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Nowadays, it is recognized that semiconductors are prospective candidates for promising thermoelectric
materials and the gapless topological phonon modes can result in a high phonon scattering rate. Therefore it is
necessary to identify the topological phonons in semiconductors, which will aid future research aimed at gaining
a better understanding of the thermoelectric properties of semiconductors. Using first-principles calculations
and symmetry analysis, we propose a series of semiconductors as excellent candidates for the presence of
exotic topological phonons. Remarkably, almost all the types of topological phonons, including various cases
of Weyl/Dirac/triple point phonons, sextuple point phonons, nodal line phonons with different shapes and
degenerates, and one-, two-, and three-nodal surface phonons can be observed in the phonon curves of these
proposed semiconductors, revealing the ubiquitous existence of topological phonon modes in semiconductors.
Moreover, the diverse types of topological phonons induce rich types of phononic surface modes in the surface
orientations of semiconductors, which is advantageous to surface physics research.
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I. INTRODUCTION

The discovery of the quantum spin Hall effect [1–4] and
topological insulators [5–10] more than a decade ago trans-
formed current condensed matter physics. Topological states
of matter are currently one of the most active and fruitful
research fields for experimentalists and theorists. A topo-
logical insulator is a unique type of topological material in
which a band inversion occurs compared to an atomic in-
sulator, resulting in a gapless surface state. Following that,
topological states in metallic/semimetallic systems [11–19]
were anticipated, and numerous topological metal/semimetal
phases, such as nodal-point [20–24], nodal-line [25–29], and
nodal-surface [30–34] phases, were harvested in a variety of
materials. Topological semimetals/metals have unusual elec-
tronic structures that lead to protected surface states and a
novel response to external fields, attracting intense study in-
terest. Because of their excellent tunability and compatibility
with the modern electronic industry, semiconductor materials
[35–39] are particularly useful for devices compared to metal
and semimetal materials. Hence, incorporating topological
states into semiconductors may present new opportunities for
designing future semiconductor electronic and optoelectronic
devices. In 2019, Ideue et al. [40] extended the investigations
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of Weyl particles from the semimetals/metals to semicon-
ductors. They [40] showed that the elemental semiconductor
tellurium is a Weyl semiconductor with characteristic Weyl
signatures, such as negative longitudinal magnetoresistance,
planar Hall effect, and fascinating logarithmically periodic
magneto-oscillations in the quantum limit regime. The predic-
tions of Weyl fermions in semiconductors [40,41] provide a
straightforward platform for investigating novel Weyl physics
and topological device applications based on semiconduc-
tors, as well as confirming the universality of discrete scale
invariance in topological materials. In 2022, Fu et al. [42]
generalized the Dirac particles from semimetal to semicon-
ductor in two dimensions (2Ds). Note that the 2D materials
[43] have advantageous mechanical qualities and a compact
size for integration and regulation.

In 2010, Zhang et al. [44] linked the phonon Hall con-
ductivity with the Berry curvature of the phonon spectrum,
revealed the topological signatures of phonons, and discov-
ered a phase transition in the phonon Hall effect. It is worth
noting that advances in Berry-phase physics and topologi-
cal physics have resulted in the emergence of topological
phononics [45–55]. Several researchers have recently stud-
ied topological quasiparticles in phonons, which describe the
atomic lattice vibrations in solids. Contrary to the electronic
bands, all the phonon branches are relevant for experimen-
tal detection, as the Pauli exclusion principle and Fermi
surface constraints do not govern the phonons. Topological
phonons [45–49,56–60] may also lead to novel phenomena re-
lated to heat transfer, phonon scattering, and electron-phonon
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TABLE I. Representative examples of 3D and 2D semiconductors with exotic topological phonon modes.

Topological phonon modes Semiconductor Section

3D II-XI
WP phonons II-VI
C-1 WP phonons Ag2HgI4 (SG No. 111) II
C-2 WP phonons SrGeTeO6 (SG No. 149), HgO (SG No. 152) III, IV
C-3 WP phonons Y3CuGeS7 (SG No. 173) V
C-4 WP phonons SbIrS (SG No. 198) VI
DP phonons SbIrS (SG No. 29), Ge3N4 (SG No. 176), TeO2 (SG No. 19), Ge19(PBr)4 (SG No. 218) VII
TP phonons MgTe2 (SG No. 205),ZrSO (SG No. 198), MgTe (SG No. 186), Hf3N4 (SG No. 220) VIII
SP phonons Hf3N4 (SG No. 220) IX
NL phonons X
WNL and DNL phonons RbGaH2 (SG No. 62) X.1
Open and close WNL phonons CsNaSe (SG No. 129) X.2
NL phonons with different shapes CdS2 (SG No. 205), Au2S (SG No. 224), Tl2PtCl6 (SG No. 225) X.3

K2S (SG No. 225), LiBeN (SG No. 14)
NS phonons AgI (SG No. 186), YAgTe2 (SG No. 113), CdO2 (SG No. 205) XI
2D XII
VWP and QNP phonons PtSe2 (LG No. 72) XII
DP phonons PbO (LG No. 45) XII

interactions. For example, topological phonons can enhance
the thermoelectric properties of materials [56]. The ther-
moelectric performance of a material is represented by the
dimensionless figure of merit as follow:

zT = S2σT

κe + κl
, (1)

where S is the Seebeck coefficient, σ is the electrical con-
ductivity, and κe and κl are the electronic and phononic
contributions to thermal conductivity, respectively. It is known
that high thermoelectric performance requires high electronic
transport performance (S2σ ) while low thermal conductiv-
ity (κe + κl ). Singh et al. [56] proposed that the gapless
topological phonon modes in topological phononic materi-
als can provide additional scattering channels in the three
phonon-phonon scattering processes to decrease the mean free
path and suppress κl . More importantly, compared to metals,
narrow-gap semiconductors have much higher thermoelectric
performance, which can be attributed to the following reasons:
(1) a moderate carrier concentration in narrow-gap semicon-
ductors contributes to the excellent electronic performance,
i.e., the power factor S2σ . (2) the κe is lower than metal due to
its smaller level of charge carriers. Nowadays, it is recognized
that semiconductors are prospective candidates for promising
thermoelectric materials, which can be used in thermoelectric
devices.

Therefore it is necessary to identify the topological
phonons in semiconductors, which will aid future research
aimed at obtaining a better understanding of the thermoelec-
tric properties of semiconductors. In this work, we focused on
the topological phonons and related phononic surface states in
a series of realistic semiconductors. We show that almost all
types of topological phonons can be observed in the phonon
curves of the studied semiconductors, revealing the ubiquitous
existence of topological phonon modes in semiconductors.
We will analyze the symmetry of the space groups (SGs)
and layer groups (LGs) for chosen 3D and 2D candidate

semiconductors to gain a deeper understanding of the oc-
currence of topological phonons in these semiconductor
materials. Moreover, we will discuss the nontrivial phonon
surface/edge states related to these topological phonon bulk
modes in semiconductors.

Generally, topological phonons in 3D can be divided based
on the dimension of degeneracy manifold. For the dimension
of the degeneracy manifold, we term the 0D, 1D, and 2D
band degeneracy as point, line, and surface, respectively. In
Secs. II–IX, we will exhibit the nodal point phonons in a
series of 3D realistic semiconductors (see Table I for de-
tails). The nodal point phonons can be classified based on
the degree of degeneracy. We term the two-, three-, four-,
and six-degeneracy point phonons as Weyl, triple, Dirac, and
sextuple point phonons, respectively. The discussion about
the Weyl point (WP) phonons, Dirac point (DP) phonons,
triple point (TP) phonons, and the sextuple point (SP) phonons
in 3D realistic semiconductors can be found in Secs. II–VI,
VII, VIII, and IX, respectively. Moreover, according to the
topological charge C that equals ±1, ±2, ±3, and ±4, the
WPs in Secs. II–VI can be divided into charge-one (C-1)
WPs, C-2 WP, C-3 WPs, and C-4 WPs, respectively. The
results concerning the C-1, C-2, C-3, and C-4 WPs phonons in
realistic 3D semiconductors are presented in Secs. II, III–IV,
V, and VI, respectively.

For the classification of nodal line (NL) phonons, the de-
gree of degeneracy for the nodal lines (refer to Sec. X 1),
whether the nodal lines traverse the BZ (refer to Sec. X 2),
and the connection patterns of band crossings for the nodal
lines (refer to Sec. X 3) are taken into account. Notably, in
Sec. X 3, the nodal line phonons with different geometric
shapes, including nodal link phonons, DNL net phonons,
WNL net phonons, nodal box phonons, nodal chain phonons,
and nodal cage phonons, in realistic 3D semiconductors are
presented.

For the nodal surface (NS) phonons, they can be divided
into three classes: one-NS, two-NS, and three-NS phonons
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FIG. 1. (a) Crystal structure for P4̄2m type Ag2HgI4. (b) 3D bulk and 2D surface BZs, and the positions of the minimum of four
C-1 WPs in the 3D BZ. (c) Phonon dispersion for Ag2HgI4 along the � − X − M − � − Z − R − A − Z − X − R − M − A high-symmetry
paths. (d) Enlarged phonon bands on the � − X path and the (co)representations for the two phonon bands. A P1 WP with type-II dispersion
is obvious. (e) 3D plot of the minimum of four C-1 WPs in the kx − ky plane. (f) The evolution of the average position of Wannier centers for
P1 and P2 WPs with negative chirality or P3 and P4 WPs with positive chirality. (g) The calculated phonon local density of states (LDOS) of
Ag2HgI4. (h) The constant frequency slice at 1.05 THz projected on the semi-infinite (001) surface.

host one, two, and three pair(s) of NS states on one, two,
and three the ki = ±π (i = x, y, and z) planes, respectively.
The results concerning the one-NS, two-NS, and three-NS
phonons in realistic 3D semiconductors are presented in
Sec. XI.

To this date, research into gapless topological phonon
states in 2D materials is very limited. In Sec. XII, two 2D
experimentally feasible semiconductors, PtSe2 and PdO, were
also reported to host rich topological phonons, including val-
ley Weyl point (VWP) phonons, quadratic nodal point (QNP)
phonons, and Dirac phonons (see Table I for details).

