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Optical conductivity of bilayer dice lattices
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We calculate optical conductivity for bilayer dice lattices in commensurate vertically aligned stackings. The
interband optical conductivity reveals a rich activation behavior unique for each of the four stackings. We found
that the intermediate energy band, which corresponds to the flat band of a single-layer dice lattice, plays a
different role for different stackings. The interband selection rules, which are crucial for the single-layer lattice,
may become lifted in bilayer lattices. The results for effective and tight-binding models are found to be in
qualitative agreement for some of the stackings and the reasons for the discrepancies for others are identified.
Our findings propose optical conductivity as an effective tool to distinguish between different stackings in bilayer
dice lattices.

DOI: 10.1103/PhysRevB.108.075167

I. INTRODUCTION

Optical response provides a powerful way to extract a
wealth of information about different properties of materials.
The sensitivity to interband transitions distinguishes optical
or alternating current response from its direct current coun-
terpart. By tuning the frequency of electromagnetic radiation,
one can probe different interband transitions, determine the
selection rules, and map the energy bands of various materials
including those with unusual spectra such as graphene as well
as Weyl and Dirac semimetals.

Perhaps, the most distinct feature of the interband op-
tical response in 2D Dirac materials with relativistic-like
energy spectrum is the presence of the steplike feature orig-
inating from the Pauli principle followed by a plateau; see
Refs. [1–4] for theoretical and experimental studies of the
optical response in graphene. In 3D Dirac and Weyl semimet-
als, the plateau is replaced with linearly growing bulk [5]
interband optical conductivity as long as the radiation fre-
quency is sufficiently high to surpass the Pauli blocking;
see, e.g., Refs. [6–13]. A more detailed review of the results
for the optical conductivity in nodal metals can be found in
Refs. [14–16].

Recently, materials with even more exotic and complex
spectra containing flat bands started to attract significant at-
tention. In 2D, the flat-band energy spectrum can be realized
by twisting layers of bilayer graphene [17–19]; alternatively,
flat bands can occur in certain lattices such as the dice (T3)
lattice [20,21]. The dice lattice has a hexagonal structure with
an additional atom placed in the center of each hexagon. The
central atom represents a hub that connects to six rims. The
rims form two sublattices where each of the rims connects to
three hubs. Since there are three atoms per unit cell, the energy
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spectrum of a dice lattice contains three bands and can be rep-
resented as a Dirac point intersected by a flat band [22]. Such a
crossing point is described in terms of spin-1 fermions; several
bands crossing at the same point might allow for higher-spin
fermions. While, to the best of our knowledge, there are no
solid-state materials realizing dice lattices, the latter were
proposed in artificial systems such as optical lattices [23,24]
and Josephson arrays [25]. Other types of 2D lattices that
produce flat bands include kagome [26] and Lieb [27] lattices;
see Ref. [28] for a review of artificial flat-band systems.

The unusual energy spectrum of higher-spin fermions and
crossing points is directly manifested in optical responses
where additional interband transitions can become possible
and the overall scaling of the optical conductivity with fre-
quency can change. The interband transitions involving flat
bands are manifested as a steplike feature with the activa-
tion frequency equal to the Fermi energy [29] followed by a
plateau in the optical conductivity. This behavior is similar
to that in graphene, where, due to the absence of the flat
band, the activation frequency is different and is equal to the
double Fermi energy. For 2D spin-1 and higher-spin fermions,
optical and magneto-optical conductivities were calculated
in Refs. [29–41] and plasmon excitations were studied in
Refs. [37,38,42–45]. In 3D, similar multifold energy spectra
with spin-1 and even higher-spin fermions were proposed in
Ref. [46]. Experimentally, multifold fermions were realized
in chiral materials such as CoSi [47–49], RhSi [49], and AlPt
[50]. The optical conductivity of 3D higher-spin fermions was
studied in Refs. [51–54]. A natural intermediate step between
2D and 3D systems is to consider a few-layer system, which,
as bilayer graphene, might reveal a different set of properties;
see Ref. [55] for the optical conductivity of bilayer graphene.
We introduced such bilayer dice lattices and studied their
energy spectra in Ref. [56].

In this work, we investigate the optical conductivity
in tight-binding and effective models derived in our work
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FIG. 1. The schematic representation of bilayer dice lattices in the (i) aligned AA-BB-CC, (ii) hub-aligned AB-BA-CC, (iii) mixed
AA-BC-CB, and (iv) cyclic AB-BC-CA stackings. The A, B, and C sites are denoted by red, blue, and green points.

[56] for the four nonequivalent commensurate stackings
of bilayer dice lattices with vertically aligned atoms: (i)
aligned AA-BB-CC, (ii) hub-aligned AB-BA-CC, (iii) mixed
AA-BC-CB, and (iv) cyclic AB-BC-CA; here, A and B de-
note rim sites and C denotes hub sites. We found that the
activation behavior and scaling of the optical conductivity
drastically depend on the stacking. The obtained results for
the effective and tight-binding models are in qualitative agree-
ment for certain stackings if the interband transitions for the
low-frequency optical response are saturated by the three-
band-crossing points. Discrepancies between the effective and
tight-binding approaches appear if the energy spectrum away
from the band-crossing points also contributes to the interband
transitions. In this case, we identify the dominant optical
transitions and show that the optical conductivity is dominated
by the local extrema of the dispersion relation. We found also
that the intermediate bands play no role in the effective models
for the hub-aligned AB-BA-CC and mixed AA-BC-CB stack-
ing, which allowed us to use the particle-hole-asymmetric
semi-Dirac and tilted Dirac models. Such a reduction is not
possible for the aligned AA-BB-CC and cyclic AB-BC-CA
stackings where all three bands contribute to the optical con-
ductivity. While the aligned AA-BB-CC stacking inherits the
optical selection rules of the single-layer lattice, i.e., only
the transitions involving the flat band are allowed, all bands
may contribute to the optical conductivity for other stackings.
The obtained in this work results provide an effective way
to distinguish different stackings of dice lattices in optical
responses.

The paper is organized as follows. We summarize the
tight-binding and effective low-energy models of bilayer dice
lattices in Sec. II. The optical conductivity for each of the four
nonequivalent stackings is discussed in Sec. III. The results
are summarized in Sec. IV. Technical details concerning the
nonabbreviated effective models and the calculation of the
optical conductivity are given in Appendixes A and B, respec-
tively. Throughout this paper, we use kB = 1.

II. MODEL

In this section, by following Ref. [56], we summarize the
tight-binding and effective Hamiltonians of bilayer dice lat-
tices in commensurate stackings.

A. Tight-binding models

In the basis of states corresponding to the A, C, and B
sublattices, the tight-binding Hamiltonian of single-layer dice
lattices is [22]

H0(q) =

⎛
⎜⎜⎝

0 −t
∑

j e−iq·δ j 0

−t
∑

j eiq·δ j 0 −t
∑

j e−iq·δ j

0 −t
∑

j eiq·δ j 0

⎞
⎟⎟⎠,

(1)

where t is the hopping constant, q is the wave vector
in the Brillouin zone, and the vectors δ1 = a{0, 1}, δ2 =
a{√3,−1}/2, and δ3 = −a{√3, 1}/2 denote the relative po-
sitions of the sites A (rims) with respect to the sites C (hubs).
The parameter a determines the distance between neighboring
A and C sites. Sites B (rims) are related to sites A by the C3

rotational symmetry with respect to sites C; the structure of a
single-layer dice lattice can be also seen in each of the layers
of bilayer lattices shown in Fig. 1. The energy spectrum of the
Hamiltonian (1) resembles that in graphene and reveals two
nonequivalent Dirac points in the hexagonal Brillouin zone.
However, the Dirac points are intersected by a zero-energy
flat band.

Let us now discuss bilayer dice lattices. The corresponding
tight-binding Hamiltonian is defined as

H (q) =
(

H0(q) Hc

HT
c H0(q)

)
, (2)

where H0(q) is the single-layer tight-binding Hamiltonian
(1) and Hc describes the interlayer coupling. As we pro-
posed in Ref. [56], there are four nonequivalent commensurate
stackings for a bilayer dice lattice with vertically aligned
sites: (i) aligned AA-BB-CC, (ii) hub-aligned AB-BA-CC, (iii)
mixed AA-BC-CB, and (iv) cyclic AB-BC-CA. The bilayer
dice lattices for these stackings are shown in Fig. 1. Assum-
ing only nearest-neighbor tunneling and, for simplicity, equal
tunneling strength for all sites, we use the following coupling
Hamiltonians Hc connected with the aligned, hub-aligned,
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mixed, and cyclic stackings, respectively:

H (a)
c = g

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, H (h)

c = g

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

H (m)
c = g

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠, H (c)

c = g

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠. (3)

Here, g � 0 is the coupling strength.
The tight-binding Hamiltonian (2) supplemented with the

corresponding coupling Hamiltonian (3) defines the spectral
and transport properties of a dice bilayer lattice. However,
its relatively high dimension (6 × 6) and intricate structure
complicate the analysis. Therefore, to make an analytical ad-
vance and to develop physical intuition, we employ effective
low-energy models valid in the vicinity of the threefold band-
crossing K (or K ′) points. In what follows, we summarize
the corresponding effective Hamiltonians. The details of the
derivation and the energy spectrum can be found in Ref. [56];
see also Figs. 2(b), 4(b), 7(b), and 10(b).

B. Effective models

We start our discussion of the effective models with the
simplest, aligned AA-BB-CC, stacking. The effective Hamil-
tonian in the vicinity of the K point is

H (a)
eff = g13 + h̄vF (S · k), (4)

where the momentum k = q − 4π{1, 0}/(3
√

3a) is measured
with respect to the K point,

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ and Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠
(5)

are the (pseudo)spin-1 matrices, and vF = 3ta/(
√

2h̄) is the
Fermi velocity. In the leading nontrivial order in h̄vF k/g, the
effective model for the aligned stacking is represented by two
copies of the single-layer linearized Hamiltonians separated
by 2g in energy; the Hamiltonian for the other copy is obtained
by replacing g → −g in Eq. (4). The energy spectrum contains
flat and two dispersive branches: ε0 = g, ε1 = g + h̄vF k, and
ε2 = g − h̄vF k.

