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Time-crystalline behavior in central-spin models with Heisenberg interactions

Rafail Frantzeskakis ,1 John Van Dyke,2,3 Leon Zaporski,4 Dorian A. Gangloff ,5 Claire Le Gall,6 Mete Atatüre ,4

Sophia E. Economou ,2,3 and Edwin Barnes 2,3

1Department of Physics, University of Crete, Heraklion, 71003, Greece
2Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

3Virginia Tech Center for Quantum Information Science and Engineering, Blacksburg, Virginia 24061, USA
4Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

5Department of Engineering Science, University of Oxford, Oxford, OX1 3PJ, United Kingdom
6Microsoft Research, Cambridge, CB1 2FB, United Kingdom

(Received 20 April 2023; revised 20 July 2023; accepted 21 July 2023; published 10 August 2023)

Time-crystalline behavior has been predicted and observed in quantum central-spin systems with periodic
driving and Ising interactions. Here, we theoretically show that it can also arise in central-spin systems with
Heisenberg interactions. We present two methods to achieve this: application of a sufficiently large Zeeman
splitting on the central spin compared to the satellite spins, or else by applying additional pulses to the central
spin every Floquet period. In both cases, we show that the system exhibits a subharmonic response in spin
magnetizations in the presence of disorder for both pure Heisenberg and XXZ interactions. Our results pertain
to any XXZ central-spin system, including hyperfine-coupled electron-nuclear systems in quantum dots or color
centers.
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I. INTRODUCTION

Spontaneous symmetry breaking has a long history in
condensed matter and high-energy physics [1,2]. In the past
decade, time crystals have attracted particular attention, both
theoretically and in experiments. On the theoretical side, time
crystals enrich the class of nonequilibrium phases of matter,
and have close ties to questions about many-body localization
and thermalization in quantum systems [3–7]. In a discrete
time crystal, the time translation symmetry of a periodic
Hamiltonian H (t + T ) = H (t ) is broken, and expectation
values of certain observables exhibit a subharmonic response
[8–10]. Several different routes leading to discrete time
translation symmetry breaking have been extensively studied,
including many-body localization in the presence of strong
disorder [10–14] and prethermalization, which does not rely
on disorder [15–20]. The initial theoretical investigations
led to many experimental realizations in different physical
platforms such as trapped ions [21,22], solid-state spin
ensembles [23–27], ultracold atoms [28,29], superconducting
qubits [30–33], and magnons [34–36]. Apart from closed
systems, there also exist studies of open, dissipative time
crystals [37–42].

Most of the theoretical and experimental work on time
crystals has focused on Ising spin chain models similar to
those studied in the original theoretical proposals [9,10,12],
leaving open the question of what other types of many-body
systems are capable of realizing these physics. Recent the-
oretical works have shown that Heisenberg spin chains can
also exhibit time-crystalline behavior [43–47], although ex-
perimental demonstrations of interaction-driven subharmonic
responses in such systems have been limited to small arrays
of gate-defined semiconductor spin qubits [48]. Realizing

substantially longer chains of highly coherent and controllable
semiconductor spins will require significant technological
advances which, though expected, may take some time to
achieve. An alternative approach is to consider other types of
many-body spin models that are realized naturally. Recently,
Pal et al. [49] proposed and observed time-crystalline behav-
ior in an NMR experiment using star-shaped molecules of
various sizes, containing up to 37 spins. This system is a real-
ization of the central-spin model, in which the satellite spins
are coupled to the central spin through Ising interactions. This
discovery, together with the recent results on time-crystalline
behavior in Heisenberg spin chains [43–45], begs the question
of whether time crystal-like phases can also exist in Heisen-
berg central-spin systems with either isotropic or anisotropic
interactions.

This question is important for several physical systems in
which central-spin systems with non-Ising interactions natu-
rally arise. One example is color centers coupled to nuclear
spin registers, which are a leading platform for quantum net-
works thanks to their spin-photon interfaces and long-lived
nuclear spin quantum memories [50–53]. Here, the electronic
spin at the defect site serves as the central spin, which couples
to the satellite nuclear spins via anisotropic dipolar hyper-
fine interactions [51,54,55]. A second example is spins in
self-assembled quantum dots, which also offer high-quality
spin-photon interfaces and nuclear spin memories, making
them attractive for quantum network and measurement-based
quantum computing applications as well [56–62]. Here, the
central spin is a single electron or hole spin confined to the
dot, while the satellite spins are surrounding nuclear spins
that couple to the central electron (hole) spin via isotropic
contact (anisotropic dipolar) hyperfine interactions [63–67].
Similar types of central-spin systems are also realized in
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gate-defined quantum dot spin qubit platforms, although the
control schemes and envisioned applications differ because
such dots are not optically active; these systems are being
developed predominantly as building blocks of quantum com-
puters and simulators [68–70]. In all these examples, the
interactions between central and satellite spins are intrinsic
and unavoidable. This leads to the question of whether time
crystal-like phases naturally arise in these systems when dy-
namical decoupling techniques based on periodic π pulses
are applied, as is commonly done to improve the coherence
time of the electronic spin [52,71–76]. It is also interesting
to ask whether one can use such nonequilibrium phases to im-
prove the performance of quantum operations, as was recently
shown for quantum dot spin chains [45,48].

In this paper, we show that time-crystalline behavior can
indeed arise in Heisenberg central-spin systems, with both
isotropic and anisotropic (XXZ) interactions. Here, we define
time-crystalline behavior as a subharmonic response in spin
magnetizations that arises as a consequence of many-body
interactions and driving, and which is robust to pulse errors
and disorder. Through numerical simulations, we show that
the standard Floquet pulse protocol used for Ising-coupled
systems does not by itself give rise to a subharmonic response.
However, we show that time-crystalline order can be induced
by supplementing the Floquet driving with one of two options:
either by creating a large Zeeman energy mismatch between
the central and satellite spins or by applying additional pulses
to the central spin every Floquet period [43]. Both approaches
dynamically convert Heisenberg or XXZ interactions into
effective Ising interactions, which can then preserve compu-
tational basis states [10,49]. We show that pure multi-spin
quantum states exhibit stable period doubling in the presence
of isotropic or anisotropic interactions between the central and
satellite spins when either method is used.

The remainder of this paper is organized as follows. In
Sec. II, we define the central-spin model Hamiltonian and
discuss the parameter regimes relevant to electron-nuclear
systems with hyperfine interactions. In Sec. III, we study the
stroboscopic dynamics of the spin expectation values using
the two approaches. Firstly, we apply a large magnetic Zee-
man splitting on the central spin compared to the satellite
spins. Secondly, we apply additional pulses on the central
spin during each Floquet period. Furthermore, we map out
an effective time crystal-like phase diagram that shows when
regions of stable period doubling arise as a function of inter-
action strength and driving errors. We conclude in Sec. IV.

II. MODEL

We begin by defining the Hamiltonian for the XXZ-
coupled central-spin model:

H =
N−1∑
i=1

Jxy,iSx,0Sx,i +
N−1∑
i=1

Jxy,iSy,0Sy,i

+
N−1∑
i=1

Jz,iSz,0Sz,i + BcSz,0 +
N−1∑
i=1

BsatSz,i. (1)

This model describes spin-1/2 spins such that Sα,i = σα,i/2,
where σα,i is a Pauli operator (α = {x, y, z}) acting on the ith

FIG. 1. (a) Schematic of a central-spin system, with the central
spin (blue) coupled to multiple satellite spins (red). (b) Driving
sequence that is applied to each spin in the central-spin system. The
driving has period T , and each pulse implements an imperfect π

rotation about the x axis with an error in the angle equal to ec for
the central spin and esat for each satellite spin. (c) Schematic of the
system’s spin magnetization (of either the central or a satellite spin)
as a function of time. Stable period doubling arises in time crystal-
like phases as a consequence of periodic driving and many-body
interactions despite rotation errors.

spin. The central spin corresponds to i = 0, while the satellite
spins are labeled by i > 0. A schematic of the model is shown
in Fig. 1.

The central spin is coupled to each satellite spin i with
interaction strengths Jxy,i and Jz,i in the transverse and lon-
gitudinal directions, respectively, whereas the satellite spins
do not interact with each other. We assume that both the trans-
verse and longitudinal interactions Jxy,i, Jz,i for each satellite
spin i are sampled from a Gaussian distribution with mean
values Jxy, Jz and variance δJ . We refer to δJ as the disorder
strength, and we take it to be equal for both transverse and lon-
gitudinal couplings. Throughout the paper, we use the terms
isotropic or anisotropic to characterize the mean values Jxy or
Jz of the couplings.

