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Extended linear-in-T resistivity due to electron-phason scattering in moiré superlattices
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Due to its incommensurate nature, moiré superlattices host not only acoustic phonons but also another type
of soft collective modes called phasons. Here, we investigate the impact of electron-phason scattering on the
transport properties of moiré systems. We show that the resistivity can scale linearly with temperature down to
temperatures much lower than the Bloch-Grüneisen scale defined by electron kinematics on the Fermi surface.
This result stems from the friction between layers, which transfers phason spectral weight to a broad diffusive
low-energy peak in the mechanical response of the system. As a result, phason scattering becomes a very
efficient channel for entropy production at low temperatures. We also consider the contributions of phasons
to thermodynamic properties at low temperatures and find a “metallic-like” linear-in-T behavior for the specific
heat, despite the fact that this behavior is due to mechanical and not electronic degrees of freedom. We discuss the
implications of this finding to reports of linear-in-T resistivity in the phase diagram of twisted bilayer graphene.
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I. INTRODUCTION

Elucidating the nature of the metallic state of twisted
moiré systems from which correlated insulating and super-
conducting phases emerge [1–13] is crucial to shed light on
the microscopic ingredients governing the interplay between
these phases [14–50]. In the metallic phase of twisted bilayer
graphene (TBG), puzzling features are seen both in its elec-
tronic spectrum, manifested as so-called cascade transitions
[51,52], and in its transport properties. Indeed, while not ex-
ceeding h/e2, relatively large resistivity values are observed
of about several k� [53–55]. Most strikingly, a resistivity
that changes linearly with temperature is observed down
to very low temperatures and over a wide range of carrier
concentrations—even when correlations are suppressed by
screening [55].

On the one hand, this observation of a linear-in-T re-
sistivity is reminiscent of the phenomenology of strange
metals, which are often associated with quantum critical
points (QCPs) in correlated electron systems [56–58]. On the
other hand, electron-acoustic-phonon scattering is known to
promote linear-in-T resistivity down to the Bloch-Grüneisen
temperature TBG or Debye temperature TD [59–62]. Both sce-
narios face difficulties: the fact that the linear-in-T behavior
extends over a broad doping range, rather than inside a cone
emanating from a single point, is inconsistent with the stan-
dard QCP scenario. In the phonon scenario, the large in-plane
rigidity and low mass density of the graphene layers leads
to sound velocities cs ≈ 104 m/s, rendering the temperature
scales TBG and TD relatively large compared with the temper-
atures for which linear-in-T behavior is observed.

One important aspect of this problem that has remained
little explored is the fact that, besides acoustic phonons emerg-
ing from the displacement of the center of mass of the bilayer,

TBG and other moiré superlattices also possess another fam-
ily of acoustic modes arising from the relative displacement
between the layers. The latter describe the vibrations of the
moiré pattern as a whole, and thus are sometimes dubbed
moiré phonons [63]. However, in contrast with conventional
acoustic phonons, these modes are generally overdamped at
long wavelengths since the relative momentum between the
layers is not a conserved quantity. This is analogous to the
phason excitations of incommensurate lattices [64–67]. As
such, because a moiré superlattice is generally an incom-
mensurate lattice, these moiré modes have been identified
as phasons [68–71]. Importantly, the dynamical mechanical
response function χs of the bilayer at low frequencies is
dominated by the two acoustic phason branches (transverse
and longitudinal, labeled by s) with dispersion ωs,q = cs|q|
[63,68–71] and of the general form [72]

χs(q, ω) = �−1

ω2
s,q − ω2 − iγω

. (1)

Here, � (with units of mass density) is the inertia of the
relative motion between the two layers, and γ describes
the damping of this motion due to frictional forces between
the layers. While phasons have been widely studied in in-
commensurate lattices and quasicrystals [73], the impact of
electron-phason scattering on the electronic properties of
those systems has been relatively unexplored. Moiré super-
lattices, being correlated electronic systems, provide a unique
framework to investigate this effect.

In this article, we show that electron scattering by long-
wavelength phason modes described by Eq. (1) can give rise to
a linear-in-T resistivity down to a new low-temperature scale
T ∗ � TBG, TD. Figure 1 summarizes our results for the differ-
ent regimes for the phason-induced resistivity, obtained from
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FIG. 1. Schematics of the temperature dependence of the re-
sistivity due to electron-phason scattering. The horizontal axis is
the phenomenological parameter γ characterizing frictional forces
between the layers, as schematically depicted in the lower inset.
When those are absent, there is a single crossover from the high-
temperature (i.e., classical equipartition) regime with linear-in-T
resistivity to the so-called Bloch-Güneisen regime, where ρ ∼ T 4

(for a circular Fermi surface). For finite damping, low-energy pha-
sons are overdamped and ρ ∼ T 2 emerges at the lowest temperatures
below T ∗∗. As damping grows this scale saturates to TBG and the
Bloch-Güneisen regime disappears, signaling that all scattering pha-
son modes are overdamped. In this regime, there is a single crossover
from linear- to quadratic-in-T resistivity at T ∗ < TBG. The upper
inset represents the imaginary part of the phason susceptibility in
Eq. (1), characterized by a broad diffusive (i.e., incoherent) peak at
low frequencies.

Boltzmann-equation calculations. In the absence of interlayer
friction, the resistivity ρ displays the usual temperature de-
pendence ρ ∼ T above TBG (or TD) and ρ ∼ T 4 below TBG

(for a circular Fermi surface) [59]. For small damping, how-
ever, a second temperature scale T ∗∗ emerges, below which
the temperature dependence changes to ρ ∼ T 2. This is a
consequence of electrons scattering off of the phason modes
associated with the low-energy diffusive peak of the response
function (see inset in Fig. 1), and is reminiscent of the widely
studied case of scattering by overdamped bosonic fluctua-
tions above a QCP [74–77]. Indeed, the phason propagator
in Eq. (1) is similar to the bosonic propagator near a metallic
QCP [78–82].

When damping is further increased, T ∗∗ overcomes TBG

and essentially all relevant scattering phason modes are over-
damped. In this situation, the ρ ∼ T 4 behavior is completely
suppressed, and the linear-in-T behavior extends down to the
new temperature scale T ∗. Because scattering is no longer
limited by the rigidity of individual graphene layers, but rather
by the rate γ at which the two layers exchange energy and
momentum, this new temperature scale can be very small,
T ∗ � TBG [see Eq. (16)]. Therefore, electron-phason scatter-
ing makes it possible for an extended regime of linear-in-T
resistivity in twisted moiré systems.

Based on this model, we expect the linear-in-T resistivity
of TBG to be accompanied by anomalous behavior in other

transport and thermodynamic properties at low temperatures
due to the presence of low-energy phason excitations. This
expectation is based on the similarity with the mechanical
response of amorphous solids and glasses characterized by
an excess of vibrational modes at low frequencies rooted in
structural disorder and anharmonicity [83,84], which are also
intrinsic to moiré systems [72]. To illustrate this effect, we
also compute the phason contribution to the specific heat at
constant (hetero-)stress. We show that the specific heat is lin-
ear in T , Cσ ∝ T , at low temperatures, T � min{Tγ , T 2

D /Tγ },
which dominates over the contribution from standard acoustic
phonons (∝T 2). This behavior is characteristic of intrinsi-
cally disordered systems, including incommensurate lattices
[85–87], and should also impact other thermodynamic quan-
tities.

The structure of the paper is as follows: We start in Sec. II
from a general expression of the phason-limited resistivity
within Boltzmann transport theory. Based on a relaxation-time
approximation we discuss the different regimes in transport
expected from the temperature dependence of the scattering
rate. This expectation is confirmed in Sec. III by explicitly
solving the Boltzmann equation. We provide analytic ex-
pressions for the Dirac approximation of the flat bands and
numerical evaluations beyond the relaxation-time approxima-
tion in a tight-binding model. The phason contribution to
the specific heat is evaluated in Sec. IV. We conclude by
summarizing our findings in Sec. V.