II. A MINIMUM OF C-1 WP PHONONS
IN SEMICONDUCTOR Ag2HgI4

C-1 WP, also named conventional WP, is a zero-
dimensional (0D) twofold band degeneracy. C-1 WP enjoys
relativistic linear dispersion along any direction in momen-
tum space and can appear in 3D crystals without any space
group symmetry (except translation symmetry). In 2019, Xia
et al. [61] proposed that CdTe with the space group (SG)
216–a well-known synthesized II-VI semiconductor–to ex-
hibit 12 C-1 WPs in its phonon curves. It is highly desirable
to investigate synthesized semiconductors containing mini-
mum C-1 Weyl phonons to show the topological features of
C-1 Weyl phonons intuitively. It was widely believed that
nonmagnetic systems should have a minimum of four C-1
WPs. The following is the argument. Assume a C-1 WP with
charge C = 1 is located at k in the BZ. If the time-reversal
symmetry T is preserved, another C-1 WP with the same
charge C = 1 must exist at k. Due to the no-go theorem,

at least two additional C-1 WPs at −k (each with charge
C = −1) are necessary to guarantee the chiral charge neutral-
ity of the BZ.

This Sec. focuses on the semiconductor Ag2HgI4 [62], one
of the oldest known compounds that showed thermochromic
behavior, and demonstrates that its phonon curves contain a
minimum of four C-1 WPs. Ag2HgI4 has garnered significant
interest as a potential recording medium material, particularly
in the infrared region, as well as a promising superionic con-
ductor, which is vital in solid-state batteries and prospective
optical devices. The phonon dispersion curves for P4̄2m-
type Ag2HgI4 along the high-symmetry paths are shown in
Fig. 1(c).

We focus on the numbers (Nos.) 8 and 9 phonon branches
around the frequency of 1.04 THz in the phonon curves [see
Fig. 1(c)]. From it, one finds that the two phonon branches
only cross with each other along the � − X path, forming a
twofold degenerate point labeled as P1 [see Fig. 1(d)]. We
investigated the topological feature of the band crossing P1
by evaluating the average Wannier charge center (WCC) over
a sphere enclosing the crossing point. One can see the winding
number of WCC is −1 for the degenerate point P1 along
the � − X path, respectively. This indicates that the twofold
degenerate P1 point is a WP with C = −1. Considering the
crystal symmetry and T , there are a total of four such WPs in
the 3D BZ [see Fig. 1(e)], and the positions of the minimum of
four C-1 WPs with opposite C (two WPs with C = 1, and other
two WPs with C = −1) in Ag2HgI4 are exhibited in Figs. 1(e)
and 1(f). Moreover, the WPs in Ag2HgI4 have a tilted cone
dispersion and belong to type-II WPs [63–65], as shown
in Fig. 1(d).
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The appearance of the WP on the � − X path can be
understood from the symmetry analysis as follows: The little
co-group of � − X path is C2, and the crossing bands can be
labeled by two distinct 1D irreducible representations (IRRs),
�1 and �2 [see Fig. 1(d)], and the corresponding eigenvalues
of C2y are ±1. It implies that a C-1 WP can appear once band
inversion occurs, as shown in Fig. 1(d). We construct a k · p
effective model based on symmetry analysis to characterize
this WP. The basis is chosen as eigenstates of C2y with | + 1〉
and | − 1〉, and the matrix representations of the generators
can be expressed as C2y = σz and C2zT = σ0. The effective
Hamiltonian retained to the leading order reads

H111
�-X = (c1 + c2ky)σ0 + c3kyσz + c4kxσx + c5kzσy, (2)

where ci are real parameters, σi=x,y,z are the Pauli matri-
ces, and σ0 is the 2×2 identity matrix. It is worth noting
that c2kyσ0 is a linear tilt term, and when |c2/c3| > 1, the
Hamiltonian H111

�-X describes a type-II WP.
Although the C-1 WPs can be identified by symmetry anal-

ysis, the type of band dispersion around the WPs cannot be
directly determined by symmetry analysis. Hence, the quest
for C-1 WP materials with ideal type-II WPs continues to be
a challenge.

The calculated phonon local density of states (LDOS) and
surface arcs for the semi-infinite (001) surface of Ag2HgI4 are
exhibited in Figs. 1(g) and 1(h), respectively. From Fig. 1(h),
one finds that two arcs, connecting the projections of the two
C-1 WPs with opposite C, are apparent on the semi-infinite
(001) surface. According to Fang et al. [66], the phononic arc
surface states of a C-1 WP around the projected point on the
boundary correspond to a helicoid.

III. A MINIMUM OF C-2 WP (C-2
SINGLE-PAIR-WEYL-POINT) PHONONS

IN SEMICONDUCTOR SrGeTeO6

Fang et al. [67] demonstrated in 2012 that, with rotation
symmetry, two (three) conventional WPs could combine to
form an unconventional WP with higher topological charge
|C| = 2 (|C| = 3) and quadratic (cubic) dispersion in the plane
normal to the rotation axis. Recently, unconventional WP with
a maximum |C| of 4, hosting a cubic dispersion along the
[111] direction and quadratic dispersion in all other directions,
has been proposed in spinless and spinful systems [68–70].

According to our previous work [71], the |C| of a WP
located at a time-reversal-invariant momentum point must be
even (i.e., 2 and 4) in a spinless system. More interestingly,
we pointed out that only two C-2 WPs or C-4 WPs could exist
at two time-reversal-invariant momenta. Hence, the two C-2
WPs or C-4 WPs located at the two time-reversal-invariant
momenta points can be named single-pair-Weyl-points in
spinless systems.

Generally, it would be better to realize Weyl systems with
as few WPs as possible to have a clean platform to investigate
the properties of WPs. Keeping the number of WPs to a
minimum will simplify both the theoretical model and the
transport experiments [72,73]. In addition, the surface states
created by the smallest number of WPs are easily observed in
spectroscopy investigations.

In this section, we shall select the P312 SrGeTeO6

semiconductor [74] as an example to show the C-2 single-
pair-Weyl-point phonons in its phonon curves. The phonon
dispersion for P312 SrGeTeO6 is exhibited in Fig. 2(c). The
enlarged phonon curves in the frequency region of 14.6–15.0
THz are shown in Fig. 2(d). From it, one finds the Nos. 18 and
19 phonon branches can only form two crossing points at the
� and A time-reversal-invariant momenta points in the 3D BZ
[see the insert figure of Fig. 2(d)]. As shown in Fig. 2(e), these
two crossing points at the � and A are C-2 WPs with |C| = 2.

In Figs. 2(f) and 2(g), we exhibit the projected spectrum
on the semi-infinite (010) surface and the constant frequency
slice at 14.7 THz of SrGeTeO6. From Fig. 2(g), one finds
that the surface modes of the single-pair-Weyl-point phonons
could form a closed noncontractible loop that winds around
the surface BZ along only one direction. This type of surface
mode is distinct from the open arcs of the C-1 WP phonons.

Note that multi-charged WPs are stabilized by crystalline
symmetry in single-pair-Weyl-point states. The appearance
of the C-2 WPs at the � and A in SG 149 arises from the
essential band degeneracy; both of them are protected by 2D
IRR E of D3 little cogroup and thus have the same form of
effective Hamiltonian. Under the basis of IRR E , the matrix
representation of generators of D3 group can be expressed as,
C+

3 = cos 2π
3 σ0 − i sin 2π

3 σy, C′
21 = σz, and antiunitary opera-

tion T = −σ0.
The effective Hamiltonian around the � and A in SG 149,

to the leading order, takes the following form:

H149
�,A = c1

(
k2

x + k2
y

)
σ0 + (c2kxky + c3kxkz )σx

+ [
c4

(
k2

x − k2
y

) + c5kykz
]
σz + c6kzσy. (3)

One can observe that Hamiltonian H149
�,A exhibits linear band

dispersion along the kz direction and quadratic dispersion for
the kx − ky plane, which describes a C-2 WP.

Under perturbations that reduce symmetry, they should
typically split into several WPs with unit charge. In conse-
quence, the closed surface loop will split into open arcs [71].

IV. TYPE-III C-2 WP-BASED WEYL COMPLEX PHONONS
IN SEMICONDUCTOR HgO

According to the Nielsen-Ninomiya no-go theorem
[75,76], there is always an equal number of WPs with oppos-
ing chirality (see the cases in Secs. II and III); hence the total
topological charge is always zero. However, the emergence
of WPs in pairs is not necessary for the conservation of chiral
charge if a system simultaneously possesses WPs with distinct
|C|. Wang et al. [77] and Huang et al., [78], for instance,
presented a symmetry-protected three-terminal Weyl complex
whose phonon branches can form a C-2 WP and two C-1 WPs
(for a total of three WPs) in realistic materials with trigonal,
hexagonal, and cubic lattices.

