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We introduce and classify nonequivalent commensurate stackings for bilayer dice or T3 lattices. For each of
the four stackings with vertical alignment of sites in two layers, a tight-binding model and an effective model
describing the properties in the vicinity of the threefold band-crossing points are derived. Focusing on these
band-crossing points, we found that although the energy spectrum remains always gapless, depending on the
stacking, different types of quasiparticle spectra arise. They include those with flat, tilted, anisotropic semi-Dirac,
and C3-corrugated energy bands. We use the derived tight-binding models to calculate the density of states and
the spectral function. The corresponding results reveal drastic redistribution of the spectral weight due to the
interlayer coupling that is unique for each of the stackings.
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I. INTRODUCTION

The search for novel materials with unusual dispersion
relations is one of the major topics in modern condensed
matter physics. There are several successful examples of
this search that lead to vigorous research directions. Among
them, graphene is, perhaps, the most well-known example
of a solid with an unusual dispersion relation. Indeed, at
low energies, graphene’s electron quasiparticles are described
by a two-dimensional (2D) Dirac equation [1–3]. The 2D
Dirac spectrum can be also realized at the surface of three-
dimensional (3D) topological insulators [4–6]. Finally, the 3D
linear energy spectrum appears in Weyl and Dirac semimetals
[7–11].

Intermediate between 2D and 3D materials are layered sys-
tems. The energy spectrum of these systems can be engineered
by stacking the layers in a certain order. The electronic proper-
ties of the corresponding few-layer systems can be drastically
different from their single-layer counterparts. For example, bi-
layer graphene in the Bernal (A-B) stacking reveals a quadratic
quasiparticle spectrum in the vicinity of band-touching points
[3,12,13]. This leads to a different integer quantum Hall effect
[12,14] and optical response [15] compared to single-layer
graphene.

Recently, there has been a surge of interest in materials
containing even more exotic energy spectra with flat bands.
Among these systems, perhaps the most well known is twisted
bilayer graphene (TBG) [16–22]; see also Ref. [23] for a re-
view. In essence, TBG is composed of two layers of graphene
rotated with respect to each other by some angle. It was
shown [17,18] that for the specific, so-called “magic” twist
angles, 2D isolated flat bands appear in the energy spectrum
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of TBG. The presence of flat bands is directly related to
the nontrivial properties of TBG including interaction effects
such as superconductivity near integer band-filling factors
[19–22,24].

While TBG receives significant attention nowadays, his-
torically the appearance of flat bands was predicted a few
decades ago in kagome [25], dice or T3 [26,27], and Lieb [28]
lattices. A kagome lattice consists of equivalent lattice points
and equivalent bonds forming equilateral triangles and regular
hexagons; each hexagon is surrounded by triangles and vice
versa. A Lieb lattice is described by three sites in a square
unit cell where two of the sites are neighbored by two other
sites and the third site has four neighbors. In essence, a dice
lattice has a hexagonal structure with an additional site placed
in the center of each hexagon. The central site acts as a hub
connected to six rims while each of the rims is connected
to three hubs; see also Fig. 1(a) for a dice lattice. If one of
the rims is removed, a conventional honeycomb (graphene)
lattice is restored. In the rest of this work, we focus on a
dice lattice as a representative system. As for experimental
setups, dice lattices were proposed in artificial systems such
as optical lattices [29,30]; see Ref. [31] for a review. As an
example of the experimental realizations of dice lattices, we
mention Josephson arrays [32] as well as optical realizations
[29].

The lattice structure of the dice model with three sites
per unit cell leads to three bands in the energy spec-
trum which is similar to that in graphene albeit with Dirac
points intersected by a flat band [33]. The corresponding
low-energy spectrum can be described in terms of spin-1
fermions, which have no analogs in high-energy physics.
The flat band leads to strikingly different physical prop-
erties with a paramagnetic response [33,34] instead of the
diamagnetic one as in graphene [35] being a representa-
tive example. To the best of our knowledge, multilayer dice
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FIG. 1. Panel (a): The schematic representation of single-layer dice lattice. The A, B, and C sites are denoted by red, blue, and green dots.
Panel (b): The energy spectrum given in Eq. (3) along the �-K-M-� line in the Brillouin zone (inset). Here, t is the hopping constant.

lattices were not investigated before and, as in multilayer
graphene, are expected to be different from their single-layer
counterparts.

In this work, we combine two vigorous research directions
related to exotic lattices and heterostructures by studying the
properties of bilayer dice lattices [36]. We classify nonequiv-
alent commensurate stackings of dice lattices with aligned
sites and formulate the corresponding tight-binding and ef-
fective models. The latter describe the properties of the
threefold band-crossing points. Depending on the type of the
stacking, the spectrum in the vicinity of these band-crossing
points comprises Dirac points intersected by flat bands, C3-
corrugated bands, tilted bands, or even a semi-Dirac spectrum.
For the semi-Dirac spectrum, the energy bands are anisotropic
with a linear dispersion relation along one direction and
the quadratic dispersion along the other [37]. For all four
nonequivalent stackings, the sets of band-crossing points orig-
inating from different layers are separated in energy with the
separation determined by the interlayer coupling constant.
The obtained bilayer models are illustrated by calculating
the density of states (DOS) and the spectral function. Being
strongly modified by the interlayer coupling, the DOS and the
spectral function provide an efficient way to distinguish the
stackings and set the stage for the investigation of the optical
response in our work [38].

The paper is organized as follows. We discuss the key
properties of a single-layer dice lattice in Sec. II. The com-
mensurate stackings are classified and the tight-binding and
effective models of a bilayer dice lattice are formulated in
Sec. III. The spectral functions and the DOS for each of the
four stackings are presented in Sec. IV. The results are sum-
marized in Sec. V. Technical details concerning the derivation
of the effective models, spectral functions, and the properties
of the bilayer lattices at larger coupling constants are pre-
sented in Appendices A and B, respectively.