II. PHASON-LIMITED ELECTRONIC TRANSPORT

A. Boltzmann transport theory

In this work, we compute the resistivity within a
Boltzmann transport approach. In the case of metallic TBG,
this approach is justified by the empirical observation that the
Mott-Ioffe-Regel limit is satisfied, i.e., the resistivity saturates
when the mean-free-path becomes comparable to the Fermi
wavelength, kF 	 � 1 [55]. The resistivity can be written as
[88]

ρ = 1

4e2

1
2kBT

∫ dk1

(2π )2

∫ dk2

(2π )2 Pk1,k2 (�k1 − �k2 )2∣∣∣∫ dk
(2π )2 �kvk

∂nF
∂εk

∣∣∣2 , (2)

where the factor of four in the denominator arises from
spin and valley degeneracies and �k solves the linearized
Boltzmann equation in the presence of an electric field E,

−evk · E
∂nF

∂εk
= 1

kBT

∫
dk′

(2π )2 Pk,k′ (�k − �k′ ). (3)

In these expressions, vk is the electron group velocity and
Pk1,k2 represents the transition rate between states with mo-
menta k1 and k2. Assuming that the lattice degrees of freedom
relax much faster than the electron ensemble, and using
detailed balance, the contribution to Pk1,k2 coming from
electron-phason scattering processes can be written as

Pk1,k2 = 2|gs(k1, k2)|2nF (εk1 )[1 − nF (εk2 )]

×
∫ ∞

−∞
dωnB(ω)χ ′′

s (k2 − k1, ω)δ(εk2 − εk1 − h̄ω).

(4)
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In this expression, nF and nB are Fermi-Dirac and Bose-
Einstein distribution functions, respectively, χ ′′

s is the imag-
inary part of the susceptibility in Eq. (1), and gs(k1, k2)
represents the matrix element of the electron-phason coupling.

To simplify the analysis in this section, we consider a
relaxation-time approximation, �k ∝ ûE · k, where ûE is a
unit vector along the external field. Later in Sec. III we
will consider variational solutions of the Boltzmann equa-
tion beyond this approximation; the conclusions of the present
analysis hold also in that case. At low temperatures, as long as
the Fermi velocity is larger than the sound velocity [62], we
expect that only electrons near the Fermi surface contribute
to transport. Assuming that the resistivity is dominated by
intraband processes, the resistivity can be approximated by

ρ ≈ h̄

2e2

∮ dk‖
|vk| |k|2τ−1

k[ ∮ dk‖
|vk|k · vk

]2 , (5)

where the integral is along the Fermi contour and the inverse
of the transport time is given by

τ−1
k =

∮ dk′
‖

|vk′ |
|gs(k, k′)|2

�kBT

|k − k′|2
|k|2 f

(
h̄ωs,k−k′

kBT
,

h̄γ

kBT

)
.

(6)

The function f (y, z) can be directly computed from the tran-
sition rate in Eq. (4) and with χs from Eq. (1). We find

f (y, z) = π

y2
+ 1

4π
√

z2 − 4y2

×
[(

z −
√

z2 − 4y2
)
ψ1

(
1 + z −

√
z2 − 4y2

4π

)

−
(

z +
√

z2 − 4y2
)
ψ1

(
1 + z +

√
z2 − 4y2

4π

)]
,

(7)

where ψ1(x) is the trigamma function.
There are a priori two temperature scales in the problem

associated with the two arguments of the function f (y, z),
which ultimately are connected to the poles of the susceptibil-
ity in Eq. (1). The first scale is determined by the maximum
transferred momentum k − k′, which is limited either by the
lattice (defining the Debye temperature TD) or, for a small
Fermi surface, as in doped TBG, by some multiple of the char-
acteristic Fermi wave vector kF . This is the Bloch-Grüneisen
temperature which, for a circular Fermi surface, is given by
kBTBG = 2h̄cskF . This scale is associated with underdamped
phason oscillations, which take place above a characteristic
momentum and correspond to the sharp (i.e., coherent) part of
the phason spectral weight shown in the inset of Fig. 1.

However, for small momenta, the phason oscillations are
overdamped, as shown by the low-energy incoherent phason
spectral weight in the inset of Fig. 1. They give rise to a second
temperature scale, kBTγ ≡ h̄γ , proportional to the rate of dis-
sipation of energy and of relative linear momentum between
the two layers. The relative strength of these two temperature
scales define two distinct regimes of phason-limited transport:
the propagating regime, TBG � Tγ , in which most of the pha-
son modes scattering electrons behave as propagating waves,

and the diffusive regime, TBG � Tγ , where most scattering
modes are overdamped.

B. Crossover temperature to linear-in-T resistivity:
Qualitative analysis

Before computing the resistivity explicitly, we analyze
the asymptotic behavior of the function f (y, z), with y ≡
h̄ωq,s/kBT and z ≡ h̄γ /kBT , to gain insight into how the
temperature dependence of the resistivity evolves from the
propagating to the diffusive regimes. Consider the extreme
propagating regime, where damping is absent, γ = 0. In this
case, phasons behave as acoustic phonons and f (y, z) be-
comes:

f (y, z = 0) = π

y2
+ π

y2

[
y2

4sech2(y/2)
− 1

]
. (8)

The first term corresponds to classical equipartition and as
such gives the standard linear-in-T resistivity ρ ∼ T [89]. It
is dominant at temperatures that are high compared with TBG,
y � 1, in which case the second term vanishes. For y � 1,
which corresponds to T � TBG, one finds the well-known
ρ ∼ T 4 behavior (for a circular Fermi surface), as obtained
for electron-acoustic-phonon scattering in graphene [89,90].

What happens once γ increases and we move toward
the diffusive regime? As long as Tγ < TBG, the temperature
scale where linear-in-T resistivity emerges remains TBG, since
deviation from classical equipartition is driven by electrons
being scattered off of propagating phason modes. However,
a new linear-in-T crossover temperature T ∗ emerges when
Tγ > TBG, since in this case the scattering phason modes are
essentially all overdamped at TBG. In the asymptotic regime of
Tγ � {T, TBG}, the function f (y, z) becomes

f (y, z � {1, y}) ≈ π

y2
+ 2π

y2

[
1

v2
ψ1

(
1 + 1

v

)
− 1

v

]
, (9)

where we defined the variable v ≡ 2πz/y2. This is the same
expression one would have obtained for a purely diffusive
response [i.e., dropping ω2 in the denominator of Eq. (1)].
In contrast to Eq. (8), deviation from classical equipartition
is now governed by the combined variable v, since the second
term vanishes for v � 1. Therefore, the crossover tempera-
ture T ∗ for the establishment of linear-in-T resistivity (i.e.,
classical equipartition of the phason modes) can be esti-
mated from the condition Tγ T/T 2

BG ∼ 1, which gives T ∗ ∼
T 2

BG/Tγ � TBG. The last inequality follows from the fact that,
in the diffusive regime Tγ � TBG. Therefore, compared with
the propagating regime, the temperature range across which
ρ ∼ T extends to much lower temperatures, well below the
Bloch-Grüneisen temperature. This is the main result of our
paper, which we confirm with an explicit calculation of the
resistivity below.

