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We study the interplay between collective electronic and lattice modes in polar metals in an applied magnetic
field aligned with the polar axis. Static spin-orbit coupling leads to the appearance of a particle-hole spin-flip
continuum that is gapped at low energies in a finite field. We find that a weak spin-orbit assisted coupling between
electrons and polar phonons induces the emergence of electronic collective modes. The strength of the applied
magnetic field tunes the number of modes and their energies, which can lie both above and below the particle-hole
continuum. For a range of field values, we identify Fano-type interference between the electronic continuum and
phonons. We show that signatures of these collective modes can be observed in optical spectroscopy experiments,
and we provide the corresponding theoretical predictions.
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I. INTRODUCTION

Polar metals are metallic analogs of ferroelectrics, as in
these materials, a transition isostructural to a polar one occurs
without the development of a macroscopic electric-dipole mo-
ment; these systems break inversion symmetry [1–7]. Polar
metals have recently been proposed as promising platforms
for the realization of strongly correlated electronic phases,
particularly near polar quantum critical points [8–14]. These
studies have been motivated by the unconventional transport
and superconducting properties of SrTiO3; consensus on the
origin of its superconductivity has not yet been achieved, and
most theoretical proposals rely on novel forms of electron-
phonon coupling [12,15–20].

One class of exotic pairing proposals [8,9] involves the
coupling of the polar displacement to the electronic spin
current; it may be particularly relevant for KTaO3 [21,22]. Re-
cently, we have shown [23] that the strength of this spin-orbit
mediated electron-phonon interaction in a nearly polar metal
can be measured by probing the evolution of its collective
excitations in an applied magnetic field; the polar phonon
hybridizes with the Silin-Leggett modes [24–27], resulting in
an avoided crossing and a gap that is a function of the coupling
strength [23].

Here we demonstrate that in a polar metal with sponta-
neously broken inversion symmetry, new collective modes
emerge due to the same Rashba-type electron-phonon cou-
pling mechanism. The breaking of inversion symmetry then
violates Kramers’ theorem, lifting the spin degeneracy via
Rashba spin-orbit coupling. Previously, electron-electron in-
teractions have been predicted to result in new collective
modes in purely electronic systems with Rasbha coupling:
chiral spin waves, that are oscillations of the magnetization
even in the absence of an external magnetic field [28–37].
These chiral spin waves have been subsequently observed
in Raman spectroscopy in several systems with [38–41] and

without [42] external magnetic fields. However, the possi-
bility of new collective excitations due to spin-orbit assisted
electron-phonon interactions, particularly with low-energy
phonons, has not been addressed in these previous reports.

In this paper we consider the emergence of collective
modes in a polar metal close to its polar transition that is
driven by phonon softening. We find that the spin splitting
due to the emergent violation of Kramers’ theorem results
in the appearance of electronic collective modes and phonon
Fano resonances even in zero magnetic fields due to the pres-
ence of a structured spin excitation continuum. At zero fields,
the spin-excitation continuum is gapless at low energies, and
interaction-induced modes exist only above the spin excitation
continuum. However, an applied magnetic field along the po-
lar axis gaps out the continuum at low energies and collective
modes emerge both below the gap and above the gap even
at weak coupling. Tuning of the applied field strength and
proximity to the polar transition allows one to control the
energy, number, and character (electronic or phononic) of
these collective modes. Finally, we show that these modes
can be observed as resonances in electronic optical spec-
troscopy [electron spin resonance (ESR) and electric-dipole
spin resonance (EDSR)] experiments, as illustrated schemat-
ically in Fig. 1; both ESR and EDSR show resonances at
same frequencies. These spectroscopies probe only spin-flip
excitations. However, the difference is that in the nonpolar
phase (T > Tc) it has a sole feature at the Zeeman energy
[Fig. 1(a)] which is protected from renormalization due to
the spin-orbit assisted electron-phonon interaction, whereas in
the polar phase (T < Tc), ESR and EDSR capture interaction
effects and probe interaction-induced renormalized phonons
(red and blue peaks) as well as electronic collective modes
(yellow peak) both above and below the particle-hole contin-
uum [Fig. 1(b)]. We note that these phenomena can occur near
both classical and quantum phase transitions (Tc → 0), where
in the latter case the tuning parameter could be nonthermal
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FIG. 1. A schematic of the predicted spin resonance response,
electron spin resonance (ESR) and electric-dipole spin resonance
(EDSR), of collective modes in a weakly spin-polarized metal in the
(a) nonpolar and (b) polar phases. (a) In the nonpolar phase (T > Tc),
the only spin response signal is due to the spin-flip transition at the
Zeeman energy. (b) In the polar phase (T < Tc), several new features
appear in the spin response spectrum: There is a gapped particle-hole
continuum (blue shaded region), and a finite response from polar
phonons polarized parallel (blue) and perpendicular (red) to the po-
lar axis. Finally, the spin-orbit assisted electron-phonon interaction
leads to the appearance of an electronic collective mode below the
continuum (yellow). The energy and number of these modes can be
controlled by the magnitude of the magnetic field as discussed in the
text.

with examples including pressure or chemical doping [43,44].
Our work demonstrates the emergence of magnetically active
collective modes arising from interaction between electrons
and the crystalline lattice fluctuations.

The rest of the paper is organized as follows. In Sec. II
we describe our model and our general strategy of studying
the collective modes and the electronic spin response in polar
metals with spin-orbit coupling and Zeeman field. First, in
Sec. II A we adopt a Ginzburg-Landau approach to derive the
phonon propagator in the polar phase, and then in Sec. II B
discuss spin susceptibility calculation method. In the same
Sec. II B we also provide a relation between ESR and EDSR
responses which indicates that the resonance features in both
show up at same frequencies. Section III deals with the spec-
tra of collective modes in polar metals. In Sec. III A, we

discuss phonon self-energy at zero (Sec. III A 1) and finite
(Sec. III A 2) magnetic fields. In Sec. III B we discuss phonon
response, or poles of full phonon Green’s function (collective
modes), at zero (Sec. III B 1) and finite (Sec. III B 2) magnetic
fields. Section IV is devoted to the details of the electronic
spin response where we discuss the excitation of collective
modes at zero (Sec. IV A) and finite (Sec. IV B) magnetic
fields. Finally, in Sec. V we present our conclusions and
discuss the experimental prospects of the effects predicted in
this paper. Technical details of the calculations are delegated
to Appendixes A and B.

II. MODEL AND GENERAL FORMALISM

In this section we present our general strategy to study
phonon-induced electronic collective modes in spin-orbit cou-
pled polar metals under applied magnetic field. Collective
modes can be identified with the poles of the phonon prop-
agator renormalized by the electron-phonon interaction [23].
Furthermore, these collective modes can be accessible to ESR
and EDSR experiments if they result in poles of their corre-
sponding response functions, spin susceptibility, and optical
conductivity. This requires broken inversion symmetry so
these measurements must be performed in the polar phase, as
will be discussed in detail in Sec. IV.

We now a construct a Hamiltonian for an ordered polar
metal with spin-orbit assisted electron-phonon interactions in
an applied magnetic field. We start with the electronic part,
and the phonon contribution will be discussed in Sec. II A.

Let us consider a single parabolic band model for the
conduction electrons. We also assume that �Z � μ, where
μ and �Z = gμBB are the chemical potential and the Zeeman
splitting, respectively; here μB is the Bohr magneton, g is the
Lande g factor, and B is the strength of the applied magnetic
field. Without loss of generality we take the local polar order
to be aligned along the ẑ axis. The full electronic Hamiltonian
can then be written as

Ĥ = Ĥ0 + Ĥel-ph, (1)

where Ĥ0 is given by

Ĥ0 =
∑
k,s

εkψ
†
k,sψk,s + 1

2
gμB

∑
k,s,s′

B · σ̂ss′ψ
†
k,sψk,s′ . (2)

Here εk = k2/2m − μ is the single-electron dispersion, m is
the band mass, and B = Bẑ is the magnetic field, chosen to
be parallel to the polar axis. As we will discuss shortly in
Sec. III A 2, only this orientation leads to the opening of a
gap in the spin excitation continuum for weak fields, resulting
in the new collective modes. We note that here we do not
consider orbital magnetism since ultimately we are interested
in identifying experimental signatures of the collective modes
we are studying. At finite temperatures with ever present dis-
order, orbital magnetism is suppressed strongly compared to
its spin counterpart; this phenomenon is known as the “Dingle
reduction factor” and more details can be found in Ref. [23].

For Ĥel-ph, we consider a spin-orbit assisted electron-
phonon coupling given by a Rashba-type Hamiltonian
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[8,9,11,16–19,23,45–47]:

Ĥel-ph = λ
∑
k,q

∑
s,s′

ψ
†
k+q/2,s[(k × σ̂ss′ ) · Pq]ψk−q/2,s′ , (3)

where λ is the electron-phonon coupling constant, ψ
†
k,s (ψk,s)

is the electron creation (annihilation) operator with momen-
tum k and spin s =↑,↓, σ̂ is the Pauli matrix for spin (or
Kramers “pseudospin” quantum number), and Pq is the local
polarization of the crystal at finite momentum q which is pro-
portional to the optical phonon displacement field (uq), ionic
charge density (n0), and Born effective charge (Ze) according
to the formula Pq = n0(Ze)uq. In the polar metal phase, the
local polarization field Pq can be expressed as a sum of two
terms,

Pq = P0δ(q) + δPq, (4)

where P0 is a finite expectation value at q = 0 and δPq refers
to the fluctuations about this average value. Thus, Ĥel-ph can
be split in two parts:

Ĥel-ph = ĤSOC + δĤSOC. (5)

The second term, δĤSOC, is simply equivalent to (3) with
Pq → δPq. ĤSOC, on the other hand is obtained by substituting
the first term of (4) into (3). One obtains then the (static)
Rashba SOC Hamiltonian [48,49]

ĤSOC = α
∑
k,s,s′

ψk[(k × σ̂ss′ ) · n̂]ψk, (6)

where n̂ is a unit vector parallel to the polar order parameter
P0, with P0 ‖ ẑ, and α = λ|P0|. We emphasize that this static
Rasbha interaction (6) is absent in the nonpolar phase [23].