In the case of electron-nuclear central-spin systems such
as NV centers in diamond coupled to surrounding 13C spins,
the dipolar hyperfine interactions vary across nuclei because
of the variation in distances between the electron and each
nucleus and because of the different orientations of the
displacement vector separating the two spins. Variations in
hyperfine interaction strengths also arise in quantum dots
because the electronic probability density can vary across
nuclei. In both types of systems, the variations in interaction
strengths can be modeled as disorder. Bc and Bsat are the
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Zeeman energies of the central and satellite spins. A differ-
ence between these energies could be due to external magnetic
field gradients or due to different g factors for the central and
satellite spins, depending on the particular physical platform.
In the main text, we neglect Zeeman splittings on satellite
spins under the assumption that they are very small compared
to that of the central spin; however, we examine how the
subharmonic response is affected by the presence of small to
moderate Zeeman splittings on satellite spins in Appendix A.
There, we show that the response is nonmonotonic in Bsat,
such that the time-crystalline behavior is either enhanced or
diminished depending on its precise value.

Discrete-time crystals and related nonequilibrium phases
can arise when many-body interacting systems are subject to
periodic driving. Here, as in much of the previous literature
[9,10,12], we consider periodic π pulses applied to each spin:

Hd =
∞∑

k=1

δ(t − kT )

(
π (1−ec)Sx,0 +

N−1∑
i=1

π (1−esat )Sx,i

)
,

(2)

where T is the driving period. We include independent pulse
rotation errors, ec and esat, under which a time crystal-like
phase should be robust [12]. Such errors inevitably arise
from imperfect experimental control fields. The errors can
in general differ between central and satellite spins since the
physical mechanism used to control these spins can be distinct
depending on the platform. For example, in color centers or
quantum dot systems, the central electron spin and satellite
nuclear spins could be driven via separate ESR and NMR
control lines [51,77–83]. However, throughout the main text,
we assume the same π pulse driving error for both types of
spins for simplicity: ec = esat = ec,sat. The case of unequal
pulse errors is considered in Appendix B, where the same
qualitative behavior is found to emerge. In the main text, we
focus on driving with instantaneous pulses as in Eq. (2); in
Appendix C we consider pulses of finite amplitude and dura-
tion, finding that time-crystalline behavior is still evident in
this case, provided the pulse durations remain a small fraction
of the driving period T .

We focus our study on parameter values informed by exper-
imental implementations in quantum dots and color centers.
In both cases, typical electron Zeeman splittings range from
several MHz to several GHz, while hyperfine interactions
range from a few hundred kHz to a few MHz. In addition to
hyperfine interactions, internuclear dipolar couplings are also
present in these systems, with values ranging from a few Hz
to a few kHz [84,85]. We find that dipolar interactions (mod-
eled as nuclear-nuclear Ising interactions) induce only small
quantitative effects, so we ignore them throughout this work.

The number of nuclear spins that critically affect the cen-
tral spin may vary depending on the physical system, ranging
from a few 10s in color centers up to 105 in optically ac-
tive quantum dots. In the numerical simulations described
in subsequent sections, we consider N = 6 spins (including
the central spin) unless otherwise stated. We stress that in
this work, we are not concerned with demonstrating that a
time crystal phase arises in the thermodynamic limit. Rather,
we aim to provide evidence that residual time-crystalline ef-
fects are evident in finite-sized systems which are relevant to

quantum information technologies. In Appendix D, we show
that the subharmonic response becomes more stable as N is
increased.

In the following results, all the simulations were performed
using the QUSPIN PYTHON package for exact diagonalization of
quantum many-body systems [86].

III. INDUCING TIME-CRYSTALLINE BEHAVIOR
IN XXZ CENTRAL-SPIN MODELS

In this section, we present two different ways of realizing
time-crystalline behavior in Heisenberg, or more generally
XXZ, central-spin models. The first approach is to create a
large Zeeman splitting on the central spin while applying
periodic π pulses on all the spins. In this approach, the dis-
order in the interaction strength between central and satellite
spins is crucial for producing stable period doubling in spin
magnetizations. In the second approach, we apply additional
pulses to only the central spin during each driving period.
These additional pulses dynamically convert the Heisenberg
or XXZ interactions into effective Ising interactions, giving
rise to time-crystalline behavior.

A. Zeeman-mismatched time crystal

We first show that time-crystalline behavior can be induced
by a sufficiently large Zeeman energy difference between the
central and satellite spins, provided there is enough disorder
in the interactions. Here, we start with an initial pure state
in the z basis: |�(0)〉 = |↑↑↓↑↓↑〉. This choice is arbitrary;
we have also tried other pure states in the computational (z)
basis and observed no significant difference in the results.
In Appendix E, we show that similar findings occur for any
product state in the z basis. Moreover, we show in Appendix F
that even if the satellite spins start out in a mixed state, a
clear subharmonic response can still emerge. In this section,
all of our results are averaged over 100 independent coupling
disorder realizations.

The system evolves via repeated application of the Floquet
operator UF = UπUH , where UH = e−iHT corresponds to free
evolution under the central-spin model, Eq. (1), for inter-
action time T , and Uπ = ∏

i e−iπ (1−esat )Sx,i e−iπ (1−ec )Sx,0 is the
evolution operator corresponding to a single round of pulses
applied to all spins. We look for a subharmonic response
in the expectation values of the components of the central
and satellite spins along the magnetic field direction z (i.e.,
spin magnetizations). To make this response more transparent,
we compute these expectation values stroboscopically (i.e.,
after every Floquet period T ), and we include a minus sign
after every other period in anticipation of period doubling. In
particular, we compute |〈(−1)nSz,0〉| for the central spin and
Savg = 1

N−1

∑
i>0 |〈(−1)nSz,i〉| for the satellite spins, where

the latter is averaged over all N − 1 satellite spins, and n
is the number of Floquet periods. Here, we choose to calculate
the mean value of the absolute magnetization of the satellite
spins for ease of presentation. We focus on absolute values
of magnetization to keep the figures simple, avoiding nega-
tive values in the thermalization region. We are particularly
interested in how these quantities depend on the central-spin
Zeeman splitting and the average interaction strengths since
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FIG. 2. Emergence of period doubling with increasing central-
spin Zeeman splitting Bc in a periodically driven central-spin model
with isotropic Heisenberg interactions Jxy/2π = Jz/2π = 1 MHz in
the presence of π pulse driving error ec,sat = 0.05 and with Bsat = 0.
(a) Central-spin and (b) satellite-spin magnetizations are shown.
Here, δJ/2π = 0.2 MHz and T = 1 µs.

the subharmonic response should only emerge when these are
sufficiently large.

We first examine how the central- and satellite-spin mag-
netizations depend on the strength of the central-spin Zeeman
splitting Bc, which is shown in Fig. 2. We observe that as we
increase the central-spin Zeeman splitting, a period-doubling
effect emerges and persists out to a timescale that grows
rapidly with Bc. This indicates that applying a sufficiently
strong magnetic field on the central spin is enough to induce
time-crystalline behavior in Heisenberg-coupled central-spin
systems. Here, we set Bsat = 0, because, in electron-nuclear
spin systems, the nuclei have g factors that are orders of
magnitude smaller than electronic g factors. However, in sys-
tems where Bsat is comparable to the central-satellite spin
coupling, it can still affect on the time-crystalline behavior.
This is analyzed in Appendix A, where we show that Bsat can
effectively enhance or diminish the longitudinal coupling, and
thus modify the subharmonic response in these cases.

A defining feature of time-crystalline physics is that the
subharmonic response should only arise in the presence of
sufficiently strong many-body interactions. To confirm that
this is indeed the case here, we sweep the average interaction
strengths Jxy, Jz while keeping constant the interaction time
T = 1 µs. In Figs. 3(a) and 3(b), we observe that for isotropic
interactions, the initial state is not preserved in the absence
of central-satellite spin interactions as expected. However, in

the parameter regime considered here, when the interactions
are switched on with strength J/2π = Jz/2π = Jxy/2π =
1 MHz, the subharmonic response in both the central- and
satellite-spin magnetizations persists out to thousands of Flo-
quet periods. Moreover, we see from the figure that as the
interaction strength is increased further beyond this point,
the time-crystalline behavior is destabilized, indicating that
there is a finite range of interaction strengths over which a
robust period doubling emerges. This can also be seen from
a spectral analysis of the Floquet operator (Appendix G). In
the time crystal phase region, the Floquet eigenvalues come in
diametrically opposite pairs [6]. When the interaction strength
is made too large or too small, the eigenvalues deviate from
this simple pattern, destroying the period doubling. Below,
we construct a phase diagram that delineates this region of
stability (see, e.g., Fig. 4).

