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Superconductivity in the two-dimensional Hubbard model with cellular dynamical mean-field
theory: A quantum impurity model analysis
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Doping a Mott insulator gives rise to unconventional superconducting correlations. Here we address the
interplay between d-wave superconductivity and Mott physics using the two-dimensional Hubbard model with
cellular dynamical mean-field theory on a 2 × 2 plaquette. Our approach is to study superconducting correlations
from the perspective of a cluster quantum impurity model embedded in a self-consistent bath. At the level of the
cluster, we calculate the probabilities of the possible cluster electrons configurations. Upon condensation, we
find an increased probability that cluster electrons occupy a four-electron singlet configuration, enabling us to
identify this type of short-range spin correlation as key to superconducting pairing. The increased probability
of this four-electron singlet comes at the expense of a reduced probability of a four-electron triplet with no
significant probability redistribution of fluctuations of charges. This allows us to establish that superconductivity
at the level of the cluster primarily involves a reorganization of short-range spin correlations rather than charge
correlations. We gain information about the bath by studying the spectral weight of the hybridization function.
Upon condensation, we find a transfer of spectral weight leading to the opening of a superconducting gap. We
use these insights to interpret the signatures of superconducting correlations in the density of states of the system
and in the zero-frequency spin susceptibility.
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I. INTRODUCTION

The nature of the correlations leading to superconducting
pairing in doped Mott insulators remains a central challenge to
the understanding of high-temperature cuprate superconduc-
tors [1–4]. The two-dimensional (2D) Hubbard model [5–7],
which encodes both electrons hopping t and Coulomb on-site
repulsion U , is the simplest model to study superconducting
correlations arising from a purely electronic mechanism [8].
The large value of the interaction strength U , which is neces-
sary to open a Mott gap in the half-filled model, requires the
use of nonperturbative approaches. Cluster extensions [9–11]
of dynamical mean-field theory [12] have proved to be pow-
erful tools for exploring strongly correlated superconductivity
in the 2D Hubbard model [7,8].

Over the years, many cluster dynamical mean-field the-
ory (DMFT) studies have established that upon doping the
Mott insulator realized by the 2D Hubbard model, a d-wave
superconducting state occurs, with a domelike shape in the
temperature-doping phase diagram [11,13–22]. This indicates
that in a strongly correlated superconducting state, the short-
range superexchange interaction leads electrons to pair up
into coherent Cooper pairs. Doping a Mott insulator gener-
ates a rich phase diagram with many states that are close in
energy [23], and ongoing effort is devoted to clarify whether
or not the zero-temperature ground state of the system is su-

*Corresponding author: giovanni.sordi@rhul.ac.uk

perconducting, and for what parameters [24–26]. Despite the
fact that long-range order is excluded by thermal fluctuations
in 2D [27], and irrespective of whether superconductivity
is a true zero-temperature ground state, superconductivity
obtained in cluster DMFT is a locally stable state of phys-
ical relevance. For example, the study of the emergence of
superconductivity from the underlying normal state upon re-
ducing the temperature gives information about the pairing
mechanism. Furthermore, tweaking temperature and model
parameters (such as third dimensionality and frustration) may
cause superconductivity to become the state with the lowest
free energy [8].

Within cluster DMFT, there is a variety of ways by which
we can gain insights on this microscopic mechanism. One
possible approach to the study of superconducting correla-
tions in the 2D Hubbard model takes an energetic viewpoint,
and thus analyzes the relative change in potential and ki-
netic energy between the superconducting and the underlying
normal state. The rationale of this approach is to identify
whether the condensation energy arises from a gain in po-
tential energy (potential energy driven superconductivity), as
described by conventional BCS theory, or from a gain in
kinetic energy (kinetic energy driven superconductivity). In-
tense cluster DMFT investigations [28–31] have shown that
upon doping a Mott insulator, the kinetic energy decreases
upon superconducting condensation, and the doping interval
where this kinetic energy driven mechanism occurs progres-
sively extends to larger doping with increasing the interaction
strength U .
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FIG. 1. Real-space sketch of the cluster DMFT framework.
(a) Sketch of the 2D Hubbard model on a square lattice; up and
down spins are represented by spheres with arrows. (b) Cluster
DMFT maps the lattice model onto a cluster impurity (2 × 2 shaded
plaquette) embedded in a self-consistent bath. As a function of time,
the cluster exchanges electrons with the bath. Our work shows how
superconducting correlations emerge both at the level of the cluster
and of the bath. At the level of the cluster, we can extract the relative
time the cluster spends in a given electronic configuration; at the level
of the bath, we can extract the bath hybridization function, which
encodes the dynamics of the processes between cluster and bath.

Another approach to study superconducting correlations in
the 2D Hubbard model is through the dynamics of pairing.
Within cluster DMFT, this approach comprises the study of
the superconducting gap, of the frequency dependence of the
anomalous part of the self-energy, of the anomalous spec-
tral weight and its cumulative order parameter [32–37], and
of several fluctuation diagnostic techniques [38,39]. Overall,
cluster DMFT studies on the dynamics of pairing have indi-
cated the importance of short-range spin fluctuations for the
pairing mechanism in the doped Hubbard model, at least at
moderate coupling.

Yet another approach to the study of the superconducting
correlations in the 2D Hubbard model is from a quantum
information perspective. The rationale of this approach is
to characterize the entanglement properties of superconduc-
tivity [40,41]. Common measures of quantum and classical
correlations are entanglement entropies and quantum mutual
information. Reference [42] has shown that the local entropy
reflects the source of condensation energy, and the quantum
mutual information is enhanced in the superconducting state.

In this article, we study the superconducting correlations
in the 2D Hubbard model at finite temperature from a com-
plementary perspective, that of a cluster impurity embedded
in a self-consistent bath, which underlies the cluster DMFT
method. This is emphasized in Fig. 1. Cluster DMFT maps
the lattice system [panel (a)] onto a cluster quantum impurity
model fulfilling a self-consistent condition [panel (b)]. Hence,
in cluster DMFT one focuses on a cluster coupled to a bath
of electrons which describes the rest of the lattice. The cluster
fluctuates among different electronic configurations and ex-
changes electrons with the self-consistent bath (illustrated in
the figure), so that both spatial fluctuations (within the cluster)
and temporal fluctuations are taken into account.

Therefore, in cluster DMFT we can focus on the properties
of both the cluster and the bath. At the level of the cluster, we
can analyze the probability that cluster electrons are found in a
given configuration, i.e., the relative time the cluster electrons

spend in a given configuration [16,43,44]. At the level of
the bath, we can analyze the hybridization function, which
fully encodes the dynamics of the hopping processes between
cluster and bath.