The eigenvalues and eigenvectors of the single-particle
Hamiltonian

Ĥsingle = Ĥ0 + ĤSOC, (7)

defined in Eqs. (2) and (6), are

εr
k = k2

2mb
+ r

2
�k,�k =

√
4α2k2 sin2 θ + �2

Z ;

|r〉 =
(

ire−iφ (r�Z +�k )1/2√
2�k

(−r�Z +�k )1/2√
2�k

)
, (8)

where r = ±1 is the chirality of the spin-split subbands, and
θ and φ are the polar and azimuthal angles of k, respectively.
At finite doping, the contour of two static-Rashba SOC split
Fermi surfaces in the absence and in the presence of an applied
magnetic field is shown in Figs. 2(a) and 2(b), respectively.

The Hamiltonian (7) does not include Coulomb inter-
actions between electrons. Indeed, in polar metals near
polar criticality, Coulomb interaction effects on electrons are
suppressed by the large dielectric constant [12,23,50]. Fur-
thermore, sufficient density of conduction electrons makes the
effects of Coulomb interaction on phonons [i.e., the splitting
between longitudinal optical (LO) phonons and transverse
optical (TO) ones] negligible too [23]. Here we will always
assume carrier densities to be large enough such that the
LO-TO distinction can be neglected.

FIG. 2. Schematic of the Fermi surface in the presence of a
static Rashba spin-orbit interaction (a) in the absence and (b) in the
presence of a magnetic field parallel to the polar axis (P0 ‖ ẑ). The
colors mark the Fermi surfaces of the two spin-split subbands. The
Zeeman splitting (b) removes the degeneracy between bands along
the z axis and leads to a gap in the spin excitation spectrum.

A. Anisotropy in the phonon propagator

We use a symmetry-based approach to determine the form
of the bare phonon propagator in the ordered polar metallic
phase. The Matsubara (imaginary-) time Lagrangian density
in the phonon field for cubic symmetry up to the quartic order
is given by [51]

Lph = 2π

�2
0

⎛
⎝1

2

∑
i

Ṗ2
i + w2

2

∑
i

P2
i + 1

4

∑
i j

(g + viδi j )P
2
i P2

j

⎞
⎠,

(9)

where Ṗi is the time derivative of the order parameter, δi j is
the Kronecker delta, and i and j are the Cartesian indices
x, y, and z. The prefactor 2π/�2

0 is for proper normalization,
where �0 is proportional to the ionic plasma frequency ωpi

[12,23]. In this work we focus on the q = 0 modes and thus
we have omitted spatial derivative terms in the Lagrangian (9).
The quadratic term (w2) of (9) results in the mass (frequency)
of the bosons while the quartic terms (g and vi) represent local
anharmonic interactions. Here we assume cubic symmetry
which allows us to take vi = v. The term proportional to g
is rotationally invariant and is thus insensitive to the order-
parameter orientation. By contrast, the term proportional to
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FIG. 3. Schematics of the phonon excitations above (left) and
below (right) the polar Tc. For T < Tc, a macroscopic phonon dis-
placement develops, leading to spontaneous inversion symmetry
breaking. The associated phonon excitations become anisotropic, as
represented by fluctuations along (solid blue circles) and perpendicu-
lar (solid red circles) to the direction of the local polar order (P0 ‖ ẑ).

v breaks the O(3) rotational symmetry down to a discrete one
for the cubic lattice. Its sign determines the polarization orien-
tation in the ordered phase (along the main axis or diagonals
of the unit cell). For dimensional consistency, we recall that
here the order parameter P has the same dimension as the
electric field. One can then deduce the dimensions of g and
v as that of the inverse density of states (in three dimensions).

Since we consider the polar order aligned with the z axis,
a simple minimization of the Lagrangian with respect to Pz

(assuming Px = Py = 0) gives

P0z = ±
√

− w2

g + v
, (10)

where w2 < 0, which corresponds to the two ground states of
the system emerging due to spontaneous symmetry breaking
in the ordered phase, as schematically shown in Fig. 3 (right
panel). Figure 3 (left panel) is the representative of nonpolar
(paraelectric) phase.

Even though the polar order is oriented along the z axis,
fluctuations in the polar order are present in all directions with

Px = δPx, Py = δPy, and Pz = P0z + δPz, (11)

where P0z is given in Eq. (10). When we subsitute (10) and
(11) into (9), we get the imaginary-time Lagrangian up to
second order in the fluctuations as

δLph ≈ 2π

�2
0

(
1

2

∑
i

δṖ2
i − w2δP2

z + vw2

2(g + v)

(
δP2

x + δP2
y

))
,

(12)
where a constant shift has been absorbed. We note that the
transverse fluctuations have acquired a mass that is propor-
tional to v, and thus is physically due to the cubic anisotropy
breaking the O(3) rotational symmetry. Since the coefficients
of δP2

z and δP2
x,y in (12) have different signs, stability of the

ordered phase requires that v and g must have different signs:
g > 0, v < 0 with g > |v|.

We can now express the bare phonon propagator in the
polar phase (recovering q dependence as well for generality)

as

D0
αβ (q, ωm) = − �2

0

2π

(
δαz

ω2
m + 2ω2

q
+ δα,(x,y)

ω2
m + |v|ω2

q

g−|v|

)

× eα (q)eβ (q), (13)

where ωm is the Matsubara frequency, eα (q)eβ (q) = δαβ is
the polarization factor, and ω2

q = −w2 > 0. We next assume
q = 0 for the soft polar modes, and also consider only large
carrier density so that the LO-TO splitting can be neglected
[23]. Given these assumptions, the expression for the bare
phonon propagator, (13), simplifies to

D0
αβ (ωm) = −δαβ

�2
0

2π

(
δαz

ω2
m + ω2

‖
+ δα,(x,y)

ω2
m + ω2

⊥

)
, (14)

where ω‖ = √
2ω0 and ω⊥ = ω0

√|v|/(g − |v|), with ω0 ≡
ωq(q = 0) as the polar phonon frequency.

B. Spin susceptibility, ESR, and EDSR

In this section we describe the framework used to calculate
the spin susceptibility; this then allows us to identify and char-
acterize phonon-induced electronic collective modes and their
observable signatures in ESR experiments. More specifically,
we demonstrate that the interaction correction to the spin
susceptibility depends on the spin–spin-current correlation. It
will be explicitly shown in Sec. IV that the spin–spin-current
correlation is proportional to the static Rasbha parameter
α = λ|P0|.

Ideally, an ESR experiment probes the response of the
system to an ac magnetic field that couples to the spins of
the electrons only. It is thus expected to be proportional to the
spin susceptibility. However, in a real experiment, the sam-
ple is probed by electromagnetic waves having both electric
and magnetic field components. Interestingly, in spin-orbit
coupled systems, the electric field also couples to the spin
response. This is known as electric-dipole spin resonance
(EDSR), i.e., the contribution of the spin response to the
optical conductivity [52–54]. As we show below, the ESR and
EDSR responses are related [see Eq. (16)], so the resonance
features in their corresponding response functions occur at the
same frequencies. Note, however, that typically one expects
EDSR to dominate when they overlap in frequency. Indeed,
the ratio of ESR to EDSR terms typically is controlled by a
small parameter, (lC/lF )2 ∼ 10−9–10−8, where lF is the Fermi
wavelength and lC = h̄/mc is the Compton length [29,35].

In subsequent sections we do not discuss the ESR and
the EDSR separately, but rather focus on the ESR response
(spin susceptibility) only which is related to that of the EDSR.
The resonance feature in ESR corresponds to a pole in the
imaginary part of the spin susceptibility χ ′′

i j (�), whereas that
in EDSR corresponds to a pole in the real part of optical
conductivity σ ′

i j (�). The real part of optical conductivity is
related to the imaginary part of current-current correlation
(K′′

i j) as σ ′
i j (�) = iK′′

i j/� [55]. The current operator is related

to the velocity operator which is obtained from �̂v = i[Ĥsingle +
Ĥel-ph, �̂x] [35], where Ĥsingle and Ĥel-ph are given by Eqs. (7)
and (3), respectively, with Pq in the latter is replaced by δPq.
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In our model, both the single-particle Hamiltonian (this
includes static Rashba) and the interaction Hamiltonian (dy-
namical Rashba) do not commute with the position operator
(�̂x). This indicates that the velocity operator (spin part) will
have contributions from both static and dynamical Rashba
terms. However, the contribution of the dynamical Rashba
term can be ignored compared to the static term for a range
of the GL parameters g and v. According to Eqs. (6) and (10),
the coefficient of static Rashba term (α) is proportional to
P0z ∝ 1/

√
g − |v|. If we assume (g, |v|) → (ag, a|v|), where

a > 0 is some small parameter, then the coefficient of static
Rashba term transforms as α → α/

√
a. Knowing that the

dynamical Rashba term eventually leads to phonon prop-
agator, with phonon frequencies as ω‖ = √

2ω0 and ω⊥ =
ω0

√|v|/(g − |v|) (14), the similar transformation as above
leaves the dynamical term invariant. This provides a clear
limit where the static Rashba term would be dominant over
the dynamical Rashba term. In what follows, we focus on this
case, leaving the study of the dynamical Rashba contribution
to the current vertex to future work.

The velocity operator, omitting the dynamical Rashba
term, is given by

�̂v ≈
(

kx

m
σ̂0 + ασ̂y,

ky

m
σ̂0 − ασ̂x,

kz

m
σ̂0

)
. (15)

With the form of velocity operator as above (15), we find that
in the frequency regime relevant for spin resonance features,
χ ′′

i j (�) and σ ′
i j (�) are related by

(σ ′
B)11(22) = e2

(gμB)2�
α2χ ′′

22(11), (16)

where σ ′
B is the conductivity component arising solely from

magnetic fields (Zeeman and effective magnetic field due to
static Rashba SOC). We note that the Drude contribution to
the optical conductivity (σ ′

0) is dominant mainly at low fre-
quencies, so its effect at finite-frequency regimes where spin
resonance features are significant would be weak for a good
quality material system. Furthermore, we also observe that
Eq. (16) holds only for in-plane components of χ ′′ and σ ′

B.
The reason is that the z component of velocity operator (15)
does not have spin character. Note that z corresponds to the
polar axis. In our model, therefore, σ ′

33 (optical conductivity
for polarization along the static polar axis) probes only the
Drude contribution.

Equation (16) entails an important information which sug-
gests that poles in planar components of the spin susceptibility
also show up in those of the optical conductivity. In the follow-
ing, we will focus our discussion only on spin susceptibility
while referring to Eq. (16) for the EDSR scenario acknowl-
edging that the absorption rate is determined by (σ ′

B)11(22) to
very high accuracy.