While isotropic Heisenberg interactions naturally arise in
the context of electron-nuclear contact hyperfine interactions
or electron-electron exchange couplings, other types of spin-
spin interactions such as dipolar couplings are anisotropic
[50,51,67,68]. In Figs. 3(c) and 3(d), we show that the tem-
poral order is evident regardless of the amount of anisotropy.
The figure shows spin expectation values for various degrees
of anisotropy in the central-satellite spin couplings. In par-
ticular, we fix the total magnitude J of the interactions to
J/2π = 2Jxy/2π + Jz/2π = 3 MHz, and we vary Jz to study
the effects of anisotropy. We set Bc/2π = 300 MHz which,
as shown above, is large enough to induce time-crystalline
behavior. We observe that for all values of Jz in this range, the
system exhibits a fairly stable subharmonic response. Here,
we see that the greatest stability occurs in the extreme cases
of purely isotropic (Heisenberg) or fully anisotropic (Ising)
interactions, while for more generic types of XXZ interactions
in between these extremes, the temporal order decays more
rapidly. This is not generic behavior or consequence of the
symmetries of the interaction, but rather occurs because of
the particular parameters we have chosen. This is clarified
further below, where we construct effective phase diagrams
and show that two phase regions emerge around JzT = 2π

and JzT = 6π . For T = 1 µs, these correspond to Jz/2π =
1, 3 MHz, which correspond to Heisenberg and Ising interac-
tions, respectively, when we fix the total interaction strength
to J/2π = 3 MHz as we have done here. The value of JzT
is what is crucial to the time-crystalline behavior, not the
form of the XXZ interaction. Importantly, we can always tune
the system into the centers of these phase regions by tuning
the pulse period T , regardless of what the actual coupling
strengths are in a specific system. In Appendix D, we give an
approximate analysis of our quantum many-body system after
two Floquet periods. We find that specific values of JzT , such
that the periodic driving is commensurate with the interaction
strength, are needed to suppress the π pulse driving error.

To better understand the range of interaction strengths
in which temporal order arises, and to also demonstrate
the stability of this order against pulse errors, we con-
struct phase diagrams. Since we are particularly interested
in the timescales over which this order persists, we define
these diagrams in terms of the return probability P(t ) =
|〈�(0)|�(t )〉|2, where |�(0)〉 is the initial state, and |�(t )〉 is
the time-evolved state of the entire system. We construct the
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FIG. 3. Emergence of period doubling with increasing interaction strength in a periodically driven, Zeeman-mismatched central-spin model
with [(a) and (b)] isotropic Heisenberg interactions and [(c) and (d)] anisotropic XXZ interactions. [(a) and (b)] Central- and satellite-spin
magnetization as a function of the number n of Floquet pulses for several values of the interaction strength J = Jxy = Jz. [(c) and (d)] Central-
and satellite-spin magnetization as a function of the number n of Floquet pulses for several values of Jz with the total interaction strength fixed
to J/2π = 2Jxy/2π + Jz/2π = 3 MHz. The π pulse driving error is ec,sat = 0.05, the Zeeman energies are Bc/2π = 300 MHz and Bsat = 0,
the disorder strength is δJ/2π = 0.2 MHz, and the driving period is T = 1 µs.

phase diagram by counting the (even) number of Floquet cy-
cles n for which P(2kT ) � 0.95 for all k � n/2, and such that
P((2� + 1)T ) � 0.05 for all � < n/2 − 1. In simpler terms,
we calculate the number of periods over which the system
evolves stroboscopically to within a 5% error. This threshold
is of course arbitrary, and other values could be considered,
although the results would change negligibly as will become
evident from the results shown below.

Figure 4(a) shows the resulting phase diagram in the case
of isotropic central-satellite spin interactions. It is clear from
the figure that the largest degree of stability is achieved near
J/2π = Jxy/2π = Jz/2π = 1 MHz for the parameters con-
sidered, where the system can tolerate pulse errors up to nearly
ec,sat = 0.06 (i.e., 6%). Interestingly, we also see that a second
region of robust period doubling also emerges around J/2π =
3 MHz, although it is not quite as insensitive to pulse errors as
the first region. We also note that as either J or ec,sat is tuned
away from these robust regions, the timescale over which the
subharmonic response persists changes abruptly by orders of
magnitude, from >104 Floquet periods down to <10 periods,
indicating that these phase regions are sharply defined, even
though the system consists of only N = 6 spins. We further
notice that for J = 0, J/2π = 2 MHz, or J/2π � 4 MHz,
there is virtually no robustness to pulse errors, showing that
not only are many-body interactions critical to the emergence
of this phenomenon, but also their precise strength. The ab-
sence of a subharmonic response at J/2π = 2 and 4 MHz

can be understood from the structure of the spectrum of the
Floquet operator, as we show in Appendix G. We can also
notice that in the absence of transverse couplings and dis-
order, the evolution operator generated by H is periodic in
JzT with period 4π , and so the behavior of the system for
Jz/2π = 2 MHz and 4 MHz should be the same as when
Jz = 0. This periodicity is approximately preserved when the
transverse couplings and disorder are restored and the driv-
ing is switched on. As discussed above, it is important to
stress that our choice of T = 1 µs for the pulse period is
arbitrary, and more generally, the centers of the phase regions
are located at JzT = 2π and 6π . This in turn allows us to
tune the driving period into “resonance” with the many-body
interactions to induce a subharmonic response for any value of
Jz. In Appendix B, we show that the same qualitative features
emerge when the pulse errors are unequal, esat �= ec, albeit
with small quantitative differences.

Figure 4(b) shows a phase diagram in which one axis is the
degree of coupling anisotropy rather than the total interaction
strength. More specifically, we now calculate the number of
stroboscopic cycles of the return probability as a function of
Jz, with J/2π = 2Jxy/2π + Jz/2π = 3 MHz held fixed. As
Jz/2π sweeps from 0 to 3 MHz, the form of the coupling
varies from an XY model with purely transversal interactions
to an Ising model with only longitudinal interactions. The
largest robust phase region now occurs at Jz/2π = 3 MHz,
corresponding to the Ising system, with insensitivity to pulse
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FIG. 4. Phase diagrams for Zeeman-mismatched time crystals.
The number of Floquet cycles (color bar) over which the return
probability of the full central-spin system evolves stroboscopically
(see main text for precise definition) as a function of the pulse error
ec,sat and (a) the interaction strength J = Jxy = Jz of the isotropic sys-
tem or (b) the longitudinal interaction strength Jz of the anisotropic
system with J/2π = 2Jxy/2π + Jz/2π = 3 MHz held fixed. The
Zeeman energies are Bc/2π = 300 MHz and Bsat = 0, the disorder
strength is δJ/2π = 0.2 MHz, and the driving period is T = 1 µs.

errors up to ec,sat = 0.07 or more. A second phase region
around J/2π = 1 MHz is also evident which corresponds
to isotropic Heisenberg interactions. This confirms what was
evident from Fig. 3, namely, that these two extreme cases
exhibit the most robustness for our chosen parameters. In both
cases, the time crystalline behavior extends out to more than
104 Floquet periods.

In all of the above results, we assumed there is an apprecia-
ble amount of disorder in the central-satellite spin couplings
(δJ/2π = 0.2 MHz). How important is this disorder to the
emergence of a subharmonic response? This is addressed in
Fig. 5, which shows the spin magnetizations as a function
of the number of Floquet periods for amounts of disorder
ranging from δJ = 0 to δJ/2π = 0.2 MHz. We see that the
disorder has a significant effect. In particular, period doubling
dissipates after only ∼100 periods in a disorder-free system
with δJ = 0. On the other hand, as the disorder increases, the
timescale on which the subharmonic response remains stable
quickly increases to >104 periods for δJ/2π � 0.05 MHz.
Thus modest levels of disorder are necessary for the time
crystalline behavior to survive on long timescales. This is
consistent with time-crystalline order associated with many-
body localization, in which nonergodicity is caused by the
emergence of local integrals of motion [87,88].