The strategy of analyzing both the probabilities of the
impurity configurations and the hybridization function is a
standard and often used approach in single-site DMFT studies
[12], and especially for multiorbital systems, where electron
fluctuations among different atomic configurations can be re-
lated to a generalized concept of valence [44,45]. However,
this approach has not been explored much in the context of
cluster DMFT studies, and there is little knowledge on the
signatures of superconductivity on both the cluster electron
configurations and the bath hybridization function. Our work
addresses this problem, i.e., the effects of superconducting
correlations on both cluster electron configurations and the
bath hybridization function. More precisely, at the level of the
cluster impurity, several cluster DMFT studies have revealed
that cluster electrons are locked into short-range singlets in the
normal state of the doped Mott insulator [16,46–51] realized
by the 2D Hubbard model. However, to our knowledge, only
a few studies have investigated the impact of superconduct-
ing pairing on the cluster electron configurations: Haule and
Kotliar [16,52] have demonstrated amplified short-range sin-
glet correlations for the superconducting state of the t-J model
around optimal doping. However, it is still not clear to what
extent this mechanism extends to the 2D Hubbard model, and
how the on-site interaction strength, doping, and temperature
affect this mechanism. Hence, we present here a study of the
cluster electron configurations in the superconducting state of
the 2D Hubbard model, for a wide range of doping levels and
of interaction strength. We shall show that upon entering the
superconducting state, for all values of U and doping, the
cluster electrons spend more time in a four-electron singlet
configuration, allowing us to identify short-range spin correla-
tions in the form of singlets as key to superconducting pairing.
Increased probability of the four-electron singlet comes at
the expense of reduced probability of the four-electron triplet
and no significant probability redistribution of fluctuations of
charges. This allows us to establish that at the level of the clus-
ter, superconductivity primarily involves a reorganization of
short-range spin correlations rather than charge correlations.

At the level of the dynamics of the fluctuations between
cluster and bath, few existing cluster DMFT studies have ana-
lyzed the behavior of the hybridization function in the normal
state of the 2D Hubbard model [16,48,50]. They revealed a
mild momentum and doping dependence, in sharp contrast
with the Green’s function of the system, which showed a
marked dependence. Even less work exists on the behavior of
the hybridization function in the superconducting state [16],
and it is primarily focused on the t-J model. A detailed charac-
terization of the hybridization function is still missing for the
2D Hubbard model in the superconducting state. Hence, we
present here a systematic analysis of the interaction strength,
doping, and temperature dependence of the spectral function
of the bath in the superconducting state. We shall show that
upon condensation, there is a redistribution of spectral weight
leading to the opening of a superconducting gap. This enables
us to infer that singlet pairs propagate coherently throughout
the lattice.
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Our work is organized as follows. In Sec. II we briefly
outline the cellular extension of DMFT (CDMFT) used in
our study and how the probabilities of the different electronic
configurations of the cluster can be extracted. In Sec. III we
overview the salient features of the established CDMFT solu-
tion of the 2D Hubbard model in the superconducting state. In
Sec. IV we analyze the probabilities of the different electronic
configurations of the cluster in the superconducting state. In
Sec. V we analyze the behavior of the spectral function of
the self-consistently determined bath in the superconducting
state. Then in Sec. VI we discuss the insights that can be
gained on the behavior of the density of states of the system
and of the zero-frequency spin susceptibility in the supercon-
ducting state. Finally, Sec. VII summarizes our main findings.

II. MODEL AND METHOD

A. 2D Hubbard model

The 2D Hubbard model on a square lattice is

H = −
∑
i jσ

ti jc
†
iσ c jσ + U

∑
i

ni↑ni↓ − μ
∑

iσ

niσ . (1)

Here, ti j is the hopping amplitude between nearest-neighbor
sites i, j only, U is the on-site Coulomb repulsion, μ is the
chemical potential, ciσ and c†

iσ , respectively, destroy and cre-
ate an electron at site i with spin σ , and n = c†

iσ ciσ is the
number operator. ti j = t = 1 fixes our units.

B. CDMFT

We solve Eq. (1) at finite temperature with the cellu-
lar [9,10] extension of dynamical mean field-theory [12]
(CDMFT). For the purpose of discussing the approach from
a cluster plus bath perspective of our work, we outline the
CDMFT procedure. In this subsection, we focus on the
CDMFT equations in the normal state; the generalization
to the superconducting state will be discussed in Sec. II E.
CDMFT partitions the lattice into a superlattice of clusters,
singles out one (any) cluster of size Nc from the lattice, and
embeds it in a self-consistent bath of noninteracting electrons.
Hence CDMFT relies on the self-consistent solution of a
cluster quantum impurity model.

The cluster quantum impurity Hamiltonian (cluster plus
bath) is

Himp = Hcl + Hhyb + H†
hyb + Hbath, (2)

where Hcl = Hcl(diσ , d†
iσ ) is the Hamiltonian of the cluster

described by the operators diσ , d†
iσ , Hbath = ∑

μσ εμa†
μσ aμσ is

the Hamiltonian of the bath described by the bath energies
εμ and operators aμσ , a†

μσ , and Hhyb = ∑
iμσ Vμia†

μσ diσ is the
Hamiltonian describing the hybridization between the cluster
and the bath via the amplitude Vμi for an electron to hop from
the cluster to the bath.

By integrating out the bath degrees of freedom, the action
of the cluster quantum impurity (cluster plus bath) is

S = Scl(ψ̂
†
, ψ̂) +

∫ β

0
dτ

∫ β

0
dτ ′ψ̂

†
(τ )�(τ, τ ′)ψ̂(τ ′), (3)

where Scl is the action of the cluster resulting from the tiling
of the lattice, ψ̂ = (d̂1↑ · · · d̂Nc↑ d̂1↓ · · · d̂Nc↓)T is a vector of
the Grassmann variables d̂iσ corresponding to the operators on
the lattice, and �(τ, τ ′) is the hybridization matrix function.
It describes the amplitude processes of hopping via any bath
orbital from the cluster site i at time τ to the cluster site j at
time τ ′. Equation (3) can be rewritten as

S = −
∫ β

0
dτ

∫ β

0
dτ ′ ψ̂

†
(τ )G−1

0 (τ, τ ′)ψ̂(τ ′)

+ U
∫ β

0
dτ n̂i↑(τ )n̂i↓(τ ), (4)

where the Green’s function of the noninteracting impurity, G0,
has been introduced as

G−1
0 (iωn) = (iωn + μ)I − tcl − �(iωn). (5)

Here tcl is the cluster hopping matrix tcl = ∫
dk̃ t(k̃), with t(k̃)

the lattice hopping matrix in the supercell notation and with k̃
running over the reduced Brillouin zone of the superlattice.
The elements of the hybridization matrix function �(iωn) can
be written in the form

�i j (iωn) =
∑

μ

ViμV †
μ j

iωn − εμ

, (6)

i.e., as a function of the bath degrees of freedom εμ, Vμi.
For a given �(iωn), the solution of the cluster quantum

impurity model Eq. (4) gives the cluster Green’s function

Gcl(τ − τ ′) = −〈Tτ ψ̂(τ )ψ̂
†
(τ ′)〉S. (7)

The Dyson equation defines the cluster self-energy as

�cl(iωn) = G−1
0 (iωn) − G−1

cl (iωn). (8)

To fix �, we need to apply the self-consistency condi-
tion. The self-consistency condition requires that the cluster
Green’s function Gcl computed from the cluster quantum im-
purity model coincides with the projection onto the cluster of
the lattice Green’s function Glatt , i.e., the superlattice averaged
Green’s function Ḡ:

Ḡ(iωn) =
∫

dk̃ Glatt (k̃, iωn) (9)

=
∫

dk̃ [(iωn + μ)I − t(k̃) − �latt (k̃, iωn)]−1. (10)

The approximation that allows one to identify Gcl with Ḡ is
that �latt (k̃, iωn) ≈ �cl(iωn), i.e.,

Ḡ(iωn) ≈
∫

dk̃ [(iωn + μ)I − t(k̃) − �cl(iωn)]−1. (11)

The self-consistency condition can then be written as

�(iωn) =(iωn + μ)I − tcl − �cl(iωn) − Ḡ−1(iωn). (12)

In practice, we solve the CDMFT equations with an iterative
procedure: starting from an initial guess for �, we solve the
cluster quantum impurity model to obtain Gcl[�], and then
compute Ḡ with Eq. (11). From Ḡ we obtain an updated
hybridization matrix � using Eq. (12), and we iterate the
process until convergence is reached.
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C. CT-HYB impurity solver

We solve the cluster quantum impurity model Eq. (7) using
the hybridization expansion continuous-time quantum Monte
Carlo method (CT-HYB) [43,53–56]. Here we limit ourselves
to outline the key aspects of the CT-HYB algorithm that are
relevant for our discussion.