In order to calculate the spin susceptibility within a
weak-coupling approximation, we perform a random-phase
approximation (RPA) summation of diagrams as illustrated in
Fig. 4. The spin susceptibility is determined from a summation
of polarization bubbles [Fig. 4(a)], and includes spin–spin-
current and spin–current-spin bubbles; they are connected by
a renormalized phonon propagator, determined by a Dyson
equation [Fig. 4(b)].

FIG. 4. (a) Chainlike RPA sum of χi j . The open circle is spin (σ)
while the solid circle is a spin-current (k × σ) vertex. The double
wavy line is the renormalized phonon propagator which enters with
spin-current vertex indicating the Rashba type electron-phonon cou-
pling (3). (b) Summation scheme for phonon propagator. The single
wavy line is the bare phonon propagator (14). The renormalized
phonon propagator is obtained by inserting the spin-current–spin-
current correlation bubble (indicative of electron-phonon interaction)
at successive orders in a chainlike fashion.

Collective modes of an interacting system in the spin sector
appear as poles of the spin susceptibility. Within the RPA
framework of this problem (cf. Fig. 4), the spin susceptibility
is expressed as

χi j (Q) = − (gμB)2

4

[
�ss

i j (Q) +
∑
αβ

�ssc
iα (Q)Dαβ (Q)�scs

β j (Q)

]
,

(17)

where

�ss
i j (Q) =

∫
K

Tr[σ̂iĜ
0(K − Q/2)σ̂ j Ĝ

0(K + Q/2)], (18)

�ssc
i j (Q) = λ

∫
K

Tr[σ̂iĜ
0(K − Q/2)(k × σ̂ ) j Ĝ

0(K + Q/2)],

(19)

�scs
i j (Q) = λ

∫
K

Tr[(k × σ̂ )iĜ
0(K − Q/2)σ̂ j Ĝ

0(K + Q/2)],

(20)

are the bare spin-spin, spin–spin-current, and spin-current–
spin correlation functions, respectively, and

D̂(Q) = [[D̂0(Q)]−1 − �̂scsc(Q)]−1 (21)

is the full RPA phonon propagator [cf. Fig. 4(b)]. In Eq. (21),
D0

i j is the bare phonon propagator (14) and the self-energy
correction, the spin-current–spin-current correlation function,
included is

�scsc
i j (Q) = λ2

∫
K

Tr[(k × σ̂)iĜ
0(K − Q/2)

× (k × σ̂ ) j Ĝ
0(K + Q/2)]. (22)
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In Eqs. (18)–(22), Q = (i�n, q), K = (iωm, k),
∫

K ≡
T
∑

ωm

∫
d3k/(2π )3, εm is the Matsubara frequency, and

Ĝ0(iεm, k) =
∑

r

|r〉〈r|
iεm + μ − εr

k

=
∑

r

D̂r (k)gr (iεm, k),

D̂r (k) = 1

2

[
σ̂0 + r

�Z

�k
σ̂z + r

2α

�k
(σ̂ykx − σ̂xky)

]
,

gr (iεm, k) = 1

iεm + μ − εr
k

(23)

with μ as the chemical potential, α = λ|P0z|, and gr (iεm, k)
(23) identified as a chiral Green’s function; the eigenvalues
(εr

k), eigenstates (|r〉), and �k appearing in (23) are given in
Eq. (8).

The approximation in Fig. 4(a) captures only a subset of
diagrams for the spin response. However, the diagrams we
select contain singularities at the frequencies of the eigen-
modes, which are determined accurately to order λ2 by those
in Fig. 4(b). The diagrams neglected in Fig. 4(a) will not
contribute any additional singularities or shift the eigen-
mode frequencies at weak coupling, but can alter the spectral
weights associated with them. Therefore, we use the approx-
imation in Fig. 4(a) to assess the qualitative form of the spin
response spectrum, while acknowledging that a quantitative
description of its intensity requires further analysis which is
beyond the scope of this work.

We next discuss collective modes of the spin susceptibil-
ity (17); most of its poles are associated with the spin-flip
particle-hole continuum. The only contribution that contains
interaction effects is the renormalized phonon propagator Di j ,
as defined in Eq. (21). Poles in Di j result in poles in χi j

if the spin–spin-current bubble �ssc
i j is finite; only then are

these collective modes excited. We emphasize that coupling
between the spin and the spin-current degrees of freedom is
only possible in the ordered phase since the latter but not the
former breaks inversion symmetry.

Calculation of the phonon self-energy �scsc
i j [Eq. (22)] is

thus central towards the identification of spin-active collective
modes. Using (22) with D0

i j [Eq. (14)], one can determine the
renormalized phonon propagator Di j [Eq. (21)] and then, via
χi j [Eq. (17)], the spin-active collective modes. Throughout
this work we will assume a q = 0 soft mode, and no distinc-
tion between the LO and TO modes in the ordered phase.

Let us now simplify whenever possible the expressions
needed to characterize these interaction-induced collective
modes. The phonon self-energy �scsc

i j can be expressed in the
following compact form:

�scsc
i j (i�n) = λ2

∫
K

∑
rr̄

f rr̄,scsc
i j gr (i(ωm + �n), k)gr̄ (iωm, k),

(24)

where gr (iεm, k) is given by Eq. (23) and f rr̄,scsc
i j is the

coherence factor of the spin-current–spin-current correlation
function. For brevity, we have omitted the arguments of
f rr̄,scsc
i j which are mainly polar and azimuthal angles. The ex-

plicit form of f rr̄,scsc
i j is presented in Eq. (A5) of Appendix A.

Next, we exploit the symmetries of our problem to simplify
the different matrix elements of χi j . Since the applied mag-

netic field and the polar order are both aligned with the z axis,
the system preserves C2 rotation about the z axis, which trans-
forms x → −x and y → −y simultaneously. This leaves both
σ̂z and (k × σ̂ )z invariant, while σ̂x,y and (k × σ̂)x,y change
sign. This has consequences for �scsc

i j , �ss
i j , �

ssc
i j , and �scs

i j . For
example, because �scsc

i j involves both (k × σ̂ )i and (k × σ̂ ) j ,
only �scsc

12 and the diagonal elements �scsc
ii are nonvanishing

under this symmetry. Finally, the system’s rotational symme-
try in the x-y plane further leads to �scsc

11 = �scsc
22 .

We can therefore express Di j (21) in a simplified form
based on these symmetry considerations:

D11 = D0
11 − �scsc

11

(
D0

11

)2

(
1 − �scsc

11 D0
11

)2 + (
�scsc

12

)2(D0
11

)2 ,

D22 = D11,

D33 = D0
33

1 − �scsc
33 D0

33

,

D12 = �scsc
12

(
D0

11

)2

(
1 − �scsc

11 D0
11

)2 + (
�scsc

12

)2(D0
11

)2 ,

D21 = −D12. (25)

Since the collective modes are poles of D̂, they can be ob-
tained by solving Det[D̂−1] = 0 for frequencies. According
to Eq. (25), this condition becomes

Det[D̂−1] = [(
�scsc

12

)2 + (
�scsc

11 − (
D0

11

)−1)2]
× [−�scsc

33 + (
D0

33

)−1]
= 0. (26)

We now turn to a discussion of the spin susceptibility,
which also has contributions from �ss

i j , �ssc
i j , and �scs

i j accord-
ing to Eq. (17). These bubbles can be written in the same
compact form as �scsc

i j [Eq. (24)], where the corresponding co-
herence factors f rr̄,ss

i j , f rr̄,ssc
i j , and f rr̄,scs

i j are given in Eqs. (A2),
(A3), and (A4) of Appendix A. Again exploiting the sym-
metry associated with the z-axis alignment of the polar order
and the magnetic field, the only nonzero elements of the spin
susceptibility (17) are χ12, χ21 and its diagonal components
χii so that we can now write

χ11 = −[�ss
11 + �ssc

11 D11�
scs
11 + �ssc

11 D12�
scs
21

+ �ssc
12 D21�

scs
11 + �ssc

12 D22�
scs
21

]
,

χ22 = −[�ss
22 + �ssc

21 D11�
scs
12 + �ssc

21 D12�
scs
22

+ �ssc
22 D21�

scs
12 + �ssc

22 D22�
scs
22

]
,

χ33 = −[�ss
33 + �ssc

33 D33�
scs
33

]
,

χ12 = −[�ss
12 + �ssc

11 D11�
scs
12 + �ssc

11 D12�
scs
22

+ �ssc
12 D21�

scs
12 + �ssc

12 D22�
scs
22

]
,

χ21 = −[�ss
21 + �ssc

21 D11�
scs
11 + �ssc

21 D12�
scs
21

+ �ssc
22 D21�

scs
11 + �ssc

22 D22�
scs
21

]
, (27)

where χi j ≡ χi j/(g2μ2
B/4).
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The presence of rotational symmetry allows for even fur-
ther simplification of Eq. (27) that results in the expressions

χ11 = −[�ss
11 + ((

�ssc
11

)2 − (
�ssc

12

)2)D11 − 2�ssc
11 �ssc

12 D12
]
,

χ22 = χ11,

χ33 = −[�ss
33 + (

�ssc
33

)2D33
]
,

χ12 = −[�ss
12 + ((

�ssc
11

)2 − (
�ssc

12

)2)D12 + 2�ssc
11 �ssc

12 D11
]
,

χ21 = −χ12, (28)

where the Di j are given by Eq. (25).
In order to identify and characterize interaction-induced

collective modes of the polar metal, we will use the frame-
work outlined here and will determine explicit forms of the
expressions in (25) and (28). The modes induced by the
electron-phonon interaction will appear as poles in D̂; they
will only be accessible by ESR in the (ordered) polar metal
where �ssc

i j is finite.

III. INTERACTION-INDUCED BOUND STATES

In this section we explicitly determine the electronic
collective modes due to spin-orbit assisted electron-phonon
coupling in an applied magnetic field. These modes corre-
spond to the poles of the phonon propagator renormalized
by the electron-phonon interactions [Eq. (3)]. The resulting
phonon self-energy is related to the spin-current–spin-current
polarization tensor �scsc

i j . Divergences in the latter indicate
enhancement of interaction effects, and we first study them
both at zero and at finite magnetic fields. Next we analyze
the renormalized phonon propagator and demonstrate the
emergence of collective bound states near the edges of the
particle-hole continuum even at weak coupling. Furthermore,
we show that an applied field parallel to the polar axis tunes
the number of these collective modes and their energies. We
emphasize that the origin of theses bound states is the Rashba
spin-orbit type electron-phonon interaction.