FIG. 5. Role of coupling disorder in the emergence of time
crystalline behavior in a central-spin model with isotropic Heisen-
berg interactions Jxy/2π = Jz/2π = 1 MHz. (a) Central-spin and
(b) satellite-spin magnetizations are shown as a function of the num-
ber of Floquet periods n for several different values of the disorder
strength δJ . The π pulse driving error is ec,sat = 0.05, the Zeeman
energies are Bc/2π = 300 MHz and Bsat = 0, and the driving period
is T = 1 µs.

B. Heisenberg to Ising pulses on central spin

In this section, we show that there is an alternative way
to create a time crystal-like phase where, instead of using a
large Zeeman energy mismatch between central and satellite
spins, we apply additional π pulses to the central spin every
Floquet period. These additional pulses act as a dynamical
decoupling sequence that dynamically suppresses two of the
three interaction terms in the XXZ Hamiltonian, Eq. (1),
resulting in an effective Ising interaction. We refer to these
additional pulses as “H2I” pulses following Ref. [43], which
introduced a similar technique for spin chains. In the spin
chain case, this echoing out of interaction terms works pro-
vided the H2I pulses are applied to every other spin, such
that the pulses act on only one spin in each interacting pair.
In the central-spin model, the same effect can be achieved
by applying H2I pulses to only the central spin since each
interacting pair of spins in this model includes the central one.
Applying enough H2I pulses should then reduce the system
to an effective Ising central-spin model, which was shown in
Ref. [49] to exhibit time crystal-like signatures. As in the spin
chain case, the larger the number of H2I pulses per Floquet
period, the more the effective interaction resembles an Ising
form, and the rotation axis of the H2I pulses determines the
orientation of the Ising interaction. Here, we choose the H2I
rotation axis to be the z axis, implying that the effective Ising
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FIG. 6. Emergence of period doubling with increasing interaction strength in an H2I-driven central-spin model with [(a) and (b)] isotropic
Heisenberg interactions and [(c) and (d)] anisotropic XXZ interactions. [(a) and (b)] Central- and satellite-spin magnetization as a function of
the number n of Floquet pulses for several values of the interaction strength J = Jxy = Jz. [(c) and (d)] Central- and satellite-spin magnetization
as a function of the number n of Floquet pulses for several values of Jz with the total interaction strength fixed to J/2π = 2Jxy/2π + Jz/2π =
3 MHz. In all cases, 40 H2I pulses per Floquet period are applied to the central spin. The Floquet driving error is ec,sat = 0.05, the Zeeman
energies are Bc = Bsat = 0, the disorder strength is δJ/2π = 0.2 MHz, and the driving period is T = 1 µs.

interaction is of Sz,0Sz,i type. The Floquet operator is then
given by UF = UπUH2I(T ), where Uπ is the same as in the
previous section, while

UH2I(T ) = [eiπSz,0(1−ez )UH (T/m)]m, (3)

where UH (t ) = e−iHt with H defined in Eq. (1), m is the
number of H2I pulses, and ez is the H2I rotation error.
Throughout this section, we set the Zeeman energies to zero,
Bc = 0, Bsat = 0, since they are no longer needed to induce
temporal order. We continue to sample the couplings from
Gaussian distributions with means Jxy and Jz and standard
deviations δJ .

To confirm that the H2I technique can generate time-
crystalline behavior in the central-spin model, we first
compute the spin magnetizations as a function of the number
of Floquet periods using 40 H2I pulses per period. The results
for isotropic interactions are shown in Figs. 6(a) and 6(b).
Here, we initialize the system in the computational basis pure
state |�(0)〉 = |↑↑↓↑↓↑〉, which has no underlying symme-
try, thus avoiding any sort of fine-tuning or bias in the results.
We see from the figure that as we increase the interaction
strength, a subharmonic response gradually emerges. As long
as the interaction strength is sufficiently close to J/2π =
1 MHz, this subharmonic response is long-lived, similarly to
what we saw in the case of the Zeeman-mismatch-induced
temporal order (cf. Fig. 3). As discussed in the previous

section, the subharmonic response is generally most stable
when JzT = 2π , allowing one to tune the system into this
regime for any Jz by adjusting the pulse period T appropri-
ately. However, unlike in the Zeeman-mismatched case, here
we do not see a revival near J/2π = 3 MHz, suggesting the
absence of a second region of robustness in the corresponding
phase diagram. Below, we confirm that this is indeed the case.
In Figs. 6(c) and 6(d), we examine the effect of interaction
anisotropy by tuning the interactions from Ising to Heisenberg
form. We again find that these two extremal cases exhibit
the most robustness, although Ising interactions are clearly
more effective in achieving a long-lived period doubling. We
also see from the figure that the stability is much weaker for
generic XXZ interactions compared to the Zeeman-mismatch-
induced phase.

Because the effective many-body interactions only con-
verge to Ising form in the limit of infinitely many H2I pulses, it
is important to investigate how the temporal order depends on
the number of pulses. This is also an important experimental
consideration since there is a limit to how many pulses can
be applied in the laboratory. Figures 7(a) and 7(b) shows that
as we apply more and more H2I pulses to the central spin,
the subharmonic response is preserved for increasingly longer
times. We see that for 40 H2I pulses per period the temporal
order survives for 100 s of Floquet periods, while for >80
pulses, this timescale increases by an order of magnitude or
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FIG. 7. [(a) and (b)] Emergence of period doubling in a periodically driven central-spin model in which the central spin is subject to
additional H2I pulses every Floquet period. (a) Central-spin and (b) satellite-spin magnetizations are shown as a function of the number n
of Floquet periods for various numbers of H2I pulses ranging from 2 to 100 every Floquet period. [(c) and (d)] Stability of the H2I-induced
temporal order with increasing H2I pulse error ez. (c) Central-spin and (d) satellite-spin magnetizations are shown as a function of the number
n of Floquet periods for four different values of ez in the case of 40 H2I pulses per Floquet period. In all panels, the interactions are isotropic
with strength Jxy/2π = Jz/2π = 1 MHz, the Floquet driving error is ec,sat = 0.05, the Zeeman energies are Bc = Bsat = 0, the disorder strength
is δJ/2π = 0.2 MHz, and the driving period is T = 1 µs.

more. In Appendix H, we provide some analytical intuition
behind the H2I mechanism, and we show that the timescale
on which the central spin magnetization is stabilized increases
superlinearly with the number of H2I pulses. We also see from
the figure that the satellite spins stabilize much more quickly
compared to the central spin. Note that for T = 1 µs (the
Floquet period considered here), 100 H2I pulses correspond to
a pulse spacing of 10 ns, which while experimentally feasible,
likely approaches the limits of current arbitrary waveform
generators. Another important experimental consideration is
the role of errors in the H2I pulses. This is investigated in
Figs. 7(c) and 7(d), which shows the central- and satellite spin
magnetizations for errors ranging from ez = 0 up to 0.05. We
see that while errors at the level of 1% or less (ez � 0.01)
do not have a significant effect, larger errors quickly destroy
the temporal order. Thus the H2I pulses must be accurate
to within 1% to be effective at inducing time crystalline
behavior.

Next, we turn to construct a phase diagram for the H2I-
driven central-spin system. As in the Zeeman-mismatched
case above, we define the phase diagram by counting the
number of Floquet cycles over which the return probability
P exhibits 2T periodicity to within 5% accuracy (P � 0.95
after every second period). Due to computational costs, here
we restrict attention to N = 4 spins. We initialize the system

in a z-basis pure state |�(0)〉 = |↑↑↓↑〉 and apply Floquet
pulses to all spins with period T = 1 µs, interspersed with
80 H2I pulses applied to only the central spin. Figure 8(a)
shows the resulting phase diagram in the case of isotropic
interactions, where it is evident that a phase region centered
around J/2π = 1 MHz emerges, in which the time crystalline
behavior is preserved out to 104 Floquet periods or more. As
in the case of the Zeeman-mismatched system (cf. Fig. 4), this
temporal order persists up to Floquet pulse errors of order
ec,sat ∼ 0.06. On the other hand, the second phase region
near J/2π = 3 MHz is no longer evident in the H2I case. In
Fig. 8(b), we present a different phase diagram that shows
how the robustness of the temporal order depends on the
coupling anisotropy. The results are similar to what we found
for the Zeeman-mismatched case above in Fig. 4, namely,
the temporal order is most robust near Jz/2π = 1 MHz and
3 MHz, corresponding to purely Heisenberg or Ising interac-
tions, while it quickly dissipates away from these values when
the Floquet pulse errors exceed 0.5% (ec,sat � 0.005).