To reduce the size of the matrices involved and to speed
up the calculation, we choose a single-particle basis that
transforms as the irreducible representations of the cluster
Hamiltonian symmetries [43]. For a 2 × 2 plaquette with ver-
tices 1, 2, 3, 4 oriented counter-clockwise with 1 on the left
bottom corner, the point group symmetry C2v with mirrors
along the plaquette axes leads to the following single-particle
basis (cluster momentum basis):

dA1,σ = d(0,0),σ = 1
2 (d1σ + d2σ + d3σ + d4σ ),

dB1,σ = d(π,0),σ = 1
2 (d1σ − d2σ − d3σ + d4σ ),

dB2,σ = d(0,π ),σ = 1
2 (d1σ + d2σ − d3σ − d4σ ),

dA2,σ = d(π,π ),σ = 1
2 (d1σ − d2σ + d3σ − d4σ ), (13)

where A1, B1, B2, A2 are the irreducible representations of
C2v , respectively, denoted with the cluster momenta K =
{(0, 0), (π, 0), (0, π ), (π, π )}. In the previous section, every
operator was expressed in the position basis, but here they
are expressed in this new K basis. In this basis, the 8 × 8
hybridization matrix � acquires a block-diagonal form:

� =
(

�↑ 0
0 �↓

)
, (14)

with

�σ =

⎛
⎜⎜⎝

�(0,0) 0 0 0
0 �(π,0) 0 0
0 0 �(0,π ) 0
0 0 0 �(π,π )

⎞
⎟⎟⎠. (15)

Furthermore, time-reversal symmetry restricts the matrix
blocks �↑,�↓ to take the same value, and C4 symmetry (π/2
rotation) prescribes that �(0,π ) = �(π,0). As a result, there
are only three independent components of the hybridization
matrix �.

The CT-HYB algorithm writes the impurity partition func-
tion Zimp = Tr e−βHimp in the interaction representation and
expands it in powers of the hybridization, obtaining

Zimp =
∫

D[d̂, d̂†]e−S (16)

= Zbath

∞∑
k=0

∫ β

0
dτ1 · · · dτk

∫ β

0
dτ ′

1 · · · dτ ′
k

×
∑

K1···Kk

∑
K′

1···K′
k

w{C}, (17)

where the integrands

w{C} = det
1�m,n�|C|

[�KmK′
n
(τm − τ ′

n)]

× Trcl

⎡
⎣Tτ e−βHcl

|C|∏
r=1

dKr (τr )d†
K′

r
(τ ′

r )

⎤
⎦ (18)

are the weights of a distribution over the configuration space
C = {(K1, τ1), (K′

1, τ
′
1) · · · (Kk, τk ), (K′

k, τ
′
k )}. This configu-

ration space is sampled with Markov chain Monte Carlo. To
reuse matrix products previously calculated, we use the Lazy
Skip List algorithm [55].

D. Probabilities of the plaquette sectors

In this work, we are interested in the reduced density
matrix of the cluster, ρcl. Within the CT-HYB algorithm it
is possible to measure the diagonal elements of ρcl. This
procedure was developed in Ref. [43]. Here we limit ourselves
to outline the key aspects of the CT-HYB algorithm that are
relevant for our discussion. Further details can be found in
Refs. [43,55].

For a 2 × 2 plaquette, the cluster Hamiltonian Hcl con-
serves charge, spin, and cluster momentum. We can group
the 256 eigenstates {|μ〉} of Hcl according to the quan-
tum numbers N = ∑

i ni↑ + ni↓, Sz = ∑
i(ni↑ − ni↓)/2, and

cluster momentum K, so that both Hcl and ρcl become block-
diagonal. This grouping results in 84 blocks where each block,
or sector, is labeled by the set of quantum numbers N, Sz, K.
Let m be the index of the sector (or matrix block), and let
{|μ〉}m be the set of cluster eigenstates belonging to m. Table I
in the Appendix lists the sectors m grouped according to the
quantum numbers N , Sz, and K.

The reduced density matrix is ρcl = Trbath[e−βHimp/Zimp],
and the estimator for its diagonal elements is [43,57]

(ρcl )μμ =
〈μ|Tτ e−βHcl

∏|C|
r=1 dKr (τr )d†

K′
r
(τ ′

r )|μ〉
Trcl

[
Tτ e−βHcl

∏|C|
r=1 dKr (τr )d†

K′
r
(τ ′

r )
] . (19)

The probability associated with the cluster eigenstates belong-
ing to a given sector m is

Pm =
∑

μ∈{|μ〉}m

(ρcl )μμ. (20)

The probabilities {Pm} will be analyzed in Sec. IV.

E. d-wave superconducting state

The CDMFT formalism outlined in Secs. II B–II D applies
to the normal state. For the d-wave superconducting state,
the CDMFT method can be generalized [9,14,17,43,58] as
follows.

It is useful to introduce the Nambu basis 
K =
(d(0,0)↑ d(π,0)↑ d(0,π )↑ d(π,π )↑ d†

(0,0)↓ d†
(π,0)↓ d†

(0,π )↓ d†
(π,π )↓)T ,

where we use that −(0, 0) = (0, 0), −(π, 0) = (π, 0), etc.
because of umklapp processes. In this basis, the 8 × 8 matrix
hybridization function becomes

�(τ ) =
(

�↑(τ ) F(τ )
F†(τ ) −�↓(−τ )

)
, (21)
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where �σ has the same structure of Eq. (15), and the anoma-
lous component F is block-diagonal.

Note that the 2 × 2 cluster Hamiltonian Hcl has C4v

point-group symmetry. The d-wave superconducting order
parameter breaks the C4 symmetry (i.e., it changes sign un-
der a π/2 rotation), but it preserves the C2v symmetry with
mirrors along the plaquette axes, of the original C4v group.
Therefore, the superconducting order parameter has the same
C2v symmetry as the one-particle cluster basis [Eq. (13)].
This choice implies that the d-wave superconducting order
parameter transforms in space as the A1 representation of
the C2v symmetry group with mirrors along the plaquette
axes [59]. Hence only the entries in F transforming as A1

can be finite, implying that only diagonal components of
F are nonzero. Furthermore, the d-wave superconducting
order parameter changes sign under a π/2 rotation, im-
posing the constraints that F(0,0)↑,(0,0)↓ and F(π,π )↑,(π,π )↓ are
zero and F(0,π )↑,(0,π )↓ = −F(π,0)↑,(π,0)↓. Thus, written explic-
itly, the anomalous component of the matrix hybridization
function reads

F =

⎛
⎜⎜⎝

0 0 0 0
0 F(π,0)↑,(π,0)↓ 0 0
0 0 −F(π,0)↑,(π,0)↓ 0
0 0 0 0

⎞
⎟⎟⎠. (22)

To allow for a superconducting solution, we start the
CDMFT loop scheme with a guess for � containing a fi-
nite off-diagonal component F(π,0)↑,(π,0)↓. In all subsequent
iterations, � evolves unconstrained and F(π,0)↑,(π,0)↓ will ei-
ther survive or vanish. When self-consistency is reached and
F(π,0)↑,(π,0)↓ survives, the solution is superconducting.