A. Spin-current–spin-current polarization tensor

In order to calculate collective modes, we require forms of
Di j [Eq. (25)] which depend on self-energy corrections �scsc

i j .
Assuming q = 0 and Fermi energy to be the largest energy
scale in the system, the nonzero components of �̂scsc can be
calculated:

�scsc
11 (�n) = −A

{
2 − 4�2

Z

�2
R

+
(− �2

n + �2
Z

)
�R

√
�2

n + �2
R + �2

Z

L(�n)

+ 2�2
Z

(
�2

n + �2
Z

)
�3

R

√
�2

n + �2
R + �2

Z

L(�n)

}
,

�scsc
22 (�n) = �scsc

11 (�n),

�scsc
33 (�n) = −A

�2
Z

�2
R

{
4 − 2

(
�2

n + �2
Z

)
�R

√
�2

n + �2
R + �2

Z

L(�n)

}
,

�scsc
12 (�n) = −A

4�n�Z

�2
R

{
1 −

√
�2

n + �2
R + �2

Z

2�R
L(�n)

}
,

�scsc
21 (�n) = −�scsc

12 (�n), (29)

where

L(�n) = log

[√
�2

n + �2
R + �2

Z + �R√
�2

n + �2
R + �2

Z − �R

]
, A ≡ mk3

F λ2

4π2
,

(30)

and �R ≡ 2αkF , with kF as the Fermi momentum and NF =
mkF /π2 as the total density of states in 3D, is the energy scale
set by static Rashba SOC. The effective coupling constant
A, in its current form, is dimensionless. The emergence of
the static polar order parameter (10) in the ordered phase
allows us to write the static Rashba parameter (α) in Eq. (6),
according to the relation w2 = −ω2

0, and Eqs. (10) and (12)
(regarding the sign of v), as

α = λ|P0z| = λ

√
ω2

0

g − |v| , (31)

where g > |v|. Following Eqs. (31) and (14), the Rashba en-
ergy can be then written as

�R ≡ 2αkF = 2λkF

√
ω2

‖
2(g − |v|) = 2ω‖

√
2A

(g − |v|)NF
,

(32)

where A is the effective coupling constant as defined in
Eq. (30). From rotational symmetry, �scsc

22 (i�n) = �scsc
11 (i�n)

and �scsc
21 (i�n) = −�scsc

12 (i�n). The technical details of ob-
taining Eq. (29) are delegated to Appendix B, while the main
results and their qualitative features are discussed in the main
text.

The logarithm[...] in �scsc
i j [Eq. (29)] appears mainly be-

cause of the effective two-dimensionality of the k integral
which appears in its definition (24). To demonstrate this, let
us first assume the coherence factor appearing in the integrand
of (24) to be one. We are now left with two chiral Green’s
functions, gr (iεn, k) [Eq. (23)], for frequency summation and
then k integral. Upon frequency summation, Eq. (24) can be
written as

�scsc
i j ∼

∑
r,r̄

∫
d3k

(2π )3

nF (εr̄
k − μ) − nF

(
εr

k − μ
)

i�n − εr
k + εr̄

k

. (33)

Now dividing k into its parallel and perpendicular compo-
nents, with the assumption that the perpendicular component
is projected onto Fermi surface, we simplify the form of
Eq. (33) to be

�scsc
i j ∼

∑
r,r̄

∫
dk⊥
2π

∫
d2k‖
(2π )2

(r̄ − r)
√

�2
Z + 4α2k2

‖

i�n + (r̄ − r)
√

�2
Z + 4α2k2

‖

× δ(k2
⊥/2m − μ). (34)

The k⊥ above is immediately projected onto kF , as ensured
by the δ function. Knowing that the k‖ integral is also trun-
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FIG. 5. Real part of phonon self-energy (21), or spin-current–spin-current polarization tensor (22), at zero (a) and finite (b) Zeeman field.
The model parameters are taken to be gNF = 2.4, |v|NF = 1.2, and A = 0.02, where NF = mkF /π 2 is the total 3D density of states. The Rashba
energy �R [Eq. (32)] is determined by A as well as Ginzburg-Landau parameters g and |v|. Divergences point to strongly enhanced role of
interactions around the corresponding frequencies, as is discussed in the text. Red, blue, and black curves represent �scsc

11 , �scsc
33 , and �scsc

12 ,
corresponding to xx, zz, and xy phonon polarization orientations (yy response is identical to xx one). (a) At �Z = 0, �scsc

33 and �scsc
12 components

are zero, as can be seen from Eq. (29). The divergence in Re�scsc
11 occurs at � = �R, the upper edge of the particle-hole continuum. (b) At finite

�Z , the continuum is gapped and the divergence at the lower edge � = �Z appears in �scsc
11 and �scsc

12 . At the upper edge of the continuum
� = (�2

R + �2
Z )1/2, however, the divergence is present only in the diagonal components �scsc

11 and �scsc
33 .

cated by kF in the upper limit, one can easily see that the k‖
integration in Eq. (34) yields a logarithm[...] (using a power
counting argument for k), which is consistent with the results
in Eqs. (29) and (30). Indeed, this comes from the dimensional
reduction of the k integral from three to two dimensions.

As mentioned earlier in this section, the divergence in �scsc
i j

enhances the interaction effects. To understand this better,
we first discuss the limiting case of �Z = 0 in Sec. III A 1,
followed by the finite �Z case in Sec. III A 2.

1. Zero magnetic field

Components �scsc
12 and �scsc

33 vanish at zero magnetic field
[see Eq. (29)]. At �Z = 0, the system is time-reversal sym-
metric which ensures �scsc

12 = 0. Moreover, �scsc
33 = 0 follows

from spin-current conservation along the direction of polar
order (k × σ̂)z. Indeed, the single-particle Hamiltonian (7)
contains static Rashba term (6), with n̂ ‖ ẑ, which has the same
form as the spin-current vertex along the ẑ direction. This tells
us that the spin current along the direction of the polar order
is conserved, and thus �scsc

33 = 0. Therefore, only �scsc
11 and

�scsc
22 components (from rotational symmetry �scsc

22 = �scsc
11 )

survive in this limit which reads as

�scsc
11 (�n,�Z = 0) = �scsc

22 (�n,�Z = 0)

= −A

{
2 − �2

n

�R

√
�2

n + �2
R

× log

[√
�2

n + �2
R + �R√

�2
n + �2

R − �R

]}
, (35)

where A is an effective dimensionless coupling constant as
defined in Eq. (30), and �R [Eq. (32)] is the Rashba energy.
It corresponds to the spin splitting emergent from static polar-
ization in the polar phase given by Eq. (6), where α is given
by Eq. (31).

As we can see from Eq. (35), at �Z = 0 �scsc
11 is square-

root divergent at � = �R, where � is the retarded frequency
written after analytic continuation i�n → � + i0+. This di-
vergence is reflected in the real part of �scsc

11 , as shown in
Fig. 5(a). The square-root divergence allows for strong in-
teraction effects present already at weak coupling and in
particular in the appearance of collective modes which we will
discuss in detail in Sec. III B 1.

Another important feature of the spin-current polarization
tensor is the emergence of an electronic excitation continuum
in the polar phase. Its presence is revealed at frequencies
where the imaginary part of �scsc

11 is nonzero, or Im�scsc
11 �= 0.

To obtain it, one can either perform analytic continuation
of Eq. (35) or, alternatively, directly calculate Im�scsc

11 from
Eq. (24) in the limit of �Z = 0; it is much easier to do the
latter. We obtain Im�scsc

11 at �Z = 0 as

Im�scsc
11 = −πA

�2

�R

√
�2

R − �2
�(�)�(�R − �). (36)

In the above equation (36), the constraints imposed by �

functions suggest the range of the particle-hole continuum
to be 0 < � < �R. Moreover, the continuum response is
suppressed as �2 at low frequencies, while it is square-root
singular at � = �R.

An easier way to understand the location of edges of
the continuum is by rewriting eigenvalues (8) of the single-
particle Hamiltonian (7) at �Z = 0 and calculating the
interband transition frequency:

h̄� = ε+ − ε− = |2αk sin θ |. (37)

Assuming Rashba splitting to be small compared to the Fermi
energy, it is legitimate to project k onto kF . Recognizing 2αkF

as �R [Eq. (32)], with �R > 0, and knowing that | sin θ | is
bounded between 0 and 1, the minimum and maximum values
of � come out to be 0 and �R, respectively. These define lower
and upper edges of the spin-flip continuum, correspondingly.
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Since the continuum starts right from � = 0, there is no
gap for particle-hole excitations between spin-split subbands.
Note that it has been found previously that a weak repulsive
inter-electron interaction does not lead to the formation of
collective modes in this case [33]. However, as is discussed
below, for electron-phonon interaction and for �R � EF the
appearance of divergence at the upper edge of the continuum
(� = �R) suggests that collective modes (or poles in Di j)
may exist at weak coupling above the continuum.

The structure of the matrix bubble (�̂scsc) at �Z = 0 has
interesting consequences: the additional vanishing of �scsc

33
and �scsc

12 at �Z = 0, and the divergence feature of the remain-
ing nonzero components �scsc

11 and �scsc
22 (with �scsc

11 = �scsc
22 )

[Eq. (35)], already tell us about the qualitative features of
collective mode. First, it is clear from symmetry (see Sec. II B
for discussion) that the in-plane ({x} and {y}) and the out-
of-plane ({z}) sectors are decoupled. Moreover, �scsc

33 = 0 at
�Z = 0. Therefore, the collective mode in the {z} sector does
not exist and we always have a bare phonon polarized along
the z direction [ω‖, as defined in Eq. (14)] in this sector. The
bubbles in the in-plane sector, however, are nonzero with their
real part being divergent at � = �R, the upper edge of the
continuum. Therefore, we expect collective modes above the
continuum in this sector due to interaction between x- and
y-polarized phonons located at � = ω⊥, with ω⊥ defined in
Eq. (14), and the electronic continuum. Finally, because the
time-reversal symmetry is intact at �Z = 0, which results
in �scsc

i j = 0, (i, j) ∈ {1, 2}, the mode in the in-plane sector
is double degenerate. This is all consistent with the explicit
calculation which we will discuss in Sec. III B 1.