IV. CONCLUSIONS

In conclusion, we showed that time-crystalline behavior
can arise in periodically driven central-spin models with any
type of XXZ interactions. We found that, unlike in the case
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FIG. 8. Phase diagrams for H2I-induced time crystals with N =
4 spins. The number of Floquet cycles (color bar) over which the
return probability of the full central-spin system evolves strobo-
scopically (see main text for precise definition) as a function of the
pulse error ec,sat and (a) the interaction strength J = Jxy = Jz of the
isotropic system or (b) the longitudinal interaction strength Jz of the
anisotropic system with J/2π = 2Jxy/2π + Jz/2π = 3 MHz held
fixed. In both panels, the central spin is subject to 80 H2I pulses per
Floquet period, the Zeeman energies are Bc = Bsat = 0, the disorder
strength is δJ/2π = 0.2 MHz, and the driving period is T = 1 µs.

of Ising interactions, simple periodic driving and many-body
interactions alone are insufficient to realize his behavior. For
general XXZ interactions, we showed two ways to induce
a stable subharmonic response in spin magnetizations: (i)
creating a large Zeeman energy mismatch between central and
satellite spins or (ii) applying additional π pulses every period
to only the central spin. We found that both approaches lead to
stable period doubling that survives for thousands of Floquet
periods, provided the interaction strength (or equivalently the
pulse period) and disorder are tuned appropriately. We found
that the greatest stability arises when the pulse period is given
by the inverse of the interaction strength. Our results are
of direct relevance to systems in which a central electronic
spin couples to surrounding nuclear spins via hyperfine
interactions, as occurs in color centers or semiconductor
quantum dots.
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APPENDIX A: EFFECT OF SATELLITE-SPIN
ZEEMAN SPLITTINGS

In this Appendix, we examine the role of satellite-spin Zee-
man splittings in the stability of the emergent time-crystalline
order. To do this, we bring the system into a parameter
regime in which time-crystalline behavior is evident by setting
Bc/2π = 300 MHz and then study how this behavior changes
as we increase the satellite-spin Zeeman splitting. The results
are shown in Fig. 9, where it is evident that the robustness of
the time-crystalline behavior is nonmonotonic as a function
of Bsat. In the case of isotropic interactions, we observe time-
crystal-like behavior for specific values of Bsat. For example,
in the case where Bsat/2π is an integer (0,1,2,3 MHz), a strong
subharmonic response is evident. We also observe similar be-
havior in the case of anisotropic Heisenberg interactions with
Jz/2π = 3 MHz, Jxy/2π = 1 MHz. However, for other values
of Bsat, the stroboscopic dynamics decay much more quickly.
This can be understood as follows. Due to the high on-site
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magnetic field, we can neglect electron-nuclear flip-flop terms
and approximate our Hamiltonian as

H ≈ Sz,0

N−1∑
i=1

Jz,iSz,i + BcSz,0 + Bsat

N−1∑
i=1

Sz,i. (A1)

We observe from this approximate Hamiltonian that the in-
clusion of satellite-spin Zeeman splittings can effectively
enhance or diminish the longitudinal coupling depending on
the state of the central spin. Specifically, the effective longitu-
dinal coupling is

Jeff
z,i = Jz,i + 2Bsat if central spin is in |↑〉 state,

Jeff
z,i = Jz,i − 2Bsat if central spin is in |↓〉 state. (A2)

Thus, for initial states in which the central spin is |↑〉, as
Bsat increases, the effective coupling increases, bringing the
system into and out of time crystal-like phase regions. This is
why we see a subharmonic response in the presence of specific
values of Bsat in Fig. 9.

APPENDIX B: EFFECT OF DIFFERING PULSE ERRORS
ON CENTRAL AND SATELLITE SPINS

In experimental realizations, the π pulse errors may differ
between the central and satellite spins. To investigate the
impact of such differences, we consider a phase diagram
for isotropic Heisenberg interactions in which only esat is
allowed to vary, while ec remains fixed. The result is shown
in Fig. 10(a), where the pulse error on the central spin is held
constant at ec = 0.01. This value is consistent with recent
demonstrations of single-qubit gates in central spin qubits
[51,89,90] and satellite spin qubits [91,92]. As in the case of
equal pulse errors, we see a subharmonic response persist over
a large number of Floquet periods for interaction strengths
near J/2π = 1, 3 MHz. However, in this case, due to the
relatively small central spin error ec = 0.01, the subharmonic
response lasts for 104 Floquet periods up to satellite pulse
errors of up to esat = 0.08. We further notice again that for
J = 0, J/2π = 2 MHz, or J/2π � 4 MHz, there is no preser-
vation of the initial state, and so we have the same dependence
on the interaction strength as we found for equal pulse errors.
In the case of anisotropic Heisenberg interactions, we again
find that the phase diagram bears a qualitative resemblance to
the equal-error case, as shown in Fig. 10(b).

We can also consider the impact of unequal pulse errors
on time crystals induced by H2I driving. Specifically, we map
out the phase diagram for isotropic Heisenberg interactions
in Fig. 11(a), finding similar behavior as in the previous
Fig. 10(a), even with errors on both the Floquet and H2I
pulses. The subharmonic response is preserved for more than
104 Floquet periods, especially in the vicinity of J/2π =
1, 3 MHz.

In the case of anisotropic Heisenberg interactions, we
sweep the Jz interaction strength with the total interaction
strength fixed to J/2π = 2Jxy/2π + Jz/2π = 3 MHz,
mapping out a phase diagram for a fixed central spin
error ec = ez = 0.01. In Fig. 11(b), we observe similar results
as in the case of the large Zeeman-mismatched time crystal,
with the most robust region in the case of pure Heisenberg or

FIG. 10. Phase diagrams for Zeeman-mismatched time crystals
with fixed central spin pulse error. The number of Floquet cycles
(color bar) over which the return probability of the full central-spin
system evolves stroboscopically (see main text for precise definition)
as a function of the pulse error esat with a fixed central spin pulse
error ec = 0.01 and (a) the interaction strength J = Jxy = Jz of the
isotropic system or (b) the longitudinal interaction strength Jz of the
anisotropic system with J/2π = 2Jxy/2π + Jz/2π = 3 MHz held
fixed. The Zeeman energies are Bc/2π = 300 MHz and Bsat = 0,
the disorder strength is δJ/2π = 0.2 MHz, and the driving period
is T = 1 µs.

pure Ising interactions up to 8% π pulse driving error on the
satellite spins.

APPENDIX C: π PULSES WITH FINITE DURATION
AND AMPLITUDE

In this section, we investigate the robustness of time-
crystalline behavior when we replace the idealized, in-
stantaneous pulses with pulses of finite amplitude and
duration. Here, we focus on the time-crystalline order that
is induced by a large central-spin Zeeman energy with
time-dependent driving. A high magnetic field affects the
application of single-qubit gates in terms of time and
fidelity.

We consider the case in which finite π pulses are imple-
mented via separate AC drives on the central and satellite
spins. These drives are chosen to have frequency Bc for the
central spin and Bsat for the satellite spins in order to be on
resonance. The central-satellite spin interactions, Eq. (1), are
present during the application of these pulses, as is of course
consistent with experimental implementations. We incorpo-
rate this finite driving by adding the following terms to the
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FIG. 11. Phase diagrams for H2I-induced time crystals with
fixed central spin pulse error for N = 4 spins. The number of Flo-
quet cycles (color bar) over which the return probability of the
full central-spin system evolves stroboscopically (see main text
for precise definition) as a function of the pulse error esat with a
fixed central spin pulse error ec = ez = 0.01 and (a) the interaction
strength J = Jxy = Jz of the isotropic system or (b) the longitudi-
nal interaction strength Jz of the anisotropic system with J/2π =
2Jxy/2π + Jz/2π = 3 MHz held fixed. In both panels, the central
spin is subject to 60 H2I pulses per Floquet period, the Zeeman en-
ergies are Bc = Bsat = 0, the disorder strength is δJ/2π = 0.2 MHz,
and the driving period is T = 1 µs.