The d-wave symmetry is broken in the bath (�) but
not in the cluster. In other words, the superconducting state
breaks the C4 symmetry, but this symmetry is still present
in the cluster Hamiltonian Hcl. This broken symmetry in �

(corresponding to the nonvanishing F(π,0)↑,(π,0)↓ component)
propagates to Gcl and �cl of the cluster through Eq. (12), even
though Hcl still has the full C4v symmetry.

From the point of view of the impurity solver, the cal-
culation of the Monte Carlo weight of each configuration
is influenced by the bath, whose degrees of freedom are in
the determinant in Eq. (18). That bath has components that
are off-diagonal in Nambu space. The trace on the cluster in
Eq. (18), however, always conserves the number of particles
since the symmetry is never explicitly broken in the cluster. It
is through the bath that the cluster Green’s function acquires
off-diagonal components.

Finally, as demonstrated in Ref. [58], the ergodicity of the
CT-HYB algorithm in the d-wave superconducting state can
only be obtained by allowing four operator updates in the
sampling of the Markov chain.

III. SUPERCONDUCTING STATE PHASE DIAGRAM
WITH PLAQUETTE CDMFT

Prior work revealed the finite temperature aspects of the
superconducting phase diagram of the 2D Hubbard model on a
square lattice with 2 × 2 plaquette CDMFT [16,18,31]. Here,
we briefly survey two key features of the superconducting
state that are relevant for our discussion: the behavior of the

superconducting transition temperature T d
c (where d empha-

sizes it is the critical temperature at the cluster dynamical
mean-field level), and the link between T d

c and the onset
temperature of the pseudogap T ∗. Although in 2D long-range
order is excluded by thermal fluctuations [27], T d

c physically
denotes when superconducting pairs develop within the 2 × 2
plaquette [18]. Also, here we focus only on the superconduct-
ing and normal states, and competition with other states is not
considered.

Figures 2(a)–2(d) show the temperature hole-doping phase
diagram for four different values of the interaction strength U ,
ranging from U = 5.2 to 12. Within 2 × 2 plaquette CDMFT,
the value of U needed to transform a metal to a Mott insulator
at half-filling (δ = 0) is UMIT ≈ 5.95 [63]. All data points
in Fig. 2 are extracted from our previous work of Ref. [42],
which employs the same methodology as used in this work.

The superconducting state is indicated in red. It is bounded
by T d

c , and it is the region below which the superconducting
order parameter � = 〈d†

(0,π )↑d†
(0,π )↓〉 is nonzero. Figures 2(e)–

2(h) show �(δ) for T = 1/50 as a sample of the calculations
performed across the U -T -δ space.

By systematically varying the interaction strength U and
doping δ, interesting trends emerge, from which insights on
microscopic mechanisms of superconductivity can be derived
[31]. Below UMIT, T d

c (δ) decreases with increasing doping;
above UMIT, T d

c (δ) has the shape of a dome, with the highest
T d

c just above UMIT; the superconducting dome is asymmetric
in doping with a steep slope upon doping the parent Mott state.

Additional insights can be gained from contrasting the
superconducting phase and pseudogap phase (shown in blue)
[18]. The pseudogap is bounded by a crossover T ∗(δ), which
can be calculated by the drop in the zero-frequency spin sus-
ceptibility as a function of T [64] (also see Sec. VI B). It is
a strongly correlated phase that only appears for U > UMIT.
This suggests a link to the superconducting phase, which has a
domelike shape for U > UMIT only. However at large doping,
superconductivity can emerge from a metal in the absence of
a pseudogap implying they are two distinct phenomena [18].
This is because the doping at which the pseudogap ends is
contained within the center of the superconducting dome. This
is where a hidden strongly correlated pseudogap-correlated
metal transition occurs. The nature of this transition is first
order, and it is a purely electronic transition without sym-
metry breaking [49,50,62]. Upon increasing temperature, this
transition ends at a critical end point which gives way to
crossover lines [62,64]. These crossovers mark anomalies [62]
in observables as a function of doping, including electronic
specific heat [65], charge compressibility [62], nonlocal den-
sity fluctuations [66], entanglement entropy [67], and velocity
of sound [68]. T ∗(δ) is a high-temperature precursor of such
crossovers [64]. Furthermore, by studying the difference in
kinetic and potential energy between the normal and super-
conducting states, Ref. [31] shows that the doping at which
the hidden transition occurs correlates with the largest con-
densation energy.

Finally, Ref. [69] shows that the main features obtained in
the 2D Hubbard model reviewed here (the superconducting
dome, the pseudogap to correlated metal hidden transition
and its associated supercritical crossovers, and the source of
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FIG. 2. (a)–(d) Temperature vs doping phase diagram of the plaquette CDMFT solution of 2D Hubbard model for several values of the
interaction strength U . Only normal and superconducting phases are shown. Data are taken from Ref. [42]. Filled hexagons indicate the data
set analyzed in Figs. 3–10. Open red squares denote the CDMFT superconducting transition temperature T d

c , below which the superconducting
order parameter � is nonzero. Open blue circles indicate the crossover temperature T ∗ corresponding to the opening of the pseudogap, as
determined by the drop in the spin susceptibility vs T at fixed doping. Red and blue shaded areas are a guide to the eye for the superconducting
and pseudogap phases. In (b), the superconducting dome hides a pseudogap to metal transition in the underlying normal state. This transition
is first order and bounded by spinodal lines (filled blue triangles), and it terminates in a critical end point (filled cyan circle), from which a
supercritical crossover emerges (Widom line [60–62]), as determined here by the loci of the maximum of the charge compressibility vs δ.
The shaded gray area corresponds to the low-temperature region that is not accessible to our calculations because of the sign problem. (e)–(h)
Superconducting order parameter |�| vs δ for several values of the interaction strength U and at temperature T = 1/50. Data are taken from
Ref. [42].

pairing energy) are also found in the three-band Emery model,
suggesting they are emergent phenomena of doped Mott insu-
lators, robust against microscopic details.

IV. FLUCTUATIONS BETWEEN CLUSTER EIGENSTATES
IN THE SUPERCONDUCTING AND NORMAL PHASES

This work aims at obtaining new insights on the super-
conducting correlations in the 2D Hubbard model by taking
the perspective of the cluster impurity embedded in a self-
consistent bath. This section focuses on the properties of the
embedded cluster (here, a 2 × 2 plaquette). The next sec-
tion will focus on the properties of the bath. Here we calculate
the probability that the electrons in the cluster are in any of
the cluster eigenstates {|μ〉}m characterized by the quantum
numbers N, Sz, K of the sector m. This probability can be
viewed [16,43,44] to represent the relative time the plaquette
electrons occupy the cluster eigenstates {|μ〉}m.

A. Probability distribution of plaquette sectors

The behavior of the probabilities of the plaquette sectors
for the normal state solution has been analyzed in Ref. [50].
In this work, we report the behavior of the probabilities in
the superconducting phase, and we contrast with that in the
normal state.