The abbreviated effective Hamiltonian for the hub-aligned
AB-BA-CC stacking reads

H (h)
eff = g13 + h̄vF√

2
kx

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠

+
(

h̄vF√
2

)2 k2
y

2g

⎛
⎝ 1 0 −1

0 2 0
−1 0 1

⎞
⎠. (6)

Compared to the effective Hamiltonian in Ref. [56], we omit-
ted a few terms quadratic in the wave vector which are not
crucial for the qualitative shape of the spectrum and, as we
will demonstrate in Sec. III B, do not affect the main features
of the optical conductivity; for the sake of completeness, the

nonabbreviated effective model is given in Eq. (A1). The
energy spectrum of Hamiltonian (6) in the vicinity of the K
point is

ε0 = g + (h̄vF ky)2

2g
, (7)

ε1 = g + (h̄vF ky)2

4g
+ h̄vF

√
k2

x +
(

h̄vF

4g

)2

k4
y , (8)

ε2 = g + (h̄vF ky)2

4g
− h̄vF

√
k2

x +
(

h̄vF

4g

)2

k4
y . (9)

The above energy spectrum corresponds to a particle-hole-
asymmetric version of the semi-Dirac model [57] in which
the dispersion relation is linear in one direction and quadratic
in the other. The particle-hole asymmetry around the band-
crossing points is quantified by the momentum-dependent
∼(h̄vF ky)2/g term.

In the case of the mixed AA-BC-CB stacking, the abbrevi-
ated effective Hamiltonian reads

H (m)
eff = g13 + h̄vF

2
√

2

⎛
⎜⎝

0 2kx k−
2kx 0 k−
k+ k+ 0

⎞
⎟⎠, (10)

where k± = kx ± iky. Quadratic terms are important for the
additional energy branch where they describe its anisotropy
and introduce a dependence on ky. However, as we will show
in Sec. III C, this additional branch does not play any role in
the interband transitions for the effective model. The energy
spectrum of Hamiltonian (10) reads

ε0 = g − h̄vF√
2

kx, (11)

ε1 = g + h̄vF

2
√

2
kx + h̄vF

2
√

2

√
3k2

x + 2k2
y , (12)

ε2 = g + h̄vF

2
√

2
kx − h̄vF

2
√

2

√
3k2

x + 2k2
y . (13)

Finally, the effective linearized Hamiltonian for the cyclic
AB-BC-CA stacking is

H (c)
eff = g13 + h̄vF

2
√

2

⎛
⎜⎜⎝

0 k− k+
k+ 0 2k−
k− 2k+ 0

⎞
⎟⎟⎠. (14)

Its energy spectrum is

εn = g + h̄vF k cos

{
1

3
arccos

[
cos (3ϕ)√

2

]
− 2π (1 − n)

3

}
,

(15)

where n = 0, 1, 2 and, to simplify the expressions,
we used the polar coordinate system with {kx, ky} =
k{cos (ϕ), sin (ϕ)}.

III. OPTICAL CONDUCTIVITY

In this section, we calculate optical conductivity for the
commensurate stackings of the bilayer dice lattice described
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in Sec. II. Optical conductivities for each of the four stackings
are presented in Secs. III B–III E, respectively. The results for
effective models are analyzed and compared with those in the
tight-binding models.

A. Kubo linear response approach

Let us start with formulating the linear response approach.
The optical conductivity tensor is defined in terms of the
retarded current-current correlation function

σnm(�) = −i
h̄

�
�nm(� + i0; 0), (16)

where � is the frequency of the oscillating electromagnetic
field and the polarization tensor is given by

�nm(� + i0; 0) = e2 T

h̄

∞∑
l=−∞

∫
d2k

(2π )2
tr[vnG(iωl ; k)

× vmG(iωl − � − i0; k)]

= −e2
∫∫

dωdω′ f eq(h̄ω) − f eq(h̄ω′)
ω − ω′ − � − i0

×
∫

d2k

(2π )2
tr[vnA(ω; k)vmA(ω′; k)]. (17)

Here, ωl = (2l + 1)πT/h̄ is the fermion Matsubara fre-
quency, l is an integer, T is temperature in energy units, and
vn = ∂kn H (k)/h̄ is the velocity matrix. The Green function in
the momentum space reads

G(ω ± i0; k) = i

h̄ω − μ − H (k) ± i0
, (18)

where μ is the chemical potential, and the signs ± correspond
to the retarded (+) and advanced (−) Green functions. In the
last expression in Eq. (17), we performed the summation over
Matsubara frequencies as well as introduced the Fermi-Dirac
distribution function f eq(ε) = 1/[e(ε−μ)/T + 1] and the spec-
tral function

A(ω; k) = 1

2π
[G(ω + i0; k) − G(ω − i0; k)]|μ=0. (19)

The calculation of the real part of the conductivity tensor
can be significantly simplified if the trace in Eq. (17) is real.
Then, by using the identity

1

ω − ω′ − � ∓ i0
= p.v.

1

ω − ω′ − �
± iπδ(ω − ω′ − �),

(20)

one can straightforwardly extract the imaginary part of
�nm(� + i0, 0). Here, p.v. stands for the principal value.

For the diagonal part of the conductivity, the trace in
Eq. (17) is real; see also Appendix B for explicit calculations.
Therefore, we have the following expression for Re{σnn(�)}:

Re{σnn(�)} = −π h̄e2

�

∫
dω[ f eq(h̄ω) − f eq(h̄ω − h̄�)]

×
∫

d2k

(2π )2
tr[vnA(ω; k)vnA(ω − �; k)]. (21)

The imaginary part can be derived via the Kramers-
Kronig relations; see, e.g., Ref. [38] for the corresponding

calculations in a single-layer dice lattice. As for the off-
diagonal components, Re{σnm(�)} with n �= m, their absence
is guaranteed by the time-reversal symmetry.

The expression for the conductivity in Eq. (21) is valid both
for effective and tight-binding models, as well as contains
intra- and interband terms. The intraband part is nonuniversal
and strongly depends on quasiparticle scattering mechanisms.
Therefore, in our calculations for the effective models, we
focus only on the interband part. In addition, we dispense with
the effects of nonvanishing temperature and consider only the
case T → 0.

To identify the contributions of different bands in the
optical conductivity, it is convenient to use the following
Kubo-Greenwood formula [58] at vanishing temperature:

Re{σxx(�)} = π
∑
s �=s′

∑
k

θ (μ − εs′ ) − θ (μ − εs)

εs − εs′

× δ(h̄� + εs − εs′ )|〈�s(k)| jx(k)|�s′ (k)〉|2.
(22)

Here s, s′ = ±{2, 0, 1} label energy bands with the overall
sign corresponding to the triplets of the band crossings at
±g, respectively. The current operator is defined as jx(k) =
−e∂kx H (k)/h̄ and �s(k) are the eigenstates of H (k). The
conductivity tensor is isotropic in the tight-binding model,
σxx(�) = σyy(�). In our numerical calculations, we replace
the δ function in Eq. (22) with a Lorentzian of the half-width

; this is equivalent to replacing i0 → i
 in Eq. (18). The
summation over momenta is performed over the Brillouin
zone using a uniform discretization.

B. Aligned AA-BB-CC stacking

Exploiting the fact that the effective Hamiltonian (4) for the
aligned AA-BB-CC stacking is equivalent (except the shifted
position of the band-crossing point quantified by the cou-
pling strength g) to its counterpart for the single-layer dice
lattice, the final result for the optical conductivity Re{σxx(�)}
summed over the K and K ′ crossing points reads

Re{σxx(�)} = σ0[θ (h̄� + g − μ) − θ (g − μ − h̄�)], (23)

where σ0 = e2/(4h̄) and θ (x) is the unit step function; see
Appendix B 1 for details. The first term in the last expression
in Eq. (23) corresponds to the transitions from the flat band
ε0 = g to the upper linear band ε1 = g + vF k. The second
term describes the transitions between the lower band ε2 =
g − vF k and the flat band ε0 = g. Notice that there are no di-
rect transitions between the upper and lower dispersive bands.
The obtained results for the effective model agree with those
for the single-layer dice lattice where the direct transitions
between the dispersive bands are also forbidden [29,37,38].

For comparison, we present also the optical conductivity of
monolayer graphene [1,2],

Re
{
σ (graphene)

xx (�)
} = σ0

2
θ

(
h̄�

2
− μ

)
. (24)

As one can see by comparing Eqs. (23) and (24), the additional
zero-energy band for the dice lattice allows for a different
activation behavior where the steplike feature occurs at h̄� =
|μ − g| rather than h̄� = 2μ.
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FIG. 2. Panel (a): The interband optical conductivity for the tight-binding Hamiltonian corresponding to the aligned AA-BB-CC stacking
at μ/t = 0 (solid red line), μ/t = 0.5 (dashed blue line), and μ/t = 1 (dotted green line). The black arrow marks the peak of the optical
conductivity; the corresponding transition at μ/t = 0 is shown in panel (b) by the vertical black arrow. We used the phenomenological
broadening 
/t = 0.01. Panel (b): The energy spectrum of the tight-binding Hamiltonian along the 
-K-M-
 line in the Brillouin zone.
The vertical black arrows mark the transitions corresponding to the peak in panel (a). In both panels, σ0 = e2/(4h̄) and g/t = 1.

To illustrate the role of other parts of the band structure
away from the band-crossing points, we show the optical
conductivity in the tight-binding model for a broader range
of frequencies and Fermi energies in Fig. 2. The appear-
ance of the steplike feature at h̄� = |μ − g| agrees well with
the result for the effective model; see Eq. (23). The steplike
feature for μ = 0 is two times higher at the onset than that
for, e.g., μ/t = 0.5, which is explained by the contributions
of both flat bands with the energies ±g, i.e., ε±0. As in the
effective model, the optical conductivity in the tight-binding
one is saturated by the transitions between the dispersive and
flat bands. In agreement with Eq. (23), the steplike feature at
h̄� = g is split into two steps at |μ + g| and |μ − g| if μ �= 0.
There is also a peak at large frequencies h̄�/g � 1; see the
vertical arrow in Fig. 2(a). This peak corresponds to the tran-
sitions between the local extrema of the low-energy dispersive
(flat) band ε−1 (ε−0) and the high-energy flat (dispersive) band

ε+0 (ε+2) near the M point; see dashed blue (red) and solid
red (green) lines, respectively, in Fig. 2(b). The description of
such a feature is, of course, beyond the range of applicability
of the effective model.

C. Hub-aligned AB-BA-CC stacking

The conductivity for the hub-aligned AB-BA-CC stack-
ing can be straightforwardly calculated by using both the
tight-binding model and the effective Hamiltonian (6); see
Appendixes B 2 and B 3 for details.