Hamiltonian:

V0(t ) = π (1 − ec)

ηT
cos(Bct )Sx,0,

Vi(t ) = π (1 − esat )

ηT
cos(Bsatt )

N−1∑
i=1

Sx,i,

for sT − ηT < t < sT, s ∈ Z+. (C1)

With these driving terms included, we study how the sub-
harmonic response is affected by the finite pulse time. The
results are shown in Fig. 12. In this figure, we sweep the
central-spin Zeeman energy Bc/2π with the satellite Zee-
man energy set to Bsat = 0.01Bc, starting from 50 MHz until
300 MHz. Interestingly, we see that the subharmonic response
is strongest for different values of Bc between the central
and satellite spins. While the satellite spins are most stable
for Bc/2π = 300 MHz, the central spin exhibits the strongest
harmonic response at Bsat/2π = 100 MHz among the values
considered. This is due to the nonmonotonic behavior as a
function of Bsat observed in Fig. 9.

FIG. 12. Effect of using finite-amplitude pulses as in Eq. (C1).
(a) Central-spin and (b) satellite-spin magnetizations for a time-
dependent periodically driven central-spin model with isotropic in-
teractions. We consider isotropic Heisenberg interactions Jx,y/2π =
Jz/2π = J/2π = 1 MHz, the Floquet driving error is ec,sat = 0.05,
and the driving period is T = 1 µs. The pulse time is ηT = 0.1 ns.

We also examine the effect of different pulse durations
starting from 0.1 ns up to 2 ns, as shown in Fig. 13. We fix
the Zeeman energies at Bc/2π = 300 MHz and Bsat/2π =
0.01Bc/2π = 3 MHz in the presence of rotation error ec,sat =
0.05. Due to the high central spin magnetic field, the dynamics

FIG. 13. Effect of finite pulse durations on the time-crystalline
bahvior. The satellite spin magnetization is shown for a periodically
driven central-spin model with isotropic Heisenberg interactions with
Jx,y/2π = Jz/2π = J/2π = 1 MHz. We set Bc/2π = 300 MHz,
Bsat/2π = 3 MHz with uniform disorder δBsat/2π = 0.05 MHz.
The Floquet driving error is ec,sat = 0.05, and the driving period
is T = 1 µs.
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FIG. 14. (a) Central-spin and (b) satellite-spin magnetizations
for a periodically driven central-spin model with isotropic inter-
actions. Results are shown for a varying number N of spins. In
each case, the number of satellite spins is N − 1. The interac-
tion strength is Jz/2π = Jxy/2π = 1 MHz, the disorder strength is
δJ/2π = 0.2 MHz, the Zeeman energies are Bc/2π = 300 MHz and
Bsat = 0, the Floquet driving error is ec,sat = 0.05, and the driving
period is T = 1 µs.

of the central spin are complicated. That is why we keep
our analysis focused on the satellite spins. The figure shows
that if the pulses are fast enough, the subharmonic response
is achieved even with imperfect time-dependent driving, as
in the case of delta-function driving. However, the response
quickly decays as the pulse time is increased. It is important to
note, though, that the nanosecond timescales considered here
are specific to the arbitrary choice of T = 1 µs as the period.
The pulse times for which a subharmonic response is visible
can be increased by increasing T .

APPENDIX D: DEPENDENCE ON NUMBER OF SPINS

In the main text, we report results for the dynamics of
spin expectation values focusing mostly on the case of N = 6
spins (where there are N − 1 satellite spins). In this Appendix,
we study how the time-crystalline behavior depends on the
number of spins. We focus on isotropic Heisenberg interac-
tions; we observe similar results when we have anisotropic
interactions. In the presence of strong enough disorder, we can
see that the mean magnetization of satellite spins stays close

to 0.5 for longer times as we increase the number of satellite
spins (Fig. 14).

It is also evident from the figure that the central-spin mag-
netization exhibits different behavior depending on whether
the total number of spins N is even or odd. We can shed light
on this using an effective Hamiltonian that is valid in the limit
of large central-spin Zeeman energy, as we now explain.

In the limit where Bc is very large, we can neglect the flip-
flop terms in the Hamiltonian so that it becomes effectively
Ising-like:

Heff = Sz,0

N−1∑
i=1

Jz,iSz,i + BcSz,0.

(D1)

In what follows, we use this effective Hamiltonian to sim-
ulate the dynamics after two periods to see why there is a
decrease in the central-spin magnetization for an odd number
of spins compared to an even number. First, we focus on
the presence of central-spin π pulse driving error ec, and we
set esat = 0. The system evolves under the Floquet operator
U = ∏N

n=1(UπUHeff ) where Uπ = ∏
i e−iπ (1−0)Sx,i e−iπ (1−ec )Sx,0 .

We simulate our system for an even number of periods(N =
2, 4, 6,...). We calculate the time-evolved state after N number
of periods for N = 3 and 4 spins:

|�(t )N=3〉 ∝

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1 cos
(N

2 ec
) + iα5 sin

(N
2 ec

)
α2 cos

(N
2 ec

) + iα6 sin
(N

2 ec
)

α3 cos
(N

2 ec
) + iα7 sin

(N
2 ec

)
α4 cos

(N
2 ec

) + iα8 sin
(N

2 ec
)

α5 cos
(N

2 ec
) + iα1 sin

(N
2 ec

)
α6 cos

(N
2 ec

) + iα2 sin
(N

2 ec
)

α7 cos
(N

2 ec
) + iα3 sin

(N
2 ec

)
α8 cos

(N
2 ec

) + iα4 sin
(N

2 ec
)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D2)

starting from an initial state |�(0)N=3〉 =
(α1, α2, α3, α4, α5, α6, α7, α8). On the other hand, in the case
of an even number of spins (N = 4), we can see the period
doubling effect in the presence of a π pulse driving error on
the central spin. If we start with an initial state |�(0)N=4〉 =
(β1, β2, β3, β4, β5, β6, β7, β8, β9, β10, β11, β12, β13, β14, β15,

β16), we perfectly recover the initial state after an even number
N of periods: |�(t )N=4〉 ∝ |�(0)N=4〉. The emergence of
perfect period doubling is due to a specific many-body
interaction strength (Jz,i/2π = J/2π = 1 MHz) and a
specific value of the on-site central-spin Zeeman splitting
(Bc/2π = 300 MHz).

If we vary the Zeeman energy while keeping constant the
many-body interaction strength (J/2π = 1 MHz) and the in-
teraction time (T = 1 µs), we will observe the following state
after N = 2 periods. (We focus on the first period doubling
period (N = 2) because it is easier to identify why we have a
perfect period doubling effect in the presence of central-spin
π pulse driving error.) Starting with the same initial states for
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N = 3 and 4 spins, respectively, the resulting states are

|�(t )N=3,N=2,J/2π=1 MHz〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
2 ((−1 + e−iBc ) − (1 + e−iBc ) cos(ec)) − i α5

2 (1 + eiBc ) sin(ec)
α2
2 ((−1 + e−iBc ) − (1 + e−iBc ) cos(ec)) − i α6

2 (1 + eiBc ) sin(ec)
α3
2 ((−1 + e−iBc ) − (1 + e−iBc ) cos(ec)) − i α7

2 (1 + eiBc ) sin(ec)
α4
2 ((−1 + e−iBc ) − (1 + e−iBc ) cos(ec)) − i α8

2 (1 + eiBc ) sin(ec)
α5
2 ((−1 + eiBc ) − (1 + eiBc ) cos(ec)) − i α1

2 (1 + e−iBc ) sin(ec)
α6
2 ((−1 + eiBc ) − (1 + eiBc ) cos(ec)) − i α2

2 (1 + e−iBc ) sin(ec)
α7
2 ((−1 + eiBc ) − (1 + eiBc ) cos(ec)) − i α3

2 (1 + e−iBc ) sin(ec)
α8
2 ((−1 + eiBc ) − (1 + eiBc ) cos(ec)) − i α4

2 (1 + e−iBc ) sin(ec)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D3)

and

|�(t )N=4,N=2,J/2π=1 MHz〉 = −

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β9

2 (−1 + eiBc ) sin ec

β2

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β10

2 (−1 + eiBc ) sin ec

β3

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β11

2 (−1 + eiBc ) sin ec

β4

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β12

2 (−1 + eiBc ) sin ec

β5

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β13

2 (−1 + eiBc ) sin ec

β6

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β14

2 (−1 + eiBc ) sin ec

β7

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β15

2 (−1 + eiBc ) sin ec

β8

2 ((1 + e−iBc ) − (−1 + e−iBc ) cos ec) − i β16

2 (−1 + eiBc ) sin ec

β9

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β1

2 (−1 + e−iBc ) sin ec

β10

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β2

2 (−1 + e−iBc ) sin ec

β11

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β3

2 (−1 + e−iBc ) sin ec

β12

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β4

2 (−1 + e−iBc ) sin ec

β13

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β5

2 (−1 + e−iBc ) sin ec

β14

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β6

2 (−1 + e−iBc ) sin ec

β15

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β7

2 (−1 + e−iBc ) sin ec

β16

2 ((1 + eiBc ) − (−1 + eiBc ) cos ec) − i β8

2 (−1 + e−iBc ) sin ec

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D4)