Figure 3 shows the histogram of the probability of the
plaquette sectors {m} for the T -U -δ values indicated by filled
hexagons in Fig. 2. Data are at T = 1/50, chosen as it is well

below (T d
c )max for each U . The x-axis shows the index m of

each sector (see Table I). Each bar of the histogram has two
solutions that are superimposed: the superconducting solution
for each sector m is shown with a filled bar, whereas the
normal state solution is shown by an unfilled bar.

From this analysis, a few trends emerge. First, of the 84
available sectors {m} of the plaquette, very few have a large
probability [16,46,49,50] (note the logarithmic scale of the
y-axis). Secondly, for each U > UMIT, there are fewer highly
probable states at low doping than at high doping, and even
fewer upon increasing U . We note that for U < UMIT at δ =
0, the system is particle-hole symmetric, which is reflected
in the probabilities of the sectors. The overall difference in
the probability for a given {m} between the normal and the
superconducting phase is small (less than 0.1). The small
difference in the probabilities between the superconducting
and normal state is consistent with the small superconducting
condensation energy, which in Ref. [31] has been estimated as
smaller than 0.01t for the same range of U and T considered
here.

To gain further insights, we highlight sectors {m} with the
highest probabilities for given N and Sz in color in Fig. 3.
Upon inspection, we find that they can be grouped in the
following sets:

S2 = {N = 2, Sz = 0, K = (0, 0)},
D3 = {N = 3, Sz = ±1/2, K = (0, π ), (π, 0)},
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FIG. 3. Histograms of the probability of the plaquette sectors {m}. Data are shown at T = 1/50 for several values of interaction strength U
and doping δ, corresponding to the filled hexagons in the T -δ phase diagrams of Fig. 2. The index on the x axis refers to the label of the plaquette
sectors in the last column of Table I. Vertical dotted lines bound the sectors with same quantum number N . Empty bars correspond to the
normal state CDMFT solution, whereas filled bars correspond to the superconducting state solution. The sectors with the highest probabilities
for a given N and Sz are shown in color, and they correspond to the sets plotted in Fig. 4. The “singlets” with two and four electrons with
Sz = 0 in the cluster momentum K = (0, 0) (indexes 16 and 36 in Table I) are shown in yellow and red, respectively. The “triplet” with four
electrons with Sz = 0, ±1 in the cluster momentum K = (π, π ) (indices 39, 46, and 47 in Table I) is shown in blue. The “doublet” with three
electrons with Sz = ±1/2 in the cluster momentum K = (π, 0) and its degenerate counterpart K = (0, π ) (indexes 30–33 in Table I) are shown
in green.

S4 = {N = 4, Sz = 0, K = (0, 0)},
T4 = {N = 4, Sz = 0, ±1, K = (π, π )}. (23)

They represent the following sets: S2 and S4 denote the set of
all the eigenstates with two and four electrons with Sz = 0 and
in the cluster momentum K = (0, 0). As a shorthand notation,
we call these sets “two-electron singlet” and “four-electron
singlet,” respectively, because they contain only the sector
where Sz = 0. The set T4 denotes the set of all the eigenstates
with four electrons with Sz = 0,±1 in the cluster momen-
tum K = (π, π ). We call this set “four-electron triplet” as
it contains the three sectors with Sz = 0,±1. The set D3

contains four sectors and denotes the set of all the eigenstates
with three electrons with Sz = ±1/2 in the cluster momenta
K = (π, 0), (0, π ). We call this set “three-electron doublet”
as it contains the two sectors with Sz = ±1/2. Our naming
convention follows Refs. [16,49,50].

The probabilities of these four key sets are shown
in Fig. 4 for both the normal and superconducting
states. The set of the remnant sectors are grouped and
denoted R.

For U > UMIT, previous studies [16,46,49,50] have
demonstrated that the dominant sector in the normal state
pseudogap phase is the four-electron singlet S4. Physically,
this is because superexchange locks the electrons of the
plaquette into one prevailing singlet configuration. When

superconductivity emerges from a pseudogap [panels (c),
(e), and (g)], the probabilities of the plaquette sectors do not
undergo a drastic change, and in particular the four-electron
singlet S4 remains the dominant configuration with a slightly
increased probability.

On the other hand, when superconductivity emerges from
a metal without a pseudogap [panels (d), (f), and (h) for
U > UMIT, as well as (a) and (b) for U < UMIT] there is a more
marked redistribution of plaquette probabilities, although still
overall small, and in particular there is an increase in the
probability of the four-electron singlet S4 at the expense of
the probability of the four-electron triplet T4. In this regime,
the S4 singlet is largest but not dominant, i.e., its probabil-
ity is comparable with that of other sectors, suggesting the
electrons of the plaquette spend a similar amount of time in
the other sectors. Regardless of if superconductivity emerges
from a pseudogap or a metal, the probability of the doublet
D3 remains essentially unchanged upon superconducting con-
densation.

B. Doping evolution of plaquette sector probabilities

Figure 5 shows the probabilities of the four key cluster
sets of sectors identified in Eq. (23) as a function of doping,
in the superconducting and normal states (filled and unfilled
symbols, respectively), for different values of U at T = 1/50.
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FIG. 4. Histogram showing superconducting and normal state probabilities for selected key plaquette sets of sectors [see Eq. (23)]. They are
the four-electron singlet S4 (red), the four-electron triplet T4 (blue), the three-electron doublet D3 (green), the two-electron singlet S2 (yellow),
and the remnant eigenstates R (gray). Data are shown for the same values of U and δ as Fig. 3 corresponding to the filled hexagons of Fig. 2,
at T = 1/50. Filled and unfilled bars indicate the superconducting and normal phases, respectively. Error bars indicate the root-mean-square
error over the last 20 CDMFT iterations.

The doping evolution of the plaquette sector probabilities in
the normal state has been discussed in Refs. [49,50]; here we
report the behavior in the superconducting state and compare
with the normal state.

Hole doping enables both charge and spin fluctuations.
Compatible with those previous reports, for U > UMIT, we
find (i) the probability of the four-electron singlet S4 de-
creases rapidly upon doping the parent Mott insulating state,
where superexchange is largest; (ii) the probability of the
three-electron doublet D3 increases, in line with charge fluc-
tuations introduced by hole-doping, which break the singlet

bonds; (iii) the probability of the four-electron triplet T4 first
increases due to the decay of superexchange with doping, and
then decreases as the total number of electrons in the system is
reduced; (iv) the two-electron singlet S2 undergoes a slow but
steady increase as the system evolves away from the dominant
four-electron singlet sector with doping. On the other hand,
for U < UMIT, the reduction of superexchange physics causes
the overall depletion of the four-electron singlet S4, and so at
low doping the probability of the four-electron triplet T4, and
to a lesser degree the probability of the three-electron doublet
D3, is no longer suppressed.

FIG. 5. Probability of selected superconducting and normal state plaquette sets of sectors as a function of doping for several values of the
interaction strength U , at T = 1/50. Selected plaquette sets are those shown in Fig. 4, using the same color code and listed in Eq. (23): S4, S2,
T4, and D3. Filled symbols correspond to the superconducting state solution. Empty symbols correspond to the normal state solution. Insets
contain the difference between the superconducting and normal state probabilities of the singlet S4 (red) and triplet T4 (blue), respectively.
The shaded area around each curve shows the root-mean-square error. For each U above UMIT, a gray filled circle indicates the estimate of the
doping level of the pseudogap to metal critical end point in the normal state (see Fig. 2).
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Let us now turn to the doping evolution of the probabili-
ties of the cluster sectors in the superconducting state (filled
symbols). Overall, upon condensation the probability of the
four-electron singlet S4 increases at the expense of the proba-
bility of the four-electron triplet T4, whereas the probabilities
of the three-electron doublet D3 and the two-electron singlet
S2 do not change appreciably.