To start with, we focus on the contribution of the
band-crossing point (i.e., the K or K ′ point) in the opti-
cal conductivity. We compare the results for the effective
and tight-binding models in Fig. 3. Since the conductivity
for the tight-binding model takes into account all crossing
points and is isotropic, we compare averaged conductivities
(σxx + σyy)/2. (In the tight-binding model σxx = σyy.) As one

FIG. 3. The dependence of the averaged over all band-crossing points interband conductivity (Re{σxx} + Re{σyy})/2 for the effective
[panel (a)] and tight-binding [panel (b)] models of the hub-aligned AB-BA-CC stacking at a few values of μ/t . Solid and dashed lines in
panel (a) correspond to the nonabbreviated and abbreviated effective models, respectively; see Eqs. (A1) and (B10), respectively. We used the
phenomenological broadening 
/t = 0.01 in panel (b). In both panels, g/t = 1 and σ0 = e2/(4h̄).
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FIG. 4. Panel (a): The interband optical conductivity for the tight-binding model corresponding to the hub-aligned AB-BA-CC stacking at
μ = 0. The contributions due to different bands are marked by different lines. The vertical arrow marks the peak of the optical conductivity;
the corresponding transitions are shown in panel (b). We use the phenomenological broadening 
/t = 0.01. Panel (b): The energy spectrum
of the tight-binding Hamiltonian along the 
-K-M-
 line in the Brillouin zone. The vertical arrow shows transitions contributing to the peaks
in the optical conductivity at μ/t = 0. In both panels, σ0 = e2/(4h̄) and g/t = 1.

can see, there is a noticeable difference between the conduc-
tivities for the effective and tight-binding models. Among the
common features, we identify only the onsets of the conduc-
tivities for some Fermi energies. The rest of the profile is
dominated by features of the energy spectrum away from the
crossing points that are not captured by the effective model;
see also the discussion below and Fig. 4. From the analysis
of the effective model in Appendix B 3, we conclude that
the onset frequency �on, which is evident from Fig. 3(a), is
determined by the minimal distance between empty states at
the ε+1 branch and filled states at the ε+2 branch. Therefore,
unlike the aligned stacking, transitions between dispersing
bands are allowed.

For Fermi energies away from the crossing points or at
small coupling constants g/t � 1, the effective model is not
applicable and we resort to the tight-binding one. We present
the optical conductivity in the tight-binding model for a

wider range of chemical potentials and coupling strengths in
Figs. 4 and 5. The nontrivial band structure for the hub-aligned
AB-BA-CC stacking leads to a few interesting features. There
are noticeable peaks at h̄�/t ≈ 1.5 for μ = 0 which are de-
termined by the transitions between the dispersive ε−1 (ε+2)
bands and intermediate ε+0 (ε−0); see Fig. 4(a). As one can
see from Fig. 4(b), the peak appears due to the local extrema
of the dispersion relation near the M point in the Brillouin
zone; the onset of the optical conductivity is determined by
the transitions between the flatlike and dispersive bands, e.g.,
ε−0 and ε+2. Transitions between other bands, e.g., ε−2 → ε+2

and ε−1 → ε+1, are non-negligible only for high frequencies
h̄� � g and lead to a much smaller peak.

As follows from Fig. 5(a), the peak at h̄�/t ≈ 1.5 is split
and shifts to smaller frequencies with the rise of μ. The peak
at a smaller frequency h̄�/t � 1 corresponds to the transitions
between ε+2 and ε+0. Its counterpart for ε−1 → ε+0 remains

FIG. 5. The interband optical conductivity for the tight-binding model of the hub-aligned AB-BA-CC stacking for a few values of μ at
g/t = 1 [panel (a)] and a few values of g at μ = 0 [panel (b)]. In both panels, σ0 = e2/(4h̄) and we used the phenomenological broadening

/t = 0.01.
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FIG. 6. The dependence of the averaged over all band-crossing points interband conductivity (Re{σxx} + Re{σyy})/2 for the effective
[panel (a)] and tight-binding [panel (b)] models of the mixed AA-BC-CB stacking at a few values of μ/t . Solid and dashed lines correspond
to the nonabbreviated and abbreviated effective models, respectively; see Eqs. (A1) and (B10) for the definitions of the models. We used the
phenomenological broadening 
/t = 0.01 in panel (b). In both panels, σ0 = e2/(4h̄) and g/t = 1.

approximately at the same frequency. The peak at h̄�/t ≈ 1.5
is split into three peaks and becomes more pronounced for
smaller coupling constants g; see Fig. 5(b). In agreement
with our previous discussion and the results for the effective
models, the onset frequency decreases since the bands shift to
smaller frequencies at smaller g.

D. Mixed AA-BC-CB stacking

Let us address the optical conductivity for the mixed
AA-BC-CB stacking. We start with investigating the role of
the band-crossing points in optical conductivity. We compare
the averaged optical conductivity obtained in the nonabbrevi-
ated and abbreviated effective models with the conductivity
calculated in the tight-binding model in Fig. 6. The steplike
dependence of the conductivity with the subsequent growth in
Fig. 6(b) agrees with that for the effective model albeit only
for certain Fermi energies: the onset frequencies for μ > g

and μ < g are different in the tight-binding model. This is
related to the contributions of other parts of the spectrum away
from the crossing points.

The contributions of each of the bands to the optical
conductivity are shown in Fig. 7(a) and the corresponding
transitions are marked in Fig. 7(b). As one can see, while
the onset is determined by the transitions between the upper
occupied and the lowest empty bands, i.e., ε−1 → ε+2 at μ =
0, the most-pronounced peak originates from the transitions
between the local extrema of the ε−0 and ε+2 bands near
the M point. Extrema for other bands near the M point also
lead to peaks albeit at higher frequencies and with smaller
magnitudes.

The optical conductivity in the tight-binding model for
several Fermi energies and coupling constants is shown in
Fig. 8. With the rise of the Fermi energy, low-frequency fea-
tures become suppressed since the corresponding transitions
are Pauli-blocked. The decrease of the coupling constant g

FIG. 7. Panel (a): The interband optical conductivity for the tight-binding model of the mixed AA-BC-CB stacking at μ = 0. The
contributions due to different bands are marked by different lines. Vertical arrows mark the peaks of the optical conductivity; the corresponding
transitions are shown in panel (b). We used the phenomenological broadening 
/t = 0.01. Panel (b): The energy spectrum of the tight-binding
Hamiltonian along the 
-K-M-
 line in the Brillouin zone. The vertical arrows show the transitions contributing to the peaks in the optical
conductivity at μ = 0; see panel (a). In both panels, σ0 = e2/(4h̄) and g/t = 1.
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FIG. 8. The interband optical conductivity for the tight-binding model of the mixed AA-BC-CB stacking for a few values of μ at g/t = 1
[panel (a)] and a few values of g at μ = 0 [panel (b)]. In both panels, σ0 = e2/(4h̄) and we used the phenomenological broadening 
/t = 0.01.

leads to the shift of the onset of the transitions to smaller
frequencies but moves the central peaks to slightly higher
frequencies. Indeed, the former is determined by the minimal
distance between energy levels, which decreases at smaller
g, while the latter originates from the extrema of the band
structure near the M point, which move away from each other
at smaller g. The overall profile of the conductivity remains
similar for different values of g.

E. Cyclic AB-BC-CA stacking

In this section, we calculate the optical conductivity for
the cyclic AB-BC-CA stacking. To elucidate the role of the
band-crossing points, we compare the interband conductivity
for the effective model with that obtained in the tight-binding
one in Fig. 9. Because there is dependence only on |μ − g|
in the effective model, we show the results for μ < g. As
one can see, while the conductivities in both models show
plateaus with similar onsets and offsets, there are qualitative
differences. In particular, there is no particle-hole symmetry
with respect to the band-crossing point in the tight-binding

model, which is reflected in the different magnitudes of the
conductivity plateaus; see Appendix B 5 for the detailed dis-
cussion of the results in the effective model. The features at
h̄�/g � 0.3 are affected by the details of the energy spectrum
away from the crossing points.

In the case of Fermi energies away from the crossing
points, we resort to the tight-binding model. The contributions
from each of the transitions in the optical conductivity are
shown in Fig. 10(a). The nontrivial band structure in the cyclic
stacking leads to a set of noticeable features that are not
captured by the effective model. Unlike the case of the aligned
AA-BB-CC stacking, the transitions between all types of bands
are possible as long as they are not Pauli-blocked. The most
prominent peaks in the optical conductivity can be explained
by transitions between the extrema of the filled bands (dashed
blue line) and the empty bands (solid lines) in Fig. 10(b).

The optical conductivity at several values of g/t and μ/t
is shown in Figs. 11(a) and 11(b), respectively. As expected,
the rise of the Fermi energy blocks several transitions lead-
ing to the disappearance of the low-frequency peaks while
leaving the high-frequency ones intact. The dependence on

FIG. 9. Panel (a): The dependence of the interband conductivity Re{σxx} normalized to σ0 = e2/(4h̄) on h̄�/t for the cyclic AB-BC-CA
stacking at a few values of μ/t . Panel (b): The interband conductivity for the tight-binding model of the same stacking where we used the
phenomenological broadening 
/t = 0.01. In both panels, σ0 = e2/(4h̄) and g/t = 1.
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FIG. 10. Panel (a): The interband optical conductivity for the tight-binding model corresponding to the cyclic AB-BC-CA stacking at
μ = 0. The contributions due to different bands are marked by different lines. Vertical arrows mark the peaks of the optical conductivity; the
corresponding transitions are shown in panel (b). We used the phenomenological broadening 
/t = 0.01. Panel (b): The energy spectrum of
the tight-binding Hamiltonian along the 
-K-M-
 line in the Brillouin zone. The vertical arrows show the transitions contributing to the peaks
in the optical conductivity at μ = 0. In both panels, σ0 = e2/(4h̄) and g/t = 1.

the coupling constant is nonmonotonic for certain features
(low-frequency peaks); the other may be shifted to lower
frequencies (e.g., the peaks at h̄�/t � 1).

IV. SUMMARY

In this work, we investigated the optical conductivity of
bilayer dice (or T3) lattices introduced in Ref. [56]. A bilayer
dice lattice realizes four commensurate stackings: aligned
AA-BB-CC, hub-aligned AB-BA-CC, mixed AA-BC-CB, and
cyclic AB-BC-CA. Each of these stackings has a different
energy spectrum and, as a result, distinct interband optical
conductivity and activation behavior. To make an analytical
advance, we employed effective models valid in the vicinity
of the band-crossing points. The results for the tight-binding
models are also discussed. The effective models are able to
capture the features of the optical conductivity related to the
band-crossing K and K ′ points. However, in general, they

do not saturate the optical conductivity for all considered
stackings.

The optical conductivity for the aligned AA-BB-CC stack-
ing is similar to that of single-layer graphene with, however,
a different activation behavior; see Eq. (23). In this case,
only the transitions involving the flat band are allowed; see
Sec. III B. There is a good agreement between the effective
and tight-binding models at small frequencies signaling that
the vicinity of the crossing points provides the main contri-
bution to the optical conductivity. The contributions of the
states in the vicinity of the M point of the Brillouin zone
become pronounced for larger frequencies or Fermi energies
away from the band-crossing points leading to discrepancies
between the effective and tight-binding models; see Fig. 2.