If we instead vary the interaction strength J and while keeping constant the central-spin Zeeman energy (Bc/2π = 300 MHz),
we obtain the following results:

|�(t )N=3,N=2,Bc/2π=300 MHz〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1
2 (1 − e−iJ − cos(ec) − e−iJ cos(ec)) − i α5

2 (1 + eiJ ) sin(ec)

−α2 cos(ec) − iα6 sin(ec)

−α3 cos(ec) − iα7 sin(ec)
α4
2 (1 − eiJ − cos(ec) − eiJ cos(ec)) − i α8

2 (1 + e−iJ ) sin(ec)
α5
2 (1 − eiJ − cos(ec) − eiJ cos(ec)) − i α1

2 (1 + e−iJ ) sin(ec)

−α6 cos(ec) − iα2 sin(ec)

−α7 cos(ec) − iα3 sin(ec)
α8
2 (1 − e−iJ − cos(ec) − e−iJ cos(ec)) − i α4

2 (1 + eiJ ) sin(ec)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(D5)
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and

|�(t )N=4,N=2,Bc/2π=300 MHz〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β1

2 (−1 + e− 3iJ
2 + cos ec + e− 3iJ

2 cos ec) + i β9

2 (1 + e
3iJ
2 ) sin ec

β2

2 (−1 + e− iJ
2 + cos ec + e− iJ

2 cos ec) + i β10

2 (1 + e
iJ
2 ) sin ec

β3

2 (−1 + e− iJ
2 + cos ec + e− iJ

2 cos ec) + i β11

2 (1 + e
iJ
2 ) sin ec

β4

2 (−1 + e+ iJ
2 + cos ec + e+ iJ

2 cos ec) + i β12

2 (1 + e− iJ
2 ) sin ec

β5

2 (−1 + e− iJ
2 + cos ec + e− iJ

2 cos ec) + i β13

2 (1 + e
iJ
2 ) sin ec

β6

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + i β14

2 (1 + e− iJ
2 ) sin ec

β7

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + i β15

2 (1 + e− iJ
2 ) sin ec

β8

2 (−1 + e
3iJ
2 + cos ec + e

3iJ
2 cos ec) + i β16

2 (1 + e− 3iJ
2 ) sin ec

β9

2 (−1 + e
3iJ
2 + cos ec + e

3iJ
2 cos ec) + i β1

2 (1 + e− 3iJ
2 ) sin ec

β10

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + i β2

2 (1 + e− iJ
2 ) sin ec

β11

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + i β3

2 (1 + e− iJ
2 ) sin ec

β12

2 (−1 + e− iJ
2 + cos ec + e− iJ

2 cos ec) + i β4

2 (1 + e
iJ
2 ) sin ec

β13

2 (−1 + e
iJ
2 + cos ec + e

iJ
2 cos ec) + i β5

2 (1 + e− iJ
2 ) sin ec

β14

2 (−1 + e− iJ
2 + cos ec + e− iJ

2 cos ec) + i β6

2 (1 + e
iJ
2 ) sin ec

β15

2 (−1 + e− iJ
2 + cos ec + e− iJ

2 cos ec) + i β7

2 (1 + e
iJ
2 ) sin ec

β16

2 (−1 + e− 3iJ
2 + cos ec + e− 3iJ

2 cos ec) + i β8

2 (1 + e
3iJ
2 ) sin ec

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (D6)

What is needed to make the return probability equal to
one after an even number of periods is different in each
case. As we can see from the coefficients of the N = 3
case, if we assume that (1 + e±iBc ) = 0, we can observe a
perfect period doubling effect. On the other hand, in the
case of an even number of spins (N = 4), if we eliminate
the term (1 − e±iBc ), we achieve unit probability every two
periods:

N = 3 : (1 + e±iBc ) = 0 −→ e±iBc = ei(2xπ+π )

−→ |Bc/2π | = (x + 1/2) MHz,

N = 4 : (1 − e±iBc ) = 0 −→ e±iBc = ei2xπ

−→ |Bc/2π | = x MHz, (D7)

where x ∈ Z. This is why we observe a stronger sub-
harmonic response for an even number of spins. In our
simulations, we assumed a central-spin Zeeman energy of
Bc/2π = 300 MHz. However, if we change this to Bc/2π =
300.5 MHz, we effectively swap the even-odd behav-
ior. In this case, an odd number of spins will exhibit a
stronger subharmonic response compared to an even number
of spins.

In addition to the central-spin Zeeman energy, the inter-
action strength J also plays an important role. In this case,
we fix the central-spin Zeeman energy to Bc/2π = 300 MHz.
To eliminate unwanted coefficients in the final state, we have
to choose specific values of J to perfectly retrieve the state
after every two periods. In particular, we have to eliminate
the factors involving cos ec and sin ec in the many-body

time-evolved state:

N = 3 : (1 + e±iJ ) = 0 → ei±J = ei(2xπ+π )

→ |J|/2π = (x + 1/2) MHz,

N = 4 : (1 + ei± J
2 ) = 0 → ei± J

2 = ei(2xπ+π )

→ |J/2π | = (2x + 1) MHz,

and

N = 4 : (1 + ei± 3J
2 ) = 0 → ei± 3J

2 = ei(2xπ+π )

→ |J/2π | = 2x + 1

3
MHz. (D8)

APPENDIX E: INSENSITIVITY TO THE INITIAL STATE

Here, we examine how the decay of the return probabil-
ity depends on the initial state. Fixing the number of spins
to N = 6, we compute the number of Floquet cycles over
which the return probability remains above 0.95 when each
of the 26 basis states is taken as the initial state. The results
for isotropic interactions are shown in Fig. 15 as a function
of the π pulse error. We calculate the final Floquet cycle
in the presence of interaction disorder δJ/2π = 0.2 MHz
and with central- and satellite-spin Zeeman splittings of
Bc/2π = 300 MHz and Bsat = 0, respectively. We see that
the time crystal phase region exhibits a weak dependence on
the initial state. The behavior is not significantly different
for the case of anisotropic interactions where Jz 
 Jxy.
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FIG. 15. The number of Floquet cycles (color bar) over which
the return probability of the full central-spin system evolves stro-
boscopically (see main text for precise definition) as a function of
the pulse error ec,sat and for 64 different initial states, correspond-
ing to the 26 distinct basis states. We assume isotropic interactions
of strength Jz/2π = Jxy/2π = 1 MHz. Here, Bc/2π = 300 MHz,
Bsat = 0, δJ/2π = 0.2 MHz, ec,sat = 0.05, and T = 1 µs.

APPENDIX F: MIXED STATES IN SATELLITE SPINS

Here, we consider the impact on the subharmonic response
when the initial state is not pure. Specifically, we will assume
that the satellite spins undergo a depolarization channel.

E (ρ) = (1 − p)ρ + p

2
I. (F1)

Even in the case of a mixed state, our initial state is sta-
bilized. As we show in the following figures, even in the
presence of a high depolarization rate, the state is stabilized
in presence of imperfect π -pulse driving. We give a simple
example assuming that the initial state is prepared by applying
the above depolarization channel on each satellite spin of the
state |�(0)〉 = |↑↑↓↑↓↑〉. Due to the presence of the depo-
larization error in the satellite spins, the updated initial state
becomes

ρinitial

= |↑〉〈↑|E (|↑〉〈↑|)E (|↓〉〈↓|)E (|↑〉〈↑|)E (|↓〉〈↓|)E (|↑〉〈↑|),
(F2)

where the same depolarization rate p is used for all satellite
spins. In the following figures, we examine how the stabi-
lization of the mixed state is preserved. We investigate both
methods for inducing time-crystalline behavior: using a large
Zeeman splitting mismatch, and using 30 H2I pulses. We
show that the satellite’s average magnetization is stabilized.
However, in the case of the central spin, even if it starts in
a pure state, its interaction with satellite spins prepared in
a mixed state leads to a destabilization of the subharmonic
response.