Physically, this means that, for all values of U , upon con-
densation the system lowers its energy by a redistribution
of mainly short-range spin, but not charge, excitations, and
electrons in Cooper pairs are locked into short-range spin
singlets due to superexchange. These four-electron S4 sin-
glets are already the dominant configuration in the underlying
normal state pseudogap. As we shall discuss in Sec. V, upon
condensation these singlets propagate coherently in the lattice.
Our results complement the findings for the t-J model around
optimal doping of Refs. [16,52].

To better understand the doping evolution of the plaque-
tte fluctuations between singlet S4 and triplet T4, we show
the difference �P between the probabilities of each of these
two sets between the normal and the superconducting phases
(red and blue, respectively) in the insets of each panel.
For U > UMIT, this difference is nonmonotonic with doping.
Examining panel (b) for U = 6.2, upon condensation the
probability of the S4 singlet shows minimal change at low
doping, with a rapid increase as the doping is increased past
the critical end point of the normal state pseudogap-metal
first-order transition (gray dot). The difference �P eventually
decreases again approaching the end of the superconducting
dome to recover the normal phase probabilities. At higher
U , the trend of the difference for the singlet is similar, but
instead shows a gradual increase to a broad maximum. This is
possibly because of the temperature dependence of the prob-
abilities in the normal state—indeed, the critical end point
of the pseudogap-metal transition in the normal state shifts
to lower temperature and higher doping with increasing U .
Note that for U = 6.2, T = 1/50 is in close proximity to this
transition.

Overall, our analysis on the plaquette sectors provides two
main insights on the superconducting correlations. First, it
establishes that at the level of the cluster, superconductivity
mainly entails a reorganization of short-range spin correla-
tions rather than charge correlations. Second, it identifies
short-range spin correlations in the form of four-electron sin-
glets as key to superconducting pairing.

Note that, even if isolated plaquettes show tendencies to
singlet formation [70,71], it is only when these singlets are
immersed in the self-consistent bath, which takes into account
the effect of the infinite lattice, that superconductivity can
arise. The behavior of the bath is thus analyzed in the next
session.

V. SELF-CONSISTENT BATH HYBRIDIZATION
FUNCTION

The preceding section demonstrated that upon condensa-
tion there is a redistribution of the probability of the plaquette
sectors. This redistribution is small and involves mainly short-
range spin (singlet S4, triplet T4) but not charge (doublet D3)
excitations. In CDFMT, however, the plaquette is not isolated

but is embedded in a self-consistent bath of noninteracting
electrons. The plaquette exchanges electrons with the bath,
and it is through this exchange that the plaquette is able to
make transitions between the 256 available plaquette eigen-
states. Furthermore, the d-wave symmetry is broken in the
bath. The goal of this section is therefore to analyze the behav-
ior of the bath upon condensation, which is described by the
Nambu diagonal hybridization matrix function �. Note that
although we separate the discussion of the behavior of the bath
from that of the plaquette for practical purposes, they are not
independent quantities: the plaquette is immersed in the bath,
which is self-consistently determined. Therefore, the behavior
of the plaquette influences that of the bath and vice versa.

Figure 6 shows −Im�K(ω) both in the normal and su-
perconducting states (dashed and filled lines, respectively).
In the superconducting case, �K(ω) is the Nambu diago-
nal (i.e., normal) hybridization function [see Eq. (21)]. For
both normal and superconducting cases, −Im�K(ω) gives
the (normal) spectral function of the bath resolved in the
cluster momentum K. This quantity is shown for the values
of interaction, doping, and temperature corresponding to the
filled hexagons of Fig. 2. We perform the analytical continu-
ation from imaginary to real frequencies using the method of
Ref. [72], and we plot the independent diagonal components
K = (0, 0), (π, 0), (π, π ) of the matrix � in the energy win-
dow ω ∈ (−2, 2). The behavior of the bath has been described
in the normal state in Refs. [16,50], and in Ref. [48] for a
two-site cluster. The focus of the present work is to analyze
the behavior in the superconducting state and contrast it with
that in the normal state. Hence, for a better visualization we
show the superconducting solution shaded.

We shall first briefly review the properties of the K-
resolved spectral function of the bath in the normal state, as
prior work [16,50] mostly focused on the spectral function of
the bath on the Matsubara frequency. The bath shows finite
spectral weight close to the Fermi energy, displaying metallic
[panels (a), (b), (d), (f), and (h)] or pseudogap [panels (c),
(e), and (g)] behavior. The latter takes a markedly asymmetric
shape, with a more pronounced peak below the Fermi energy.
In all cases, the bath is weakly K-dependent close to the Fermi
energy.

Upon entering into the superconducting phase, the Nambu
diagonal spectral function of the bath shows a dramatic redis-
tribution of spectral weight at low frequency. A redistribution
of the spectral weight in the bath is expected because in
CDMFT, d-wave symmetry is broken in the bath but not in the
cluster. For all interaction strengths and dopings considered,
the bath opens a superconducting gap. Superconductivity
emerging from a pseudogap [panels (c), (e), and (g)] leaves
a distinct signature in the spectral function of the bath, in
the form of an inherited asymmetry of the superconducting
gap. The position of the superconducting coherence peaks is
different from the position of the peaks of the pseudogap.
Upon doping, the size of the gap narrows [panels (b), (d),
(f), and (h)] and becomes more symmetric, particularly for
K = (π, 0). Similarly to the normal state, the bath in the
superconducting state shows a weak K-dependence at low
frequency.

The results of Fig. 6 can be summarized by computing the
local density of states of the bath Nbath(ω) = −Im�R=(0,0)(ω).
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FIG. 6. Imaginary part of the hybridization function −Im�K(ω) for several values of U and δ, corresponding to the filled hexagons in
Fig. 2. The dashed line shows the normal state solution, whereas the filled line with a shaded region denotes the normal component of the
superconducting state solution. Each panel shows the spectral function corresponding to cluster momenta K = (π, 0), (0, 0), (π, π ) (shifted by
0.5 each for a better visualization). Analytical continuation has been done using the method of Ref. [72]. Each spectral function is normalized
to 1.

Its low-frequency part is shown in Fig. 7 with the same color
code as Fig. 6. The inset of each panel shows the full fre-
quency range of Nbath(ω), where the lower and upper Hubbard
bands can be seen.

To conclude this section on the behavior of the (Nambu
diagonal) spectral function and local density of states of
the bath, our main finding is therefore a dramatic spectral
weight redistribution at low frequency upon superconducting
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FIG. 7. Local density of states of the bath Nbath(ω) = −Im�R=(0,0)(ω) for the same values of U and δ as in Fig. 6, which correspond
to the filled hexagons in Fig. 2. The dashed line shows the normal state solution, whereas the filled line with a shaded region denotes the
superconducting state solution. Insets in each panel show Nbath(ω) in the superconducting state on the full spectrum of the frequency. As in
Fig. 6, the normalization of each density of states is equal to 1.
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FIG. 8. Imaginary part of the Green’s function −ImḠK(ω) for different values of U and δ corresponding to the filled hexagons in Fig. 2. The
dashed line shows the normal state solution, whereas the filled line with a shaded region denotes the normal component of the superconducting
state solution. Each panel shows the spectral function corresponding to cluster momenta K = (π, 0), (0, 0), (π, π ) (shifted by 0.5 each for a
better visualization). Each spectral function is normalized to 1.

condensation, which leads to the opening of a superconduct-
ing gap. The bath hybridization function �K(ω) describes the
hopping processes of the electrons between the plaquette and
the bath, therefore a superconducting gap in �K(ω) suggests
no dissipation of the dynamics of these one-particle hopping
processes. The increased coherence in the superconducting
state can also be deduced from the suppressed electronic
entropy [42]. This study also paves the way for future in-
vestigations of the Nambu off-diagonal (i.e., anomalous)
component of the spectral function of the bath, which gives
information about the pairing dynamics. Since this anomalous
component is not positive-definite, analytical continuation is
more challenging [37,73,74].