In the case of the hub-aligned AB-BA-CC stacking, the
band-crossing point plays an important albeit not the dom-
inant role. The corresponding effective model relies only

FIG. 11. The interband optical conductivity for the tight-binding model of the cyclic AB-BC-CA stacking for a few values of μ at g/t =
1 [panel (a)] and a few values of g at μ/t = 0 [panel (b)]. In both panels, σ0 = e2/(4h̄) and we used the phenomenological broadening

/t = 0.01.
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on the transitions involving low- and high-energy dispersive
bands but omits the intermediate band; it is well-described
by a two-band particle-hole-asymmetric semi-Dirac model.
The effective model is able to describe the activation behavior
but does not reproduce the shape of the optical conductivity
profile well; see Fig. 3. This discrepancy is explained by
contributions from both band-crossing points and other parts
of the energy spectrum away from the points. The results for
the broader range of Fermi energies and coupling constants
reveal a rich structure with a few peaks that can be attributed
to the extrema near the M point of the Brillouin zone. The
corresponding dependencies are shown in Figs. 4 and 5, and
can be used to identify the local extrema in the dispersion
relation that are responsible for the peaks.

The band-crossing point plays an even less profound role in
the mixed AA-BC-CB stacking; see Sec. III D. This is evident
from comparing the interband conductivity obtained in the
effective and tight-binding models in Fig. 6. In the former,
the intermediate band also plays no role allowing us to use a
two-band model corresponding to tilted Dirac fermions. Other
features in the interband conductivity originate from the tran-
sitions between the parts of the energy spectrum away from
the band-crossing points; see Fig. 7. The peaks of the optical
conductivity can be identified with the transitions between
local extrema including those in the vicinity of the M point.
As is clear from Fig. 7, all bands may contribute to the optical
conductivity leading to an intricate profile with several peaks;
see also Fig. 8.

Finally, the interband optical conductivity for the cyclic
AB-BC-CA stacking reveals a plateau-like feature determined
by the interplay of the transitions between occupied and empty
states; see Sec. III E. The effective model correctly captures
the onset and offset of the plateaus but misses particle-hole
asymmetry with respect to the band-crossing point; see Fig. 9.
As in the case of the hub-aligned and mixed stackings, there
are no restrictions on the transitions between the bands as long
as they are permitted by the Pauli principle. This is revealed
in several peaks in the optical conductivity originating from
various interband transitions; see Figs. 10 and 11.

Thus, we found that optical conductivity provides an effec-
tive way to probe the nontrivial dispersion relation, quantify
the interlayer coupling, and distinguish between various com-
mensurate stackings in bilayer dice models. In particular, the

optical response of a band-crossing point is manifested in
distinct steplike features with a different activation behavior
for each of the stackings. For larger frequencies h̄� � g,
the transitions involving both band-crossing points as well as
other parts of the energy spectrum become relevant.

It is noticeable also that the commensurate stackings of the
dice lattices (with the exception of the aligned AA-BB-CC
stacking) generically lack forbidden transitions leading to
several peaks in the optical conductivity. Furthermore, even
for large coupling constants and the Fermi energy close to
the band-crossing points, the vicinity of the band-crossing
may not saturate the optical conductivity leading to noticeable
discrepancies between the effective and tight-binding models.
Therefore, the studies of optical conductivity may be used
to glean information about the structure of the energy bands
and the presence of local extrema there. Among the latter, we
notice the states near the M point of the Brillouin zone.

In the present work, we focused mostly on the interband
transitions and described the effects of disorder phenomeno-
logically by introducing an energy-independent broadening
in the tight-binding models. We leave a more detailed inves-
tigation of disorder effects for future studies [59]. Another
perspective direction will be to investigate higher-order op-
tical responses including the second harmonic generation and
rectification.
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APPENDIX A: NONABBREVIATED EFFECTIVE MODELS

For the sake of completeness, we present the effective
models retaining all terms up to the second order in h̄vF k/g
and the first order in h̄vF ak2/g for the hub-aligned AB-BA-CC
and mixed AA-BC-CB stackings [56].

The corresponding effective Hamiltonian for the hub-
aligned stacking reads

H (h)
eff = g13 + h̄vF√

2
kx

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ +

(
h̄vF√

2

)2 k2
y

2g

⎛
⎝ 1 0 −1

0 2 0
−1 0 1

⎞
⎠ + h̄vF√

2

a

4

(
k2

y − k2
x

)⎛⎝0 1 0
1 0 1
0 1 0

⎞
⎠. (A1)

Its abbreviated version is given in Eq. (6).
In the case of the mixed stacking, the effective Hamiltonian is

H (m)
eff = g13 + h̄vF

2
√

2

⎛
⎝ 0 2kx k−

2kx 0 k−
k+ k+ 0

⎞
⎠ +

(
h̄vF

4

)2 1

g

⎛
⎝k2

x + 5k2
y 0 0

0 k2
x + 5k2

y 0
0 0 2k2

⎞
⎠

−
(

h̄vF

4

)2 1

g

⎛
⎝ 0 k2 2ikyk−

k2 0 2ikyk−
−2ikyk+ −2ikyk+ 0

⎞
⎠ − h̄vF a

8
√

2

⎛
⎜⎜⎝

0 2
(
k2

x − k2
y

)
k2
+

2
(
k2

x − k2
y

)
0 k2

+
k2
− k2

− 0

⎞
⎟⎟⎠. (A2)

The corresponding abbreviated version is given in Eq. (10).
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FIG. 12. The dependence of the interband conductivity components Re{σxx} [panel (a)] and Re{σyy} [panel (b)] normalized to σ0 = e2/(4h̄)
for the hub-aligned AB-BA-CC stacking on h̄�/t for a few values of μ/t . Solid and dashed lines correspond to the nonabbreviated and
abbreviated effective models, respectively; see Eqs. (A1) and (B10) for the definitions of the models. In all panels, we used g/t = 1 and set
T → 0. Vertical dashed and dotted lines correspond to the onset and plateau frequencies discussed in the text.

As one can see, even the effective models for the hub-aligned AB-BA-CC and mixed AA-BC-CB stackings are rather
cumbersome and inconvenient for analytical analysis. Nevertheless, to show that the abbreviated models capture the main
features of the optical conductivity, we compare the conductivity for nonabbreviated and abbreviated models in Figs. 12
and 13.

APPENDIX B: CALCULATION OF OPTICAL CONDUCTIVITY

In this Appendix, we provide the details of the calculation of the optical conductivity in the effective models; see Sec. III
for the definitions and comparison of the final results with tight-binding models. We use the Kubo linear response approach
discussed in Sec. III A.

1. Aligned AA-BB-CC stacking

The effective Hamiltonian for the aligned AA-BB-CC stacking is given in Eq. (4). The velocity matrix vn = ∂kn H (k)/h̄ reads
as

v = vF√
2

S, (B1)

where the (pseudo)spin-1 matrices Sx and Sy are given in Eq. (5).

FIG. 13. The dependence of the interband conductivity tensor components Re{σxx} [panel (a)] and Re{σyy} [panel (b)] normalized to
σ0 = e2/(4h̄) on h̄�/t for the mixed AA-BC-CB stacking at a few values of μ/t . Solid and dashed lines correspond to the nonabbreviated and
abbreviated effective models, respectively; see Eqs. (A1) and (B10), respectively. In all panels, we set T → 0 and g/t = 1.
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By using Eqs. (4), (18), and (19), we derive the following traces in Eq. (21):

Tr[vxA(ω; k)vxA(ω − �; k)]

= 2v2
F F (ω)F (ω − �)

{
(h̄ω − h̄� − g)2(h̄ω − g)2 − (h̄vF k)2

4
[(h̄�)2 − (h̄� − 2h̄ω − 2g)2 cos (2ϕ)]

}
, (B2)

Tr[vyA(ω; k)vyA(ω − �; k)]

= 2v2
F F (ω)F (ω − �)

{
(h̄ω − h̄� − g)2(h̄ω − g)2 − (h̄vF k)2

4
[(h̄�)2 + (h̄� − 2h̄ω + 2g)2 cos (2ϕ)]

}
. (B3)

Here,

F (ω) =
2∑

n=0

δ(h̄ω − εn)

�2,′
m=0(εn − εm)

, (B4)

where the product �2,′
m=0(εn − εm) excludes εn = εm. The energy spectrum is ε0 = g, ε1 = g + h̄vF k, and ε2 = g − h̄vF k.

By substituting Eq. (B2) into Eq. (21) and calculating integrals over ϕ and ω, we obtain

Re{σxx} = − e2

h̄�

∫ ∞

0

dk

v2
F k3

{
− δ(�)

(vF k�)2

4
[ f eq(g) − f eq(g − h̄�)]

+ δ(�)
1

4

[
(� − vF k)2(vF k)2 − (vF k�)2

4

]
[ f eq(g + h̄vF k) − f eq(g + h̄vF k − h̄�)]

+ δ(�)
1

4

[
(� + vF k)2(vF k)2 − (vF k�)2

4

]
[ f eq(g − h̄vF k) − f eq(g − h̄vF k − h̄�)]

+ [δ(� − vF k) + δ(� + vF k)]
(vF k�)2

8
[ f eq(g + h̄�) − f eq(g − h̄�)]

+ δ(� + 2vF k)
1

4

[
(� + vF k)2(vF k)2 − (vF k�)2

4

]
[ f eq(g − h̄vF k) − f eq(g − h̄vF k − h̄�)]

+ δ(� − 2vF k)
1

4

[
(� − vF k)2(vF k)2 − (vF k�)2

4

]
[ f eq(g + h̄vF k) − f eq(g + h̄vF k − h̄�)]

}
. (B5)

In the case of interband conductivity, only the terms with δ(� ± vF k) contribute; the prefactor at δ(� ± 2vF k) vanishes after
integrating over k. This means that there are no direct transitions between the dispersive bands, i.e., ε1,2 = g ± h̄vF k. The final
result for Re{σxx} is given in Eq. (23). Finally, by substituting Eq. (B3) into Eq. (21) and integrating over ϕ, it is straightforward
to show that σxx = σyy; the absence of the Hall components σxy = σyx = 0 follows from the time-reversal symmetry.