II. SINGLE-LAYER DICE LATTICE

As a warm-up and to set the stage for the discussion of the
bilayer dice lattice, we present the model and the key prop-
erties of a single-layer dice lattice. In essence, a dice lattice
is a hexagonal lattice composed of two sublattices (denoted
as A and B) with additional sites (C sublattice) placed in the
center of hexagons. The resulting inter-sublattice connections
are shown in Fig. 1(a). As one can see, the atoms of the C
sublattice act as hubs that connect to six neighbors, while the
atoms of the A and B sublattices (rims) connect only to three
neighbors.

In the basis of states corresponding to the A, C, and B
sublattices, the tight-binding Hamiltonian reads [33]

H (q) =

⎛
⎜⎝ 0 −t

∑
j e−iq·δ j 0

−t
∑

j eiq·δ j 0 −t
∑

j e−iq·δ j

0 −t
∑

j eiq·δ j 0

⎞
⎟⎠,

(1)

where t is the hopping constant, q is the wave vector in the
Brillouin zone, and

δ1 = a{0, 1}, δ2 = a

{√
3

2
,−1

2

}
, δ3 = a

{
−

√
3

2
,−1

2

}

(2)

denote the relative positions of sites A with respect to sites C;
a is the distance between neighboring A and C sites. The same
vectors but with the minus sign denote the relative positions
of sites B with respect to sites C. In this model, the A and B
sublattices are equivalent.

The energy spectrum of Hamiltonian (1) reads

ε0 = 0, ε± = ±t
√

6

√
1 + 2

3
cos (

√
3aqx ) + 4

3
cos

(√
3

2
aqx

)
cos

(
3

2
aqy

)
. (3)
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The dispersive bands ε± are the same as in graphene where
the quasiparticle spectrum contains two nonequivalent Dirac
points K and K ′. We show the corresponding energy spectrum
in Fig. 1(b).

In the vicinity of the Dirac points, Hamiltonian (1) can be
linearized and reads as

Hξ (k) = h̄vF (ξSxkx + Syky), (4)

where k = q − Kξ is the wave vector measured relative
to the K (ξ = +) and K ′(ξ = −) points located at Kξ =
ξ4π/(3

√
3a){1, 0} and vF = 3ta/(

√
2h̄) is the Fermi veloc-

ity. Further, we introduced the following spin-1 matrices:

Sx = 1√
2

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = 1√

2

⎛
⎝0 −i 0

i 0 −i
0 i 0

⎞
⎠. (5)

The corresponding energy spectrum contains a Dirac point
intersected by a flat band

ε0 = 0, ε± = ±h̄vF k. (6)

As we discussed in Sec. I, heterostructures made of dif-
ferent stackings of single-layer graphene are a major topic in
graphene physics. In the next section, we will introduce and
study the simplest multilayer dice lattices composed of two
commensurately stacked single-layer dice lattices.

III. BILAYER DICE LATTICE

A. Stackings of bilayer dice lattices

For the bilayer dice lattice, there are a few ways to com-
mensurately stack two dice lattices with vertically aligned
sites. The most obvious way is to have the sublattices of the
same type in two layers aligned with each other. Therefore,
we call this type of stacking the aligned AA-BB-CC stacking.
Other stackings can be obtained starting from the aligned
stacking by rotating or shifting one of the layers. A com-
mensurate stacking is obtained by rotating one of the layers
around a C site by π/3. In this case, the sublattices A and B
in one of the layers are aligned with the sublattices B and A
of the other layer. Because the hub atoms C remain aligned,
we dub this type of the stacking the hub-aligned AB-BA-CC
stacking. We notice that the A and B sublattices have differ-
ent connectivity compared to the C sublattice. Therefore, a
nonequivalent stacking is realized for rotating around an A site
by π/3; rotation around a B site (with the resulting AC-BB-CA
stacking) is equivalent since the sublattices A and B are as-
sumed to be interchangeable within each of the layers. This
results in the mixed AA-BC-CB stacking where the sublattices
B and C in one layer are aligned with the sublattices C and
B in the other; i.e., hubs and rims intermix. Finally, we can
shift one of the layers with respect to the other by the distance
between neighboring A and C sites. For the corresponding
commensurate stacking, the sublattices A, B, and C in one
layer are aligned with the sublattices C, A, and B in the other.
We call this type of stacking the cyclic AB-BC-CA stacking.
Other stackings are either equivalent, noncommensurate, or
have misaligned sites.

Certainly, it would be interesting to determine which
of these stackings has the lowest energy. Unlike bilayer

graphene, where the Bernal A-B stacking is more energetically
favorable than the A-A one [39], lattice sites of the bilayer dice
lattices considered in this work are always aligned with each
other. This suggests that the stacking energy is not much dif-
ferent for these stackings. To address this question, however, a
more refined analysis that depends on a particular realization
of the dice lattice is required.

Thus, there are four nonequivalent vertically aligned
commensurate stackings in a bilayer dice lattice: (i)
aligned AA-BB-CC, (ii) hub-aligned AB-BA-CC, (iii) mixed
AA-BC-CB, and (iv) cyclic AB-BC-CA. We model interlayer
hoppings in these stackings by the following interlayer-
coupling Hamiltonians:

H (a)
c = g

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, H (h)

c = g

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠,

H (m)
c = g

⎛
⎝1 0 0

0 0 1
0 1 0

⎞
⎠, H (c)

c = g

⎛
⎝0 0 1

1 0 0
0 1 0

⎞
⎠, (7)

where g is the coupling constant. In writing Eq. (7), we as-
sumed only the nearest-neighbor tunneling. For simplicity, the
coupling constants for all sites are taken to be equivalent.

The tight-binding Hamiltonian for a bilayer dice lattice
reads as

Htot (q) =
(

H (q) Hc

HT
c H (q)

)
, (8)

where H (q) is given by the single-layer tight-binding Hamil-
tonian (1) and Hc is defined by one of the coupling
Hamiltonians in Eq. (7).