VI. CONSEQUENCES ON THE DENSITY OF STATES OF
THE SYSTEM AND SPIN SUSCEPTIBILITY

Sections IV and V have shown how superconductivity is re-
alized in CDMFT at the level of the cluster quantum impurity
problem. We found that upon entering the superconducting
state, there is a redistribution of the probabilities of the plaque-
tte sectors and of the spectral weight of the bath hybridization
function. In this section, we show how this analysis can pro-
vide new insights of the behavior of the density of states of
the system and of the zero-frequency spin susceptibility.

A. Density of states of the system

Figure 8 shows the imaginary part of the (normal) Green’s
function −ImḠK(ω), which gives the (normal) spectral func-
tion of the system. Figure 9 shows the resulting local density

of states of the system N (ω) = −ImḠR=(0,0)(ω). Data are
shown for both the normal and superconducting state (dashed
lines and filled lines with shaded regions, respectively). Pre-
vious studies have analyzed the behavior of these quantities
[16,18,19], but the new insight brought by our study lies in
the comparison of the Green’s function and the hybridization
function, in the superconducting state. In single-site DMFT
on the Bethe lattice, the self-consistency condition requires
� = t2Ḡ, so the bath is directly proportional to the Green’s
function. Therefore, in CDMFT, differences between � and
Ḡ should be ascribed to the short-range correlations that are
incorporated in the cluster.

First, we will briefly recap the behavior of the spec-
tral function of the system in the normal state, analyzed in
Refs. [50,62]. In sharp contrast with Fig. 6 for the bath, the
Green’s function is strongly K-dependent. At low doping, the
spectral function of the bath in Fig. 6 shows an asymmetric
pseudogap for all K-components. In Fig. 8 there is instead
an asymmetric pseudogap in the K = (π, 0) component only,
with the K = (π, π ) component showing insulating-like be-
havior. Therefore, the strong K-differentiation is linked to
short-range correlations within the cluster. At high doping,
the flat behavior of the bath hybridization function at low
frequency for all K in Fig. 6 is replaced in Fig. 8 by a
quasiparticle peak in the K = (π, 0) component.

We now turn to the analysis of the superconducting phase.
Again, for all values considered here, the Nambu diago-
nal spectral function of the system shows marked cluster
momentum differentiation, in contrast with the behavior of
the bath, emphasizing again the importance of short-range
correlations included in the cluster. The bath hybridization
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FIG. 9. Low-frequency part of the local density of states N (ω) of the system for the values of U , δ, and T indicated by filled hexagons in
Fig. 2. The solid line with a shaded region indicates the superconducting state, while the dashed line indicates the normal state. Insets show the
density of states of the system N (ω) in the superconducting state on the full spectrum of the frequency. Each density of states is normalized
to 1.

function in Fig. 6 shows superconducting coherence peaks
for all K components. In Fig. 8 the coherence peaks man-
ifest predominantly in the K = (π, 0) component and to a
lesser degree in the K = (0, 0) component. At low dop-
ing for U > UMIT [panels (c), (e), and (g)], the spectral
function in the superconducting state reflects the inher-
ited particle-hole asymmetry of the underlying normal-state
pseudogap.

We can summarize the results of Fig. 8 in the local density
of states, Fig. 9. Upon condensation, the density of states
develops a superconducting gap across the Fermi energy. The
redistribution of spectral weight between the normal and su-
perconducting state occurs over a range of frequency larger
than the gap—a typical signature of strongly correlated super-
conductivity. The asymmetry in the superconducting state is
inherited from the asymmetry in the pseudogap. However, as
has already been observed in Refs. [19,75], the magnitude of
the superconducting gap differs from that of the pseudogap,
implying they are two distinct phenomena. The width of the
superconducting gap decreases with increasing doping. Note
that the system is a dx2−y2 superconductor, however a cluster
larger than a 2 × 2 plaquette is needed to resolve the nodes
along the diagonals of the Brillouin zone. If we compare
Figs. 9 to 7, the overall shape is similar, however the mag-
nitude of the coherence peaks is enhanced in Ḡ compared
to �. This reflects the fact that superconducting fluctuations
are also present in the cluster through the Nambu off-diagonal
hybridization function and self-energy.

Overall, the comparison between the spectral functions of
� and Ḡ enabled us to identify key signatures of short-range
correlations in the spectral functions of the system: enhanced
coherence pics and strong cluster momentum dependence.

B. Zero-frequency spin susceptibility

Next, we turn to the signatures of the superconducting
correlations in the zero-frequency spin susceptibility. This
quantity is defined by χ0(T ) = ∫ β

0 〈Sz(τ )Sz(0)〉dτ , where Sz

is the projection of the total spin of the plaquette along the
z direction. Figures 10(a)–10(d) show χ0(T ) as a function of
temperature T , both in the superconducting and normal states
(filled and open symbols, respectively). Data are shown for
several values of U and δ, corresponding to the color-coded
hexagons in Fig. 2.

The temperature and doping behavior of χ0 in the normal
state has been discussed in Refs. [50,62,64]. In the normal
state, χ0(T ) is Pauli-like in the correlated metal found below
UMIT [green and red circles in panel (a)] and above UMIT at
large δ [red circles in panels (b), (c), and (d)]. In contrast,
for U > UMIT χ0(T ) and small doping [blue circles in panels
(b), (c), and (d)], χ0(T ) shows a low-temperature drop. By
looking at the behavior of the probabilities of the cluster
sectors as a function of temperature, it can be seen that the
drop in the spin susceptibility coincides with an increase in the
probability of the four-electron singlet [see the lower panels
(e)–(h)] as noted in Ref. [62]. The maximum in χ0(T ) signals
the crossover temperature T ∗ in Fig. 2, which indicates the
opening of the strongly correlated pseudogap.

Let us now turn to the superconducting state. Our main
finding is that χ0(T ) dramatically drops below the supercon-
ducting temperature T d

c , for all doping levels and all values
of U considered here [filled squares in Figs. 10(a)–10(d)].
The drop can be associated with the further increase of the
probability of the four-electron singlet that occurs upon enter-
ing the superconducting state below T d

c [see panels (e)–(h)].
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FIG. 10. (a)–(d) Zero-frequency spin susceptibility χ0 vs temperature T . Data are shown for several values of U and δ, corresponding to the
filled hexagons in the T -δ phase diagram of Fig. 2. Filled squares correspond to the superconducting state solution. Empty circles correspond
to the normal state solution. (e)–(h) Temperature dependence of the superconducting and normal state probabilities of the four-electron singlet
S4. Data are shown for the same values of top panels.