2. Hub-aligned AB-BA-CC stacking

In this section, we provide the details of calculations of the conductivity for the effective model of the hub-aligned AB-BA-CC
stacking. We use the abbreviated effective Hamiltonian given in Eq. (6) and focus on the contribution of a single K point. We
have the following components of the velocity matrix:

vx = vF√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ and vy = h̄v2

F ky

2g

⎛
⎝ 1 0 −1

0 2 0
−1 0 1

⎞
⎠. (B6)

The traces in Eq. (21) are

Tr[vxA(ω; k)vxA(ω − �; k)] = F (ω)F (ω − �)
v2

F

8g3
{(h̄vF k)2[4gcos2 (ϕ) + (2g − 2h̄ω + h̄�) sin2 (ϕ)] + 4g(g − h̄ω)(g − h̄ω

+ h̄�)}{2g(g − h̄ω + h̄�) + [h̄vF k sin (ϕ)]2}{2g(g − h̄ω) + [h̄vF k sin (ϕ)]2}, (B7)

Tr[vyA(ω; k)vyA(ω − �; k)] = F (ω)F (ω − �)
v2

F [h̄vF k sin (ϕ)]2

8g4
{8g2[h̄vF k cos (ϕ)]4 + (g − h̄ω)(g − h̄ω + h̄�)[(h̄vF k)2

+ 4g(g − h̄ω + h̄�) − (h̄vF k)2 cos (2ϕ)][(h̄vF k)2 + 4g(g − h̄ω) − (h̄vF k)2 cos (2ϕ)]

− 2g[h̄vF k cos (ϕ)]2{2(g − h̄ω)[4g(g − h̄ω) + (h̄vF k)2] + h̄�[8g(g − h̄ω) + (h̄vF k)2]

+ 4g(h̄�)2 − (h̄vF k)2(2g − 2h̄ω + h̄�) cos (2ϕ)}}. (B8)
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Here, we used Eqs. (6), (18), and (19); F (ω) is defined in Eq. (B4) and the energy dispersion εn=0,1,2 is given in Eqs. (7)–(9).
Notice that the traces in Eqs. (B7) and (B8) are noticeably different. As we show in Appendix B 3, this leads to an anisotropic
conductivity σxx �= σyy at a given band-crossing point; the isotropy is restored after averaging over all crossing points in the
Brillouin zone.

The integrals over ω in Eqs. (B7) and (B8) have the following form:∫
dω F (ω)F (ω − �)B(ω) =

2∑
n1,n2=0

∫
dω

δ
(
h̄ω − εn1

)
δ
(
h̄ω − h̄� − εn2

)
�2,′

m1=0

(
εn1 − εm1

)
�2,′

m2=0

(
εn2 − εm2

)B(ω)

=
2∑

n1=n2

δ(h̄�)B
(
εn1

)
�2,′

m1=0

(
εn1 − εm1

)
�2,′

m2=0

(
εn1 − εm2

) +
2∑

n1 �=n2

δ
(
εn1 − εn2 − h̄�

)
B
(
εn1

)
�2,′

m1=0

(
εn1 − εm1

)
�2,′

m2=0

(
εn2 − εm2

) . (B9)

The terms with δ(h̄�) and δ(εn1 − εn2 − h̄�) correspond to the intra- and interband transitions, respectively. In the case of
effective models, we focus on the interband transitions and omit the intraband terms. This allows us to integrate over k in
the conductivity analytically. The corresponding results are cumbersome; therefore, we do not present them here. We notice,
however, that in the resulting expression, one only needs to integrate over ϕ.

3. Particle-hole-asymmetric semi-Dirac model

In this section, we calculate the optical conductivity for a particle-hole-asymmetric 2D semi-Dirac model given by the
following Hamiltonian:

HsD =
[

g + (h̄vF ky)2

4g

]
12 + h̄vF kxσx + (h̄vF ky)2

4g
σy. (B10)

This model is sufficient for describing the interband optical conductivity for the hub-aligned AB-BA-CC stacking because
only the εn=1 and εn=2 branches contribute to the interband conductivity in the effective model; see Eqs. (11)–(13) for the
dispersion relation. This property can be verified by direct calculation using the results of Appendix B 2. Such selection rules are
qualitatively different from the case of the aligned AA-BB-CC stacking discussed in Sec. III B where only transitions involving
the εn=0 band are allowed. We notice also that the optical conductivity of a particle-hole-symmetric version of Hamiltonian
(B10) (i.e., without the first term) was calculated in Ref. [36].

The Green function for Hamiltonian (B10) reads as

G(ω; k) = 1

D

[(
h̄ω − g − (h̄vF ky)2

4g

)
12 + h̄vF kxσx + (h̄vF ky)2

4g
σy

]
, (B11)

where the denominator is

D =
∏
η=±

(h̄ω − εη ) =
[

h̄ω − g − (h̄vF ky)2

4g

]2

−
{

(h̄vF kx )2 +
[

(h̄vF ky)2

4g

]2
}

. (B12)

For the sake of convenience, here and henceforth we use ε± ≡ ε1,2; see Eqs. (11)–(13) for the definition of εn=1,2.
The spectral function (19) is

A(ω; k) =
[(

h̄ω − g − (h̄vF ky)2

4g

)
12 + h̄vF kxσx + (h̄vF ky)2

4g
σy

]∑
η=±

δ(h̄ω − εη )

εη − ε−η

. (B13)

The traces in the conductivity (21) are

tr[vxA(ω; k)vxA(ω − �; k)]

= 2v2
F {(h̄ω − g)(h̄ω − g − h̄�) + K2 cos2 (φ) + [h̄� − 2(h̄ω − g)]K sin (φ)}

∑
η1,η2=±

δ(h̄ω − εη1 )

εη1 − ε−η1

δ(h̄ω − h̄� + εη2 )

εη2 − ε−η2

,

(B14)

tr[vyA(ω; k)vyA(ω − �; k)] = 4v2
F

g
(h̄ω − g)(h̄ω − g − h̄�)K sin (φ)

∑
η1,η2=±

δ
(
h̄ω − εη1

)
εη1 − ε−η1

δ
(
h̄ω − h̄� + εη2

)
εη2 − ε−η2

, (B15)

where we introduced the following variables:

h̄vF kx = K cos (φ) and
(h̄vF ky)2

4g
= K sin (φ) (B16)
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with 0 � φ � π/2 and K � 0. The corresponding Jacobian is

J (K, φ) = 4
∂ (kx, ky)

∂ (K, φ)
= 4

(h̄vF )2

√
gK

sin (φ)
; (B17)

the additional factor 4 originates from the integration range 0 � φ � π/2.
The new variables (B16) allow us to rewrite the energies ε± in a simple form

εη = g + K[sin (φ) + η], (B18)

where η = ±.
By using Eqs. (21), (B14), and (B18), we obtain the following real part of the conductivity Re{σxx(�)}:

Re{σxx(�)} = −2h̄v2
F σ0

�

∑
η1,η2=±

∫ π/2

0

dφ

2π

∫ ∞

0
dK{ f eq(g + K[sin (φ) + η1]) − f eq(g + K[sin (φ) + η1] − h̄�)}

× J (K, φ)
(
K[sin (φ) + η1]{K[sin (φ) + η1] − h̄�} + K2 cos2 (φ) − K sin (φ){2K[sin (φ) + η1] − h̄�})

× δ((η1 − η2)K − h̄�)

η1η2K2
. (B19)

Here, the case η1 = η2 corresponds to intraband transitions and we used σ0 = e2/(4h̄). We focus only on the interband transitions
for which η1 = −η2 = 1:

Re
{
σ (inter)

xx (�)
} = 2h̄v2

F σ0

�

∫ π/2

0

dφ

2π

∫ ∞

0
dK{ f eq(g + K[sin (φ) + 1]) − f eq(g + K[sin (φ) + 1] − h̄�)}J (K, φ)

× (K[sin (φ) + 1]{K[sin (φ) + 1] − h̄�} + K2 cos2 (φ) − K sin (φ){2K[sin (φ) + 1] − h̄�})
δ(2K − h̄�)

K2

= 2h̄v2
F σ0

�

∫ π/2

0

dφ

2π

{
f eq

(
g + h̄�

2
[sin (φ) − 1]

)
− f eq

(
g + h̄�

2
[sin (φ) + 1]

)}
J

(
h̄�

2
, φ

)
sin2 (φ)

= 4σ0

√
2g

h̄�

∫ π/2

0

dφ

2π
sin3/2 (φ)

{
f eq

(
g + h̄�

2
[sin (φ) − 1]

)
− f eq

(
g + h̄�

2
[sin (φ) + 1]

)}
, (B20)

where we used Eq. (B17) in the last line. The integral over φ can be taken numerically. It is also possible to calculate it analytically
for T → 0 in terms of hypergeometric functions; however, the corresponding expressions are too bulky to be presented here.

The real part of the conductivity Re{σyy(�)} is

Re{σyy(�)} = −4h̄v2
F σ0

g�

∑
η1,η2=±

∫ π/2

0

dφ

2π

∫ ∞

0
dK{ f eq(g + K[sin (φ) + η1]) − f eq(g + K[sin (φ) + η1] − h̄�)}

× J (K, φ) sin (φ)[sin (φ) + η1]{K[sin (φ) + η1] − h̄�}δ((η1 − η2)K − h̄�)

η1η2
. (B21)

As with the xx component, we focus only on the interband part with η1 = −η2 = 1:

Re
{
σ (inter)

yy (�)
} = 4h̄σ0v

2
F

g�

∫ π/2

0

dφ

2π

∫ ∞

0
dK{ f eq(g + K[sin (φ) + 1]) − f eq(g + K[sin (φ) + 1] − h̄�)}

× J (K, φ) sin (φ)[sin (φ) + 1]{K[sin (φ) + 1] − h̄�}δ(2K − h̄�)

= (h̄vF )2σ0

g

∫ π/2

0

dφ

2π

{
f eq

(
g + h̄�

2
[sin (φ) − 1]

)
− f eq

(
g + h̄�

2
[sin (φ) + 1]

)}
J

(
h̄�

2
, φ

)
cos2 (φ) sin (φ)

= 2σ0

√
2h̄�

g

∫ π/2

0

dφ

2π
cos2 (φ) sin1/2 (φ)

{
f eq

(
g + h̄�

2
[sin (φ) − 1]

)
− f eq

(
g + h̄�

2
[sin (φ) + 1]

)}
,

(B22)

where we used Eq. (B17) in the last line of Eq. (B22).
The conductivity components scale as Re{σxx(�)} ∼ (h̄�/g)−1/2 and Re{σyy(�)} ∼ (h̄�/g)1/2 for h̄�/g 
 1 and μ > g

making their product frequency-independent. Due to the absence of the particle-hole symmetry, this is no longer the case for
μ < g. Notice that while the regime h̄�/g 
 1 is beyond the applicability of the effective models for the bilayer dice lattice, the
corresponding scalings may be useful for other realizations of particle-hole-asymmetric semi-Dirac models.

We show Re{σxx(�)} and Re{σyy(�)} in Fig. 12. We used the nonabbreviated effective model retaining all terms up to the
second order in momentum (solid lines), see Eq. (A1), and the abbreviated effective model (dashed lines), see Eq. (6) or (B10).
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While there are quantitative differences, the models agree well in predicting the activation behavior and the overall shape of the
conductivity profile. Therefore, our use of the simplified model in Eq. (B10) is justified.