Before discussing the effective models, it is instructive to
analyze the discrete symmetries of the tight-binding Hamil-
tonian (8) and compare them with their counterparts in a
single-layer dice lattice.

B. Discrete symmetries

Discrete symmetries including charge-conjugation, time-
reversal, and inversion symmetries play an important role in
many condensed matter systems allowing for the classification
of electron states and order parameters. The single-layer dice
lattice respects all of these symmetries as well as possesses
the C3 rotational symmetry. The coupling Hamiltonian of
the bilayer lattice might, however, break one or more of the
discrete symmetries. We summarize the symmetries in Table I
and provide a more detailed discussion below.

We begin our symmetry analysis with the charge-
conjugation or particle-hole symmetry (C symmetry). The
operator of the charge-conjugation symmetry is defined as

ĈĤ (q)Ĉ−1 = −Ĥ (q), (9)

where Ĥ (q) is the second-quantized version of the Hamilto-
nian H (q). The corresponding operator necessarily contains
the complex conjugation operator K̂ and a matrix, i.e.,
Ĉ = MK̂ [40]. For the aligned AA-BB-CC and hub-aligned
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TABLE I. Symmetry properties of the tight-binding Hamiltonian for a bilayer dice lattice (8) in different commensurate stackings. The
tight-binding Hamiltonian of a single-layer dice lattice is given in Eq. (1) and the coupling Hamiltonians are defined in Eq. (7). The symmetry
matrices M1,2 and W1,2 are defined in Eqs. (10) and (13).

Dice lattice Charge-conjugation symmetry Time-reversal symmetry Inversion and in-plane inversion symmetries

Single layer M0K̂ 13K̂ W0

Aligned AA-BB-CC M1K̂ , M2K̂ 13K̂ W2, W1

Hub-aligned AB-BA-CC M1K̂ , M2K̂ 13K̂ W2, W1

Mixed AA-BC-CB – 13K̂ –
Cyclic AB-BC-CA – 13K̂ W2

AB-BA-CC stackings, there are the following matrices M:

M1 = τz ⊗ M0, M2 = iτy ⊗ M0, M0 =
⎛
⎝0 0 1

0 −1 0
1 0 0

⎞
⎠.

(10)

Here, τ is the vector of the Pauli matrices defined in the layer
space and M0 is the charge-conjugation symmetry matrix for
a single-layer dice lattice [41]. No charge-conjugation sym-
metry exists for the mixed AA-BC-CB and cyclic AB-BC-CA
stackings.

Let us proceed to the time-reversal symmetry (T symme-
try), which is defined as

T̂ Ĥ (q)T̂ −1 = Ĥ (−q), (11)

where T̂ 2 = 1 because we do not explicitly include the spin
degree of freedom for the dice lattice. It is straightforward
to check that the single-layer dice lattice is time-reversal
symmetric with T̂ = K̂ . Since the interlayer coupling Hamil-
tonians in Eq. (7) are real, all stackings considered in this work
are time-reversal symmetric.

Finally, let us analyze the inversion symmetry (P sym-
metry). This symmetry changes the sign of momentum and
interchanges sublattices leaving the Hamiltonian invariant.
The operator of the inversion symmetry is P̂ = W �q→−q,
where the matrix W satisfies the following equation:

W Ĥ (q) = Ĥ (−q)W. (12)

In a single-layer dice lattice, the sublattices A and B
interchange under the in-plane inversion symmetry. The cor-
responding matrix W0 is given by the antidiagonal 3×3 matrix
[42]. For aligned AA-BB-CC and hub-aligned AB-BA-CC
stackings, we find the following matrices:

W1 = 12 ⊗ W0, W2 = τx ⊗ W0, W0 =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠.

(13)

They correspond to the in-plane W1 and full W2 inversion
symmetries, respectively. In the former, there is no need to
interchange the layers; therefore, in the strict sense, it is
not the true inversion symmetry. As with the other discrete
symmetries, the aligned AA-BB-CC stacking preserves the
inversion symmetry of the dice lattice. As for the hub-aligned
AB-BA-CC stacking, the interchange of the layers is equiv-
alent to the rotation by π/3 with respect to a site C. Since
the bilayer lattice in the hub-aligned stacking retains the C3

rotation symmetry, it is also invariant with respect to the inter-
change of the layers. On the other hand, the mixed AA-BC-CB
stacking breaks the inversion symmetry. This follows from the
fact that the mixed stacking explicitly distinguishes one of
the sublattices (A sublattice). It is interesting that the cyclic
stacking has no in-plane inversion symmetry; i.e., only the
full inversion symmetry with the W2 matrix in Eq. (13) is
valid. The interchange of layers compensates for the change
made by the in-plane inversion and restores the cyclic order
of atoms.

Let us now identify the inversion centers. We start with
the “in-plane inversion symmetry”: for monolayer and the
AA-BB-CC stacking another possible inversion center, in ad-
dition to a midpoint between A and B atoms, is a C atom.
The AB-BA-CC stacking realizes the same inversion centers.
For the mixed AA-BC-CB and cyclic AB-BC-CA stackings,
no in-plane inversion symmetry exists. For the “full inver-
sion symmetry” the described centers should be shifted to
midpoints between layers. The inversion center for the cyclic
AB-BC-CA stacking is, e.g., in the middle of the line connect-
ing the closest C atoms from different layers.

C. Energy spectrum and effective models

In this section, we present effective Hamiltonians for bi-
layer dice models and compare their energy spectra with those
of the tight-binding counterparts. In the derivation of the ef-
fective models, we follow the standard perturbative approach.
The details of the derivation of the effective models can be
found in Appendix A. The effective models are derived as-
suming strong interlayer coupling compared to momenta in
the vicinity of the Dirac points, i.e., g � h̄vF k. In addition, in
writing linearized effective models, we focus on the K point;
the Hamiltonian for the K ′ point can be obtained by replacing
kx → −kx.