Physically, Cooper pairs in the superconducting state are
locked into singlets, and hence spin fluctuations to other
cluster configurations are reduced. When superconductivity
emerges from a metallic state (red curve) there is a more
pronounced drop in the spin susceptibility compared to super-
conductivity emerging from a pseudogap (blue curve). This
is because singlet formation already occurred at T ∗ in the
underlying normal state.

Note that in the superconducting state at low temperature,
χ0(T ) saturates at a nonzero value, mirroring the saturation
of the singlet probability with temperature (see lower panels).
This saturation is due to the persisting probability of states
such as the four-electron triplet T4 and the three-electron
doublet D3 at low temperature, and hence residual spin flip-
ping due to fluctuations between configurations requires that
χ0 �= 0 at finite doping. The spin susceptibility χ0(T → 0)
drops to zero in the normal state Mott insulator at δ = 0 and
large U (see Refs. [50,62]). This is because in the Mott state
at low T and large U the four-electron singlet probability
approaches 1. In the superconducting state, the magnitude
of χ0(T ) when superconductivity condenses from a metal
exceeds that condensing from a pseudogap. This is due to the
doping evolution of the probabilities of the plaquette sectors,
where upon doping the high probability of the dominant S4

singlet is redistributed across other plaquette sectors, meaning
an increase in fluctuations between different configurations,
and thus an increase in χ0(δ).

The results of χ0 should be considered only as a proxy for
understanding the trend of the Knight shift in NMR [76,77].
In a pure singlet superconductor, χ0 drops to zero at zero
temperature. This is because electrons in the Cooper pairs
locked into singlets cannot be polarized by an applied mag-
netic field, and thus χ0(T ) drops below the superconducting
critical temperature. However, the χ0 we calculate here is a

cluster quantity, and as seen χ0(T ) cannot drop to zero at finite
doping.

Overall, our comparison between the zero-frequency sus-
ceptibility and the cluster sector probabilities allowed us to
link key features of χ0 to the redistribution of short-range
correlations with temperature and doping.

VII. CONCLUSIONS

We address the interplay between superconducting correla-
tions and Mott physics in the two-dimensional Hubbard model
solved with CDMFT on a 2 × 2 plaquette. Our approach takes
the perspective of a cluster quantum impurity model embed-
ded in a self-consistent bath. Thus we focus on the properties
of both the cluster and the bath. To unveil microscopic trends
in the superconducting correlations, our analysis (a) compares
the superconducting state with the underlying normal state
and (b) covers a wide range of interaction strength, doping,
and temperature.

First, at the level of the plaquette, we compute the probabil-
ities that cluster electrons are found in the cluster sectors. We
observe that few states have high probability. Upon entering
the superconducting state, the cluster electrons spend more
time in the four-electron singlet set of sectors S4, suggesting
the electrons in the Cooper pairs are bound into short-range
spin singlets due to superexchange mechanism. This finding
enables us to identify short-range spin correlations in the form
of singlets as central to superconducting pairing. Furthermore,
our results show an increase in the probability of the four-
electron singlet mostly at the expense of a decrease of the
four-electron triplet probability, with a negligible probability
redistribution of the charge fluctuations. The implication of
this finding is that superconductivity at the level of the cluster
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mainly involves a reorganization of short-range spin correla-
tions but not of charge correlations.

At the level of the self-consistent bath, upon entering the
superconducting state we find a redistribution of the spectral
weight of the cluster-momentum-resolved (normal) spectral
function and of the resulting local density of states of the
bath. The most notable feature is the appearance of a super-
conducting gap and the weak K dependence of the diagonal
bath hybridization function.

Our analysis from the perspective of a cluster quantum
impurity model in a self-consistent bath can help us to
unveil the links between superconducting correlations and
some features of the spectral function and of the density
of states of the system, as well as the zero-frequency spin
susceptibility of the plaquette. In the superconducting state,
short-range correlations give rise to a marked K-dependence
of the spectral function of the system, and pronounced
coherence peaks in the density of states. Upon supercon-
ducting condensation, the spin susceptibility drops, mirroring
the increase in the probability of the four-electron singlet
state.

Overall, our work underscores the importance of short-
range spin correlations in the formation of Cooper pairs
in a doped Mott insulator. This suggests the possibility
of controlling superconducting properties by tuning the
probability of the four-electron singlet, for example by in-
troducing frustration at the level of the hopping or the lattice
geometry.

From a broader perspective, our work illustrates the value
of the approach of analyzing both cluster impurity and bath
[78]. Thus our work may open up a new direction to analyze
other strongly correlated models with cluster DFMT methods,
from the perspective of a quantum impurity model embedded
in self-consistent bath.

This work may also contribute to the goal of understanding
quantum phases of matter using measures of entanglement
[40,42,63,67,79]. Further refinement of the method may en-
able access to the off-diagonal elements of the reduced density
matrix [80,81], which would be key to enabling the calcula-
tion of more sophisticated measures of quantum entanglement
[40,41].
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APPENDIX: LIST OF PLAQUETTE SECTORS

Table I shows the list of the plaquette sectors.

TABLE I. List of the plaquette sectors.

No. of Total cluster Cluster momentum Sector Sector
particles N spin Sz K dimension index m

0 0 (0,0) 1 1
1 ±1/2 (0,0) 1 2, 3
1 ±1/2 (0, π ) 1 4, 5
1 ±1/2 (π, 0) 1 6, 7
1 ±1/2 (π, π ) 1 8, 9

2 ±1 (0, π ) 2 10, 11
2 ±1 (π, 0) 2 12, 13
2 ±1 (π, π ) 2 14, 15
2 0 (0,0) 4 16
2 0 (0, π ) 4 17
2 0 (π, 0) 4 18
2 0 (π, π ) 4 19

3 ±3/2 (0,0) 1 20, 21
3 ±3/2 (0, π ) 1 22, 23
3 ±3/2 (π, 0) 1 24, 25
3 ±3/2 (π, π ) 1 26, 27
3 ±1/2 (0,0) 6 28, 29
3 ±1/2 (0, π ) 6 30, 31
3 ±1/2 (π, 0) 6 32, 33
3 ±1/2 (π, π ) 6 34, 35

4 0 (0,0) 12 36
4 0 (0, π ) 8 37
4 0 (π, 0) 8 38
4 0 (π, π ) 8 39
4 ±1 (0,0) 4 40, 41
4 ±1 (0, π ) 4 42, 43
4 ±1 (π, 0) 4 44, 45
4 ±1 (π, π ) 4 46, 47
4 ±2 (0,0) 1 48, 49

5 ±3/2 (0,0) 1 50, 51
5 ±3/2 (0, π ) 1 52, 53
5 ±3/2 (π, 0) 1 54, 55
5 ±3/2 (π, π ) 1 56, 57
5 ±1/2 (0,0) 6 58, 59
5 ±1/2 (0, π ) 6 60, 61
5 ±1/2 (π, 0) 6 62, 63
5 ±1/2 (π, π ) 6 64, 65

6 ±1 (0, π ) 2 66, 67
6 ±1 (π, 0) 2 68, 69
6 ±1 (π, π ) 2 70, 71
6 0 (0,0) 4 72
6 0 (0, π ) 4 73
6 0 (π, 0) 4 74
6 0 (π, π ) 4 75

7 ±1/2 (0,0) 1 76, 77
7 ±1/2 (0, π ) 1 78, 79
7 ±1/2 (π, 0) 1 80, 81
7 ±1/2 (π, π ) 1 82, 83

8 0 (0,0) 1 84
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