2. Finite magnetic fields

Let us now discuss the effects of finite �Z by analyzing
Eq. (29). One can notice that unlike for �Z = 0 different com-
ponents of �scsc

i j now possess up to two kinds of divergences:
the logarithm divergence at � = �Z and the square-root di-

vergence at � =
√

�2
R + �2

Z . While at � = �Z the logarithm
divergence occurs in components �scsc

11 and �scsc
12 [as evident

from Eq. (30)], at � =
√

�2
R + �2

Z the square-root divergence
occurs in �scsc

11 and �scsc
33 . We note that the logarithm diver-

gence in �scsc
33 [see Eq. (29)] disappears because the logarithm

term (30) of this component also accompanies an overall
prefactor (�2 − �2

Z ) (in retarded representation); clearly, this
prefactor diminishes the effect of logarithm term at � = �Z .

All the divergences at finite fields are present in Re�scsc
i j ,

which is shown in Fig. 5(b). The Re�scsc
11 shows both log-

arithm and square-root divergences at � = �Z and � =√
�2

R + �2
Z , respectively; see Eqs. (29) and (30) and also the

red curve in Fig. 5(b). The Re�scsc
12 shows only logarithm

divergence at � = �Z . We note that since �scsc
12 component

is proportional to �n [Eq. (29)], the logarithm divergence
feature is actually reflected in the imaginary part instead of
the real part which shows steplike feature as presented by
black curve in Fig. 5(b). Finally, the Re�scsc

33 shows only the

square-root divergence at � =
√

�2
R + �2

Z as shown by blue
curve in Fig. 5(b): the seeming logarithm divergence at � =

�Z in Eq. (29) disappears because of the overall prefactor
(�2 − �2

Z ) in front of the logarithm term.
The divergences in the real part of �scsc

i j allow for strong in-
teraction effects at weak coupling strength. Let us now discuss
the imaginary part, which is nonzero inside the particle-
hole continuum. As discussed in the context of �Z = 0 in
Sec. III A 1, the continuum is defined by the region where
Im�scsc

i j �= 0. At finite �Z , the Im�scsc
i j can be calculated:

Im�scsc
11 = −πA

�2
R

(
�2 + �2

Z

)− 2�2
Z

(
�2 − �2

Z

)
�3

R

√
�2

R + �2
Z − �2

× �(� − �Z )�
(√

�2
R + �2

Z − �
)
,

Im�scsc
33 = −πA

2�2
Z

(
�2 − �2

Z

)
�3

R

√
�2

R + �2
Z − �2

�(� − �Z )

× �
(√

�2
R + �2

Z − �
)
,

Im
[
i�scsc

12

] = πA
2��Z

√
�2

R + �2
Z − �2

�3
R

�(� − �Z )

× �
(√

�2
R + �2

Z − �
)
. (38)

The conditions imposed by � functions in the above Eq. (38)
clearly imply the range of the particle-hole continuum to be

�Z < � <

√
�2

R + �2
Z .

According to the easier way adopted for �Z = 0 case
[more specifically Eq. (37)] in the previous section, the lo-
cation of the edges of the particle-hole continuum at finite �Z

can be obtained from the single-particle dispersion:

h̄� = ε+ − ε− =
√

�2
R sin2 θ + �2

Z . (39)

Since sin2 θ is bounded between 0 and 1, the minimum and

maximum values of � are �Z and
√

�2
R + �2

Z , respectively.
These are identified as lower and upper edges of the contin-
uum, respectively, which matches with the one obtained from
an explicit calculation in Eq. (38).

The main difference between �Z = 0 and finite �Z cases
is that in the latter case the lower edge of the particle-hole
continuum is gapped. This indicates that in addition to col-
lective modes above the continuum, the system may also
support collective modes below the continuum. Indeed, the
divergence in the real part of �scsc

i j at both � = �Z (lower

edge) and � =
√

�2
R + �2

Z (upper edge) ensures poles in the
full phonon propagator both below and above the particle-hole
continuum.

Let us now comment on the role of the field direction.
The opening of the low-energy gap in the continuum at low
fields is unique to magnetic field oriented along the polar axis.
If compared with the situation when B ⊥ P0, we find that
the gap below the continuum does not open at weak fields.
More specifically, when �Z < �R, the continuum is gapless.
The gap opens up only when �Z > �R with the lower edge
of the continuum located at (�Z − �R). To see this, let us
assume B ‖ x̂ and the local polar order still aligned with the z
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FIG. 6. Imaginary part of the renormalized phonon propagator at �Z = 0 for cases when ω⊥ � �R (a) and ω⊥ � �R (b). The model
parameters are chosen as �0 = 1.2ω‖, gNF = 2.4, and A = 0.02. The color scheme is the same as in Fig. 5, while dashed black lines correspond
to the bare phonon in the absence of interactions. The shaded region in red represents the particle-hole continuum which ranges between
0 < � < �R. Sharp peaks in blue and red are modes polarized along the direction of the polar order z (nondegenerate) and in the plane
perpendicular to it (double degenerate), respectively. In (a), two peaks above the continuum correspond to phononlike modes, where only
ω⊥ is renormalized due to interactions. In (b), the bare phonon frequency is within the continuum, apparently leading to its Fano shape at
low energies. At the same time, a peak emerges above �R that can be attributed to an electronic collective mode driven by divergence of the
electronic response at �R [see Fig. 5(a)].

axis. The B ⊥ P0 analog of Eq. (39) can be calculated:

h̄� = ε+ − ε− =
√

�2
R sin2 θ + �2

Z − 2�R�Z sin θ sin φ.

(40)

For �Z < �R, the minimum of Eq. (40) is at � = 0 which
exists at φ = π/2 and θ = sin−1(�Z/�R). The continuum,
therefore, is gapless. For �Z > �R, however, the minimum
shifts at � = �Z − �R which exist at (θ, φ) = (π/2, π/2)
resulting in the gapped continuum. Finally, the upper edge of
the continuum lies at � = �Z + �R. So, the uniqueness of
B ‖ P0 scenario is the continuum being gapped at low energies
already at weak magnetic fields to support collective modes
in it.

B. Coupled lattice and electronic collective modes

The next step is to calculate collective modes of the
system in the spin sector. The determinant in Eq. (26) sug-
gests decoupling of the in-plane and out-of-plane sectors
of the renormalized phonon propagator D̂. The resulting
equations giving rise to collective modes in these sectors
are, therefore, decoupled. We will discuss collective modes
in these sectors first at �Z = 0 in Sec. III B 1 followed by at
finite �Z in Sec. III B 2.

1. Collective modes at �Z = 0

In the nonpolar phase [23], the phonon self-energy van-
ishes at �Z = 0 and the collective modes are described by the
hybridization of the electronic plasmon and phonons [16,55].
In the polar phase, however, the phonon self-energy is finite
already at �Z = 0 owing to the appearance of the Rashba
spin splitting. Therefore, here we focus on the high electronic
density regime, where hybridization with plasmons (or, alter-
natively, LO-TO phonon splitting) can be neglected, to focus
on the new effects of the coupling (3).

We will now study the renormalized phonon propagator.
�scsc

12 and �scsc
33 vanish identically at �Z = 0 as discussed in

Sec. III A 1. The only surviving component (as per all the
other symmetry arguments applicable to our model as dis-
cussed in Sec. II B), therefore, is �scsc

11 , and from the rotational
symmetry �scsc

22 = �scsc
11 . Equation (26) then reduces to

�2
n + ω2

‖
�2

0

[
�2

n + ω2
⊥

�2
0

− A

(
2 − �2

n

�R

√
�2

n + �2
R

L1(�n)

)]2

= 0, (41)

where L1(�n) = L(�n,�Z = 0) [Eq. (30)]. After analyti-
cal continuation, Eq. (41) yields two positive-definite roots,
which are shown in Figs. 6(a) and 6(b) as sharp red and
blue peaks above the shaded region. The shaded region is
nothing but the spin-flip particle-hole continuum as discussed
in Sec. III A 1. One can verify that the continuum response
is present in the region 0 < � < �R as consistent from our
discussion in Sec. III A 1. The black dashed peaks in Figs. 6(a)
and 6(b) are bare phonons (� = ω⊥ and ω‖) that one expects
in the absence of interaction. Moreover, Eq. (41) suggests
that the solution � = ω⊥ (in the absence of interaction) is
double degenerate. Physically, this is due to the in-plane (x-y)
rotational symmetry of the system.

As one can see in Fig. 6, and also in Eq. (41), that in the
presence of interaction one of the modes still remains bare:
the blue peak above the continuum at � = ω‖, corresponding
to the mode polarized along the direction of the polarization
vector, coincides with the bare dashed-black peak. This is
due to the fact that all the {z}-sector components of the self-
energy, �3i, ∀ i ∈ 1 . . . 3, vanish at �Z = 0, as discussed in
Sec. III A 1. Therefore, the mode in the {z} sector remains
protected from renormalization due to interaction.

The double-degenerate mode, on the other hand, is polar-
ized in the plane (x-y) perpendicular to the polarization vector

075162-10



PHONON-INDUCED COLLECTIVE MODES IN SPIN-ORBIT … PHYSICAL REVIEW B 108, 075162 (2023)

FIG. 7. Imaginary part of the renormalized phonon propagator at different �Z for fixed �R = 0.37ω‖, �0 = 1.2ω‖, gNF = 2.4, |v|NF =
1.2, and A = 0.02. The shaded regions in red and blue correspond to particle-hole spin-flip continuum, edges of which are located at � = �Z

and � = √
�2

Z + �2
R. Sharp peaks are resonances along the direction of polar order (blue) and in the plane perpendicular (red) to it. Dashed

black is the response of the bare phonons with ω⊥ < ω‖. Increasing �Z shifts the continuum energy such that (a) both phonons are above
the continuum (

√
�2

R + �2
Z < ω⊥ � ω‖), (b) one above and one below the continuum (ω⊥ < �Z <

√
�2

R + �2
Z < ω‖), and (c) both below the

continuum (ω⊥ � ω‖ < �Z ). In (a), the in-plane phononlike peak around ω⊥ is split into two circularly polarized modes. Below the continuum,
an additional peak emerges which exists already at weak coupling because of the divergence in electronic response function at the edge of the
continuum [see Fig. 5(b)]. In (c), the renormalized phonon response is below the continuum, while three electronic collective modes are seen
to emerge above it. Importantly, a mode emerges also for the zz polarization, as is expected from the divergence in the corresponding electronic
response function [Fig. 5(b)]. (b) Represents the case at intermediate fields: for the in-plane polarization the modes are similar to those in (c),
whereas for the parallel polarization (along the direction of polar order which is z) an electronic mode appears below the continuum due to the
continuum’s sufficient proximity to ω‖ [see Eq. (51) which is a condition for the appearance of this mode]. On increasing the field [(c)], the
character of the two modes in zz reverses: electronic mode is above the continuum, while the phononlike one is below it.

and renormalizes due to interactions, as shown by red peaks
above the continuum in Figs. 6(a) and 6(b).