As we show in Figs. 2–5, while the dispersion relation
is strongly modified by the interlayer coupling, the band-
crossing points remain gapless [43]. The interlayer coupling
shifts the points in energy: instead of a doubly degenerate
band-crossing point at g = 0, there are two band-crossing
points located at ±g. Effective models are able to capture
the most significant features of the dispersion relation in the
vicinity of the threefold band-crossing points and provide an
analytical description of the deformed flat bands. To sim-
plify the notations, we consider effective models only for the
band-crossing point at g; the effective models and the energy
spectrum for the band-crossing point at −g can be obtained by
the replacement g → −g.
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(a) (b) (c)

FIG. 2. The energy spectrum of the tight-binding Hamiltonian (8) for the aligned AA-BB-CC stacking along the �-K-M-� line in the
Brillouin zone [panel (a)]. The tight-binding and effective [see Eq. (15)] energy spectra at the K point and ε > 0 are compared in panels
(b) and (c), respectively. In all panels, we set g = t .

(a) (b) (c)

FIG. 3. The energy spectrum of the tight-binding Hamiltonian (8) for the hub-aligned AB-BA-CC stacking along the �-K-M-� line in the
Brillouin zone [panel (a)]. The tight-binding and effective [see Eqs. (17)–(19)] energy spectra at the K point and ε > 0 are compared in panels
(b) and (c), respectively. In all panels, we set g = t .

(a) (b) (c)

FIG. 4. The energy spectrum of the tight-binding Hamiltonian (8) for the mixed AA-BC-CB stacking along the �-K-M-� line in the
Brillouin zone [panel (a)]. The tight-binding and effective [see Eqs. (21)–(23)] energy spectra at the K point and ε > 0 are compared in panels
(b) and (c), respectively. In all panels, we set g = t .

(a) (b) (c)

FIG. 5. The energy spectrum of the tight-binding Hamiltonian (8) for the cyclic AB-BC-CA stacking along the �-K-M-� line in the
Brillouin zone [panel (a)]. The tight-binding and effective [see Eqs. (27)–(29)] energy spectra at the K point and ε > 0 are compared in panels
(b) and (c), respectively. In all panels, we set g = t .
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It is worth noting that effective models do not always
inherit the symmetries of the tight-binding ones. The case
in point is the particle-hole symmetry, which requires one
to interchange the threefold band-crossing points at g and
−g in the tight-binding model. On the other hand, the effec-
tive model, which describes only one of these points, may
enjoy its own version of the particle-hole symmetry, which
reflects the symmetry of the energy spectrum with respect
to the band-crossing point. This symmetry is not related to
the charge-conjugation symmetry discussed in Sec. III B and
summarized in Table I.

1. Aligned AA-BB-CC stacking

We start with the simplest aligned AA-BB-CC stacking.
The effective Hamiltonian in the vicinity of the K point is

H (a)
eff = g13 + h̄vF (S · k). (14)

As one can see, in the leading nontrivial order in h̄vF k/g, the
effective model for the AA-BB-CC stacking comprises two
copies of the single-layer linearized Hamiltonians (the other
copy is obtained by replacing g → −g), see Eq. (4), separated
by 2g in energy. The energy spectrum is given by Eq. (6)
where the positive and negative branches are shifted by g,

respectively, i.e.,

ε0 = g, ε1 = g + h̄vF k, and ε2 = g − h̄vF k. (15)

We present the energy dispersion for the tight-binding
Hamiltonian (8) in Fig. 2(a). The energy spectrum in the vicin-
ity of the K point is compared with that of the effective model
in Figs. 2(b) and 2(c), respectively. Notice that the flat band
remains intact. Furthermore, both tight-binding and effective
Hamiltonians are particle-hole symmetric as also follows from
the symmetry analysis summarized in Table I.

Evidently, the evolution of the energy spectrum with the
interlayer coupling constant resembles that in the A-A stacking
of bilayer graphene: the band-crossing points in a bilayer
dice lattice become separated in energy by 2g. The energy
spectrum at ε = 0 contains nodal rings around K points. The
cross section of such a nodal ring is shown in Fig. 2; see also
Fig. 8 for the spectral function.

2. Hub-aligned AB-BA-CC stacking

In contrast to the aligned stacking considered in
Sec. III C 1, the hub-aligned AB-BA-CC stacking requires one
to include the second-order in h̄vF k/g terms to reproduce
an anisotropy of the energy dispersion. The corresponding
effective Hamiltonian reads

H (h)
eff = g13 + h̄vF√

2
kx

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠ +

(
h̄vF√

2

)2 k2
y

2g

⎛
⎝ 1 0 −1

0 2 0
−1 0 1

⎞
⎠ + h̄vF√

2

a

4

(
k2

y − k2
x

)⎛⎝0 1 0
1 0 1
0 1 0

⎞
⎠. (16)

The second-order terms are responsible for the asymmetry of
the energy spectrum. We have the following energy spectrum
in the vicinity of the K point:

ε0 = g + (h̄vF ky)2

2g
, (17)

ε1 = g + (h̄vF ky)2

4g

+ h̄vF

4g

√
(h̄vF )2k4

y + g2
[
4kx − a

(
k2

x − k2
y

)]2
, (18)

ε2 = g + (h̄vF ky)2

4g

− h̄vF

4g

√
(h̄vF )2k4

y + g2
[
4kx − a

(
k2

x − k2
y

)]2
. (19)

If h̄vF /g � a, the terms containing ak2
x and ak2

y , i.e., the
last term in Eq. (16), can be neglected. Then, the energy
spectrum in Eqs. (18) and (19) corresponds to a particle-hole
asymmetric version of the semi-Dirac spectrum [37] in which
the dispersion relation is linear in one direction and quadratic
in the other. The particle-hole symmetry breakdown around

each of the band-crossing points is quantified by momentum-
dependent ∼(h̄vF ky)2/g term.