Figure 16 shows that a clear submharmonic response
remains evident in the satellite spins even when they are ini-
tialized in a mixed state. As the depolarization rate increases,
the satellite spin magnetization has a diminished amplitude,
but it continues to exhibit period doubling. In Fig. 16(b), we
also see that the subharmonic response becomes unstable on
long timescales due to the relatively small number of H2I

FIG. 16. Effect of starting from a mixed satellite spin state
obtained by subjecting each satellite spin to a depolarizing chan-
nel characterized by rate p. The satellite spin magnetization in a
periodically driven central-spin model with isotropic Heisenberg
interactions with Jx,y/2π = Jz/2π = J/2π = 1 MHz is shown. The
time-crystalline behavior is induced with (a) a large Zeeman splitting
mismatch with Bc/2π = 300 MHz and Bsat = 0 MHz, and (b) 30
additional perfect H2I pulses applied to the central spin every Floquet
period. In both panels, the π -pulse driving error is ec,sat = 0.05.

pulses used in this case (m = 30). Here, we do not include
the central-spin magnetization, because it does not exhibit any
subharmonic response in the presence of a nonzero depolar-
ization of the nuclear spins.

APPENDIX G: RESONANCES OF CENTRAL-SPIN MODEL

As we saw from the phase diagrams, when we swept the in-
teraction strength, we observed regions with no subharmonic
response. For example, whereas J/2π = 1 MHz produces the
strongest subharmonic response in our system, in the case
of J/2π = 2 MHz, the time crystal-like phase is destroyed.
We know from theoretical investigations [6] that to achieve a
subharmonic response, the many-body Floquet spectrum must
exhibit particular properties. Specifically, for period doubling
it has been shown that the eigenvalues of the Floquet oper-
ator come in antipodal pairs. Here, the Floquet operator is
UF (T ) = Uπe−iHT , where Uπ = ∏

i e−iπ (1−esat )Sx,i e−iπ (1−ec )Sx,0 .
Using the Hamiltonian in Eq. (1) with Bc/2π = 300 MHz,
Bsat = 0, we compute the eigenvalues of UF (T ) for several
values of Jz = Jxy = J . The results are shown in Fig. 17,
where it is evident that the eigenvalues for J/2π = 1, 3 MHz
(black and green circles in the figure) come in antipodal pairs,
while those for J/2π = 2, 4 MHz (red and blue circles) do
not.

In the figure, we show results for N = 6 spins. The behav-
ior for an odd number of spins is similar to the even number
case provided we take Bodd

c /2π = Beven
c /2π + 0.5 MHz. We

again have antipodal pairs of eigenvalues in the case of
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FIG. 17. Eigenvalues of the Floquet operator UF (T ) for four dif-
ferent values of the total interaction strength Jz = Jxy = J in the case
of isotropic interactions in a central-spin system with N = 6 spins.
Here, Bc/2π = 300 MHz, Bsat = 0, ec,sat = 0.05, and T = 1 µs.

J/2π = 1, 3 MHz and no antipodal pairs in the case of
J/2π = 2, 4 MHz. To keep the perfect initial state after an
even number of periods, we have to apply a specific type
of condition to the many-body interaction strength J . In the
case of even many-body interaction J/2π (2, 4 MHz), this
means that

(−1 + e− iJ
2 ) = 0 −→ ei± J

2 = ei(2xπ+2π )

| −→ J/2π | = 2(x + 1) MHz.
(G1)

As we can see from Eq. (D6), in the case J/2π = 2, 4 MHz
where there is no factor (−1 + e− iJ

2 ), there is no absorption of
the imperfect driving due to the presence of the factors with
cos ec and sin ec. However, in the case of J/2π = 1, 3 MHz,
the factors of (1 + e− iJ

2 ) are eliminated, absorbing the π pulse
driving with the many-body interaction.

APPENDIX H: H2I PULSE ANALYSIS

In this Appendix, we provide further analysis of the effect
of H2I pulses, and we calculate the dependence of the central
spin magnetization on the number of H2I pulses. In the H2I
approach, the evolution operator after m H2I pulses can be
written as follows:

UH2I(T ) = [eiπSz,0(1−ez )UH (T/m)]m. (H1)

Using the Baker-Campbell-Hausdorff formula we can approx-
imate the application of the two operators by merging them
with their commutator. We just keep the first three terms of
the series, so we have

eAeB ≈ eA+B+ 1
2 [A,B], (H2)

where

A = iπSz,0(1 − ez),

B = −iJ
t

m

(
N−1∑
i=1

Sx,0Sx,i + Sy,0Sy,i + Sz,0Sz,i

)
. (H3)

The commutator [A, B] is readily computed

[A, B] =
[
αSz,0, β

(
N−1∑
i=1

Sx,0Sx,i + Sy,0Sy,i + Sz,0Sz,i

)]

=
[
αSz,0, βSx,0

N−1∑
i=1

Sx,i

]
+

[
αSz,0, βSy,0

N−1∑
i=1

Sy,i

]

= αβ[Sz,0, Sx,0]
N−1∑
i=1

Sx,i + αβ[Sz,0, Sy,0]
N−1∑
i=1

Sy,i

= αβiSy,0

N−1∑
i=1

Sx,i + αβ(−i)Sx,0

N−1∑
i=1

Sy,i

= αβ

(
S+,0 − S−,0

2

N−1∑
i=1

Sx,i − i
S+,0 + S−,0

2

N−1∑
i=1

Sy,i

)

= αβ

(
S+,0

2

N−1∑
i=1

(Sx,i − iSy,i ) − S−,0

2

N−1∑
i=1

(Sx,i + iSy,i )

)

= αβ

(
S+,0

2

N−1∑
i=1

S−,i − S−,0

2

N−1∑
i=1

S+,i

)
, (H4)

where α = iπ (1 − ez), β = −iJ t
m , S±,i = Sx,i ± iSy,i

So the exponent of the evolution operator after the applica-
tion of m H2I pulses can be written as

−iH̃t = iπmSz,0(1 − ez)

− iJt

(
N−1∑
i=1

Sx,0Sx,i + Sy,0Sy,i + Sz,0Sz,i

)

FIG. 18. The number of Floquet cycles (or driving periods)
where the stroboscopic central spin magnetization remains �0.46
versus the number of H2I pulses. We assume isotropic interactions
of strength Jz/2π = Jxy/2π = 1 MHz. Here, δJ/2π = 0.2 MHz,
ec,sat = 0.05, ez = 0.01, and T = 1 µs.
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+ π (1 − ez)J
t

2

(
S+,0

2

N−1∑
i=1

S−,i − S−,0

2

N−1∑
i=1

S+,i

)

= iπmSz,0(1 − ez) − iJt
N−1∑
i=1

Sz,0Sz,i

+
(

π (1 − ez)J
t

2
− iJt

)
S+,0

2

N−1∑
i=1

S−,i

−
(

π (1 − ez)J
t

2
+ iJt

)
S−,0

2

N−1∑
i=1

S+,i. (H5)

We see that the application of m H2I pulses is roughly
equivalent to an effective magnetic field on the central spin

that is proportional to m. The remaining terms in the effective
Hamiltonian H̃ include a longitudinal coupling J and trans-
verse couplings that depend on the error of the H2I pulse.
Similarly to having a large Zeeman energy Bc on the central
spin, the application of sufficiently many H2I pulses stabilizes
z-basis product states by suppressing in-plane interactions.

Next, we investigate numerically how the timescale on
which the central spin magnetization remains stable de-
pends on m. In Fig. 18, we show that the magnetization
increases nonlinearly and polynomially as we increase
the number of H2I pulses per driving period. Specifi-
cally, the figure shows the number of Floquet cycles over
which the stroboscopic central spin magnetization remains
�0.46. We fit the data to the function ( x

α
)β and find

that β = 1.41761895.
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