The activation behavior of the interband part of the optical conductivity observed in Fig. 12 can be straightforwardly deduced
from the energy dispersion.

The onset frequency �on for the completely filled lower band is determined by the minimal distance between empty states
at the εn=1 branch and filled states at the εn=2 branch; for μ > g such a minimal distance is realized at kx = 0. There is also a
saturation (plateau) frequency �p for which the whole εn=2 branch can contribute to the transitions. Both onset �on ≈ |μ − g|
and plateau �p ≈ 2|μ − g| frequencies are in good agreement with the conductivity in Fig. 12(a).

In the case of a partially filled lower band, μ < g, the onset behavior of the conductivity shown in Fig. 12(b) is also explained
by the transitions between εn=2 and εn=1 branches. The corresponding onset frequency �on ≈ 2|g − μ| is determined by the
minimal distance between empty states at the εn=1 branch and filled states at the εn=2 branch [see vertical dashed line in
Fig. 12(b)]; in the model at hand, the minimal distance occurs at ky = 0. Due to the anisotropic energy spectrum, see Eqs. (7)–(9),
the conductivity does not saturate with �. The absence of saturation behavior can be explained by the fact that the whole εn=2

branch cannot contribute to the transitions at any h̄�/g � 1.

4. Mixed stacking and tilted Dirac model

As with the hub-aligned stacking, the interband conductivity for the effective model of the mixed AA-BC-CB stacking depends
only on the transitions between the dispersive ε1,2 bands. Therefore, we can use the following abbreviated effective Hamiltonian:

H (m)
eff =

(
g + h̄vF

2
√

6
k̃x

)
12 + h̄vF

2
√

2

(
k̃ · σ

)
, (B23)

where k̃x = √
3kx and k̃y = √

2ky. The energy spectrum of the above Hamiltonian reads

ε± = g + h̄vF

2
√

6
k̃x ± h̄vF

2
√

2
k̃; (B24)

see also εn=1,2 in Eqs. (11)–(13). As is evident from Eq. (B24), the effective Hamiltonian (B23) describes a tilted 2D Dirac
spectrum [60–62].

The Green function for the abbreviated Hamiltonian (B23) reads as

G(ω; k) = 1

D

[(
h̄ω − g − h̄vF

2
√

6
k̃x

)
12 + h̄vF

2
√

2
(k̃xσx + k̃yσy)

]
, (B25)

where the denominator is

D =
∏
η=±

(h̄ω − εη ) =
[(

h̄ω − g − h̄vF

2
√

6
k̃x

)2

− (h̄vF )2

8
k̃2

]
. (B26)

The spectral function (19) is

A(ω; k) =
[(

h̄ω − g − h̄vF

2
√

6
k̃x

)
12 + h̄vF

2
√

2
(k̃xσx + k̃yσy)

]∑
η=±

δ(h̄ω − εη )

εη − ε−η

. (B27)

To calculate the conductivity, we use Eqs. (21) and (B27). The corresponding traces are

tr[vxA(ω; k)vxA(ω − �; k)] = v2
F

96
{96(h̄ω − g)(h̄ω − g − h̄�) − (h̄vF k̃)2 + h̄vF k̃[4

√
6(2h̄ω − 2g − h̄�) cos (ϕ)

+ 5h̄vF k cos (2ϕ)]}
∑

η1,η2=±

δ
(
h̄ω − εη1

)
εη1 − ε−η1

δ
(
h̄ω − h̄� + εη2

)
εη2 − ε−η2

, (B28)

tr[vyA(ω; k)vyA(ω − �; k)] = v2
F

96
{48(h̄ω − g)(h̄ω − g − h̄�) + (h̄vF k̃)2 − h̄vF k̃[4

√
6(2h̄ω − 2g − h̄�) cos (ϕ)

+ 5h̄vF k cos (2ϕ)]}
∑

η1,η2=±

δ
(
h̄ω − εη1

)
εη1 − ε−η1

δ
(
h̄ω − h̄� + εη2

)
εη2 − ε−η2

, (B29)

where we used the following velocity matrices:

vx = vF

2
√

6
12 + vF

2
√

2
σx, vy = vF

2
√

2
σy. (B30)
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Then, the nontrivial components of the conductivity tensor (21) read

Re{σxx(�)} = −2π h̄v2
F σ0

24
√

6�

∑
η1,η2=±

∫
d2k̃

[
f eq

(
εη1

) − f eq
(
εη1 − h̄�

)]{
96

(
εη1 − g

)(
εη1 − g − h̄�

) − (h̄vF k̃)2

+ h̄vF k̃
[
4
√

6
(
2εη1 − 2g − h̄�

)
cos (ϕ) + 5h̄vF k cos (2ϕ)

]} δ
(
εη1 − h̄� + εη2

)
(
εη1 − ε−η1

)(
εη2 − ε−η2

) , (B31)

Re{σyy(�)} = −2π h̄v2
F σ0

24
√

6�

∑
η1,η2=±

∫
d2k̃

[
f eq

(
εη1

) − f eq
(
εη1 − h̄�

)]{
48

(
εη1 − g

)(
εη1 − g − h̄�

) + (h̄vF k̃)2

− h̄vF k̃
[
4
√

6
(
2εη1 − 2g − h̄�

)
cos (ϕ) + 5h̄vF k cos (2ϕ)

]} δ
(
εη1 − h̄� + εη2

)
(
εη1 − ε−η1

)(
εη2 − ε−η2

) . (B32)

Since we are interested in the interband transitions η1 = −η2, we rewrite the δ functions in the above equation as

δ
(
εη1 − h̄� + εη2

) = δ

(
(η1 − η2)

h̄vF

2
√

2
k̃ − h̄�

)
η1=−η2=

√
2

h̄vF
δ

(
k̃ −

√
2�

vF

)
. (B33)

The δ function given in Eq. (B33) allows us to integrate over k̃ in Eqs. (B31) and (B32):

Re{σxx(�)} = − 20σ0

19
√

6

∫ 2π

0

dϕ

2π

[
f eq

(
h̄�

2
+ cos (ϕ)√

3

)
− f eq

(
− h̄�

2
+ cos (ϕ)√

3

)][
26

10
− cos (2ϕ)

]
, (B34)

Re{σyy(�)} = − 20σ0

19
√

6

∫ 2π

0

dϕ

2π

[
f eq

(
h̄�

2
+ cos (ϕ)√

3

)
− f eq

(
− h̄�

2
+ cos (ϕ)√

3

)]
[1 + cos (2ϕ)]. (B35)

Similar to the hub-aligned AB-BA-CC stacking, the isotropy of the conductivity is restored after we average over all equivalent
pairs of the crossing points; the resulting conductivity is then given by (σxx + σyy)/2.

We present the xx and yy components of the optical conductivity tensor in Fig. 13 for the nonabbreviated and abbreviated
effective models; see Eqs. (A2) and (B23), respectively. As one can see, while the nonabbreviated effective model has a quan-
titatively different profile of optical conductivity and is particle-hole asymmetric, the key features, e.g., the onset frequencies,
agree well with those in the abbreviated model.

5. Cyclic AB-BC-CA stacking

Finally, we discuss the optical conductivity for the effective model of the cyclic AB-BC-CA stacking; see Eq. (14) for the
corresponding effective Hamiltonian. We have the following velocity matrices:

vx = vF√
2

⎛
⎝ 0 1/2 1/2

1/2 0 1
1/2 1 0

⎞
⎠, vy = vF√

2

⎛
⎝ 0 −i/2 i/2

i/2 0 −i
−i/2 i 0

⎞
⎠. (B36)

The expressions for the Green function and the spectral function can be straightforwardly obtained but are bulky. Therefore,
we do not present them here. The traces in the conductivity defined in Eq. (21) read

Tr[vxA(ω; k)vxA(ω − �; k)] = F (ω)F (ω − �)v2
F

3
32 {16(g − h̄ω)2(g − h̄ω + h̄�)2 − 4

√
2h̄vF k(g − h̄ω)(2g − 2h̄ω

+ h̄�)(g − h̄ω + h̄�) cos (ϕ) − 3(h̄vF k)2[(h̄�)2 − (2g − 2h̄ω + h̄�)2 cos (2ϕ)]

− 2
√

2(h̄vF k)3(2g − 2h̄ω + h̄�) cos (3ϕ) + (h̄vF k)4[cos4 (ϕ) + 3 sin4 (ϕ)]}, (B37)

Tr[vyA(ω; k)vyA(ω − �; k)] = F (ω)F (ω − �)v2
F

3
32 {16(g − h̄ω)2(g − h̄ω + h̄�)2 + 4

√
2h̄vF k(g − h̄ω)(2g − 2h̄ω

+ h̄�)(g − h̄ω + h̄�) cos (ϕ) − 3(h̄vF k)2[(h̄�)2 + (2g − 2h̄ω + h̄�)2 cos (2ϕ)]

− 2
√

2(h̄vF k)3(2g − 2h̄ω + h̄�) cos (3ϕ) + 2(h̄vF k)4 cos2 (ϕ)[2 − cos (2ϕ)]}. (B38)

Here, F (ω) is defined in Eq. (B4) with the energy spectrum given in Eq. (15). In order to calculate the conductivity, we rewrite

δ
(
εn1 − εn2 − h̄�

) = 1

h̄
∣∣�n1,n2

∣∣δ
(

vF k − �

�n1,n2

)
, (B39)
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FIG. 14. The cross section of the energy spectrum at ky = 0 for the cyclic AB-BC-CA stacking and a few possible transitions at μ = 0.75 t
are shown in panel (a). The frequencies of these transitions discussed in the main text are shown by arrows. The contributions to the interband
conductivity in the effective model from the allowed transitions at μ = 0.75 t are shown in panel (b) at T → 0. In both panels, we fixed
g/t = 1.

where

�n1,n2 = 1

h̄vF
∂k

(
εn1 − εn2

)
(B40)

and the energy dispersion εn is given in Eq. (15). This expression enters Eq. (B4) and allows us to straightforwardly integrate
over k in the interband terms of the conductivity. By using Eqs. (B4), (B37), and (B39) in Eq. (21), we obtain the diagonal
components of the real part of the interband conductivity:

Re{σxx(�)} = 3σ0

8

2∑
n1,n2=0

∫ 2π

0

dϕ

2π

θ
(
�n1,n2

)
∣∣�n1,n2

∣∣2

f eq
(
εn1 − h̄�

) − f eq
(
εn1

)
�2,′

m1=0

(
εn1 − εm1

)
�2,′

m2=0

(
εn2 − εm2

)
{

16
(
g − εn1

)2(
g − εn1 + h̄�

)2

− 4
√

2
h̄�

�n1,n2

(
g − εn1

)(
2g − 2εn1 + h̄�

)(
g − εn1 + h̄�

)
cos (ϕ)