We present the energy dispersion for the tight-binding
Hamiltonian (8) in Fig. 3(a). The energy spectrum in the
vicinity of the K point is compared with that of the effective
model in Figs. 3(b) and 3(c), respectively. The spectrum is
clearly anisotropic with a linear dispersion relation along kx

and the quadratic one along ky. Furthermore, the particle-hole
symmetry is absent for the effective model (i.e., the bands
in the vicinity of the band-crossing points are asymmetric at
ε = ±g) but is present in the tight-binding one; see Fig. 3(a)
and Table I. It is interesting to notice also that the energy spec-
trum for the hub-aligned AB-BA-CC stacking retains some
features of the spectrum of the aligned AA-BB-CC stacking;
namely, the band remains flat along certain directions (ky) [cf.
Figs. 2(a) and 3(a)]. In addition, the bands at ε = 0 intersect
along lines in momentum space rather than form nodes; see
also Fig. 8 for the spectral function.

3. Mixed AA-BC-CB stacking

In the case of the mixed AA-BC-CB stacking with the cou-
pling Hamiltonian defined by H (m)

c in Eq. (7), we derive the
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following effective Hamiltonian:

H (m)
eff = g13 + h̄vF

2
√

2

⎛
⎝ 0 2kx k−

2kx 0 k−
k+ k+ 0

⎞
⎠ +

(
h̄vF

4

)2 1

g

⎛
⎝k2

x + 5k2
y 0 0

0 k2
x + 5k2

y 0
0 0 2k2

⎞
⎠

−
(

h̄vF

4

)2 1

g

⎛
⎝ 0 k2 2ikyk−

k2 0 2ikyk−
−2ikyk+ −2ikyk+ 0

⎞
⎠ − h̄vF a

8
√

2

⎛
⎝ 0 2

(
k2

x − k2
y

)
k2
+

2
(
k2

x − k2
y

)
0 k2

+
k2
− k2

− 0

⎞
⎠. (20)

The energy spectrum up to the second order in momentum
is quite cumbersome. Therefore, we leave the second-order
terms only in the ε0 branch where they are crucial to describe
the anisotropy and provide leading order corrections at kx = 0.
For other branches, the second-order terms can be neglected
compared to the leading-order linear terms. Therefore, we
have

ε0 = g − h̄vF√
2

kx + (h̄vF )2

8g

(
k2

x + 3k2
y

)
+ h̄vF

4
√

2
a
(
k2

x − k2
y

)
, (21)

ε1 = g + h̄vF

2
√

2
kx + h̄vF

2
√

2

√
3k2

x + 2k2
y , (22)

ε2 = g + h̄vF

2
√

2
kx − h̄vF

2
√

2

√
3k2

x + 2k2
y . (23)

We present the energy dispersion for the tight-binding
Hamiltonian (8) with the coupling Hamiltonian H (m)

c defined
in Eq. (7) in Fig. 4(a). The tight-binding energy spectrum
in the vicinity of the K point is compared with that of the
effective model (20) in Figs. 4(b) and 4(c), respectively. As
one can see, dispersive Dirac-like bands become anisotropic.
Furthermore, as in the case of the hub-aligned AB-BA-CC
stacking, the additional band is no longer flat but acquires a
noticeable anisotropic dispersion along all directions. Another
noticeable feature of the spectrum is the absence of particle-
hole symmetry in the tight-binding and effective models. That
is, the energy spectrum is asymmetric both at ε = 0 and
ε = ±g. This is qualitatively different from the hub-aligned
AB-BA-CC stacking where the energy spectrum is symmetric
with respect to ε = 0; cf. Figs. 3(a) and 4(a). The lack of
particle-hole symmetry is directly related to the lack of the
charge-conjugation symmetry of the tight-binding Hamilto-
nian; see Table I.

Compared to the aligned and hub-aligned stackings, the
energy spectrum at ε = 0 is drastically different. As is evident
from Fig. 4(a), the bands no longer cross. Still, one of the
bands may attain zero values; see the solid green line in
Fig. 4(a).

4. Cyclic AB-BC-CA stacking

The effective linearized Hamiltonian for the cyclic
AB-BC-CA stacking reads

H (c)
eff = g13 + h̄vF

2
√

2

⎛
⎝ 0 k− k+

k+ 0 2k−
k− 2k+ 0

⎞
⎠. (24)

The energy spectrum is determined by the following third-
order equation:

(ε − g)3 − A1(ε − g) + A2 = 0, (25)

where

A1 = 27

8
(atk)2 and A2 = 27

16
(at )3kx

(
k2

x − 3k2
y

)
. (26)

The solutions to Eq. (25) are

ε0 = g + 2

√
A1

3
cos

⎡
⎣1

3
arccos

⎛
⎝3A2

2A1

√
3

A1

⎞
⎠ − 2π

3

⎤
⎦

= g + h̄vF k cos

{
1

3
arccos

[
cos (3ϕ)√

2

]
− 2π

3

}
, (27)

ε1 = g + 2

√
A1

3
cos

⎡
⎣1

3
arccos

⎛
⎝3A2

2A1

√
3

A1

⎞
⎠

⎤
⎦

= g + h̄vF k cos

{
1

3
arccos

[
cos (3ϕ)√

2

]}
, (28)

ε2 = g + 2

√
A1

3
cos

⎡
⎣1

3
arccos

⎛
⎝3A2

2A1

√
3

A1

⎞
⎠ − 4π

3

⎤
⎦

= g + h̄vF k cos

{
1

3
arccos

[
cos (3ϕ)√

2

]
− 4π

3

}
. (29)

In the second expressions in Eqs. (27)–(29), we used the polar
coordinate system with {kx, ky} = k{cos ϕ, sin ϕ}.