It is not only the deviation from classical equipartition
that is affected by the change in the character of the pha-
son modes from propagating to overdamped. At the lowest
temperatures T � Tγ , TBG, electron-phason scattering is al-
ways dominated by processes involving the low-energy part
of the phason spectral weight, which in turn corresponds to
the incoherent (i.e., overdamped) modes. Mathematically, it
turns out that, regardless of the value of Tγ /TBG, we can
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approximate f (y � 1, z) ≈ 2π2z/3y4. As we show below,
this gives rise to a ρ ∼ T 2 behavior at the lowest temper-
atures. In the diffusive regime the temperature scale below
which this behavior appears is the same T ∗ obtained above.
However, in the propagating regime, a new temperature scale
T ∗∗ ∼ √

Tγ TBG emerges, with Tγ � T ∗∗ � TBG, signaling
the crossover from the characteristic acoustic-phonon driven
behavior ρ ∼ T 4 to the phason-driven behavior ρ ∼ T 2.

III. EXPLICIT SOLUTION OF THE
BOLTZMANN EQUATION

A. Low-energy Dirac model: Relaxation-time approximation

To proceed, we need the electron-phason coupling
gs(k1, k2), which requires a model. For the electrons, we
assume in this section a k · p description of the flat bands
consisting of a Dirac Hamiltonian Ĥe = v∗

F �̂ · (−ih̄∂) for
each spin and valley defined around each corner of the hexag-
onal moiré Brillouin zone or moiré valleys, κ1,2. Omitting the
spin, the Hamiltonian acts on an eight-component electronic
wave function of the form ψ = ( �ψ+,κ1 , �ψ−,κ1 , �ψ+,κ2 , �ψ−,κ2 )T ,
where �ψζ,κi = (ψ1,ζ ,κi , ζψ2,ζ ,κi )

T are Dirac spinors of oppo-
site chirality on each valley, ζ = ±1, written in a basis of
Bloch wave functions at points κi with complex eigenvalues
under C3z rotations. Operators �̂i are Pauli matrices acting on
the Dirac spinors. Similarly, we can introduce Pauli matrices
�̂i, �̂i acting on valley and mini-valley degrees of freedom.
These matrices provide a representation for the rest of op-
erations in D6 [91], the point group describing TBG. In this
notation, the various symmetry-allowed electron-phason cou-
plings are given by the Hamiltonian [68]

Ĥe-p = gA1∇ · u1̂ + gA2 (∇ × u)z�̂z�̂z

+ g(1)
E2

[(∂xuy + ∂yux )�̂x�̂z + (∂xux − ∂yuy)�̂y�̂z]

+ g(2)
E2

[(∂xux − ∂yuy)�̂x�̂z − (∂xuy + ∂yux )�̂y�̂z],

(10)

where phason fluctuations are parametrized in terms of
a collective coordinate u(r, t ) describing long-wavelength
transverse or longitudinal vibrations of the moiré pattern as
a whole [68,70].

The subscripts of the four coefficients gi refer to differ-
ent irreducible representations of D6 and thus correspond to
couplings to different lattice vibration patterns. While the con-
tributions of each coupling to the resistivity can be summed
up following Matthiessen’s rule, symmetry dictates that they
share the same temperature dependence. Therefore, hereafter
we focus only on the gA2 term, which is expected to be the
dominant one [68]. Microscopically, this mode corresponds to
a relative expansion or contraction of one layer with respect
to the other, which is manifested as a transverse-acoustic
vibration of the moiré superlattice.

Considering only scattering within a single Fermi
surface around each moiré-valley parametrized as k =
kF (cos θ, sin θ ), and using |gT (k1, k2)|2 = g2

A2
k2

F sin2(θ1 −
θ2) deduced from this model, the resistivity within the

relaxation-time approximation can be written as

ρ = ρ0I (t, τ ), with ρ0 = h

e2

g2
A2

k2
F

4�(v∗
F )2kBTBG

, (11)

where we introduced the reduced temperature t ≡ T/TBG

and the ratio τ ≡ Tγ /TBG. The dimensionless function I (t, τ )
contains the remaining momentum integral in the inverse
transport time and is given by

I (t, τ ) = 16

π2t

∫ 1

0
duu4

√
1 − u2 f

(u

t
,
τ

t

)
. (12)

Note that the integrand contains additional terms arising from
the suppression of forward-scattering processes and the mo-
mentum dependence of the electron-phason coupling.

Using the asymptotic expansions for f (y, z) discussed in
the previous section, it is straightforward to obtain the asymp-
totic temperature dependencies of the resistivity in different
limits. In the propagating regime, Tγ � TBG, we obtain

ρ ≈ ρ0

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T
TBG

if T � TBG

64π3

15

(
T

TBG

)4
if T ∗∗ � T � TBG

8π
3

Tγ

TBG

(
T

TBG

)2
if T � T ∗∗.

(13)

The asymptotic behavior above T ∗∗ are the same as in the case
of acoustic-phonon scattering [59–61], displaying a crossover
from linear-in-T resistivity to ρ ∼ T 4 upon crossing TBG. The
low-temperature behavior ρ ∼ T 2 arises from the contribution
from the diffusive phason modes, which dominate at low T .
The crossover temperature T ∗∗ can be estimated by comparing
the latter with the Bloch-Güneisen contribution to the resistiv-
ity, yielding

T∗∗ =
√

5Tγ TBG

8π2
. (14)

In the diffusive regime, Tγ � TBG, we can use the asymptotic
form for f (y, z) in Eq. (9). We find I (t, τ ) ≈ tJ (2πtτ ) with

J (t̃ ) = 1 − 1

t̃
+ 32

π t̃2

∫ 1

0
dyy6

√
1 − y2ψ1

(
1 + y2

t̃

)
. (15)

As anticipated in Sec. II, the asymptotic behaviors of
the resistivity are governed by a single-argument function.
The argument can be interpreted as a new reduced temperature
t̃ ≡ 2πtτ = T/T ∗, with the new characteristic temperature
scale in this regime given by

T ∗ = T 2
BG

2πTγ

. (16)

Using the results J (t̃ � 1) ≈ 1 and J (t̃ � 1) ≈ 4t̃/3, we
find the asymptotic behavior of the resistivity

ρ ≈ ρ0

{
T

TBG
if T � T ∗

4
3

T 2

T ∗TBG
if T � T ∗.

(17)

Therefore, as anticipated, T ∗ � TBG is the new crossover
temperature above which the resistivity is linear in T .

The schematic phase diagram in Fig. 1 is built based on the
asymptotic behavior derived here. To further confirm them,
we numerically evaluated the function I (t, τ ) in Eq. (12),
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FIG. 2. Temperature dependence of the resistivity in the Dirac
approximation for the flat bands obtained from a relaxation-time
approximation solution of the Boltzmann equation. Numerical eval-
uation of I (t, τ ) as a function of t = T/TBG for fixed values of
τ = Tγ /TBG in the (a) propagating and (b) diffusive regimes. Both
plots are in logarithmic scale. In the diffusive regime, the linear-in-T
resistivity extends down to a new (smaller) scale T ∗ � TBG.

which fully determines the temperature dependence of the
resistivity in Eq. (11). Figure 2(a) shows I (t, τ ) in the prop-
agating regime, highlighting the crossover from linear in T
to T 4 at about TBG, followed by another crossover to T 2 at
temperatures between Tγ and TBG. In the diffusive regime,
shown in Fig. 2(b), the linear-in-T behavior extends to tem-
peratures well below TBG for large enough Tγ , confirming the
main result of our analysis. Moreover, as shown in this figure,
collisions with phasons give rise to a large resistivity at very
low temperatures, no longer limited by the Bloch-Grüneisen
temperature.