− 3

(
h̄�

�n1,n2

)2[
(h̄�)2 − (

2g − 2εn1 + h̄�
)2

cos (2ϕ)
]

− 2
√

2

(
h̄�

�n1,n2

)3(
2g − 2εn1 + h̄�

)
cos (3ϕ) +

(
h̄�

�n1,n2

)4

[cos4 (ϕ) + 3 sin4 (ϕ)]

}
. (B41)

It can be shown that Re{σxx} = Re{σyy} and, as expected, Re{σxy} = 0.
To explain the dependence of the interband part of the conductivity on frequency shown in Fig. 9, we investigate the

activation behavior of each of the transitions between three different branches of the effective model; unlike the hub-aligned
and mixed stackings, all bands should be taken into account for the cyclic stacking. We present the dispersion relation of the
effective Hamiltonian, see Eq. (15), at ky = 0 and g/t = 1 in Fig. 14(a); for definiteness, we fix μ = 0.75t . The contributions
to the conductivity from different transitions are shown in Fig. 14(b). As one can see from Fig. 14(a), the εn=0 branch is not
flat. Therefore, the transitions between εn=0 and εn=2 branches are allowed even for � > �on,1, where �on,1 < g − μ. Here,
h̄�on,1/t ≈ 0.16 is determined by the minimal distance between occupied εn=2 and empty εn=0 branches; see Fig. 14(a) and
the onset of the plateau in Fig. 14(b) marked by a thick vertical dashed black line. The conductivity in Fig. 14(b) saturates at
h̄�p,1/t ≈ 0.32 determined by the condition that the whole εn=2 branch can contribute to the optical conductivity. For larger
frequencies, h̄�/t > h̄�off/t ≈ 0.43, we observe a decrease of the conductivity explained by the fact that only a part of the
εn=2 branch can contribute to the transitions between the εn=2 and εn=0 branches due to the Pauli blocking; see Fig. 14(a).
The offset frequency �off corresponds to the minimal distance between the filled parts of εn=2 and εn=0 branches. At the same
frequency �on,2 ≈ �off , the transitions between εn=2 and εn=1 branches become possible, which is manifested as a relatively
small contribution to the conductivity; see the blue dashed line in Fig. 14(b). This contribution saturates at h̄�p,2/t ≈ 0.59 for
which the whole n = 2 branch can contribute.

075167-17



SUKHACHOV, ORIEKHOV, AND GORBAR PHYSICAL REVIEW B 108, 075167 (2023)

[1] V. P. Gusynin and S. G. Sharapov, Transport of Dirac quasipar-
ticles in graphene: Hall and optical conductivities, Phys. Rev. B
73, 245411 (2006).

[2] V. P. Gusynin, S. G. Sharapov, and J. P. Carbotte, Unusual
Microwave Response of Dirac Quasiparticles in Graphene,
Phys. Rev. Lett. 96, 256802 (2006).

[3] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov,
T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim,
Fine structure constant defines visual transparency of graphene,
Science 320, 1308 (2008).

[4] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin, P.
Kim, H. L. Stormer, and D. N. Basov, Dirac charge dynamics
in graphene by infrared spectroscopy, Nat. Phys. 4, 532 (2008).

[5] Due to the interplay of the bulk and surface contributions, the
optical response in 3D materials is more involved compared to
the 2D ones. For example, even under the conditions of the
normal skin effect, the penetration and reflection of electro-
magnetic radiation from Weyl and Dirac semimetals subject to
external magnetic fields can be unusual [63,64].

[6] A. A. Burkov and L. Balents, Weyl Semimetal in a Topological
Insulator Multilayer, Phys. Rev. Lett. 107, 127205 (2011).

[7] P. Hosur, S. A. Parameswaran, and A. Vishwanath, Charge
Transport in Weyl Semimetals, Phys. Rev. Lett. 108, 046602
(2012).

[8] B. Rosenstein and M. Lewkowicz, Dynamics of electric trans-
port in interacting Weyl semimetals, Phys. Rev. B 88, 045108
(2013).

[9] P. E. C. Ashby and J. P. Carbotte, Chiral anomaly and optical ab-
sorption in Weyl semimetals, Phys. Rev. B 89, 245121 (2014).

[10] D. Neubauer, J. P. Carbotte, A. A. Nateprov, A. Löhle, M.
Dressel, and A. V. Pronin, Interband optical conductivity of
the [001]-oriented Dirac semimetal Cd3As2, Phys. Rev. B 93,
121202(R) (2016).

[11] G. S. Jenkins, C. Lane, B. Barbiellini, A. B. Sushkov, R. L.
Carey, F. Liu, J. W. Krizan, S. K. Kushwaha, Q. Gibson, T.-R.
Chang, H.-T. Jeng, H. Lin, R. J. Cava, A. Bansil, and H. D.
Drew, Three-dimensional Dirac cone carrier dynamics in Na3Bi
and Cd3As2, Phys. Rev. B 94, 085121 (2016).

[12] L. Wu, S. Patankar, T. Morimoto, N. L. Nair, E. Thewalt,
A. Little, J. G. Analytis, J. E. Moore, and J. Orenstein, Gi-
ant anisotropic nonlinear optical response in transition metal
monopnictide Weyl semimetals, Nat. Phys. 13, 350 (2017).

[13] B. Xu, Y. M. Dai, L. X. Zhao, K. Wang, R. Yang, W. Zhang,
J. Y. Liu, H. Xiao, G. F. Chen, A. J. Taylor, D. A. Yarotski, R. P.
Prasankumar, and X. G. Qiu, Optical spectroscopy of the Weyl
semimetal TaAs, Phys. Rev. B 93, 121110(R) (2016).

[14] N. P. Armitage, E. J. Mele, and A. Vishwanath, Weyl and Dirac
semimetals in three-dimensional solids, Rev. Mod. Phys. 90,
015001 (2018).

[15] A. V. Pronin and M. Dressel, Nodal semimetals: A survey on
optical conductivity, Phys. Status Solidi B 258, 2000027 (2021).

[16] E. V. Gorbar, V. A. Miransky, I. A. Shovkovy, and P. O.
Sukhachov, Electronic Properties of Dirac and Weyl Semimetals
(World Scientific, Singapore, 2021).

[17] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Graphene Bilayer with a Twist: Electronic Structure,
Phys. Rev. Lett. 99, 256802 (2007).

[18] E. Suárez Morell, J. D. Correa, P. Vargas, M. Pacheco, and
Z. Barticevic, Flat bands in slightly twisted bilayer graphene:
Tight-binding calculations, Phys. Rev. B 82, 121407(R) (2010).

[19] R. Bistritzer and A. H. MacDonald, Moiré bands in twisted
double-layer graphene, Proc. Natl. Acad. Sci. USA 108, 12233
(2011).

[20] B. Sutherland, Localization of electronic wave functions due to
local topology, Phys. Rev. B 34, 5208 (1986).

[21] J. Vidal, R. Mosseri, and B. Douçot, Aharonov-Bohm Cages in
Two-Dimensional Structures, Phys. Rev. Lett. 81, 5888 (1998).

[22] A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, and G.
Montambaux, From Dia- to Paramagnetic Orbital Susceptibility
of Massless Fermions, Phys. Rev. Lett. 112, 026402 (2014).

[23] M. Rizzi, V. Cataudella, and R. Fazio, Phase diagram of the
Bose-Hubbard model with T3 symmetry, Phys. Rev. B 73,
144511 (2006).

[24] D. Bercioux, D. F. Urban, H. Grabert, and W. Häusler, Massless
Dirac-Weyl fermions in a T3 optical lattice, Phys. Rev. A 80,
063603 (2009).

[25] E. Serret, P. Butaud, and B. Pannetier, Vortex correlations in
a fully frustrated two-dimensional superconducting network,
Europhys. Lett. 59, 225 (2002).

[26] I. Syozi, Statistics of kagome lattice, Prog. Theor. Phys. 6, 306
(1951).

[27] E. H. Lieb, Two Theorems on the Hubbard Model, Phys. Rev.
Lett. 62, 1201 (1989).

[28] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phys. X 3,
1473052 (2018).

[29] E. Illes, J. P. Carbotte, and E. J. Nicol, Hall quantization and
optical conductivity evolution with variable Berry phase in the
α-T3 model, Phys. Rev. B 92, 245410 (2015).

[30] J. D. Malcolm and E. J. Nicol, Magneto-optics of gen-
eral pseudospin-s two-dimensional Dirac-Weyl fermions,
Phys. Rev. B 90, 035405 (2014).

[31] T. Biswas and T. Kanti Ghosh, Magnetotransport properties of
the α-T3 model, J. Phys.: Condens. Matter 28, 495302 (2016).

[32] Á. D. Kovács, G. Dávid, B. Dóra, and J. Cserti, Frequency-
dependent magneto-optical conductivity in the generalized α-T3

model, Phys. Rev. B 95, 035414 (2017).
[33] E. Illes and E. J. Nicol, Magnetic properties of the α-T3

model: Magneto-optical conductivity and the Hofstadter butter-
fly, Phys. Rev. B 94, 125435 (2016).

[34] A. Iurov, G. Gumbs, and D. Huang, Peculiar electronic states,
symmetries, and Berry phases in irradiated α-T3 materials,
Phys. Rev. B 99, 205135 (2019).

[35] Y.-R. Chen, Y. Xu, J. Wang, J.-F. Liu, and Z. Ma, Enhanced
magneto-optical response due to the flat band in nanoribbons
made from the α-T3 lattice, Phys. Rev. B 99, 045420 (2019).

[36] J. P. Carbotte, K. R. Bryenton, and E. J. Nicol, Optical proper-
ties of a semi-Dirac material, Phys. Rev. B 99, 115406 (2019).

[37] A. Iurov, G. Gumbs, and D. Huang, Many-body effects and
optical properties of single and double layer α-T3 lattices,
J. Phys.: Condens. Matter 32, 415303 (2020).

[38] C.-D. Han and Y.-C. Lai, Optical response of two-dimensional
Dirac materials with a flat band, Phys. Rev. B 105, 155405
(2022).

[39] D. O. Oriekhov and V. P. Gusynin, Optical conductivity of semi-
Dirac and pseudospin-1 models: Zitterbewegung approach,
Phys. Rev. B 106, 115143 (2022).

[40] A. Iurov, L. Zhemchuzhna, G. Gumbs, and D. Huang, Dy-
namical optical conductivity for gapped α-T3 materials with a
deformed flat band, Phys. Rev. B 107, 195137 (2023).