We present the energy dispersion for the tight-binding
Hamiltonian (8) with the coupling Hamiltonian H (c)

c , see
Eq. (7), in Fig. 5(a). The tight-binding energy spectrum in the
vicinity of the K point is compared with that of the effective
model in Figs. 5(b) and 5(c), respectively. As one can see, both
dispersive and flat bands become corrugated due to the inter-
layer coupling. The corrugation has C3 symmetry; see also
Eqs. (27)–(29). Despite being linear in momentum, the effec-
tive model captures the main features of the energy spectrum
reasonably well. The particle-hole symmetry is absent both in
tight-binding and effective models; i.e., the energy spectrum
is asymmetric both with respect to ε = 0 and ε = ±g (see also
Table I).

The low-energy spectrum |ε|/t � 1 is similar to that for
the mixed stacking, but shows a semimetallic rather than
semiconductor-like behavior. The electron and hole bands are
located in different parts of the Brillouin zone; see Fig. 5(a).
The electron and hole pockets form a rather intricate kagome
pattern at ε = 0; see also Fig. 8(d).
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FIG. 6. The spectral functions in the vicinity of the band-crossing points. The upper and lower panels correspond to h̄ω/t = 0.9 and
h̄ω/t = 1.1, respectively. The columns represent the results for the aligned AA-BB-CC [panels (a) and (e)], hub-aligned AB-BA-CC [panels
(b) and (f)], mixed AA-BC-CB [panels (c) and (g)], and cyclic AB-BC-CA [panels (d) and (h)] stackings. In all panels, we set g = t . We use
tight-binding models with the spectral function defined in Eq. (31) and introduce the phenomenological broadening � = 0.05t by replacing
i0 → i� in the Green function.

IV. DENSITY OF STATES AND SPECTRAL FUNCTION

In this section, we discuss the spectral function and the
DOS for the bilayer dice lattices. To start with, we introduce
the Green function in the momentum space,

G(ω ± i0; k) = i

h̄ω − μ − H (k) ± i0
, (30)

where H (k) is the Hamiltonian (effective or tight-binding), μ

is the Fermi energy, and signs ± define the retarded (+) and
advanced (−) Green functions. By using the Green function
(30), we define the spectral function

A(ω; k) = 1

2π
[G(ω + i0; k) − G(ω − i0; k)]

∣∣∣
μ=0

. (31)

While the complete information about the spectral properties
is provided by the spectral function A(ω; k), another useful
quantity measured in, e.g., scanning tunneling spectroscopy
experiments, is the DOS ν(ω) defined as

ν(ω) =
∫

d2k

(2π )2
tr{A(ω; k)}, (32)

where the integration proceeds over the Brillouin zone if the
tight-binding Hamiltonian is used.

The explicit form of the Green and spectral functions is
rather cumbersome even for the effective Hamiltonians. Only
the case of the aligned AA-BB-CC stacking is relatively simple
because it corresponds to two copies of a single-layer dice
model; see, e.g., Ref. [41] for the expressions for the Green
function. The corresponding DOS for the effective model

reads as

ν (a)(ω) = 1

2π (h̄vF )2

[
�2

2
δ(h̄ω − g) + |h̄ω − g|

]
, (33)

where � is the energy cutoff. The first term in Eq. (33)
is related to the flat band contribution and the second term
has the same form as the DOS in monolayer graphene. The
DOS (33) is essentially the same as for the single-layer dice
model [30].

The spectral functions for the four stackings are presented
in Fig. 6. We focus on the energies in the vicinity of the
band-touching points and set g/t = 1. As one can see, there
is a rather intricate pattern where the energy spectrum is
evidently asymmetric with respect to the band-crossing points
for all stackings except the aligned one; see Figs. 6(a) and
6(e). The shape of the spectrum is noticeably different for the
energies below and above the band-crossing point for the hub-
aligned AB-BA-CC stacking which is related to its peculiar
particle-hole-asymmetric semi-Dirac spectrum; see Fig. 3 as
well as Figs. 6(b) and 6(f). The Dirac point intersected with
the tilted band can be inferred from Figs. 6(c) and 6(g) for the
mixed AA-BC-CB stacking. Finally, the asymmetry is related
primarily to the additional C3-corrugated band for the cyclic
AB-BC-CA stacking; see Figs. 6(d) and 6(h).

By integrating the spectral function over the Brillouin
zone, we obtain the DOS in Fig. 7. As expected, the DOS
has the simplest structure for the aligned AA-BB-CC stack-
ing and reveals the peaks corresponding to the flat bands at
h̄ω = ±g, see Eq. (33), as well as two sets of smaller peaks
corresponding to the van Hove singularities; see Fig. 7(a). A
similar structure of the DOS with well-pronounced peaks at
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(a) (b) (c) (d)

FIG. 7. The density of states for bilayer dice lattices in four stackings: aligned AA-BB-CC [panel (a)], hub-aligned AB-BA-CC [panel (b)],
mixed AA-BC-CB [panel (c)], and cyclic AB-BC-CA [panel (d)]. For all stackings, we employed the tight-binding model with the spectral
function defined in Eq. (31) and introduced the phenomenological broadening �/t = 0.005 by replacing i0 → i� in the Green function.

h̄ω = ±g is observed for the hub-aligned AB-BA-CC stacking
with, however, different locations of the van Hove singular-
ities; see Fig. 7(b). The DOS for the mixed AA-BC-CB and
cyclic AB-BC-CA stackings has a rather complicated structure
with several peaks and absent particle-hole symmetry; see
Figs. 7(c) and 7(d). In both cases, there are peaks near h̄ω = 0
and h̄ω = −g, while the DOS at h̄ω = g is suppressed. Unlike
the aligned and hub-aligned stackings where the peaks at
h̄ω = ±g are related to flat or partially flat (having a softer
dispersion relation along one of the directions) bands, all
peaks for the mixed and cyclic stackings correspond to the
extrema in the energy spectrum. Another difference between
these stackings is related to the particle-hole symmetry. The
DOSs for the aligned and hub-aligned stackings are symmet-
ric with respect to both ε = 0 and ε = ±g; see Appendix B
for the results at larger g where the approximate symmetry
becomes evident. On the other hand, the peaks in the DOS
for the mixed AA-BC-CB and cyclic AB-BC-CA stackings are
always asymmetric; this result persists also for larger g (see
Appendix B).