B. Tight-binding model: Beyond the
relaxation-time approximation

To verify that the extended linear-in-T resistivity is not
an artifact of the relaxation-time approximation or the low-
energy Dirac approximation, we also computed numerically
the resistivity for different electron fillings in a six-band
tight-binding model of the bands of TBG at the magic angle
[92]. The total Hamiltonian for one valley can be written as
Ĥ = Ĥ0 + Ĥe-ph, where the first term is the band Hamiltonian,

Ĥ0 = ∑
k �̂

†
kĤk�̂k, written in the following basis of fermion

operators:

�̂k = (
p̂z

k, p̂+
k , p̂−

k , ŝ1
k, ŝ2

k, ŝ3
k

)T
. (18)

The operators in the first three entries correspond to orbitals
with pz and p± = px ± ipy symmetry defined on the triangular
lattice formed by the moiré beating pattern maxima (regions
of local AA stacking). The other three operators correspond
to orbitals with s symmetry defined on the Kagome lattice
formed by the points halfway between the maxima. The form
of the matrix Hamiltonian Ĥk in this basis (including the
values of the tight-binding parameters employed in the cal-
culation) can be found in Ref. [92]. The second term in the
Hamiltonian is the electron-phason coupling, which is mod-
eled for simplicity as a deformation potential of strength g
diagonal in orbital indices:

Ĥe-ph = ig√
A

∑
k,q

|q|uL(q)�̂
†
k+q�̂k, (19)

where A is the total area of the system. We only consider here
the coupling with longitudinal phasons.

For the resistivity calculation, to go beyond the relaxation-
time approximation, we employed a variational approach. The
idea is to expand the solution of Eq. (3) in a basis of trial
functions �

(m)
k , �k = ∑

m ηm�
(m)
k . According to the varia-

tional principle [88], the coefficients ηm can be determined
by minimization of the resistivity in Eq. (2) understood now
as a functional defined on the space of trial functions.

We focus on band fillings ν (defined as the number of
electrons per moiré supercell) such that the Fermi surface
consists on a single contour centered at the � point of the
moiré Brillouin zone. The trigonal distortion of the Fermi
contours compels us to look for variational solutions beyond
the relaxation-time approximation, �(1)

k ∝ ûE · k. This is only
an exact solution for isotropic Fermi surfaces, which is not
the case beyond the Dirac approximation. Hereafter k cor-
responds to a point in the Fermi surface parametrized as
k = kF (θ )(cos θ, sin θ ), where θ is the polar angle measured
with respect to ûE = x̂ and kF (θ ) is obtained directly from
the six-band tight-binding model. A generalization of the
relaxation-time Ansatz consists of an expansion in angular
harmonics of the form cos(mθ ), sin(mθ ), with m an integer.
We can use the symmetries of TBG to restrict this expansion.
The model possesses full D3 point group symmetry within a
single valley. In particular, C2x symmetry exchanging layers
(θ → −θ ) forbids sin(mθ ) terms, since the associated vari-
ational integrals cancel on the Fermi surface. Moreover, C3z

symmetry implies that harmonics cos(mθ ) with m = 0mod3 do
not contribute either. Thus, we restrict the variational solution
to a set of trial functions of the form �

(m)
k ∝ cos(mθ ) with

m = 1, 2, 4, 5, . . . , p.
In a variational calculation with an expansion in angular

harmonics up to order p, the minimum of the resistivity in
Eq. (2) can be written as

ρ = ρ0Ip(t, τ ), with ρ0 = h̄

e2

g2k2
BG

4�
〈
v2

kF

〉
kBTBG

. (20)

Note that the prefactor ρ0 now contains kBG, which cor-
responds to the maximum momentum exchanged between
electrons on the Fermi surface, kBTBG = h̄cLkBG, defining the
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Bloch-Grüneisen scale for scattering with longitudinal pha-
sons. Moreover, ρ0 also contains 〈v2

kF
〉, which is the average

of the squared group velocity on the Fermi surface,

〈
v2

kF

〉 ≡
∫ 2π

0
dθ |vkF (θ )|2. (21)

Finally, Ip(t, τ ) is a dimensionless function containing the
temperature dependence of the resistivity,

Ip(t, τ ) ≡ 1

�X T · P̂−1(t, τ ) · �X . (22)

Here, �X = (X1, X2, . . . , Xp)T are vectors whose components
correspond to variational integrals on the Fermi surface of the
form

Xm =
∫ 2π

0
dθ

kF (θ )vx
kF (θ )

|vkF (θ )| cos (mθ ). (23)

The components of the matrix P̂(t, τ ) in this basis for each
value of the reduced temperature t and parameter τ read

Pnm = 〈
v2

kF

〉 ∫
dθ1

∫
dθ2

kF (θ1)kF (θ2)|k1 − k2|2[cos (nθ1) − cos (nθ2)][cos (mθ1) − cos (mθ2)]

xk2
BG|vkF (θ1 )||vkF (θ2 )| f

( |k1 − k2|
tkBG

,
τ

t

)
, (24)

where f (y, z) is the same function defined in Eq. (7). For fixed
values of p, electronic filling ν, and temperature arguments
t and τ , we computed the integrals on the Fermi surface
numerically and then inverted the matrix P̂ to obtain the
resistivity.

Figure 3 shows the numerical calculation of Ip(t, τ ) as a
function of the reduced temperature for two representative
fillings of the conduction band, corresponding to electron
densities of n = 2.21 × 1012 cm−2 [Fig. 3(a), filling ν = 3.8]
and n = 1.45 × 1012 cm−2 [Fig. 3(b), filling ν = 2.5]; recall
that ν = 0 corresponds to charge-neutrality and ν = 4 to a
fully filled “flat” band. The insets show the corresponding
Fermi contours in one of the valleys as well as the magnitude
of kBG. In all cases, we set Tγ /TBG = 10−2. Taking cL =
1.5 × 104 m/s, the corresponding Bloch-Grüneisen scales for
each filling are TBG = 15 K (ν = 3.8) and TBG = 38 K (ν =
2.5). The temperature dependence of Ip(t, τ ) is that expected
for propagating phasons: The resistivity is linear in T down
to TBG, below which (see upper insets) it decreases quickly
with a higher exponent. The different colors correspond to
variational Ansätze with different number of harmonics. As
p increases the numerical values of the resistivity decreases,
indicating that the variational solution improves. For the range
of fillings and temperatures considered here, we find that the
calculation with p = 5 already provides good convergence.
For the largest fillings, for which the shape of the Fermi sur-
face is smoother, the convergence is actually quicker. Indeed,
in Fig. 3(a), the green points, corresponding to p = 5, overlap
with the black points, corresponding to p = 4.

Figure 4 shows the temperature dependence in dou-
ble logarithmic scale for a filling ν = −2.5, corresponding
to a hole concentration of n = 1.45 × 1012 cm−2 and a
Bloch-Grüneisen scale TBG = 39 K. Each color represents a
different value of the damping parameter γ . The results are
consistent with our discussion in Sec. II. In the propagating
limit (blue points) the Bloch-Grüneisen regime is replaced
by ρ ∝ T 2 at the lowest temperatures. As phason damping
increases, the Bloch-Grüneisen regime is washed out (orange
points, Tγ = TD). In the diffusive regime (green points) there
is a direct crossover from the ρ ∝ T 2 to the classical equipar-
tition regime ρ ∝ T at T ∗ ∼ 10−2TBG. These temperature
regimes are consistently reproduced for the different fillings
considered in our calculations. Moreover, numerical changes
in the value of I5(t, τ ) for the same values of the arguments

but different fillings are negligible in the logarithmic scale of
Fig. 4. This suggests that in the limit of classical equiparti-
tion the dependence on carrier concentration is dominated by
the averaged Fermi velocity, which decreases with increasing
filling away from half filling in our calculations.