075167-18

https://doi.org/10.1103/PhysRevB.73.245411
https://doi.org/10.1103/PhysRevLett.96.256802
https://doi.org/10.1126/science.1156965
https://doi.org/10.1038/nphys989
https://doi.org/10.1103/PhysRevLett.107.127205
https://doi.org/10.1103/PhysRevLett.108.046602
https://doi.org/10.1103/PhysRevB.88.045108
https://doi.org/10.1103/PhysRevB.89.245121
https://doi.org/10.1103/PhysRevB.93.121202
https://doi.org/10.1103/PhysRevB.94.085121
https://doi.org/10.1038/nphys3969
https://doi.org/10.1103/PhysRevB.93.121110
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1002/pssb.202000027
https://doi.org/10.1103/PhysRevLett.99.256802
https://doi.org/10.1103/PhysRevB.82.121407
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevLett.81.5888
https://doi.org/10.1103/PhysRevLett.112.026402
https://doi.org/10.1103/PhysRevB.73.144511
https://doi.org/10.1103/PhysRevA.80.063603
https://doi.org/10.1209/epl/i2002-00230-6
https://doi.org/10.1143/ptp/6.3.306
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1103/PhysRevB.92.245410
https://doi.org/10.1103/PhysRevB.90.035405
https://doi.org/10.1088/0953-8984/28/49/495302
https://doi.org/10.1103/PhysRevB.95.035414
https://doi.org/10.1103/PhysRevB.94.125435
https://doi.org/10.1103/PhysRevB.99.205135
https://doi.org/10.1103/PhysRevB.99.045420
https://doi.org/10.1103/PhysRevB.99.115406
https://doi.org/10.1088/1361-648X/ab9bcb
https://doi.org/10.1103/PhysRevB.105.155405
https://doi.org/10.1103/PhysRevB.106.115143
https://doi.org/10.1103/PhysRevB.107.195137


OPTICAL CONDUCTIVITY OF BILAYER DICE LATTICES PHYSICAL REVIEW B 108, 075167 (2023)

[41] L. Tamang and T. Biswas, Probing topological signatures in an
optically driven α-T3 lattice, Phys. Rev. B 107, 085408 (2023).

[42] J. D. Malcolm and E. J. Nicol, Frequency-dependent po-
larizability, plasmons, and screening in the two-dimensional
pseudospin-1 dice lattice, Phys. Rev. B 93, 165433 (2016).

[43] A. Balassis, D. Dahal, G. Gumbs, A. Iurov, D. Huang, and
O. Roslyak, Magnetoplasmons for the α-T3 model with filled
Landau levels, J. Phys.: Condens. Matter 32, 485301 (2020).

[44] A. Iurov, L. Zhemchuzhna, G. Gumbs, D. Huang, P. Fekete, F.
Anwar, D. Dahal, and N. Weekes, Tailoring plasmon excitations
in α-T3 armchair nanoribbons, Sci. Rep. 11, 20577 (2021).

[45] A. Iurov, L. Zhemchuzhna, G. Gumbs, D. Huang, D. Dahal,
and Y. Abranyos, Finite-temperature plasmons, damping, and
collective behavior in the α-T3 model, Phys. Rev. B 105, 245414
(2022).

[46] B. Bradlyn, J. Cano, Z. Wang, M. G. Vergniory, C. Felser, R. J.
Cava, and B. A. Bernevig, Beyond Dirac and Weyl fermions:
Unconventional quasiparticles in conventional crystals,
Science 353, aaf5037 (2016).

[47] D. Takane, Z. Wang, S. Souma, K. Nakayama, T. Nakamura, H.
Oinuma, Y. Nakata, H. Iwasawa, C. Cacho, T. Kim, K. Horiba,
H. Kumigashira, T. Takahashi, Y. Ando, and T. Sato, Observa-
tion of Chiral Fermions with a Large Topological Charge and
Associated Fermi-Arc Surface States in CoSi, Phys. Rev. Lett.
122, 076402 (2019).

[48] Z. Rao, H. Li, T. Zhang, S. Tian, C. Li, B. Fu, C. Tang, L. Wang,
Z. Li, W. Fan, J. Li, Y. Huang, Z. Liu, Y. Long, C. Fang, H.
Weng, Y. Shi, H. Lei, Y. Sun, T. Qian et al., Observation of
unconventional chiral fermions with long Fermi arcs in CoSi,
Nature (London) 567, 496 (2019).

[49] D. S. Sanchez, I. Belopolski, T. A. Cochran, X. Xu, J.-X. Yin,
G. Chang, W. Xie, K. Manna, V. Süß, C.-Y. Huang, N. Alidoust,
D. Multer, S. S. Zhang, N. Shumiya, X. Wang, G.-Q. Wang,
T.-R. Chang, C. Felser, S.-Y. Xu, S. Jia et al., Topological chiral
crystals with helicoid-arc quantum states, Nature (London) 567,
500 (2019).

[50] N. B. M. Schröter, D. Pei, M. G. Vergniory, Y. Sun, K. Manna,
F. de Juan, J. A. Krieger, V. Süss, M. Schmidt, P. Dudin, B.
Bradlyn, T. K. Kim, T. Schmitt, C. Cacho, C. Felser, V. N.
Strocov, and Y. Chen, Chiral topological semimetal with mul-
tifold band crossings and long Fermi arcs, Nat. Phys. 15, 759
(2019).

[51] F. Flicker, F. de Juan, B. Bradlyn, T. Morimoto, M. G.
Vergniory, and A. G. Grushin, Chiral optical response of multi-
fold fermions, Phys. Rev. B 98, 155145 (2018).

[52] M.-Á. Sánchez-Martínez, F. de Juan, and A. G. Grushin, Linear
optical conductivity of chiral multifold fermions, Phys. Rev. B
99, 155145 (2019).

[53] A. Habibi, T. Farajollahpour, and S. A. Jafari, Optical conduc-
tivity of triple point fermions, J. Phys.: Condens. Matter 33,
125701 (2021).

[54] B. Xu, Z. Fang, M.-Á. Sánchez-Martínez, J. W. F. Venderbos,
Z. Ni, T. Qiu, K. Manna, K. Wang, J. Paglione, C. Bernhard,
C. Felser, E. J. Mele, A. G. Grushin, A. M. Rappe, and L. Wu,
Optical signatures of multifold fermions in the chiral topolog-
ical semimetal CoSi, Proc. Natl. Acad. Sci. USA 117, 27104
(2020).

[55] D. S. L. Abergel and V. I. Fal’ko, Optical and magneto-optical
far-infrared properties of bilayer graphene, Phys. Rev. B 75,
155430 (2007).

[56] P. O. Sukhachov, D. O. Oriekhov, and E. V. Gorbar, preceding
paper, Stackings and effective models of bilayer dice lattices,
Phys. Rev. B 108, 075166 (2023).

[57] Y. Hasegawa, R. Konno, H. Nakano, and M. Kohmoto, Zero
modes of tight-binding electrons on the honeycomb lattice,
Phys. Rev. B 74, 033413 (2006).

[58] G. D. Mahan, Many-Particle Physics (Springer, New York,
2000), p. 785.

[59] Notice that disorder effects in flat-band systems require special
attention; see, e.g., Refs. [65–70] for recent studies.

[60] Y. Xu, F. Zhang, and C. Zhang, Structured Weyl Points in
Spin-Orbit Coupled Fermionic Superfluids, Phys. Rev. Lett.
115, 265304 (2015).

[61] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer,
X. Dai, and B. A. Bernevig, Type-II Weyl semimetals, Nature
(London) 527, 495 (2015).

[62] J. P. Carbotte, Dirac cone tilt on interband optical background
of type-I and type-II Weyl semimetals, Phys. Rev. B 94, 165111
(2016).

[63] P. O. Sukhachov and L. I. Glazman, Anomalous Electro-
magnetic Field Penetration in a Weyl or Dirac Semimetal,
Phys. Rev. Lett. 128, 146801 (2022).

[64] P. Matus, R. M. A. Dantas, R. Moessner, and P. Surówka,
Skin effect as a probe of transport regimes in Weyl
semimetals, Proc. Natl. Acad. Sci. USA 119, e2200367119
(2022).

[65] T. Louvet, P. Delplace, A. A. Fedorenko, and D. Carpentier,
On the origin of minimal conductivity at a band crossing,
Phys. Rev. B 92, 155116 (2015).

[66] E. V. Gorbar, V. P. Gusynin, and D. O. Oriekhov, Electron
states for gapped pseudospin-1 fermions in the field of a charged
impurity, Phys. Rev. B 99, 155124 (2019).

[67] G. Bouzerar and D. Mayou, Quantum transport in flat bands and
supermetallicity, Phys. Rev. B 103, 075415 (2021).

[68] J. Wang, J. F. Liu, and C. S. Ting, Recovered minimal
conductivity in the α-T3 model, Phys. Rev. B 101, 205420
(2020).

[69] J. Wang, R. Van Pottelberge, W.-S. Zhao, and F. M. Peeters,
Coulomb impurity on a Dice lattice: Atomic collapse and bound
states, Phys. Rev. B 105, 035427 (2022).

[70] K.-E. Huhtinen and P. Törmä, Conductivity in flat bands from
the Kubo-Greenwood formula, arXiv:2212.03192.

075167-19

https://doi.org/10.1103/PhysRevB.107.085408
https://doi.org/10.1103/PhysRevB.93.165433
https://doi.org/10.1088/1361-648X/aba97f
https://doi.org/10.1038/s41598-021-99596-z
https://doi.org/10.1103/PhysRevB.105.245414
https://doi.org/10.1126/science.aaf5037
https://doi.org/10.1103/PhysRevLett.122.076402
https://doi.org/10.1038/s41586-019-1031-8
https://doi.org/10.1038/s41586-019-1037-2
https://doi.org/10.1038/s41567-019-0511-y
https://doi.org/10.1103/PhysRevB.98.155145
https://doi.org/10.1103/PhysRevB.99.155145
https://doi.org/10.1088/1361-648X/abd739
https://doi.org/10.1073/pnas.2010752117
https://doi.org/10.1103/PhysRevB.75.155430
https://doi.org/10.1103/PhysRevB.108.075166
https://doi.org/10.1103/PhysRevB.74.033413
https://doi.org/10.1103/PhysRevLett.115.265304
https://doi.org/10.1038/nature15768
https://doi.org/10.1103/PhysRevB.94.165111
https://doi.org/10.1103/PhysRevLett.128.146801
https://doi.org/10.1073/pnas.2200367119
https://doi.org/10.1103/PhysRevB.92.155116
https://doi.org/10.1103/PhysRevB.99.155124
https://doi.org/10.1103/PhysRevB.103.075415
https://doi.org/10.1103/PhysRevB.101.205420
https://doi.org/10.1103/PhysRevB.105.035427
http://arxiv.org/abs/arXiv:2212.03192