V. SUMMARY

In this work, we introduced and classified the nonequiv-
alent vertically aligned commensurate stackings for bilayer
dice (T3) lattices. These four stackings are the aligned
AA-BB-CC, hub-aligned AA-BC-CB, mixed AB-BA-CC, and
cyclic AB-BC-CA stacking. Other stackings are either equiva-
lent, nonvertically aligned, or noncommensurate. We found
that the bilayer dice model demonstrates a unique energy
spectrum for each of the stackings.

In all stackings considered in this work, three energy
bands intersect at the K and K ′ points; the band-crossing
points are separated in energy with the separation determined
by the interlayer coupling constant g. The spectrum of the
aligned AA-BB-CC stacking resembles that of two copies of
the single-layer dice model and contains Dirac points in-
tersected by a completely flat in the whole Brillouin zone
band; see Fig. 2. The hub-aligned AB-BA-CC stacking allows
one to realize the semi-Dirac spectrum in the vicinity of
the band-crossing points, for which the dispersion relation is
quadratic in one direction and linear in the other; see Fig. 3.
An unusual spectrum composed of a Dirac point intersected
by a tilted anisotropic band occurs for the mixed AA-BC-CB
stacking; see Fig. 4. Somewhat similar to the case of the
hub-aligned AB-BA-CC stacking, all bands have a semi-Dirac
spectrum. Finally, the cyclic AB-BC-CA stacking realizes an
anisotropic energy spectrum with a C3-corrugated additional
band intersecting the Dirac point; see Fig. 5. The low-energy

spectrum, i.e., at |ε| � g, also depends on the stackings
and shows nodal-line crossings (aligned and hub-aligned
stackings), semiconductor-like behavior (mixed stacking), or
semimetallic-like shape (cyclic stacking) in which conduction
and valence bands acquire the same energy but are separated
in the Brillouin zone; see Fig. 5. Therefore, similar to multi-
layer graphene structures, a multilayer dice lattice also holds a
potential to be a flexible platform for realizing different types
of quasiparticle spectra.

To clarify the shape of the energy spectrum in the vicinity
of the threefold band-crossing points and set the stage for
analytical calculations, we derived effective models. The cor-
responding Hamiltonians are given in Eqs. (14), (16), (20),
and (24). The energy spectrum of these models captures
the main features of the tight-binding spectrum such as the
anisotropy of the dispersion relation. Furthermore, the ef-
fective models allow us to introduce effective particle-hole
symmetry with respect to the band-crossing points. In par-
ticular, the aligned AA-BB-CC stacking shows particle-hole
symmetry for both tight-binding and effective (i.e., with re-
spect to each of the band-crossing points) models. While the
tight-binding model is particle-hole symmetric, there is no
particle-hole symmetry for the effective model of the hub-
aligned AB-BA-CC stacking. For the other two stackings, i.e.,
the mixed AA-BC-CB and cyclic AB-BC-CA ones, both tight-
binding and effective models are particle-hole asymmetric.
The derived effective models might be useful in various ap-
plications including the studies of transport, collective modes,
edge states, etc.

We used the obtained tight-binding models to calculate the
spectral function and the DOS in Sec. IV; see Figs. 6 and 7.
The spectral function provides access to the cross sections of
the energy dispersion, which could become rather intricate for
certain stackings. The intricate band structure of the bilayer
dice model also has a direct manifestation in the DOS. In
particular, the flat band of the aligned AA-BB-CC stacking
leads to peaks corresponding to the band-crossing points.
The peaks are also observed for the hub-aligned AB-BA-CC
stacking due to a soft, but not exactly flat, dispersion relation
of the additional band. On the other hand, the DOS of the
mixed AA-BC-CB and cyclic AB-BC-CA stackings is domi-
nated by the van Hove singularities related to the features of
the spectrum away from the band-crossing points. In solid-
state realizations of the dice lattice, the spectral function and
the DOS can be probed via angle-resolved photoemission and
scanning tunneling spectroscopy experiments.

In the derivation of bilayer dice models, we have made a
few simplifying assumptions related to the structure of the
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FIG. 8. The spectral functions at h̄ω = 0. We used the aligned AA-BB-CC [panel (a)], hub-aligned AB-BA-CC [panel (b)], mixed
AA-BC-CB [panel (c)], and cyclic AB-BC-CA [panel (d)] stackings. In all panels, we set g = t . Green points represent the positions of
the band-crossing points. We use tight-binding models with the spectral function defined in Eq. (31) and introduce the phenomenological
broadening � = 0.05t by replacing i0 → i� in the Green function.

lattice and the coupling Hamiltonian. First, we considered
only commensurate stackings where sublattices of both layers
are vertically aligned. In writing the coupling Hamiltonians
(7), only the nearest-neighbor hopping and equal coupling
constants for all sites were assumed. The breakdown of the
symmetry between the A and B sublattices might lead to
a few additional stackings. It would be also interesting to
investigate which of the proposed stackings is the most ener-
getically favorable. These studies are beyond this work and
will be reported elsewhere. Finally, we notice that the rich
energy spectrum and nontrivial DOS promise unusual optical
responses of bilayer dice lattices. The studies of the optical
response are presented in our work [38].
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APPENDIX A: DERIVATION OF THE EFFECTIVE MODEL