IV. PHASON CONTRIBUTION TO THE SPECIFIC HEAT

Besides promoting electronic scattering processes, the
transfer of phason spectral weight to lower energies has imme-
diate consequences for thermodynamic quantities as well. To
illustrate this effect, we focus here on the phason contribution
to the specific heat. In particular, we consider the specific heat
at constant (hetero-)stress,

Cσ ≡ T

(
∂S

∂T

)
σi j

, (25)

which measures how entropy S (here defined per moiré super-
cell) changes with temperature for a fixed value of the forces
between layers. The contribution arising from a phonon mode
s is directly related to its density of states,

Cσ = kB

∫ ∞

0
dω

(
h̄ω

2kBT

)2

sinh−2

(
h̄ω

2kBT

)
Ds(ω). (26)

Here, Ds(ω) is defined as

Ds(ω) = 2�Am

πω

∫
dq

(2π )2 ω2
s,qχ

′′
s (q, ω), (27)

where Am is the area of the moiré supercell and the integration
is over the moiré Brillouin zone.

In our low-energy description, we cut off the linear dis-
persion relation ωs,q = cs|q| at the Debye momentum qD =
2
√

π/Am. The density of states (per moiré supercell) of mode
s reads then

Ds(ω) = 2

ωD
g

(
ω

ωD
,

γ

ωD

)
, (28)

where ωD = csqD is the associated Debye frequency and

g(x, y) ≡ y

π

∫ 1

0
dz

z

(z − x2)2 + x2y2

= y

2π
ln

(x2 − 1)2 + x2y2

x4 + x2y2

+ x

π

[
arccot

y

x
+ arctan

1 − x2

xy

]
. (29)
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FIG. 3. Numerical evaluation of Ip(t, τ ) in Eq. (20) as a function
of the first argument, i.e., temperature T in units of TBG). Panel
(a) shows the results for an electron concentration of n = 2.21 ×
1012 cm−2, and panel (b) for n = 1.45 × 1012 (both at the magic
angle). Blue points correspond to the scattering-time approximation,
p = 1, red points to p = 2, black points to p = 4, and green points
to p = 5. The second argument is fixed to τ = Tγ /TBG = 10−2 in
all cases. The insets in the upper side of the plots represent the
values of the resistivity for temperatures lower than TBG. The insets
in the lower side of the plots represents the Fermi surfaces in one of
the valleys for that particular filling as obtained from the six-band
tight-binding model of Ref. [92].

This function interpolates between the expected linear in en-
ergy density of states for phonons in the total absence of
damping, g(x, 0) = x, and the asymptotic limit in which all
modes are overdamped,

g(x, y � {1, x}) ≈ y

2π
ln

(
1 + 1

x2y2

)
. (30)

For intermediate damping values, the density of states is non-
monotonic. The specific heat can be written as

Cσ = kBh(t, τ ), with (31a)

h(t, τ ) ≡ t

2

∫ ∞

0
dz

z2

sinh2 z
2

g(tz, τ ). (31b)

The reduced temperature t = T/TD is now defined with re-
spect to the Debye temperature, TD = h̄ωD/kB, and similarly
τ = Tγ /TD.

FIG. 4. Numerical calculation of the resistivity in Eq. (20) as a
function of reduced temperature T/TBG. A variational trial function
up to the p = 5 harmonic was considered. The blue points corre-
spond to the resistivity in the propagating regime (Tγ = 10−2 × TBG),
the green points to the diffusive regime (Tγ = 102 × TBG), and the
orange points to an intermediate situation (Tγ = TBG). For reference,
the black dashed line corresponds to the equipartition limit. The hole
concentration is n = 1.45 × 1012 cm−2 in all cases. Note that both
axes are in logarithmic scale. The inset shows the Fermi surface and
the magnitude of kBG for this filling as obtained from the six-band
tight-binding model of Ref. [92].

Using the limiting behaviors of g(x, y) above, we obtain the
asymptotic temperature dependencies of the specific heat. In
the propagating regime, Tγ � TD, we obtain

Cσ ≈ kB

⎧⎪⎪⎨
⎪⎪⎩

1 if T � TD

12ζ (3)
(

T
TD

)2
if TD � T � Tγ

2πTγ

3TD

T
TD

ln
(

T 2
D

Tγ T

)
if T � Tγ ,

(32)

where ζ (x) is the Riemann zeta function. In addition to the
expected crossover from Dulong-Petit to Debye behavior at
temperatures of the order of TD, there is a new crossover to
Cσ ∝ T dominated by incoherent phasons below the scale Tγ .
This is an interesting result, since a linear-in-T specific heat is
characteristic of a metal. Here, however, it is a consequence
of the overdamped nature of the phasons at low energies
and would emerge even in the correlated insulating phase of
TBG. We note that the logarithmic prefactor comes from the
divergence of the phason density of states at ω = 0, which
could be regularized by an infrared cutoff for the theory, as
given, for example, by the disorder pinning length [72].

In the diffusive regime (Tγ � TD), the intermediate
phonon-like T 2 regime is washed out. There is a sin-
gle crossover from classical equipartition to the incoherent
regime, where Cσ ∝ T , corresponding to a smaller temper-
ature scale T 2

D /Tγ < TD. Similarly to our calculation for the
resistivity above, this crossover scale can be identified by
introducing a new reduced temperature variable t̃ ≡ tτ in the
expression for Cσ as given by the diffusive limit of the density
of states, Eq. (30).

To verify these analytical expressions we numerically eval-
uated the function h(t, τ ). Figure 5 shows h(t, τ ) as a function
of the reduced temperature for different values of damping.
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FIG. 5. Temperature dependence of the specific heat. Numerical
evaluation of Cσ /kB = h(t, τ ) as a function of the reduced tempera-
ture t = T/TD for different values of τ = Tγ /TD in the propagating
[panel (a), Tγ < TD] and diffusive [panel (b), Tγ > TD] regimes. Both
plots are in a logarithmic scale.

In the propagating regime [Fig. 5(a)], we distinguish the three
different regimes obtained analytically. In the diffusive regime
[Fig. 5(b)], the crossover from the classical to the equipartition
regime is direct and there is no phonon-like T 2 dependence.

Measuring the specific heat of TBG would be extremely
challenging, which makes a direct verification of these predic-
tions difficult. Nevertheless, the fingerprints of overdamped
phasons should also appear in other thermodynamic and trans-
port quantities that are sensitive to the presence of low-energy
bosonic modes. In this regard, thermal conductivity is an
appealing observable, particularly in the correlated insulat-
ing phase of TBG, where low-energy mechanical excitations
should give the leading contribution. While a rigorous calcula-
tion of thermal conductivity is beyond the scope of the present
work, we provide here an estimate for the case in which lattice
conduction is limited by disorder (impurities, the boundaries
of the sample, etc.). In a relaxation-time approximation for the
distribution function of phasons, the contribution of mode s to
the thermal conductivity can be written as [88]

κ = kBc2
s

2Am

∫ ∞

0
dωτ (ω)

(
h̄ω

2kBT

)2

sinh−2

(
h̄ω

2kBT

)
Ds(ω).

(33)

For elastic scattering we can assume a frequency-independent
relaxation time, τ (ω) ≡ τ . We arrive then at the usual kinetic

formula for the thermal conductivity,

κ = τc2
sCσ

2Am
, (34)

where Cσ is the phason contribution to the specific heat and
τc2

s /2 can be interpreted as the phason thermal diffusivity.
Identifying τ−1 ∼ γ and using the asymptotic expression for
the specific heat at low temperatures, we arrive at the follow-
ing expression for the thermal conductivity:

κ
(
T � Tγ

) ≈ k2
BT

12h̄
ln

(
T 2

D

Tγ T

)
, (35)

which reveals a linear-in-temperature behavior.