Before getting into the details of collective modes, we first
discuss qualitative features of the single-particle continuum
which evolves due to its interaction with phonons. This is
evident from the difference in the shape of the continuum
in Figs. 6(a) and 6(b) as the anisotropy parameter in the
Lagrangian (9), “v”, changes.

Degrees of freedom corresponding to electrons and
phonons are decoupled in the absence of interactions: while
the imaginary part of D0

ii exhibits sharp phonon peaks, those
of �scsc

11 exhibit broad continuum ranging from 0 < � < �R

with a square-root divergence at � = �R [Eq. (36)]. In the
presence of interaction, two things happen: first, the diver-
gence in Im�scsc

11 at � = �R turns into zero of the full phonon
propagator according to Eq. (21) and, second, the contin-
uum evolves into a Fano-shaped resonance, as presented in
Figs. 6(a) and 6(b). To demonstrate this, we start with a sit-
uation when phonons are far above the continuum, or �R �
ω⊥ � ω‖, as shown in Fig. 6(a). At the level of the choice
of parameters, this can be achieved by choosing a larger
value of |v|. As the value of v is decreased such that ω⊥
lies inside the continuum, i.e., ω⊥ < �R, the spectral weight
of the continuum increases, demonstrating a Fano-type reso-
nance feature [see Fig. 6(b)]. This suggests that interaction of
the phonon with the continuum turns the typical Lorentzian
shape of the phonon peak into a Fano-type one. However,
there still remains a well-pronounced Lorentzian peak above
the continuum edge.

We now discuss collective modes, the localized resonances
above the continuum edge. As mentioned earlier in this sec-
tion, mode polarized along the direction of the polar order (ω‖)
remains unaffected from electron-phonon interaction (3). The
reason behind this is the conservation of (k × σ̂ )z as explained
in Sec. III A 1. On the other hand, the double-degenerate mode

at ω⊥ renormalizes due to interaction, as represented by a shift
in the red peak of Fig. 6 from its noninteracting counterpart
(dashed black), and exists above the single-particle contin-
uum. To highlight the splitting of modes from the particle-hole
continuum, we chose a very small value of the damping pa-
rameter, γ = 10−4ω‖, in both the panels of Fig. 6. The same
value of the damping parameter will be considered for later
figures as well, i.e., while discussing collective modes at finite
�Z (Fig. 7) and electronic spin response effects at �Z = 0 and
�z �= 0 (Fig. 8).

To gain analytic insight, we search for the solution of
Eq. (41) (second term) close to the upper edge of the con-
tinuum, i.e., � ≈ �R + EB, with 0 < EB � �R. Here � is
the retarded frequency, EB is the binding energy, and �R

[Eq. (32)] is the Rashba energy. Upon using Eq. (30) to write
L1(�n), we get the required equation [second term of Eq. (41)]
to be solved:

ω2
⊥ − �2

R

�2
0

− A

(
2 + �R√−2EB�R

log

[√−2EB�R + �R√−2EB�R − �R

])

= 0. (42)

Now expanding Eq. (42) for small EB, and then upon solving
for it, we get

�⊥ ≈ �R

(
1 + A2π2�4

0

2
(
�2

R − ω2
⊥ + 4A�2

0

)2

)
. (43)

The binding energy is the second term of Eq. (43).
It is essential to know the regime of validity of Eq. (43).

Since this solution is valid when EB � �R, let us consider
only the second term of Eq. (42), and expand it for small EB:

2nd term ≈ −A

(
− π

√
�R

2EB
+ 4 + O(EB)

)
. (44)
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FIG. 8. Imaginary part of the spin susceptibility, proportional to the ESR (and EDSR for the 22-component) intensity in polar metals at
zero and finite magnetic fields for given parameter values. Shaded regions in blue and red correspond to the spin-flip continuum, while sharp
peaks outside the continuum are collective modes in the in-plane (red peaks) and out-of-plane (blue peaks) sectors. (a) Imaginary part of the
spin susceptibility (in units of g2μ2

BNF /16) at �Z = 0. The peak above the continuum close to the bare phonon frequency indicates that the
in-plane phonon becomes ESR active in the polar metal. (b) Imaginary part of the spin susceptibility (in units of g2μ2

BNF /16) at finite �Z . All
the modes, in both in-plane (red peaks) and out-of-plane (blue peaks) sectors, that show up as poles in Di j are ESR active. These modes show
up as sharp resonances in Imχi j below and above the continuum.

From the first two terms, it is easy to deduce that the above
expansion is valid only when EB < (π2/32)�R. Moreover, the
overall sign of (44) is positive, which indicates that Eq. (42)
yields a real solution only when �R > ω⊥: while the second
term of Eq. (42) is positive for EB < (π2/32)�R [upon taking
into account the overall minus sign in Eq. (44)], the first term
has to be negative for any real solution to exist. The regime
of validity (�R > ω⊥) of the solution in Eq. (43) suggests it
be best represented by Fig. 6(b) when one of the phonons is
inside the continuum, or �R > ω⊥.

Since the solution (43) obtained above is valid for �R >

ω⊥, it is now imperative to know the fate of the collective
mode in the opposite limit when �R < ω⊥. We look for
solution near � ≈ ω⊥, which is expected to be valid when
ω⊥ � �R. For that, we consider Eq. (41) (its second term is
relevant for the interaction-renormalized mode) and rewrite it
after analytical continuation to real frequencies as

ω2
⊥−�2

�2
0

− A

(
2+ �2

�R

√
�2

R − �2
log

[√
�2

R − �2 + �R√
�2

R − �2 − �R

])

= 0. (45)

In the second term of Eq. (45), we can replace � by ω⊥.
This is reasonable because we are looking for a solution at
� ≈ ω⊥. Now since we are in the �R � ω⊥ regime, one can
expand the second term of Eq. (45) assuming large ω⊥. Upon
doing all the above, we get

�⊥ ≈ ω⊥

(
1 + 2A�2

R�2
0

3ω4
⊥

)
. (46)

In summary, the asymptotes of the renormalized mode are

�⊥ ≈

⎧⎪⎨
⎪⎩

�R
(
1 + A2 π2�4

0

2(�2
R−ω2

⊥+4A�2
0 )2

)
, �R � ω⊥

ω⊥
(
1 + A 2�2

R�2
0

3ω4
⊥

)
, �R � ω⊥.

(47)

One observes that when the phonon energy is much greater
than the continuum edge, the collective mode energy is very

close to the phonon one, as shown in Fig. 6(a). However,
when phonon energy is well within continuum, the collective
mode closely follows the continuum edge, with a separation
proportional to the electron-phonon coupling. This suggests
that the origin of this mode is actually electronic, rather then
lattice one, whereas the phonon contribution is observed in the
Fano-shaped peak at low energies [see Fig. 6(b)].

To summarize this section, at �Z = 0, the mode polarized
along the direction of the polar order (blue peak in Fig. 6)
remains unaffected by electron-phonon interaction (3). On
the other hand, the double-degenerate mode, polarized in the
plane perpendicular to the polar order (red peak in Fig. 6),
is renormalized due to interaction. Moreover, a collective
mode persists to occur even when the bare phonon energy is
within the continuum as evidenced by the strong Fano peak.
In this regime, its energy is very different from that of the
phonon and can be interpreted as an electronic mode driven
by electron-phonon interaction. Tuning the bare phonon fre-
quency therefore interpolates between mostly electronic and
mostly lattice origin of this mode.

2. Collective modes at finite �Z

We will now consider finite Zeeman field case and discuss
the fate of collective modes in polar metals due to it. Unlike
at �Z = 0 when the continuum is gapless, finite magnetic
fields result in a gapped continuum ranging between �Z <

� <

√
�2

R + �2
Z (see Sec. III A 2).

In Fig. 7 we show the imaginary part of the renormalized
phonon propagator after continuation to real frequencies. The
presence of the continuum can be noted from the red and blue
shaded regions in Fig. 7. We note that unlike for �Z = 0,
the blue shaded region in Fig. 7 appears at finite �Z . This
is because �scsc

33 �= 0 at finite fields which is not the case for
�Z = 0 where it is zero. More specifically, it is the Im�scsc

33 �=
0 which leads to the blue shaded continuum in the {z} sector
at finite �Z . The divergence in Re�scsc

i j at both the edges
of the continuum (distributed between different components
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of the self-energy), as discussed in Sec. III A 2, allows for
the existence of collective modes both above and below the
continuum (sharp red and blue peaks both below and above
the continuum in Fig. 7).

To calculate collective modes, we start with the main
equation Det[D−1] = 0 [Eq. (26)]. Using Eqs. (14) and (29),
Eq. (26) can be written explicitly for in-plane and out-of-plane
sectors as

out-of-plane sector : −�2
n + ω2

‖
�2

0

+ A
�2

Z

�2
R

⎧⎪⎨
⎪⎩4 − 2

(
�2

n + �2
Z

)
�R

√
�2

n + �2
R + �2

Z

log

⎡
⎢⎣
√

�2
n + �2

R + �2
Z + �R√

�2
n + �2

R + �2
Z − �R

⎤
⎥⎦
⎫⎪⎬
⎪⎭ = 0, (48a)

in-plane sector :
�2

n + ω2
⊥

�2
0

− A

⎧⎪⎨
⎪⎩2 − 4�2

Z

�2
R

+ �2
R

(− �2
n + �2

Z

)+ 2�2
Z

(
�2

n + �2
Z

)
�3

R

√
�2

n + �2
R + �2

Z

log

⎡
⎢⎣
√

�2
n + �2

R + �2
Z + �R√

�2
n + �2

R + �2
Z − �R

⎤
⎥⎦
⎫⎪⎬
⎪⎭

= ∓A
4i�n�Z

�2
R

⎧⎪⎨
⎪⎩1 −

√
�2

n + �2
R + �2

Z

2�R
log

⎡
⎢⎣
√

�2
n + �2

R + �2
Z + �R√

�2
n + �2

R + �2
Z − �R

⎤
⎥⎦
⎫⎪⎬
⎪⎭, (48b)

where A is the effective dimensionless coupling constant given
in Eq. (30). Equations (48a) and (48b) are transcendental in
nature, so the exact analytical form of the solution cannot
be obtained. Therefore, like in the previous Sec. III B 1, we
will provide analytical form of the solution only in asymptotic
limits.