In this Appendix, we discuss the derivation of the effective
Hamiltonians presented in Sec. III C; see also Ref. [13] for a
similar discussion for bilayer graphene. We focus on the dy-
namics in the vicinity of band crossing points, i.e., at |ε| ≈ g.
Then, the off-diagonal terms in the Hamiltonian (8) with the
coupling Hamiltonians defined in Eq. (7) are assumed to be
large compared to the diagonal ones, i.e., g/(h̄vF q) � 1. In
this case, it is convenient to transform the full Hamiltonian
(8) into a new basis where the part of the Hamiltonian respon-

sible for the interlayer coupling, i.e., the Hamiltonian (8) with
H (q) = 0, is diagonal. This allows us to separate the low- and
high-energy (with respect to the band-crossing point at ε = g)
parts of the full Hamiltonian as

H =
(

hg u
u† h−g

)
, (A1)

where hg and h−g describe the states in the vicinity of the
crossing points at ε = g and ε = −g, respectively. The cou-
pling between them is denoted by u. Now, the off-diagonal
terms in Eq. (A1) are small compared to the diagonal ones and
can apply the standard perturbative approach. It is convenient
to separate

hg = h(0)
g + δhg and h−g = h(0)

−g + δh−g. (A2)

Here, h(0)
g and h(0)

−g are large compared to δhg and δh−g, respec-
tively. In addition, we separate ε = ε (0) + δε. For the effective
model for the Dirac point at ε = g, we have h(0)

g = g13, h(0)
−g =

−g13, and ε (0) = g. The corrections δhg, δh−g, and δε are
determined by deviations from the band-crossing point, e.g.,
δε ∼ h̄vF k.

By using the eigenvalue equation H = ε with H given
in Eq. (A1) and  = {ψg, ψ−g}, we can reexpress the states
ψ−g via the states ψg:

ψ−g = (ε13 − h−g)−1u†ψg. (A3)

This allows us to write an equation for ψg only,

[hg + u(ε13 − h−g)−1u†]ψg = εψg. (A4)

By using Eq. (A2) and expanding up to the leading nontrivial
order in deviations from the band-crossing point at ε = g, we
obtain

(ε13 − h−g)−1 = (
ε (0)13 − h(0)

−g + δε13 − δh−g
)−1 ≈ [

1 − (
ε (0)13 − h(0)

−g

)−1
(δε13 − δh−g)

](
ε (0)13 − h(0)

−g

)−1
. (A5)

This allows us to rewrite Eq. (A4) as

{
h(0)

g − ε (0)13 + δhg + u
[
1 + (

ε (0)13 − h(0)
−g

)−1
δh−g

](
ε (0)13 − h(0)

−g

)−1
u†

}
ψg = δε

[
13 + u

(
ε (0)13 − h(0)

−g

)−2
u†

]
ψg. (A6)

By introducing the wave function χ = S1/2ψg, which has a proper norm, i.e., χ†χ = ψ†
g ψg + ψ

†
−gψ−g, we rewrite Eq. (A6) in

the conventional form Heffχ = δε χ . Therefore, the effective Hamiltonian describing the states in the vicinity of the threefold
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 9. The energy spectrum (top row) and the corresponding DOS (bottom row) for the tight-binding Hamiltonian (8) along the �-K-M-�
line in the Brillouin zone at g/t = 5. The columns represent the results for the aligned AA-BB-CC [panels (a) and (e)], hub-aligned AB-BA-CC
[panels (b) and (f)], mixed AA-BC-CB [panels (c) and (g)], and cyclic AB-BC-CA [panels (d) and (h)] stackings.

band-crossing point ε = g reads

Heff = S−1/2
{
h(0)

g − ε (0)13 + δhg + u
[
13 + (

ε (0)13 − h(0)
−g

)−1
δh−g

](
ε (0)13 − h(0)

−g

)−1
u†

}
S−1/2, (A7)

where

S = 13 + u
(
ε (0)13 − h(0)

−g

)−2
u†. (A8)

We use Eqs. (A7) and (A8) to derive the effective models in
Sec. III C. While the calculations are straightforward, the in-
termediate expressions are bulky. Therefore, we do not present
them here.

APPENDIX B: LOW-ENERGY SPECTRAL FUNCTIONS
AND RESULTS FOR g/t > 1

For the sake of completeness, let us also show the spectral
function at low energies h̄ω = 0 in Fig. 8. As one can see, the
low-energy (ε = 0) spectrum demonstrates nodal rings either
surrounding the K points (aligned stacking) or the � point
(hub-aligned stacking); see Figs. 8(a) and 8(b). The mixed
stacking is characterized by separated patches. The most in-
tricate, kagome pattern occurs for the cyclic stacking shown
in Fig. 8(d).

It is instructive also to discuss the case of strong interlayer
coupling g/t � 1. It corresponds to a somewhat exotic system

where the interlayer coupling constant g is larger than the in-
layer hopping parameter t . Nevertheless, it might be relevant
for artificial systems.

We show the energy spectrum and the DOS for the four
nonequivalent stackings in Fig. 9. Compared to the case of the
smaller coupling constant, cf. Figs. 2–5 and Fig. 7, the spectra
and the DOS corresponding to the threefold crossing points
at ε = ±g do not overlap. The shape of the energy spectrum
away from the band-crossing points becomes less relevant at
larger g/t for the aligned AA-BB-CC stacking. Further, the
symmetry of the energy spectrum with respect to the band-
crossing points becomes evident for the aligned AA-BB-CC
and hub-aligned AB-BA-CC stackings; see Figs. 9(a), 9(e),
9(b), and 9(f). In agreement with the effective model, the
anisotropy of the additional band is suppressed at larger g; cf.
red lines in Figs. 3(a) and 9(b). The particle-hole asymmetry
and complicated structure of the DOS remain for the mixed
AA-BC-CB and cyclic AB-BC-CA stackings; see Figs. 9(c),
9(g), 9(d), and 9(h).
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