V. DISCUSSION

In this paper, we show that electron-phason scattering can
lead to a linear-in-T resistivity down to temperatures much
lower than the Bloch-Grüneisen temperature. In this scattering
mechanism, the momentum that the electrons yield to the
moiré superlattice via collisions with its long-wavelength pha-
son fluctuations is rapidly degraded through friction between
the layers. The latter is a generic feature of incommensurate
lattices [64–67,86], parametrized here by the damping coef-
ficient γ . Any form of dissipative coupling between the two
layers contributes to γ , including stick-slip processes caused
by disorder in the stacking arrangement. The existence of
various possible mechanisms for damping makes it difficult to
estimate Tγ . If the origin of γ is mechanical, the natural scale
is the one defined by the van der Waals forces between the
layers. These are weak but non-negligible close to the magic
angle, where the effects of lattice relaxation are substantial.
The adhesion energy between carbon layers per unit area is of
the order of 4 meV/Å2 according to ab initio calculations [93].
Integrated over graphene’s unit cell, this gives Tγ ≈ 250 K.
This is an upper-bound estimate for Tγ , as the exact value
should depend on the amount of disorder and tensions at
the edges of the device. For a lower-bound estimate, we can
take the typical values of the damping coefficient employed
in molecular-dynamics simulations of tribological properties
of defect-free graphene interfaces, which are of several 1/ps
[94]. This translates to a scale of Tγ ≈ 10 K, of the same order
as TBG, placing TBG in the right-hand side of the diagram in
Fig. 1. The key point is that interlayer friction further extends
to lower temperatures the regime of linear-in-T resistivity
down to T ∗ ∼ T 2

BG/Tγ , which can be as small as T ∗ ≈ 0.06 K
if we use the upper-bound estimate for Tγ .

Besides the resistivity, phason modes should also impact
other transport properties, such as the thermal conductivity, as
well as thermodynamic properties such as the specific heat.
In particular, the phason contribution to the specific heat as
function of temperature mimics the behavior of the resis-
tivity. There are three different scaling behaviors with T in
the propagating regime and a single crossover from classical
equipartition to an incoherent regime in the limit of diffu-
sive phasons. Importantly, Cσ ∝ T at the lowest temperatures,
T � min{Tγ , T 2

D /Tγ }, which dominates over the contribution
from acoustic phonons (∝T 2). For the same reasons, we ex-
pect the thermal conductivity κ to be dominated by phasons
and change linearly with temperature under the appropriate
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conditions. Although the low-temperature behavior of Cσ is
that typical of metals, it arises from contributions from the
mechanical, rather than the electronic degrees of freedom. As
a result, a linear-in-T specific heat is expected in TBG even in
the insulating correlated phase.

Our results provide a solid framework for future studies
to quantitatively assess the relevance of the electron-phason
mechanism in addressing the puzzling linear-in-T resistivity
of TBG. Interestingly, this mechanism contains features of
two scenarios invoked to explain this effect: electron-phonon
scattering and quantum criticality. Of course, the linear-in-T
resistivity behavior discussed here is due to classical equipar-
tition, rather than scattering by quantum critical fluctuations.
However, at low temperatures, where electron-phason scatter-
ing leads to a ρ ∼ T 2 behavior, the overdamped phasons are
described by Eq. (1) and thus behave similarly to overdamped
bosonic excitations typical of a metallic QCP [78–82]. In fact,
the scattering function in Eq. (7) is identical to that obtained
for a metallic nematic QCP [95], except for the momentum
dependence of the damping coefficient. This is because, in
a quantum critical system, dissipation is due to electronic
Landau damping, whereas here it is a purely mechanical ef-
fect. Moreover, while bosonic excitations are only gapless
at the QCP, the phason spectrum is gapless everywhere—
although a small disorder-induced gap may emerge [72]. This
suggests that a low-temperature ρ ∼ T 2 behavior may be

more common in moiré superlattices. Interestingly, Ref. [55]
reported a quadratic-in-T resistivity over certain doping
ranges.

The phason-based mechanism proposed here should be
operative in other quasiperiodic structures. One example is
the bismuth phase Bi-III at high pressure, which becomes
a superconductor below Tc ≈ 7 K and also displays linear-
in-T resistivity at low temperatures [96]. Conversely, since
this mechanism is specific to incommensurate lattices, it
should be absent in graphene-based systems without a moiré
superlattice. Recently, phenomena first observed in moiré sys-
tems, such as superconductivity and flavor-polarized metals,
have also been reported in rhombohedral ABC graphene [97]
and Bernal bilayer graphene [98,99]. Since phasons are not
present in these systems, it will be interesting to determine
whether they display linear-in-T resistivity down to tempera-
tures lower that the Bloch-Grüneisen scale.

ACKNOWLEDGMENTS

H.O. acknowledges funding from the Spanish
MCI/AEI/FEDER through Grant No. PID2021-128760NB-
I00. R.M.F. was supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, Materials Science
and Engineering Division, under Award No. DE-SC0020045.

[1] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi,
E. Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[2] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature (London)
556, 80 (2018).

[3] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe, T.
Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science 363,
1059 (2019).

[4] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney,
K. Watanabe, T. Taniguchi, M. A. Kastner, and D.
Goldhaber-Gordon, Science 365, 605 (2019).

[5] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule,
J. Mao, and E. Y. Andrei, Nature (London) 573, 91
(2019).

[6] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian, M.
Yankowitz, S. Chen, K. Watanabe, T. Taniguchi, J. Hone, C.
Dean, A. Rubio, and A. N. Pasupathy, Nature (London) 572, 95
(2019).

[7] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I. Das,
C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang, A. Bachtold,
A. H. MacDonald, and D. K. Efetov, Nature (London) 574, 653
(2019).

[8] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T.
Taniguchi, B. A. Bernevig, and A. Yazdani, Nature (London)
572, 101 (2019).

[9] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael, F. v. Oppen, K.

Watanabe, T. Taniguchi, and S. Nadj-Perge, Nat. Phys. 15, 1174
(2019).

[10] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K.
Watanabe, T. Taniguchi, L. Balents, and A. Young, Science 367,
900 (2020).

[11] Y. Cao, D. Rodan-Legrain, J. M. Park, N. F. Q. Yuan, K.
Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P.
Jarillo-Herrero, Science 372, 264 (2021).

[12] A. Rozen, J. M. Park, U. Zondiner, Y. Cao, D. Rodan-Legrain,
T. Taniguchi, K. Watanabe, Y. Oreg, A. Stern, E. Berg et al.,
Nature (London) 592, 214 (2021).

[13] Y. Saito, F. Yang, J. Ge, X. Liu, T. Taniguchi, K. Watanabe, J.
Li, E. Berg, and A. F. Young, Nature (London) 592, 220 (2021).

[14] C. Xu and L. Balents, Phys. Rev. Lett. 121, 087001 (2018).
[15] N. F. Q. Yuan and L. Fu, Phys. Rev. B 98, 045103 (2018).
[16] H. C. Po, L. Zou, A. Vishwanath, and T. Senthil, Phys. Rev. X

8, 031089 (2018).
[17] J. F. Dodaro, S. A. Kivelson, Y. Schattner, X. Q. Sun, and C.

Wang, Phys. Rev. B 98, 075154 (2018).
[18] J. Kang and O. Vafek, Phys. Rev. X 8, 031088 (2018).
[19] F. Guinea and N. R. Walet, Proc. Natl. Acad. Sci. USA 115,

13174 (2018).
[20] L. Rademaker and P. Mellado, Phys. Rev. B 98, 235158 (2018).
[21] H. Guo, X. Zhu, S. Feng, and R. T. Scalettar, Phys. Rev. B 97,

235453 (2018).
[22] Y.-P. Lin and R. M. Nandkishore, Phys. Rev. B 98, 214521

(2018).
[23] X. Y. Xu, K. T. Law, and P. A. Lee, Phys. Rev. B 98, 121406(R)

(2018).