Although Eqs. (48a) and (48b) are complicated, some cru-
cial differences compared to those at �Z = 0 [Eq. (41)] can
be recognized: (i) collective mode along the direction of polar
order also renormalizes due to interaction as evident from
Eq. (48a), and (ii) the degeneracy of the mode polarized in the
plane perpendicular to the polar order lifts due to time-reversal
symmetry breaking as ensured by the ± sign (degeneracy
lifting) which comes along with an overall factor of “i�n�Z”
(time-reversal symmetry breaking due to Zeeman fields) on
the right-hand side of Eq. (48b).

The poles of the phonon propagator correspond to so-
lutions of these two equations and reveal themselves as
Lorentzian peaks away from the continuum in Fig. 7. In
Figs. 7(a)–7(c) we present the imaginary part of the phonon
propagator for different values of �Z . Changing �Z moves the
boundaries of the continuum such that the collective modes
change their positions with respect to the continuum, and new
ones may appear. We note that it is different from the �Z = 0
case, where the energy range of the continuum was fixed.
There, ω⊥ (through |v|, as shown in Fig. 6) was used as a
changing parameter, as discussed in Sec. III B 1. At finite �Z ,
for a given choice of parameters, the system hosts up to six
collective modes [red and blue peaks in Figs. 7(b) and 7(c)]
which lie above and below the continuum. Equation (48a)
gives up to two modes: one above the continuum and de-
pending upon the value of �Z one below the continuum, as
presented by blue peaks in Figs. 7(b) and 7(c). On the other
hand, Eq. (48b) gives up to four modes: two modes above and
up to two modes below the continuum, as presented by red
peaks in Figs. 7(b) and 7(c).

Qualitatively, one may expect up to six different modes to
exist. There are three phonons, polarized along three Cartesian
directions. Three electronic modes can be expected to arise

from collective oscillations of spin along three Cartesian di-
rections. This is similar to as predicted in 2D electron systems
with Rashba SOC and in-plane magnetic fields [35,36].

Let us now analyze the number of modes and their
energies analytically. We will first discuss asymptotic ex-
pressions for the energy of collective modes below the
continuum, Sec. III B 2 a, followed by those above the con-
tinuum, Sec. III B 2 b.

a. Collective modes below the continuum.. To demonstrate
collective modes below the continuum, we consider three
different cases corresponding to different �Z : (i) both ω⊥
and ω‖ above the continuum (�Z <

√
�2

Z + �2
R < ω⊥ < ω‖),

(ii) ω⊥ below and ω‖ above the continuum (ω⊥ < �Z <√
�2

R + �2
Z < ω‖), and (iii) both ω⊥ and ω‖ below the con-

tinuum (ω⊥ � ω‖ < �Z ), as illustrated in Figs. 7(a)–7(c),
respectively. This is achieved by fixing ω⊥, ω‖, and �R and
then varying �Z : ω‖ is already considered a fixed parameter,
so we rescale all our energies by this; by fixing v and g, and
knowing that ω‖ is already fixed, we fix ω⊥ [Eq. (14)]; finally,
using v, g, and ω‖ as fixed parameters, we additionally fix the
effective coupling constant A to fix �R [Eq. (32)] as well. It is
reasonable to fix A assuming weak coupling (A � 1) at which
our theory is valid.

Assuming �R and both the phonons ω⊥ and ω‖ as fixed
parameters, we found that there exist thresholds for �Z (the
threshold values for in-plane and out-of-plane modes are dif-
ferent which we will discuss below in this section) which
guide the number of modes below the continuum in the
in-plane and the out-of-plane sectors. For, e.g., Fig. 7(a)
shows only one mode (red peak) below the continuum for
small �Z . On the other hand, Figs. 7(b) and 7(c) show three
modes (red and blue peaks combined) below the continuum
as �Z is increased above a certain value. This deserves ex-
planation which we provide by splitting the discussion of
collective modes in the out-of-plane sector and in the in-plane
sector.

Modes in the out-of-plane-sector. As we can see, in
Fig. 7(a) the collective mode in the {z} sector (blue peak) is
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not present at small �Z , while it is present in Figs. 7(b) and
7(c) when �Z is above a certain value. To obtain the condition
under which this happens we start with Eq. (48a) and look for
mode just below the continuum: � ≈ �Z − EB, where EB �
�Z as the binding energy. The logarithm divergence that
seems to appear at � = �Z in Eq. (48a) disappears because of
the prefactor (�2

n + �2
Z ). So, as a first approximation we ig-

nore this term completely. The dynamics is then governed by
the first term of Eq. (48a) only. After analytical continuation
to real frequencies, we replace �2 by (−2�ZEB + �2

Z ) and
solve for EB. The collective mode just below the continuum
can be calculated:

�‖ ≈ �Z

(
1 − �2

R

(
�2

Z − ω2
‖
)+ 4A�2

0�
2
Z

2�2
R�2

Z

)
, (49)

where the binding energy can be read off as

EB = �2
R

(
�2

Z − ω2
‖
)+ 4A�2

0�
2
Z

2�2
R�Z

. (50)

If the system remains stable, then the only reason we miss the
mode (blue peak) in the {z} sector, as apparent in Fig. 7(a),
is when the mode is Landau damped, or it merges with the
continuum. This is possible when EB < 0, which ensures no
pole below the continuum in this sector. Upon applying this,
we get the condition

�Z < �1c
Z ,

where �1c
Z ≡ ω‖�R√

�2
R + 4A�2

0

. (51)

So, for given �R, ω‖, and �0 (A is fixed already while fixing
�R), the system does not support any collective mode below
the continuum in the {z} sector when �Z is small. More
specifically, if �Z < �1c

Z , the mode is Landau damped, as ev-
ident from Fig. 7(a) where the blue peak below the continuum
is missing. The tendency of the {z}-sector mode to merge with
the continuum is exactly due to the fact that the divergence
in the Re�scsc

33 vanishes at the lower edge of the continuum
(� = �Z ), as discussed in Sec. III A 2.

The mode peels off the continuum from below only when
�Z is large enough, or �Z > �1c

Z ; see blue peaks below the
continuum in Figs. 7(b) and 7(c). It is clear from Eq. (51) that
ω‖ > �1c

Z for A > 0 and �R > 0. Assuming that the collective
mode below the continuum now exists in the {z} sector, we
have two possibilities of accommodating �Z in this regime:
�1c

Z < �Z � ω‖ and �1c
Z < ω‖ � �Z . In other words, these

regimes correspond to cases when the phonon polarized along
the polar order (ω‖) is just above the continuum (specifically

this means
√

�2
Z + �2

R < ω‖, but for the purpose of our dis-
cussion �Z < ω‖ assumption is sufficient) and when it is well
below the continuum, as illustrated in Figs. 7(b) and 7(c),
respectively.

The former regime (�1c
Z < �Z � ω‖) hosts the solution

obtained in Eq. (49), shown by blue peak just below the
continuum in Fig. 7(b). This mode is primarily electronic in

nature. The reason is that the continuum interacts strongly
with ω‖ as it moves towards it due to the increase in �Z . Due
to this interaction, the continuum changes shape and skews
away from ω‖ [notice this change in the blue shaded regions
of Fig. 7(b) as compared to those of Fig. 7(a)] as the distance
between them decreases. At some point, it leaves behind a
finite spectral weight that closely follows it, as shown by
sharp blue peak below the continuum in Fig. 7(a). Since, this
mode is split off the electronic continuum, the nature of it is
primarily electronic.

The regime of validity of solution (49) is a bit subtle. As
mentioned in the beginning of this section is that Eq. (49) is
valid only when EB � �Z . Imposing this constraint, we get
a condition �2

Z (�2
R − 4A�2

0) � −ω2
‖�

2
R. If �R � 2

√
A�0,

then EB is always less than �Z which is most likely the
scenario at weak coupling (A � 1). However, for sufficiently
large �0 (e.g., �0 ≈ 194.4 meV for SrTiO3 [56]), the case
�R < 2

√
A�0 can be considered within the same formalism.

Assuming this, we have a condition

�Z � �2c
Z ,

where �2c
Z = ω‖�R√

4A�2
0 − �2

R

, for �R � 2
√

A�0. (52)

We note that for �R � 2
√

A�0, the regime of validity of
solution (49) is �1c

Z < �Z � �2c
Z . To make our point, from

now onwards, we always assume weak coupling, and also
small enough �0, such that

√
A�0 � �R.

We now turn to the latter regime when ω‖ is well below the
lower edge of the continuum (�1c

Z < ω‖ � �Z ), as illustrated
in Fig. 7(c). The collective mode in this case can be interpreted
as the phonon at ω‖ shifted in energy by the interaction. To
find the analytic form of this mode in the region deep below
the continuum, similar to how it is shown in Fig. 7(c) (blue
peak below the continuum), we expand Eq. (48a) for large �Z

at � ≈ ω‖. Solving the resulting equation for �, we get

�‖ ≈ ω‖

(
1 − 4A�2

0

3ω2
‖

+ 4A�2
0

(
4�2

R − 5ω2
‖
)

15ω2
‖�

2
Z

+ · · ·
)

. (53)

From the above equation, one can easily write the collective
mode when ω‖ and �R soften near phase transition. So far,
no such assumption is made so it is legitimate to say that
the above solution (53) is valid in the regime �1c

Z < ω‖ ∼
�R � �Z .