In this section, the well-known chiral binary compound
HgO [79] with the chiral space group 152 and a semicon-
ducting band structure was chosen to demonstrate that it can
host a C-2 WP with type-III dispersion [80,81] and two C-1
WPs, generating a three-terminal Weyl complex in its phonon
curves. The phonon dispersion for P3121-type HgO is shown
in Fig. 3(c), and we focus on the Nos. 14 and 15 phonon
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FIG. 2. (a) Crystal structure for P312 type SrGeTeO6. (b) 3D bulk and 2D surface BZs. (c) Phonon dispersion for SrGeTeO6 along the
� − M − K − � − A − L − H − A − L − M − H − K high-symmetry paths. (d) Enlarged phonon bands and the positions of the minimum of
two C-2 WPs in the 3D BZ. (e) The evolution of the average position of Wannier centers for two C-2 WPs at the � and A points with negative
and positive chirality. Inserts are the 3D plot of the two C-2 WPs in the kx − ky plane. (f) The calculated phonon LDOS of SrGeTeO6. (g) The
constant frequency slice at 14.7 THz projected on the semi-infinite (010) surface.

branches around the frequency of 13 THz. Figure 3(c) shows
that the two phonon branches form a crossing point at the
� point and a crossing point at the K point. Actually, the
crossing point at the � belongs to a C-2 WP with C = −2,
and the crossing point at the K belongs to a C-1 WP with
C = 1 [see Fig. 3(d)], respectively. We would like to point

out that the proposed C-2 WPs in phonon systems by Wang
et al. [77] and Huang et al. [78] have a type-I phonon band
dispersion. However, the C-2 WP in P3121-type HgO has
a type-III phonon band dispersion, that is, the phonon band
dispersion around the C-2 WP in the kx − kz plane shows
a saddle shape [see Fig. 3(d)], and there are two connected

FIG. 3. (a) Crystal structure for P3121-type HgO. (b) 3D bulk and 2D surface BZs. (c) Phonon dispersion for HgO along the � − M −
K − � − A − L − H − A − L − M − H − K high-symmetry paths. (d) The evolution of the average position of Wannier centers for a C-2 WP
at the � point with negative chirality and a C-1 WP at the K point with positive chirality. Inserts are the 3D plot of the C-2 WP and C-1 WPs in
the ky − kz and kx − ky planes, respectively. (e) Constant-frequency surface (highlighted by blue surface) of the type-III C-2 WP at the � point
contains two connected h-like states. (f) The calculated phonon LDOS of HgO. (g) The constant frequency slice at 13.1 THz projected on the
semi-infinite (001) surface.
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FIG. 4. (a) Crystal structure for P63-type Y3CuGeS7. (b) 3D bulk and 2D surface BZs. The schematics of the triple-helicoid and the
sextuple-helicoid surface modes on (010) and (001) surfaces, respectively. (c) Phonon dispersion for Y3CuGeS7 along the � − M − K − P −
� − A − L − H − A − L − M − H − K high-symmetry paths. (d) The enlarged phonon curves, including No. 55–58 phonon branches, in the
frequency region of 7.8–8.7 THz. (e) The evolution of the average position of Wannier centers for a C-3 WP on the � − A path with negative
chirality and a C-1 WP on the P-� with positive chirality. Inserts are the 3D plot of the C-3 WP and C-1 WPs in the kx − ky plane. [(f) and
(h)] The calculated phonon LDOS of Y3CuGeS7 on the semi-infinite (010) and (001) surfaces, respectively. (g) The constant frequency slice at
8.32 THz projected on the semi-infinite (010) surface. (i) The constant frequency slice at 8.34 THz projected on the semi-infinite (001) surface.

holelike (h-like) states in the constant-frequency surface at the
C-2 WP at the � point [see Fig. 3(e)].

The same C-1 WP with C = 1 can also be found at the
K ′ point, and therefore, the one type-III C-2 WP at the
� point (with C = −2) and two C-1 WPs at the K and K ′
points (each with C = 1) will form a Weyl complex, for which
the net topological charge vanishes. In contrast to traditional
Weyl systems with pairs of C-1 WPs, in which surface arcs
terminate at the projections of two C-1 WPs with oppos-
ing chirality [see Fig. 1(h)], the phonon surface arcs of the
Weyl complex in HgO connect the projections of one C-2
WP and two C-1 WPs [see Fig. 3(g)]. Notably, the phononic
surface arcs arising from the projections of the Weyl com-
plex in P3121-type HgO are pretty long and span the entire
(001) surface BZ. The majority of catalytic processes occur
on surfaces. Meng et al. [82] recently established a linear
relationship between catalytic enhancement and surface arc
length. Consequently, the extremely long phononic surface
arcs on the (001) surface may facilitate catalysis if the phonon
frequency is in resonance with certain midsteps in the reaction
[83].

Before closing this section, we would like to explain the
appearance of the type-III Weyl complex in P3121-type HgO
from the symmetry viewpoint: similar to the symmetry pro-
tection of the � point in space group P312, here, the type-III
C-2 WP located at the � point in HgO is also derived from the
2D IRR of the D3 group. Therefore the effective Hamiltonian
of the � point in HgO shares the same form with H149

�,A, reads

H152
� = c1

(
k2

x + k2
y

)
σ0 + (c2kxky + c3kxkz )σx

+ [
c4

(
k2

x − k2
y

) + c5kykz
]
σz + c6kzσy. (4)

Here, the tilt term c1(k2
x + k2

y )σ0 determines the type of WPs,
and when |c1/c4| > 1, the Hamiltonian H152

� describes a

type-III C-2 WP. In addition, there are two other C-1 WPs
in HgO, which are located at the K and K ′ points, respec-
tively, and carry the same chirality related by T . The effective
Hamiltonian around the K and K ′ can be described by

H152
K = c1(kxσx + kyσz ) + c2kzσy. (5)

The C-2 WPs at the � and C-1 WPs at the K (K ′) point form a
unique Weyl complex.

V. C-3 WPS-BASED WEYL COMPLEX PHONONS
IN SEMICONDUCTOR Y3CuGeS7

Besides the semiconductor with C-2 WP-based Weyl com-
plex phonons mentioned in Sec. IV, we shall note that the
semiconductor Y3CuGeS7 [84] can host C-3 WPs-based Weyl
complex phonons and attractive phononic surface states. The
phonon dispersion for Y3CuGeS7 along the � − M − K −
M1 − � − A − L − H − A|L − M|H − K paths is shown in
Fig. 4(c), and we focus on the enlarged phonon curves in the
frequency region of 7.8–8.7 THz [see Fig. 4(d)]. At a first
glance, one finds that the No. 56 and No. 57 phonon branches
can form two crossing points, one along the � − A path and
the other along the P − � path. These two points belong to
C-3 WP with C = −3 and C-1 WP with C = 1, respectively,
as shown in Fig. 4(e). Totally, there should be two C-3 WPs
and six C-1 WPs, forming a Weyl complex, in the 3D BZ.

Note that the C-3 WP in Y3CuGeS7 is the neck crossing
point of the hourglass-like shape [85–88], composed of four
phonon branches with Nos. 55–58, on the � − A path. No-
tably, the hourglass quasiparticle [85–88] has garnered much
attention, as the neck crossing point of an hourglass-type band
represents a new kind of essential degeneracy that cannot be
inferred directly from the IRRs of the corresponding little
group.
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Here, we mainly focus on the neck of the hourglass bands,
i.e., the band crossing point formed by the phonon branches
Nos. 56 and 57. Two distinct 1D IRRs can label these two
bands �3 and �6 of C6 group, and the corresponding eigen-
values of C̃6z = {C6z | 00 1

2 } are e
iπ
3 and e− 2iπ

3 . Under the basis

of |e iπ
3 〉 ⊕ |e− 2π i

3 〉, the matrix representation of C̃6z is given
by C̃6z = e

iπ
3 σz. As a consequence, the effective model at the

� − A path of Y3CuGeS7 could be written in the form of

H173
�-A = H0 + [(

α1k3
+ + α2k3

−
)
σ+ + H.c.

]
. (6)

With

H0 =
∑

i=0,x,y,z

σi
[
ci,1k2 + ci,2k2

z + ci,3kz
(
1 + ci,4k2 + ci,5k2

z

)]
,

(7)

where ci, j are real parameters, k2 = k2
x + k2

y + k2
z , k± = kx ±

iky, and σ± = σx ± iσx. The Hamiltonian H173
�−A exhibits

linear band splitting along the kz direction and cubic band
splitting in kx-ky plane, which indicates the presence of the
C-3 Weyl point.

Next, we come to show the appearance of triple- and
sextuple-helicoid surface arc states related to the Weyl com-
plex formed by two hourglass C-3 WPs and six C-1 WPs. If
we consider the semi-infinite (010) surface, the two hourglass
C-3 WPs with C = −3 and six C-1 WPs with C = 1 will be
projected to different positions on the (010) surface, and each
C-3 WP combines three C-1 WPs forming three surface arcs,
i.e., a triple-helicoid surface state [see Fig. 4(g)]. However, if
we consider the semi-infinite (001) surface, the six C-1 WPs
with C = 1 will be projected to different positions, and the
two hourglass C-3 WPs will be projected to the same position.
Thus six surface arcs connected to the �̄ point, forming a
sextuple-helicoid surface state [as shown in Fig. 4(i)] because
C = −3×2.

VI. A SINGULAR C-4 WP SURROUNDED BY CHARGED
NODAL WALLS IN SEMICONDUCTOR SbIrS

Weyl particles in any crystal are widely assumed to be
restricted by the so-called Nielsen-Ninomiya no-go theorem
[75,76], which demands that WPs exist in pairs with opposing
chirality. As shown in Fig. 1(d), surface arcs connecting the
projections of the WPs on the surface BZ are a manifestation
of WP pairs.

However, it is essential to understand that Weyl physics
has only been discovered in the last decade, which is con-
siderably later than the formulation of the no-go theorem
proposed in 1981 [75,76], and therefore, this theorem does not
provide a precise definition and derivation for its application
to nodal walls. In 2020, Ma et al. [89] extended the original
Nielsen-Ninomiya no-go theorem to account for the situation
that topological nontrivial Weyl nodal walls surround a singu-
lar WP. Specifically, rather than searching for a pair of WPs
with opposing chirality, the Berry curvature field of unpaired
WPs can be absorbed by higher dimensional topological ob-
jects, such as 2D topological nontrivial Weyl nodal walls.

In this section, we would like to report that a singular
C-4 WP surrounded by charged nodal walls appears in the
phonon curves of the semiconductor SbIrS [90]. The phonon
dispersion for SbIrS along the �−X −M−�−R−X −R−M

high-symmetry paths is exhibited in Fig. 5(d). From it, one
finds that the No. 17 and No. 18 phonon branches degenerate
with each other along the R − X − R − M paths, reflecting the
formation of the nodal walls on the ki = ±π planes, which can
be understood from the following symmetry analysis:

The lattice of SbIrS has the SG symmetry of P213
(No. 198), which contains three twofold screw rotations
in SG 198. They are shown as C̃2x = {C2x | 1

2 , 1
2 , 0}, C̃2y =

{C2y | 0, 1
2 , 1

2 }, and C̃2z = {C2z | 1
2 , 0, 1

2 }. A combination of
nonsymmorphic twofold screw-rotational symmetry and T
can guarantee the nodal surfaces. We take S2zT as an example,
one can find that (C̃2z )2 = T001 = eikz , T 2 = −1. Thus the
combination C̃2zT is an antiunitary operator, which satisfies
(C̃2zT )2 = −1 on the kz = ±π plane and further lead to
twofold Kramers degeneracy. This is the origin of the nodal
surface on the kz = ±π plane, and the same argument applies
to the kx and ky planes. Hence, the nodal wall state appears.