075168-9

https://doi.org/10.1038/nature26160
https://doi.org/10.1038/nature26154
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1038/s41586-019-1460-4
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41586-019-1422-x
https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1126/science.abc2836
https://doi.org/10.1038/s41586-021-03319-3
https://doi.org/10.1038/s41586-021-03409-2
https://doi.org/10.1103/PhysRevLett.121.087001
https://doi.org/10.1103/PhysRevB.98.045103
https://doi.org/10.1103/PhysRevX.8.031089
https://doi.org/10.1103/PhysRevB.98.075154
https://doi.org/10.1103/PhysRevX.8.031088
https://doi.org/10.1073/pnas.1810947115
https://doi.org/10.1103/PhysRevB.98.235158
https://doi.org/10.1103/PhysRevB.97.235453
https://doi.org/10.1103/PhysRevB.98.214521
https://doi.org/10.1103/PhysRevB.98.121406


HÉCTOR OCHOA AND RAFAEL M. FERNANDES PHYSICAL REVIEW B 108, 075168 (2023)

[24] J. W. F. Venderbos and R. M. Fernandes, Phys. Rev. B 98,
245103 (2018).

[25] Y. Sherkunov and J. J. Betouras, Phys. Rev. B 98, 205151
(2018).

[26] M. Ochi, M. Koshino, and K. Kuroki, Phys. Rev. B 98,
081102(R) (2018).

[27] D. M. Kennes, J. Lischner, and C. Karrasch, Phys. Rev. B 98,
241407(R) (2018).

[28] H. Isobe, N. F. Q. Yuan, and L. Fu, Phys. Rev. X 8, 041041
(2018).

[29] B. Lian, Z. Wang, and B. A. Bernevig, Phys. Rev. Lett. 122,
257002 (2019).

[30] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Phys. Rev.
Lett. 122, 106405 (2019).

[31] J. Kang and O. Vafek, Phys. Rev. Lett. 122, 246401 (2019).
[32] K. Seo, V. N. Kotov, and B. Uchoa, Phys. Rev. Lett. 122,

246402 (2019).
[33] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig,

Phys. Rev. Lett. 123, 036401 (2019).
[34] J. M. Pizarro, M. J. Calderón, and E. Bascones, J. Phys.

Commun. 3, 035024 (2019).
[35] J. H. Wilson, Y. Fu, S. Das Sarma, and J. H. Pixley, Phys. Rev.

Res. 2, 023325 (2020).
[36] F. Xie, A. Cowsik, Z.-D. Song, B. Lian, B. A. Bernevig, and N.

Regnault, Phys. Rev. B 103, 205416 (2021).
[37] Y. Xu, X.-C. Wu, C.-M. Jian, and C. Xu, Phys. Rev. B 101,

205426 (2020).
[38] T. Cea and F. Guinea, Phys. Rev. B 102, 045107 (2020).
[39] M. Christos, S. Sachdev, and M. S. Scheurer, Proc. Natl. Acad.

Sci. USA 117, 29543 (2020).
[40] M. Xie and A. H. MacDonald, Phys. Rev. Lett. 124, 097601

(2020).
[41] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A.

Vishwanath, and M. P. Zaletel, Phys. Rev. X 10, 031034
(2020).

[42] O. Vafek and J. Kang, Phys. Rev. Lett. 125, 257602 (2020).
[43] P. Cha, A. A. Patel, and E.-A. Kim, Phys. Rev. Lett. 127, 266601

(2021).
[44] Y. Da Liao, J. Kang, C. N. Breiø, X. Y. Xu, H.-Q. Wu, B. M.

Andersen, R. M. Fernandes, and Z. Y. Meng, Phys. Rev. X 11,
011014 (2021).

[45] Z.-D. Song and B. A. Bernevig, Phys. Rev. Lett. 129, 047601
(2022).

[46] D. V. Chichinadze, L. Classen, Y. Wang, and A. V. Chubukov,
Phys. Rev. Lett. 128, 227601 (2022).

[47] E. Khalaf, S. Chatterjee, N. Bultinck, M. P. Zaletel, and A.
Vishwanath, Sci. Adv. 7, eabf5299 (2021).

[48] S. Onari and H. Kontani, Phys. Rev. Lett. 128, 066401
(2022).

[49] J. S. Hofmann, E. Khalaf, A. Vishwanath, E. Berg, and J. Y.
Lee, Phys. Rev. X 12, 011061 (2022).

[50] X. Wang and O. Vafek, Phys. Rev. B 106, L121111 (2022).
[51] U. Zondiner, A. Rozen, D. Rodan-Legrain, Y. Cao, R. Queiroz,

T. Taniguchi, K. Watanabe, Y. Oreg, F. von Oppen, A. Stern, E.
Berg, P. Jarillo-Herrero, and S. Ilani, Nature (London) 582, 203
(2020).

[52] D. Wong, K. P. Nuckolls, M. Oh, B. Lian, Y. Xie, S. Jeon,
K. Watanabe, T. Taniguchi, B. A. Bernevig, and A. Yazdani,
Nature (London) 582, 198 (2020).

[53] H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K. Watanabe, T.
Taniguchi, C. R. Dean, and A. F. Young, Nat. Phys. 15, 1011
(2019).

[54] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda,
K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero,
Phys. Rev. Lett. 124, 076801 (2020).

[55] A. Jaoui, I. Das, G. Di Battista, J. Díez-Mérida, X. Lu, K.
Watanabe, T. Taniguchi, H. Ishizuka, L. Levitov, and D. K.
Efetov, Nat. Phys. 18, 633 (2022).

[56] L. Taillefer, Annu. Rev. Condens. Matter Phys. 1, 51 (2010).
[57] J. Bruin, H. Sakai, R. Perry, and A. Mackenzie, Science 339,

804 (2013).
[58] T. Shibauchi, A. Carrington, and Y. Matsuda, Annu. Rev.

Condens. Matter Phys. 5, 113 (2014).
[59] F. Wu, E. Hwang, and S. Das Sarma, Phys. Rev. B 99, 165112

(2019).
[60] I. Yudhistira, G. Chakraborty, N. Sharma, D. Y. H. Ho, E.

Laksono, O. P. Sushkov, G. Vignale, and S. Adam, Phys. Rev.
B 99, 140302(R) (2019).

[61] G. Sharma, I. Yudhistira, N. Chakraborty, D. Y. H. Ho, M. M.
Al Ezzi, M. S. Fuhrer, G. Vignale, and S. Adam, Nat. Commun.
12, 5737 (2021).

[62] S. Das Sarma and F. Wu, Phys. Rev. Res. 4, 033061 (2022).
[63] M. Koshino and Y.-W. Son, Phys. Rev. B 100, 075416 (2019).
[64] R. Zeyher and W. Finger, Phys. Rev. Lett. 49, 1833 (1982).
[65] W. Finger and T. M. Rice, Phys. Rev. Lett. 49, 468 (1982).
[66] W. Finger and T. M. Rice, Phys. Rev. B 28, 340 (1983).
[67] R. Currat, E. Kats, and I. Luk’yanchuk, Eur. Phys. J. B 26, 339

(2002).
[68] H. Ochoa, Phys. Rev. B 100, 155426 (2019).
[69] I. Maity, M. H. Naik, P. K. Maiti, H. R. Krishnamurthy, and M.

