

Finally, the diffusion constants obtained above are signifi-
cantly larger than those used by Voss and Clarke in the context
of metal thin films (D ∼ 2 × 10−5 m2/s). However, even with
such a diffusion constant, the conclusion remains unchanged
(the lowest frequency drops to 6 MHz).

V. CONCLUSIONS

We have considered a quantum dot whose charge noise is
determined by a fluctuator coupled to a thermal bath with a
fluctuating temperature. We have used Monte Carlo simula-
tions of an Ising spin in a fluctuating temperature bath as
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well as analytic calculations of a two-state fluctuator with
random switching rates to determine the noise spectrum of
this two-level fluctuator. We find that a 1/ f noise spectrum
at a given frequency f0 requires that the frequencies of the
thermal fluctuations must be comparable to f0. However, our
estimate of the lowest temperature fluctuation frequency is a
few GHz in a 2DEG, which is inconsistent with 1/ f noise
observed at frequencies below 1 Hz. In short, obtaining 1/ f
noise that extends over several decades in frequency from a
model based on temperature fluctuations requires fluctuations
with unphysically long durations.

Note added. Recently, we became aware of the work of
Throckmorton and Das Sarma [12] where they improved upon
the calculations of Ahn et al. [4] by incorporating in the tem-

perature distribution a specific heat appropriate for an electron
bath, i.e., a specific heat linear in temperature. However, the
requirement for extremely slow, long duration fluctuations in
temperature still applies if this mechanism is to account for
1/ f noise at low frequencies.
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