Moreover, a crossing point, formed from the No. 17 and
No. 18 phonon branches, can be found at the center of the 3D
BZ, i.e., the � point. The crossing point at the � is a twofold
degenerate Weyl point with C = −4 [see Fig. 5(e)]. C-4 WP
hosts a quadratic band dispersion along the kx, ky, and kz

directions and a cubic band dispersion along the [111] direc-
tion, which can be understood from the following symmetry
analysis: The C-4 WP at the � in SG of P213 correspond to
the 2D corepresentation (1E2E ) of the T point group. Under
the basis of 1E2E , the symmetry generators are expressed
as follows: C+

31 = cos 2π
3 σ0 + i sin 2π

3 σz,C2z = σ0,C2y = σ0,
and T = σx.

Under the symmetry constraints above, the effective
Hamiltonian up to the third order is

H198
�

= c1k2σ0 + c2kxkykzσz +
√

3
[
c3k2

x + c4k2
y − (c3 + c4)k2

z

]
σx

+ [
c4

(
k2

y − 2k2
x + k2

z

) − c3
(
k2

x − 2k2
y + k2

z

)]
σy. (8)

The above effective Hamiltonian H198
� describes a C-4 WP.

One can define the Chern number of the nodal surface us-
ing the Berry field theory, i.e., the Chern number of the nodal
surface should be opposite to the net charge of all the WPs
within one BZ, which results in a Chern number of zero for the
BZ as a whole. The nonzero C = 4 value for the Weyl nodal
walls in SbIrS is caused by the absence of inversion symmetry.
Hence, a singular C-4 WP and a topologically charged Weyl
nodal surface with C = 4 form a topologically charged Weyl
point-surface system [91]. As shown in Figs. 5(f)–5(h), no arc
surface state can be observed in the spectra, no matter how
we change the number of slabs. The reason can be understood
as follows: the C-1 Weyl pairs follow the no-go theorem and
exhibit arc surface states, connecting the surface projection
of the two WPs. The chiral edge modes for nontrivial 2D
slices trace out the arc on the surface, as shown in Fig. 5(j).
For the topologically charged Weyl point-surface system, the
singular WP locates at the � point, surrounded by nodal walls
covering the entire BZ boundary. The gapped 2D slices of the
BZ, which are required for the topological argument of surface
states, cannot be seen in Fig. 5(k); hence, the arc surface states
vanish even though a WP exists in 3D BZ.
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FIG. 5. (a) Crystal structure for P213-type SbIrS. (b) 3D bulk and 2D surface BZs. (c) Phonon dispersion for SbIrS along the � − X −
M − � − R − X − R − M high-symmetry paths. (d) The enlarged phonon curves, including No. 17 and No. 18 phonon branches in the
5.7–6.0 THz frequency region. (e) The evolution of the average position of Wannier centers for a C-4 WP at the � with negative chirality
and the 3D plot of the C-4 WP in the kx − ky plane. [(f)–(h)] Surface spectra on (001) surface calculated by a slab model. Different numbers
(N) of slabs are considered during the calculations. (i) Ir-(001) surface terminations of SbIrS. (j) C-1 Weyl pairs respecting the no-go theorem
and exhibiting arc surface states. (k) Topologically charged Weyl point-surface system and the disappearing arc surface states.

VII. DP, C-2 DP, QDP, AND CCDP PHONONS
IN SEMICONDUCTORS

Fourfold degeneracy point phonons can be divided into
four parts [70,92,93], DP, C-2 DP, QDP, and CCDP, respec-
tively. We would like to point out that using first-principles
computations, Zhang et al. [94] presented noncentrosym-
metric material FeSi, a strongly correlated semiconductor,
harboring C-2 DP phonons and C-2 TP phonons in its phonon
dispersions. More importantly, the C-2 DP phonons and
C-2 TP phonons were verified by Miao et al. [95] in parity-
breaking FeSi with the help of inelastic x-ray scattering.
In this section, we shall show the ubiquitous existence of
phononic DP signatures in semiconductors.

For the DP, it is a 0D fourfold band degeneracy with a
topological charge C = 0. It features a linear dispersion along
any direction in momentum space. This section shows that the
SbIrS [90] semiconductor hosts DP phonons at the R point in
the frequency around 10 THz [see Figs. 6(c) and 6(d)].

The Pca21 (No. 29) is a nonsymmorphic space group,
which may lead to higher degeneracy at the boundary of
the Brillouin zone. Indeed, the DP at the R corresponds to
the 4D projective representation (R1R1). Under the basis of
R1R1, the matrix representation of symmetry generators can
be expressed as C2z = i�0,2, My = i�0,1, and T = −�2,2. As
a consequence, the effective Hamiltonian at the R point of SG
29 could be derived as

H29
R = c1�0,0 + c2�0,1kx + c3�0,3ky +

∑
i=1,2,3

ci,1�i,0kz, (9)

where �i, j = σi ⊗ σ j with σ ′s referring to the Pauli matrix.
The effective Hamiltonian H29

R describes a linear DP.
For the QDP, it is a 0D fourfold band degeneracy with a

topological charge C = 0. It features a linear dispersion along
the certain high-symmetry line, and has a quadratic band
splitting in the plane normal to the high-symmetry line. We
show that the semiconductor Ge3N4 [96] is a candidate mate-
rial with a QDP at the A point in the frequency around 21.7
THz [see Fig. 6(g)]. Such a QDP hosts a linear dispersion
along the � − A path and a quadratic band splitting in the
plane normal to the � − A path [see Fig. 6(h)]. We then
understand the physics of the QDP phonons in Ge3N4 via
the following: The QDP at the A in P63/m (No. 176) SG
also corresponds to the 4D projective representation (A1A3).
And the matrix representation of symmetry generators can be
expressed as C+

6 = sin( π
3 )�0,2 + i cos( π

3 )�3,3, I = �0,1, and
T = �1,0. As a consequence, the effective Hamiltonian at the
A point of SG 176 could be derived as

H176
A = [

c1 + c2
(
k2

x + k2
y

) + c3k2
z

]
�0,0 + c4�3,3kz

+ (α1�+,1k2
− + α2kz�+,1k+ + H.c.). (10)

Here, �i, j = σi ⊗ σ j and σ± = (σ1±iσ2 )
2 . αi are complex

parameters and k± = kx ± iky. One can observe that the ef-
fective Hamiltonian H176

A describes a QDP.
For the C-2 DP, it is a 0D fourfold band degeneracy with

a topological charge C = ±2. It features a linear dispersion
along any direction in momentum space. We show that the
semiconductor TeO2 [97] is a candidate material with C-2 DP
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FIG. 6. [(a), (e), (i), and (m)] Crystal structures for the SbIrS, Ge3N4, TeO2, and Ge19(PBr)4, respectively. [(b), (f), (j), and (n)] 3D
BZs for the SbIrS, Ge3N4, TeO2, and Ge19(PBr)4, respectively. [(c), (g), (k), and (o)] Phonon dispersions for the SbIrS, Ge3N4, TeO2, and
Ge19(PBr)4, respectively. [(d), (h), (i), and (p)] Enlarged phonon curves along the � − R − T (for SbIrS), L − A − L, and � − A − � (for
Ge3N4), � − R − T (for TeO2), and the � − R − � (for Ge19(PBr)4) paths, respectively, and the 3D plots of the phonon bands around the DP
at the R (for SbIrS) in the kx − ky plane, QDP at the A (for Ge3N4) in the kx − ky plane, C-2 DP at the R (for TeO2) in the kx − ky plane, CCDP
at the R [for Ge19(PBr)4] point in the plane normal to the k(111) path, respectively.

at the R point [see Figs. 6(k) and 6(l)]. We then understand the
physics of the C-2 DP phonons in TeO2 via the following. For
point R of space group No. 19, crystal symmetry guarantees
the existence of a 2D IRR (R1), which corresponds to a WP.
T can enforce two WPs of the same chirality to appear at the
same point and form C-2 DP (4D IRR R1R1). Under the basis
of R1R1, the matrix representations of generating elements and
T are given by C2z = i�0,2,C2y = i�0,1, and T = −�2,2.

The effective Hamiltonian based on the symmetry con-
straints can be written by

H19
R = c1�0,0 + c2�0,3kx + c3�0,1ky + c4�0,2kz. (11)

The effective Hamiltonian H19
R describes a C-2 DP with lin-

ear dispersion, which also is confirmed by our calculations.
Moreover, the phonon LDOS projected on the (100) surface is
shown in Fig. S1(c) (see Ref. [98]). The white arrows indicate
the phonon surface states. Also, the constant frequency slice at
18.5 THz is given in Fig. S1(d) (see Ref. [98]). Corresponding
to the obtained C of the C-2 DPP, as expected, double arc-
shaped surface states are emanating from the projection of the
C-2 DPP (i.e., R̄ point).