Jain, Phys. Rev. Res. 2, 013335 (2020).
[70] Q. Gao and E. Khalaf, Phys. Rev. B 106, 075420 (2022).
[71] R. Samajdar, T. Teng, and M. S. Scheure, Phys. Rev. B 106,

L201403 (2022).
[72] H. Ochoa and R. M. Fernandes, Phys. Rev. Lett. 128, 065901

(2022).
[73] P. M. Chaikin and T. C. Lubensky, Principles of Condensed

Matter Physics, 7th ed. (Cambridge University Press, Cam-
bridge, 2013).

[74] T. Moriya and Y. Takahashi, J. Phys. Soc. Jpn. 59, 2905
(1990).

[75] P. Monthoux and D. Pines, Phys. Rev. B 49, 4261 (1994).
[76] R. Hlubina and T. M. Rice, Phys. Rev. B 51, 9253 (1995).
[77] A. Rosch, Phys. Rev. Lett. 82, 4280 (1999).
[78] A. J. Millis, Phys. Rev. B 48, 7183 (1993).
[79] A. Abanov, A. V. Chubukov, and J. Schmalian, Adv. Phys. 52,

119 (2003).
[80] M. A. Metlitski and S. Sachdev, Phys. Rev. B 82, 075127

(2010).
[81] V. Oganesyan, S. A. Kivelson, and E. Fradkin, Phys. Rev. B 64,

195109 (2001).
[82] H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfe, Rev. Mod.

Phys. 79, 1015 (2007).
[83] S. Alexander, Phys. Rep. 296, 65 (1998).
[84] M. Baggioli and A. Zaccone, Int. J. Mod. Phys. B 35, 2130002

(2021).
[85] L. N. Bulaevskii and M. P. Maley, Phys. Rev. Lett. 71, 3541

(1993).

075168-10

https://doi.org/10.1103/PhysRevB.98.245103
https://doi.org/10.1103/PhysRevB.98.205151
https://doi.org/10.1103/PhysRevB.98.081102
https://doi.org/10.1103/PhysRevB.98.241407
https://doi.org/10.1103/PhysRevX.8.041041
https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1088/2399-6528/ab0fa9
https://doi.org/10.1103/PhysRevResearch.2.023325
https://doi.org/10.1103/PhysRevB.103.205416
https://doi.org/10.1103/PhysRevB.101.205426
https://doi.org/10.1103/PhysRevB.102.045107
https://doi.org/10.1073/pnas.2014691117
https://doi.org/10.1103/PhysRevLett.124.097601
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1103/PhysRevLett.125.257602
https://doi.org/10.1103/PhysRevLett.127.266601
https://doi.org/10.1103/PhysRevX.11.011014
https://doi.org/10.1103/PhysRevLett.129.047601
https://doi.org/10.1103/PhysRevLett.128.227601
https://doi.org/10.1126/sciadv.abf5299
https://doi.org/10.1103/PhysRevLett.128.066401
https://doi.org/10.1103/PhysRevX.12.011061
https://doi.org/10.1103/PhysRevB.106.L121111
https://doi.org/10.1038/s41586-020-2373-y
https://doi.org/10.1038/s41586-020-2339-0
https://doi.org/10.1038/s41567-019-0596-3
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1038/s41567-022-01556-5
https://doi.org/10.1146/annurev-conmatphys-070909-104117
https://doi.org/10.1126/science.1227612
https://doi.org/10.1146/annurev-conmatphys-031113-133921
https://doi.org/10.1103/PhysRevB.99.165112
https://doi.org/10.1103/PhysRevB.99.140302
https://doi.org/10.1038/s41467-021-25864-1
https://doi.org/10.1103/PhysRevResearch.4.033061
https://doi.org/10.1103/PhysRevB.100.075416
https://doi.org/10.1103/PhysRevLett.49.1833
https://doi.org/10.1103/PhysRevLett.49.468
https://doi.org/10.1103/PhysRevB.28.340
https://doi.org/10.1140/epjb/e20020098
https://doi.org/10.1103/PhysRevB.100.155426
https://doi.org/10.1103/PhysRevResearch.2.013335
https://doi.org/10.1103/PhysRevB.106.075420
https://doi.org/10.1103/PhysRevB.106.L201403
https://doi.org/10.1103/PhysRevLett.128.065901
https://doi.org/10.1143/JPSJ.59.2905
https://doi.org/10.1103/PhysRevB.49.4261
https://doi.org/10.1103/PhysRevB.51.9253
https://doi.org/10.1103/PhysRevLett.82.4280
https://doi.org/10.1103/PhysRevB.48.7183
https://doi.org/10.1080/0001873021000057123
https://doi.org/10.1103/PhysRevB.82.075127
https://doi.org/10.1103/PhysRevB.64.195109
https://doi.org/10.1103/RevModPhys.79.1015
https://doi.org/10.1016/S0370-1573(97)00069-0
https://doi.org/10.1142/S0217979221300024
https://doi.org/10.1103/PhysRevLett.71.3541


EXTENDED LINEAR-IN-T RESISTIVITY DUE TO … PHYSICAL REVIEW B 108, 075168 (2023)

[86] A. Cano and A. P. Levanyuk, Phys. Rev. Lett. 93, 245902
(2004).

[87] C. Jiang, A. Zaccone, C. Setty, and M. Baggioli, Phys. Rev. B
108, 054203 (2023).

[88] J. M. Ziman, Electrons and Phonons: The Theory of Transport
Phenomena in Solids (Oxford University Press, London, 1960).

[89] E. H. Hwang and S. Das Sarma, Phys. Rev. B 77, 115449
(2008).

[90] T. Sohier, M. Calandra, C.-H. Park, N. Bonini, N. Marzari, and
F. Mauri, Phys. Rev. B 90, 125414 (2014).

[91] H. Ochoa, Phys. Rev. B 102, 201107(R) (2020).
[92] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Phys. Rev. B

99, 195455 (2019).
[93] S. Carr, D. Massatt, S. B. Torrisi, P. Cazeaux, M. Luskin, and

E. Kaxiras, Phys. Rev. B 98, 224102 (2018).

[94] J. Wang, A. Khosravi, A. Vanossi, and E. Tosatti,
arXiv:2305.19740.

[95] V. S. de Carvalho and R. M. Fernandes, Phys. Rev. B 100,
115103 (2019).

[96] P. Brown, K. Semeniuk, D. Wang, B. Monserrat, C. J. Pickard,
and F. M. Grosche, Sci. Adv. 4, eaao4793 (2018).

[97] H. Zhou, T. Xie, A. Ghazaryan, T. Holder, J. R. Ehrest, E. M.
Spanton, T. Taniguchi, K. Watanabe, E. Berg, M. Serbyn, and
A. F. Young, Nature (London) 598, 429 (2021).

[98] H. Zhou, L. Holleis, Y. Saito, L. Cohen, W. Huynh, C. L.
Patterson, F. Yang, T. Taniguchi, K. Watanabe, and A. F. Young,
Science 375, 774 (2022).

[99] S. C. de la Barrera, S. Aronson, Z. Zheng, K. Watanabe, T.
Taniguchi, Q. Ma, P. Jarillo-Herrero, and R. Ashoori, Nat. Phys.
18, 771 (2022).

075168-11

https://doi.org/10.1103/PhysRevLett.93.245902
https://doi.org/10.1103/PhysRevB.108.054203
https://doi.org/10.1103/PhysRevB.77.115449
https://doi.org/10.1103/PhysRevB.90.125414
https://doi.org/10.1103/PhysRevB.102.201107
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevB.98.224102
http://arxiv.org/abs/arXiv:2305.19740
https://doi.org/10.1103/PhysRevB.100.115103
https://doi.org/10.1126/sciadv.aao4793
https://doi.org/10.1038/s41586-021-03938-w
https://doi.org/10.1126/science.abm8386
https://doi.org/10.1038/s41567-022-01616-w