For the CCDP, it is a 0D fourfold band degeneracy with
a topological charge C = 0. It is formed by a cubic crossing
between two doubly degenerate bands along a certain
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high-symmetry line and has a quadratic band splitting in
the plane normal to the high-symmetry line. As shown
in Figs. 6(o) and 6(p), one finds that the semiconductor
Ge19(PBr)4 [99] is a candidate with CCDP at the R point,
and this CCDP shows a cubic crossing formed by two doubly
degenerate bands (Nos. 137, 138 and Nos. 135, 136) along
the k(111) path (i.e., � − R path) and a quadratic band splitting
in the plane normal to k(111) path [see Fig. 6(p)]. We then
understand the physics of the CCDP phonons in Ge19(PBr)4

via the following: The DP at the R is supported by 4D IRR
(R3R3) of the P43n SG (No. 218). Under the basis of R3R3,
the matrix representations of generating elements and T
are given by S+

4x =
√

3i
2 �0,1 − i

2�0,2, σda = i�0,2 C−
33 =

− 1
2�0,0 +

√
3i

2 �0,3, and T = −�2,2. The effective
Hamiltonian up to the third order based on the symmetry
constraints can be written as

H218
R = (c1 + c2k2)�0,0 +

√
3(c3�3,1 + c4�1,1 + c5�2,1)

× (
k2

x − k2
y

) − (c3�3,2 + c4�1,2+ c5�2,2)

× (
k2

x + k2
y − 2k2

z

) + (c6�1,0 + c7�2,0 + c8�3,0)

× kxkykz. (12)

The dispersion characteristic of Hamiltonian H218
R shows that

band crossing at the R is a CCDP, and our calculations also
confirm this fact.

VIII. TP, C-2 TP, QTP, AND QCTP PHONONS
IN SOME SEMICONDUCTORS

Threefold degeneracy point phonons can be divided into
four parts [70], TP, C-2 TP, QTP, and QCTP, respectively.

Note that, as mentioned in Ref. [56], TP phononic materi-
als have gapless topological phonon modes that can provide
additional scattering channels in the three phonon-phonon
scattering processes to decrease the mean free path and sup-
press κl .

In this section, we would like to point out that all four
types of threefold degeneracy point phonons can be found
in the phonon curves of semiconductors. For the TP, it is a
0D threefold band degeneracy formed by a linear crossing
between a doubly degenerate band and a nondegenerate band.
The TP does not have a well-defined topological charge of
Chern number, as there does not exist a fully gapped sphere
surrounding TP in BZ. Figure 7(c) shows that a TP appears on
the � − R path in the frequency region around 3.0 THz of the
MgTe2 semiconductor [100]. For clarity, the phonon branches
Nos. 18–20 along the � − R path and the 3D plot of the TP are
shown in Fig. 7(d). One may understand the appearance of TP
phonons in MgTe2 semiconductor based on the followings.
The TP on the � − R path is formed by a linear crossing
between 2D IRRs �2 ⊕ �3 and a 1D IRR �1 [see Fig. 7(d)].
Under the basis of {�1,�2 ⊕ �3}, the matrix representations
of generating elements and antiunitary operator are given by

C+
31 =

⎛⎜⎝1 0 0

0 − 1
2 +

√
3

2 i 0

0 0 − 1
2 −

√
3

2 i

⎞⎟⎠, IT =
⎛⎝1 0 0

0 0 1
0 1 0

⎞⎠.

(13)
The effective Hamiltonian based on the symmetry constraints
can be written as

H205
�-R =

⎛⎜⎜⎜⎝
c1 + 4

√
3

3 c3qz + c2(qz − c4qy) (c4 − ic5)(qx − iqy) c4qx + ic5qx − c5qy

(c4 + ic5)(qx + iqy) c1 − 2
√

3
3 c3qz + c2(qz + c4qy) (c6 − ic7)(qx − iqy)

c4 − ic5qx − c5qy (c6 + ic7)(qx + iqy) c1 + c2qz − 2
√

3
3 c3qz

)
⎞⎟⎟⎟⎠. (14)

Here, qx = 1√
6
(−kx − ky + 2kz ), qy = 1√

2
(kx − ky), and qz = 1√

3
(kx + kx + kz ). The Hamiltonian H205

�-R describes a TP with linear
dispersion along the � − R path.

For the C-2 TP, it is a 0D threefold band degeneracy with a topological charge C = ±2. It features a linear splitting along any
direction in momentum space. As shown in Figs. 7(g) and 7(h), a C-2 TP, located around the frequency of 10 THz and formed
by phonon branches Nos. 26–28 can be found at the � point in the phonon curves of the semiconductor ZrSO [101].

The appearance of the C-2 TP at the � arises from the essential band degeneracy, which is protected by 3D IRR �4 of the
T little group. Under the basis of �4, the matrix representations of generating elements and time-reversal symmetry T are given
by

C+
31 =

⎛⎝0 0 1
1 0 0
0 1 0

⎞⎠, C2z =
⎛⎝−1 0 0

0 −1 0
0 0 1

⎞⎠, C2y =
⎛⎝−1 0 0

0 1 0
0 0 −1

⎞⎠, T = −√
3i − 1

2

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠. (15)

As a consequence, the effective Hamiltonian around the
� point could be derived as

H198
� =

⎛⎝ c1 −ic2kz ic2ky

ic2kz c1 −ic2kx

−ic2ky ic2kx c1

⎞⎠. (16)

The Hamiltonian H198
� describes a standard C-2 TP with linear

dispersion at the � point. The phonon LDOS and the fre-
quency slice corresponding to the (001) surface at 9.9 THz are
shown in Fig. S2 of Ref. [98], in which the double arc-shaped
surface states are obvious.
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FIG. 7. [(a), (e), (i), and (n)] Crystal structures for the MgTe2, ZrSO, MgTe, and Hf3N4, respectively. [(b), (f), (j), and (o)] 3D BZs for the
MgTe2, ZrSO, MgTe, and Hf3N4, respectively. [(c), (g), (k), and (p)] Phonon dispersions for the MgTe2, ZrSO, MgTe, and Hf3N4, respectively.
(d) Enlarged phonon curves along the � − R path and the 3D plot of phonon bands around the TP in the kx − ky plane for MgTe2. (h) Enlarged
phonon curves along the X − � − X paths and the 3D plot of phonon bands around the C-2 TP at the � point in the kx − ky plane for ZrSO. [(l)
and (m)] Enlarged phonon curves along the a − b and � − A paths and the 3D plot of phonon bands around the QTP in the kx − ky plane for
MgTe. [(q) and (r)] Enlarged phonon curves along the N − � − N paths, the � − H − N paths, and the related 3D plots of the phonon bands
around the QCTP at the � and the SP at the H points in the kx − ky plane for Hf3N4.

The QTP also does not have a well-defined topologi-
cal charge of the Chern number (as is the case with TP).
However, in contrast to TP hosts a linear band splitting along
any direction in momentum space, QTP features a quadratic
band splitting in the plane normal to the high-symmetry line.
In Figs. 7(i)–7(m), we show that the QTP, located around the
frequency of 1.2 THz, can be found in the phonon curves of
semiconductor MgTe [102] on the � − A path. From Figs. 7(l)
and 7(m), one finds that the phonon branches around the QTP
host a linear band dispersion on the �-A path, and a quadratic
band splitting in the plane normal to the � − A path. One

may understand the appearance of QTP phonons in MgTe
semiconductor based on the following: The QTP on the � − A
path is formed by a band crossing between a 2D IRR �5 and
a 1D IRR �1 [see Fig. 7(m)]. Under the basis of {�1,�5}, the
matrix representations of generating elements and antiunitary
operator are given by

C+
6 =

⎛⎜⎜⎝
1 0 0

0 − 1
2 −

√
3

2

0
√

3
2 − 1

2

⎞⎟⎟⎠, σv1 =
⎛⎝1 0 0

0 1 0
0 0 −1

⎞⎠. (17)
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The effective Hamiltonian based on the symmetry constraints can be written as

H186
�-A =

⎛⎜⎜⎝
c1 + c5

(
k2

x + k2
y

) + c3kz + c8k2
z α

(
k2

x −k2
y

)
αkxky

α∗(k2
x −k2

y

)
c2 + c6

(
k2

x + k2
y

) + c7k2
y + c4kz + c9k2

z c7kxky

α∗kxky c7kxky c2 + c6
(
k2

x + k2
y

) + c7k2
x + c4kz + c9k2

z

⎞⎟⎟⎠.

(18)

Where ci are real parameters and α is a complex parameter. The Hamiltonian H186
�-A describes a QTP along the � − A path, and

the result is also confirmed by our calculations.
The QCTP is a 0D threefold band degeneracy with a topological charge C = 0 and features a quadratic band splitting along

any direction in momentum space. As shown in Figs. 7(n)–7(r), we show the semiconductor Hf3N4 [103] hosts QCTP at the
� point [see Fig. 7(q)] and the SP at the H point [see Fig. 7(r)].

The appearance of the QCTP at the � arises from the essential band degeneracy, which is protected by 3D IRR �4 of Td little
group. Under the basis of �4, the matrix representations of generating elements and time-reversal symmetry are given by

C−
31 =

⎛⎝0 1 0
0 0 1
1 0 0

⎞⎠, C2z =
⎛⎝−1 0 0

0 −1 0
0 0 1

⎞⎠, C2x =
⎛⎝1 0 0

0 −1 0
0 0 −1

⎞⎠,

σda =
⎛⎝ 0 −1 0

−1 0 0
0 0 1

⎞⎠, T = −√
3i − 1

2

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠. (19)

The effective Hamiltonian based on the symmetry constraints can be written as

H220
� =

⎛⎜⎝c1 + c2k2 + c3
(
2k2

x − k2
y − k2

z

)
c4kxky c4kxkz

c4kxky c1 + c2k2 − c3
(
k2

x − 2k2
y + k2

z

)
c4kykz

c4kxkz c7kxky c1 + c2k2 − c3
(
k2

x + k2
y − 2k2

z

)
⎞⎟⎠, (20)

where k =
√

k2
x + k2

y + k2
z , and one can find that the

Hamiltonian H220
� exhibits quadratic band dispersion along

any direction.

IX. SP PHONONS IN SOME SEMICONDUCTORS

The SP is a 0D sixfold band degeneracy with a topological
charge C = 0. It features a linear band splitting along any
direction in momentum space. Compared to the electronic
structures, the phonon curves are an excellent platform to
realize the spinless degenerate phonons with the maximum
fold (i.e., spinless SP phonons) due to the following reasons:
(1) Almost all the SP states proposed in electronic systems
usually are far from the Fermi level [104,105]. However,
the Pauli exclusion principle does not apply to SP phonon

systems. (2) Owing to the effect of spin-orbital coupling, the
spinless SP states are usually gapped in electronic systems.
However, phonon systems without spin-orbital coupling effect
can be viewed as a viable platform for investigating ideal
spinless sixfold emergent particles.

As mentioned in Sec. VIII, one finds that the SP can be
found at the H point in the phonon curves of semiconductor
Hf3N4 [103] [see Fig. 7(r)]. One can understand the exitance
of the SP phonons in Hf3N4 with the help of symmetry
analysis as follow. The SP with sixfold degeneracy cannot
be formed relying solely on crystalline symmetries. And an
antiunitary operation like T is necessary for the formation
of 6D IRR of the little cogroup. The SP at the H point in
Hf3N4 is enforced by 6D IRR H4H5, and under the basis of
H4H5, the matrix representations of generating elements and
time-reversal symmetry are given by

C2x = A1 ⊕ A1, A1 =
⎛⎝1 0 0

0 1 0
0 0 −1

⎞⎠, C2y = A2 ⊕ A2,

A2 =
⎛⎝1 0 0

0 −1 0
0 0 1

⎞⎠, C+
31 = A3 ⊕ A3, A3 =

⎛⎝ 0 1 0
0 0 −1

−1 0 0

⎞⎠,

S−
4x = −A4 ⊕ A4, A4 =

⎛⎝ 0 i 0
−i 0 0
0 0 i

⎞⎠, T = σx ⊗ A0, A0 =
⎛⎝1 0 0

0 1 0
0 0 1

⎞⎠. (21)

075201-12



EXOTIC TOPOLOGICAL PHONON MODES IN … PHYSICAL REVIEW B 108, 075201 (2023)

FIG. 8. [(a), (c), (e), and (g)] Enlarged phonon curves for the RbGaH2, CsNaSe, and CdS2. [(b), (d), (f), and (h)] Schematic diagrams for
the DNL and WNL phonons, open and closed nodal line phonons, nodal link phonons, and DNL net phonons in RbGaH2, CsNaSe, and CdS2,
respectively. Note that the nontrivial nodal lines will possess a quantized π Berry phase.

As a consequence, the effective Hamiltonian around the H
point could be derived as

H220
H =

(
H11 H12

H21 H22

)
, (22)

with

H11 =
⎛⎝ c1 −kxc2 kyc2

−kxc2 c1 kzc2

kyc2 kzc2 c1

⎞⎠,

H22 =
⎛⎝ c1 kxc2 −kyc2

kxc2 c1 −kzc2

−kyc2 −kzc2 c1

⎞⎠,

H12 =
⎛⎝ 0 αkx αky

−αkx 0 −αkz

−αky αkz 0

⎞⎠,

H21 =
⎛⎝ 0 −α∗kx −α∗ky

α∗kx 0 α∗kz

α∗ky −α∗kz 0

⎞⎠. (23)

Here, ci are real parameters and α is a complex parameter. The
Hamiltonian H220

H describes a SP at the H point, and the result
is also confirmed by our calculations.

X. NL PHONONS IN SOME SEMICONDUCTORS

A. WNL and DNL phonons in some semiconductors

A node is often defined by the number of degeneracies. The
Weyl point is the doubly degenerate point that fulfills the Weyl
model. The Dirac point is the fourfold degenerate point that
fulfills the Dirac model. The phrases Weyl and Dirac can also
be used to describe the nodal line’s degeneracy. That is, the
Weyl nodal line (WNL) is the twofold degenerate nodal line,
whereas the Dirac nodal line (DNL) is the fourfold degenerate
nodal line (DNL).

Here, we would like to point out that the WNL and the
DNL could coexist in the phonon curves of the semicon-
ductor RbGaH2 [106] with SG. 62. The enlarged phonon
branches (with Nos. 25–28) are shown in Fig. 8(a). From
Fig. 8(a), one finds an obvious twofold degenerate crossing
point on the Y − � path, and such crossing point belongs to
twofold degenerate WNLs in the 3D BZ [see the red lines in
Fig. 8(b)]. Moreover, the four phonon branches (Nos. 25–28)
degenerated into a fourfold degenerate nodal line, i.e., Dirac
line, along the S − R path [see the blue lines in Fig. 8(b)].
One can understand the deeper physics for the WNL and
DNL phonons in RbGaH2 based on the symmetry analysis
as follows: The generators of the little group of the S − R
path are C̃2z = {C2z | 1

2 0 1
2 } and M̃y = {My | 0 1

2 0}. Considering
the algebraic relationship between these operations and T ,
a quadruple degenerate state can be formed, whose IRR is
Q1Q1. Based on the quartet basis, the matrix representations
of the generators can be expressed as

C2z = σ0 ⊗ σz, My = σz ⊗ σx, C2yT = iσy ⊗ σ0. (24)

The effective Hamiltonian based on the symmetry constraints
can be written as

H62
S−R = (c1 + c2kz ) +

(
HD H12

H†
12 HD

)
, (25)

with

HD = c3kxσx + c4kyσy, H12 = αkxσy + βkyσx. (26)

Here, ci are real parameters, and α, β are complex parameters.
The Hamiltonian H62

S−R describes a DNL along the S − R path.
In addition, the formation of WNL in the kz = 0 plane is
protected by the glide mirror symmetry with different eigen-
values.
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B. Open and closed nodal line phonons in some semiconductors

Moreover, the nodal line phonons can be divided into
open and closed nodal line phonons from a mathematical
perspective. The BZ can be the topological equivalent to a
3D torus T 3. Closed lines on T 3 can be classified under its
fundamental homotopy group π1(T 3) = Z3, labeled by three
integers. Each integer shows the number of times the line
passes around one of the three directions. Hence, the closed
nodal line (without traversing through the BZ) should be in
a class with Z3 : (0, 0, 0); however, for the open nodal line
(traverses once in the z direction) should be in a class with
(0,0,1).

From Fig. 8(c), we show the open and closed nodal lines
coexist in the phonon curves of serriconductor CsNaSe [107].
The crossing points on the � − X and � − M belong to the
closed nodal lines on the kz = 0 plane, and the crossing points
on the Z − R and Z − A paths belong to the closed nodal lines
on the kz = ±π planes. However, the crossing point on the
Z − X path belongs to the open nodal lines, which traverse
once in the z direction.

One can understand the appearance of the closed nodal
lines on the kz = 0 and kz = ±π planes, and the open nodal
lines along the z direction from the symmetry analysis: The
little group of the � − X path is C2v , which contains two mir-
rors operator Mx and Mz. The calculated IRRs of two crossing
bands of the � − X path are �2 and �4 [see Fig. 8(c)], and the
corresponding Mx eigenvalues are 1 and −1, so that a nodal
line can be formed in the kx = 0 plane. Considering the C̃4z

symmetry of the system, there are four such nodal lines. On
the other hand, the � − X path is also shared by kz = 0 plane,
and the eigenvalues of Mz associated with IRRs �2 and �4

are also opposite, so the crossing point of � − X path will
also form a mirror-protected nodal line in kz = 0 plane. The
same analysis is applied to the Z − R path, and these nodal
lines together form a nodal cage.

C. NL phonons with different shapes in some semiconductors

If there is more than one nodal line/ring in momentum
space, these nodal line/ring phonons can combine to form
complex topological nodal structures [48]. Here, we would
like to point out that the nodal link phonons, DNL net
phonons, WNL net phonons, nodal box phonons, nodal chain
phonons, and nodal cage phonons can be found in the phonon
curves of semiconductors.

As shown in Fig. 8(e), one finds that there are two crossing
points on the � − X and �-M paths in the phonon curves
of semiconductor CdS2 [108] with SG 205, and such two
crossing points belong a closed nodal line on the kx = 0 plane.
Note that the closed nodal lines can also appear on the ky = 0
and kz = 0 planes, and these three closed nodal lines tend to
form a nodal link [109,110] in the 3D BZ [see Fig. 8(f)].

The lattice of CdS2 has the SG symmetry of Pa3̄ (No. 205),
whose point group Th contains three mirror operators Mx,
My, and Mz. Taking Mz symmetry as an example, if a band
inversion occurs in bands with the opposite Mz eigenvalues on
the Mz-invariant plane [see IRRs in Fig. 8(e)], a nodal line is
formed. It is worth noting that these three mirrors belong to
the same conjugate class of the Th group, which causes nodal

lines to appear on the other two mirror invariant planes (Mx

and My) and a nodal link is formed.
As shown in Fig. 8(g), one finds that the Nos. 33–36

phonon branches merged into a fourfold degenerate band on
the R − M path in the phonon curves of semiconductor CdS2.
Such fourfold degenerate bands belong to the DNL. As shown
in Fig. 8(h), a DNL net [111] can be observed in the 3D BZ.

The generators of little group of the R − M path are
C̃2z = {C2z | 1

2 , 0, 1
2 } and M̃x = {Mx | 1

2 , 1
2 , 0}. Considering

the algebraic relationship between these operations and T , a
quadruple degenerate state T1T1 can be formed. Based on the
quartet basis, the matrix representations of the generators can
be expressed as

C2z = �0,2, Mx = −i�0,1, and IT = −�2,2. (27)

The effective Hamiltonian based on the symmetry constraints
can be written as

H205
R−M = (c1 + c2kz ) +

∑
i=1,2,3

(ci,1�i,3kx + ci,2�i,1ky). (28)

The Hamiltonian H205
R-M describes a DNL along the

R − M path.
As shown in Fig. 9(a), one finds that the twofold bands

appear along the high-symmetry path X − M. Such twofold
degenerate bands belong to the WNL. Figure 9(b) shows that
the phonon dispersions of Au2S in SG 224 [112] can form a
square-shape WNL net in the first BZ.

The appearance of the WNL along the X − M path arises
from the essential band degeneracy, which is protected by 2D
IRR Z1. Under the basis of Z1, the matrix representations of
generating elements and time-reversal symmetry are given by

My = σy, C2y = σz, and IT = −iσx. (29)

As a consequence, the effective Hamiltonian could be
derived as

H224
X -M = (c1 + c2kz )σ0 + c3σxky + c4σykz. (30)

The Hamiltonian H224
X -M describes a WNL along the X − M

path. Considering other crystal symmetries, such WNL can
form a square-shape nodal net.

As shown in Fig. 9(c), in the enlarged phonon curves of
semiconductor Tl2PtCl6 [113]: one finds a crossing point on
the K − � path and a twofold degenerate band on the � − L
path. Note that the crossing point on the K − � path is not
isolated and belongs to the nodal line [see the blue line in
Fig. 9(d)]. The twofold degenerate band on the � − L path
belongs to the WNLs [see the red lines in Fig. 9(d)]. The
red nodal lines (along the � − L path) and the blue nodal
lines form a bow-tie-shaped nodal-line structure in the [011]
mirror plane (see Fig. S3(e) in Ref. [98]). For the SG 225,
it includes bow-tie-shaped nodal-line structures in these six
mirror planes, i.e., [110], [101], [011], [110], [011], and [101]
planes form a nodal box structure [114,115] as shown in
Fig. 9(d).

The band degeneracy of the nodal box consists of two
parts. The first part is the nodal line on the � − L path, which
originates from the essential 2D IRR �3. Considering the
symmetry of C4z, there are four such nodal lines, constituting
the four body diagonals of the nodal box. The second part
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FIG. 9. [(a), (c), (e), and (g)] Enlarged phonon curves for the Au2S, Tl2PtCl6, K2S, and LiBeN, respectively. [(b), (d), (f), and (h)] Schematic
diagrams for the WNL net phonons, nodal box phonons, nodal chain phonons, and nodal cage phonons in Au2S, Tl2PtCl6, K2S, and LiBeN
semiconductors, respectively. Note that the nontrivial nodal lines will possess a quantized π Berry phase.

of the nodal box is protected by mirror symmetry. The IRRs
of the band crossing point along the � − K path are 
1 and

2, which have opposite Mz eigenvalue ±1. Therefore such
band crossing point is not isolated and will form a nodal line
on the Mz-invariant plane. Further considering the C4z and C3

rotation symmetries, such nodal lines would form the 12 edges
of the nodal box.

As shown in Fig. 9(e), in the enlarged phonon curves of
semiconductor K2S with SG 225 [116], one finds two obvious
crossing points, one is on the K − � path, and the other is at
the W point. These two crossing points belong to nodal lines
(see the nodal lines in the kz = 0 and kz = π planes from the
DFT calculation in Figs. S4(e) and S4(f) of Ref. [98]).

The high-symmetry point W is shared by both the My and
Mz-invariant plane. The calculated IRR of W point is W5 [see
Fig. 9(e)], and the corresponding character of My and Mz is
zero, so these mirror operators have opposite mirror eigenval-
ues and can generate the nodal chain when W5 is restricted to
the little group of mirror-invariant plane. One can find that
the IRRs of crossing bands along the � − K path are 
1

and 
4, whose mirror eigenvalues are ±1, thus protecting the
stability of the nodal line. The dispersion of the nodal chain
can be investigated by constructing the effective Hamiltonian
based on the IRR of W5. The effective Hamiltonian could be
derived as

H225
W = [

c1 + c2k2
x + c3

(
k2

y + k2
z

)]
σ0

+ [
c4kx + c5

(
k2

z − k2
y

)]
σx + c6kykzσz. (31)

The Hamiltonian H225
W hosts a linear band dispersion along kx

direction, and a quadratic band splitting in the other direction.
Actually, the nodal lines in the 3D BZ can form a 3D chain
network, as plotted in Fig. 9(f), and the W point of the 3D BZ
should be the touching point. Figure 9(f) shows that nodal-
chain phonons are running along all the ki (i = x, y, and z)

directions, resulting in a nodal chain structure [83,114] in the
phonon curves of semiconductor K2S.

As shown in Fig. 9(g), in the enlarged phonon curves
of semiconductor LiBeN [117], one finds that the twofold
degenerate bands appear on the Z − D, D − B, A − E , and
E − Z − C paths. For the twofold degenerate bands on
the Z − D and E − Z − C paths, they belong to the nodal
surface states on the kz = ±π planes [see Fig. 9(h)]. However,
the twofold degenerate bands on the D − B and A − E paths
belong to the straight nodal lines in the 3D BZ [see the blue
lines in Fig. 9(h)]. Combining the straight nodal lines and
the nodal surfaces together can form a nodal cage structure
[118,119] in the 3D BZ.

The lattice of LiBeN has the SG symmetry of P21/c
(No. 14), which have a twofold screw rotation C̃2y = {C2y |
0, 1

2 , 1
2 }. The combination of twofold screw-rotation symme-

try and time-reversal symmetry C̃2yT is antiunitary operator,
which satisfies (C̃2yT )2 = −1 on the ky = ±π plane and lead
to Kramers-like degeneracy of nodal surface. In addition,
there are straight nodal lines with essential band degeneracy
along the D − B and A − E paths whose IRRs are V1V2

and U1U2, respectively. These nodal lines and nodal surfaces
together form the nodal cage structure.

XI. NS PHONONS IN SOME SEMICONDUCTORS

The nodal surface (NS) is a 2D degeneracy of twofold
bands. The NS only emerges at the BZ boundary plane and
has linear dispersion along the direction normal to the sur-
face. Normally, the proposed NS phonons can be divided into
three classes [70]: one-NS, two-NS, and three-NS phonons
host one, two, and three pair(s) of NS states on the ki = ±π

(i = x, y, and z) planes. One may understand the formations of
NS phonons based on the symmetry analyses as follows.
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FIG. 10. [(a), (f), and (k)] Crystal structures for AgI, YAgTe2, and CdO2 semiconductors. [(b), (g), and (l)] 3D BZs for AgI, YAgTe2,
and CdO2 semiconductors. [(c), (h), and (m)] Phonon dispersions for AgI, YAgTe2, and CdO2 semiconductors. [(d), (i), and (n)] Schematic
diagrams for one-, two-, and three-NS phonons in AgI, YAgTe2, and CdO2 semiconductors. (e) 3D plots of the No. 5 and No. 6 phonon
branches in the kz = 0.9 π , π , 1.1 π planes for AgI. (j) 3D plots of the No. 23 and No. 24 phonon branches in the kz = 0.9 π , π , 1.1 π planes
for YAgTe2. (o) 3D plots of the No. 35 and No. 36 phonon branches in the kz = 0.9 π , π , 1.1 π planes for CdO2.

The nodal surfaces can be guaranteed by a combina-
tion of nonsymmorphic twofold screw-rotation symmetry
and time-reversal symmetry C̃2iT (i = x, y, z), which satis-
fies (C̃2iT )2 = −1 on the ki = ±π plane and lead to the
nodal surface. And the number of nodal surfaces depends on
the number of twofold screw axis. For example, the space
group of AgI is P63mc (No. 186), which hosts only one
twofold screw axis C̃2z = {C2z | 0, 0, 1

2 } and lead to one-NS
[see Fig. 10(d)]. Similarly, the space group of YAgTe and
CdO2 contain two and three twofold screw axes, so they can
host two-NS and three-NS, respectively [see Figs. 10(i) and
10(n)]. From Fig. 10(c), one finds that all the phonon bands
along the A-L-H-A paths are twofold degeneracy for the AgI
semiconductor [120], and therefore, these two phonon bands
(Nos. 5 and 6) form one-NS phonons on the kz = ±π planes
[see Figs. 10(d) and 10(e)]. For clarity, from Fig. 10(e), one
finds that the No. 5 and No. 6 phonon branches are not de-
generate on the k = 1.1π and 0.9π planes. From Fig. 10(h),
one finds that the phonon bands for the YAgTe2 semiconduc-
tor [121] doubly degenerate along the X − R − M − A paths,
resulting in the appearance of the two-NS phonons on the

kx = ±π and ky = ±π planes [see Figs. 10(i) and 10(j)].
From Fig. 10(m), one finds that the phonon bands for
the CdO2 semiconductor [122] along the R − X − R − M
are twofold degenerate, reflecting the three-NS (or nodal
wall) phonons on the ki = ±π (i = x, y, and z) planes [see
Figs. 10(n) and 10(o)].

XII. TOPOLOGICAL PHONONS IN SOME
2D SEMICONDUCTORS

Compared to 3D materials, 2D materials with less sym-
metrical constraints may more intuitively display the clean
characteristics of topological phonons. Investigations of
2D topological phononic materials have been very limited
[123–125]; here, we will show that three types of nodal point
phonons can be found in 2D semiconductors.

The first type is the valley Weyl point (VWP) phonons in
2D semiconductors. In phonon systems, the Weyl point at a
specific momentum point with a 2D IRR is called a VWP, and
the possible effective Hamiltonian of VWP can be written as

HVWP = c1(kxσx + kyσz ). (32)
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FIG. 11. (a) structural models for 2D monolayer PtSe2 under different views. (b) 2D BZ, (100) edge state, and top view of Berry curvature
distributions for LWP at the frequency around 6.01 THz. (c) phonon dispersion for 2D monolayer PtSe2 and the LWP at the K point and QNP
at the � point. (d) 3D plot of the No. 6 and No.7 phonon branches around the LWP at the point in the kx − ky plane, and the enlarged phonon
curves along the � − K − � paths. (e) Edge states arising from the projections of the LWP. (f) the phonon curves (Nos. 4 and 5) along the
M − � − M paths, along with the 3D plot of the phonon branches around the QNP at the � point in the kx − ky plane. (g) structural models for
2D monolayer PbO under different views. (h) 2D BZ for 2D monolayer PbO. (i) phonon dispersion for the 2D monolayer PbO and the DPs at
the S point are shown by balls. (j) Enlarged phonon curves (Nos. 21–24) along the � − S − � paths, and the 3D plot of the phonon branches
around the DP [the one marked with a red ball in (i)] at the S point in the kx − ky plane.

One can easily observe that the band dispersion is linear
around the crossing point. Here, we select the 2D monolayer
PtSe2 [126], a semiconductor, as an example [see Fig. 11(a)]
and show the VWP phonons located at the K and K ′ high-
symmetry points [see Figs. 10(c) and 10(d)]. Moreover, the
phonon Berry phases around the K ′ and K valleys are non-
trivial and quantized with values of −π and π , respectively
[see Fig. 11(b)]. VWP phonons with nontrivial and quantized
Berry phases will lead to a nontrivial topological edge state
[see Fig. 11(e)].

The appearance of the VWP at the K arises from the
essential band degeneracy, which corresponds to the 2D IRR
of K3. Under the basis of K3, the matrix repres entations of
generating elements are given by

C+
3 = −1

2
σ0 −

√
3i

2
σy, C′′

21 = σz, and IT = σ0. (33)

The effective Hamiltonian based on the symmetry constraints
can be written as

HLG72
K =

(
c1 + c2ky c2kx

c2kx c1 − c2ky

)
, (34)

and HLG72
K describes a LWP at the K point.

Note that WPs with quadratic dispersion can also ap-
pear in 2D systems, namely, quadratic nodal points (QNPs).
The minimum symmetry to enforce a QNP is the com-
bination of time-reversal symmetry T and Cnz(n = 3, 4, 6)
rotational symmetry [127]. Therefore a QNP is usually lo-
cated at the time-reversal invariant momenta, and the effective
Hamiltonian of a QNP can be generally described by

HQNP = αk2
−σ+ + α∗k2

+σ−. (35)

Here, α is a complex parameter and k± = kx ± iky, σ± = σx ±
σy. This Hamiltonian reflects a quadratic dispersion for any
direction. In Figs. 11(c) and 11(f), a QNP at the � point can
also be found in the phonon curves of the 2D monolayer PtSe2

around the frequency of the 5.2 THz.
The appearance of the QWP at the � arises from the es-

sential band degeneracy, which corresponds to the 2D IRR
of �+

3 . Under the basis of �+
3 , the matrix repres entations of

generating elements are given by

I = σ0, C+
3 = −1

2
σ0 +

√
3i

2
σy, C′′

21 = σz, and T = σ0.

(36)

The effective Hamiltonian based on the symmetry constraints
can be written as

HLG72
� = c1+c2

(
k2

x + k2
y

)+(
c3

(
k2

x − k2
y

) −2c3kxky

−2c3kxky −c3
(
k2

x − k2
y

)),

(37)

and HLG72
� describes a QNP at the � point.

Furthermore, 4D IRRs of the little cogroup emerging in
the LGs can enforce the existence of Dirac point (DPs) at the
HSPs in 2D systems. It is worth mentioning that the 4D IRs
in the LGs are formed by sticking the two 2D IRs together
by means of time-reversal symmetry T . Thus these DPs usu-
ally occur at the TRIMs. The possible effective Hamiltonian
around a DP can be described by

HDP = c1kx�0,3 + c2ky�1,0 + c3ky�2,0 + c4ky�3,0, (38)
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where ci(i = 1, 2, 3, 4) is a real parameter, �i, j = σi ⊗ σ j

with i, j = 0, 1, 2, 3. σ0 is a 2×2 identity matrix, and
σ1,2,3 = σx,y,z are Pauli matrices. The DP in a 2D system
exhibits linear band splitting along any direction. Here, as
shown in Fig. 11(g), we select 2D PbO [128], a semiconduc-
tor, as an example to exhibit the DP at the S high-symmetry
point in its phonon dispersion. The phonon dispersion is col-
lected in Fig. 11(i), in which a series of fourfold degenerate
DPs appear at the S high-symmetry point around different
frequencies. For clarity, the enlarged phonon branches (Nos.
21–24) around the DP at the S point and the 3D plot of the
phonon branches around the DP are shown in Fig. 11(j).

The appearance of the DP at the S arises from the essential
band degeneracy, which corresponds to the 4D IRR of S1S2.
Under the basis of S1S2, the matrix representations of gener-
ating elements are given by

C2x = i�3,0, C2z = �0,1, I = �0,3, and T = �1,0. (39)

The effective Hamiltonian based on the symmetry constraints
can be written as

HLG45
s = c1�0,0 + c2�0,2kx + (c3�1,2 + c4�2,2)ky, (40)

and HLG45
S describes indeed a linear DP at the S point.

XIII. CONCLUSIONS AND REMARKS

Based on first-principles calculations and symmetry anal-
yses, a series of realistic semiconductors are proposed as
candidates for hosting topological phonons. Almost all types
of emergent particles, including Weyl points with differ-
ent topological charges, single-pair-multi-Weyl points, single
Weyl point with its nodal surface partner, various cases of
Dirac points (DP, C-2 DP, QDP, CCDP), various cases of triple
points (TP, C-2 TP, QTP, QCTP), sextuple points, nodal lines
with different degenerates (WNL, DNL), nodal lines with
different shapes (open and closed nodal lines, DNL net, WNL
net, nodal link, nodal box, nodal chain, nodal cage), and one-,
two-, and three-nodal surfaces can be observed in the phonon
curves of semiconductors, indicating the pervasive presence
of topological phonon modes in semiconductors.

Currently, the study of topological nodal phonons is in its
infancy, driven primarily by academic curiosity. Nevertheless,
these phonons may influence the observable properties or
effects of matter in semiconductors. For example, Singh et al.
[56] argued that phonon band crossings tend to introduce
phonon-phonon scattering centers, which reduces the lattice
thermal conductivity and may improve thermoelectric perfor-
mance.

Different phonon surface modes, including the helicoid,
double-helicoid, triple-helicoid, sextuple-helicoid surface
modes can be found on the semi-infinite surfaces of the semi-
conductors. Zhang et al. [60] suggested that surface phonon
modes may induce surface electronic structure anomalies
via electron-phonon coupling. This could increase the like-
lihood of surface superconductivity. The visible surface
phonon modes may also have potential applications in various
phononic devices, such as phonon waveguides, thermal iso-
lation, and theroelectrics, as mentioned by Li et al. [48] and
Vasileiadis et al. [129]. Furthermore, most catalytic processes

occur on the surfaces. Meng et al. [82] recently established
a linear relationship between catalytic enhancement and arc
length. Consequently, the extremely long double-helicoid [see
Figs. 2(g) and 3(g)] and sextuple-helicoid [see Fig. 4(i)]
surface phonon modes on the semi-infinite surfaces may fa-
cilitate catalysis if the phonon frequency is in resonance with
certain midsteps in the reaction. Certainly, these are merely
preliminary hypotheses. Possible applications of these topo-
logical phonons in semiconductors will necessitate additional
research in the future.

Note that the nodal point phonons at the HSPs in 2D and
3D semiconductors are essential degeneracies. Hence, one can
search for the semiconductors with nodal point phonons based
on the SG numbers, as shown in Table S1 (see Ref. [98]).
From Table S1, one can find the matrix representations of the
generating elements, the species, the HSPs, and the materials
candidates of the essential degeneracy. Moreover, the topo-
logical points located at the HSPs of the BZ are stable and
are called symmetry-enforced band crossing points. Therefore
these nodal point phonons in Table S1 (see Ref. [98]) are
robust against perturbations that preserve symmetry.

Finally, we adopted 3×3×3 and 2×2×2 supercell sizes
for some semiconductors with nodal point phonons on the
high-symmetry lines to calculate the force constants, and then
determined the phonon dispersions. The results are shown
in Table S2 (see Ref. [98]), one can guarantee their phonon
spectra convergence and finds that the topological phonons on
the high-symmetry lines still appear in the phonon dispersions
of these semiconductors.

XIV. COMPUTATIONAL METHODS

We carried out the first-principles calculations using the
Vienna ab initio simulation package (VASP) [130,131]. The
projector augmented-wave (PAW) [132] method was used
for the plane-wave basis. Electronic wave functions were ex-
panded in a plane-wave basis set with a well converged cutoff
energy of 500 eV, and 7×7×7 Monkhorst-Pack k meshes
for Ag2HgI4, 9×9×7 k meshes for SrGeTeO6, 11×11×
5 k meshes for HgO, 7×7×9 k meshes for Y3CuGeS7, 9×9×
9 k meshes for SbIrS, 7×7×11 k meshes for Ge3N4, 9×9×5 k
meshes for TeO2, 3×3×3 k meshes for Ge19(PBr)4, 9×9×
9 k meshes for MgTe2, 9×9×9 k meshes for ZrSO, 9×9×
5 k meshes for MgTe, 9×9×9 k meshes for Hf3N4, 5×7×4 k
meshes for RbGaH2, 7×7×4 k meshes for CsNaSe, 5×5×
5 k meshes for CdS2, 7×7×7 k meshes for Au2S, 5×5×
5 k meshes for Tl2PtCl6, 5×5×5 k meshes for K2S, 9×9×7 k
meshes for LiBeN, 9×9×5 k meshes for AgI, 5×5×7 k
meshes for YAgTe2, 9×9×9 k meshes for CdO2, 9×7×
1 k meshes for PbO, and 15×15×1 k meshes for PbSe2

were large enough to be separately used for integration in
the irreducible BZ throughout the calculations. The exchange-
correlation interactions were described by the Perdew-Burke-
Ernzerhof (PBE) functional within the generalized gradient
approximation (GGA) [133]. During structural optimizations,
the lattice constants and atomic positions were fully relaxed
until the total energy and atomic force were less than 10−6 eV
and 0.01 eV/Å, respectively. We used the density functional
perturbation theory [134] to obtain the force constants, as
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implemented in the VASP. Then, we used the PHONOPY pack-
age [135] to calculate the phonon dispersion spectrum. A
phonon tight-binding Hamiltonian was constructed using the
open-source software WANNIERTOOLS code [136]. Green’s
function iterative method [137,138] was used to obtain sur-
face/edge states for these 3D/2D semiconductors. We also
employed the Wilson loop method [139] to determine the
Chern numbers or topological charge of WPs. The calcula-
tions of the Chern numbers of nodal points were implemented
in the Wanniertools code [136]. The IRRs of the phonon

spectrum are obtained by the recently released package
PHONONIREP [140], which is developed based on the SPACE-
GROUPIREP package [141].
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