So, to conclude this section, in the out-of-plane sector,
the system supports a collective mode below the continuum
only when �1c

Z < �Z [Eq. (51)]. The mode is primarily elec-
tronic, and given by Eq. (49), as long as �1c

Z < �Z � ω‖ for
�R � 2

√
A�0, or �1c

Z < �Z � �2c
Z for �R � 2

√
A�0; see

blue peak below the continuum in Fig. 7(c). At large magnetic
fields when �1c

Z < ω‖ � �Z , the collective mode evolves into
a renormalized phonon as given by Eq. (53). This is shown by
the blue peak below the continuum in Fig. 7(b). The result of
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this section can be summarized as

�‖ ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Mode is Landau damped, �Z < �1c
Z � ω‖

�Z

(
1 − �2

R (�2
Z −ω2

‖ )+4A�2
0�

2
Z

2�2
R�2

Z

)
, �1c

Z < �Z � ω‖ (for �R � 2
√

A�0)

or �1c
Z < �Z � �2c

Z (for �R � 2
√

A�0)

ω‖

(
1 − 4A�2

0

3ω2
‖

+ 4A�2
0(4�2

R−5ω2
‖ )

15ω2
‖�

2
Z

+ · · ·
)

, �1c
Z < ω‖ ∼ �R � �Z

(54)

where �1c
Z and �2c

Z are given by Eqs. (51) and (52), re-
spectively. In the crossover regime, the analytical form of
the solution is not possible and we resort to numerics for
the full solution which is presented by blue peaks below the
continuum in Figs. 7(b) and 7(c).

Modes in the in-plane sector. We now discuss collective
modes in the in-plane, or {x-y}, sector. The full spectrum of
collective modes in this sector is shown by red peaks below
the continuum in Figs. 7(a)–7(c).

As shown in Fig. 7, unlike in the {z} sector, the system
supports at least one mode below the continuum in the {x-y}
sector even when both the phonons ω⊥ and ω‖ are above the
continuum; for the purpose of this section, only ω⊥ is relevant
as this phonon is polarized in the (x-y) plane. This mode is
purely electronic in nature since its energy is clearly distinct
from one of the phonons. The simple reason behind this is
the presence of logarithm divergence in both �scsc

11 and �scsc
12

at the lower edge of the continuum (� = �Z ) as discussed in
Sec. III A 2, given by Eq. (29), and shown in Fig. 5(b). This is
in contrast to �scsc

33 where the divergence at � = �Z vanishes.
This poses a constraint on the existence of collective mode.
Indeed, the collective mode in the {z} sector appears only
when �Z is above a certain critical value (�Z > �1c

Z to be
specific), as discussed in the previous section and summarized
in Eq. (54).

To calculate collective modes just below the continuum in
the in-plane sector, we adopt the same approach as discussed
in the context of the out-of-plane mode: � ≈ �Z − EB, with
EB � �Z . We can write Eq. (48b) within this approximation
and expand for small EB:

ω2
⊥ − �2

Z

�2
0

+ 2�Z EB

�2
0

− A

(
2 − 4�2

Z

�2
R

− 2�2
Z

�2
R

log
�ZEB

2�2
R

)

± A
4�2

Z

�2
R

(
1 + 1

2
log

�Z EB

2�2
R

)
= 0. (55)

As we can see, Eq. (55) yields two solutions, each corre-
sponding to equations with +/− sign in the last term. This
is a primary indication of up to two modes below the con-
tinuum in the in-plane sector as also observed in Figs. 7(b)
and 7(c). However, whether both these modes are long lived
and well split from the continuum is something that deserves
explanation: while in Figs. 7(b) and 7(c) indeed there are two
modes below the continuum, in Fig. 7(a) there is only one. We
will prove below that one of these modes actually merges into
the continuum at some critical value of the Zeeman field or,
alternatively, any other quantity chosen for convenience. The
other mode, however, is robust and exponentially bound to the
continuum. It is the robust mode that is shown in Fig. 7(a).

Let us start with Eq. (55) with a “+” sign in the last term.
The second term of this equation (proportional to EB) is small,
so we ignore this. The resulting equation can be rearranged
and written as

log
�ZEB

2�2
R

= −
(

2 − �2
R

2�2
Z

+ �2
R

(
ω2

⊥ − �2
Z

)
4A�2

0�
2
Z

)
. (56)

The logarithm on the left-hand side of (56) is negative because
of small EB; specifically, this happens for EB � 2�2

R/�Z . For
any real solution to exist, we must have the right-hand side of
(56) to be negative as well. Assuming this to be the case, we
solve for EB and get a solution:

�+
⊥ ≈ �Z − 2�2

R

�Z
Exp

[
−
(

2 − �2
R

2�2
Z

+ �2
R

(
ω2

⊥ − �2
Z

)
4A�2

0�
2
Z

)]
.

(57)

As we see, the binding energy (EB) in Eq. (57) has an ex-
ponential factor which must be less than 1 for the solution
to be valid. This is indeed the case when A � 1, i.e., for
weak coupling. The solution (57) is a robust electronic mode,
as shown in Fig. 7(a), which never merges into the contin-
uum, unlike the one found in Eq. (49) in the {z} sector. It
remains exponentially bound to the continuum from below.
As discussed earlier in this section, and also in Sec. III A 2,
the main reason behind the existence of this robust mode is
the logarithm divergence in �scsc

11 and �scsc
12 components of the

phonon self-energy.
Now we discuss the regime of validity of solution (57).

Clearly, the argument of the exponential has to be negative
for solution (57) to exist. This happens when

�Z < �3c
Z ,

where �3c
Z ≡ �R

√
ω2

⊥ − 2A�2
0

�2
R − 8A�2

0

,

for all �R > 2
√

2A�0 and ω⊥ >
√

2A�0. (58)

The conditions on �R and ω⊥ are legitimate at weak coupling
(A � 1) which is what we assume in our model. A more
careful analysis suggests that �3c

Z ≷ ω⊥ for ω⊥ ≷ �R/2. So,
as a conclusion, the systems support a robust electronic mode
just below the continuum in the in-plane sector [see red peak
below the continuum in Fig. 7(a)] for �Z < �3c

Z < ω⊥ <

�R/2, with
√

2A�0 < ω⊥ < �R/2, or for �Z ∼ �R/2 <

ω⊥ < �3c
Z , with

√
2A�0 < �R/2 < ω⊥. Note that at any rate

the condition given in Eq. (58) must be satisfied for the solu-
tion (57) to exist.

As �Z increases such that �R/2 < ω⊥ � �Z < �3c
Z , the

mode evolves into one with a mixed character of electron and
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phonon: as continuum moves closer to ω⊥ (this happens be-
cause �Z increases), the interaction between them results in a
finite spectral weight below the continuum of mixed character,
as shown by the lower energy red peaks (�+

⊥) in Fig. 7(b).
The analytical expression of the collective mode in this regime
cannot be obtained, so we leave it for the numerical solution as
shown already in Fig. 7(b). The other higher-energy red peak
is the second mode (�−

⊥) in this sector, which we will discuss
below in this section.

When we increase �Z further such that �Z > �3c
Z , the

solution (57) is no longer valid. In such regime, for analytical
insight, we assume �Z to be large enough such that ω⊥ is well
below the continuum or, more specifically, �3c

Z ≷ ω⊥ � �Z .
In this regime, the collective mode is simply interaction-
renormalized phonon, as shown by the low-energy red mode
below the continuum in Fig. 7(c).

To obtain the analytical form of the renormalized phonon,
we search for solution in the limit � ≈ ω⊥ � �Z . We con-

sider Eq. (48b) (with “−” sign on the right-hand side) and
expand it for large �Z assuming � ≈ ω⊥. We solve the re-
sulting equation for � to get

�+
⊥ ≈ ω⊥

(
1 − 2A�2

0

3ω2
⊥

− 2A�2
0

3ω⊥�Z

− 2A�2
0

(
3�2

R + 5ω2
⊥
)

15ω2
⊥�2

Z

+ · · ·
)

. (59)

At this point, no relative scaling between ω⊥ and �R is as-
sumed, so our result is valid in the � ≈ ω⊥ ∼ �R ≶ �3c

Z �
�Z regime.

Finally, at weak coupling (A � 1), the result for �+
⊥ can

be summarized as

�+
⊥ ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�Z − 2�2
R

�Z
Exp

[− (
2 − �2

R

2�2
Z

+ �2
R (ω2

⊥−�2
Z )

4A�2
0�

2
Z

)]
, �Z < �3c

Z < ω⊥ < �R/2, with
√

2A�0 < ω⊥ < �R/2

Same as above, �Z ∼ �R/2 < ω⊥ < �3c
Z , with

√
2A�0 < �R/2 < ω⊥

Mixed character but could be same as above, �R/2 < ω⊥ � �Z < �3c
Z , with

√
2A�0 < �R/2 < ω⊥

ω⊥
(
1 − 2A�2

0

3ω2
⊥

− 2A�2
0

3ω⊥�Z
− 2A�2

0(3�2
R+5ω2

⊥ )
15ω2

⊥�2
Z

+ · · · ), ω⊥ ∼ �R ≶ �3c
Z � �Z

(60)

where �3c
Z is given by Eq. (58).

The other solution of Eq. (55) (corresponding to the one
with a “−” sign in the last term) just below the continuum
can be obtained in the same way. However, if we notice,
the last term (with “−” sign) of Eq. (55) is canceled exactly
by the other two terms in the equation. Therefore, in order
to calculate the binding energy (EB), one cannot ignore the
second term (the one proportional to EB) of this equation, as
opposed to what we did while obtaining (57). Taking all this
into account, we get the expression of the second mode:

�−
⊥ ≈ �Z −

(
�Z

2
+ A�2

0

�Z
− ω2

⊥
2�Z

)
. (61)

The condition for this mode to exist below the continuum is
obtained by imposing EB > 0, where EB is given by terms
inside the parentheses of Eq. (61). The resulting condition is

�Z > �4c
Z ,

where �4c
Z ≡

√
ω2

⊥ − 2A�2
0. (62)

We again assume weak coupling, and small enough �0, such
that ω⊥ � √

2A�0, which means �4c
Z [Eq. (62)] is real. The

solution (61) is valid as long as EB � �Z which is true for all
�Z given the condition ω⊥ � √

2A�0 is satisfied. If some-
how �0 is large enough such that ω⊥ <

√
2A�0, then EB is

always positive. However, in this case, for the solution (61)
to be valid, i.e., EB � �Z , we now must have the condition

�Z >

√
2A�2

0 − ω2
⊥. In any case, it is legitimate to assume

�0 to be small enough such that the condition (62) is always
satisfied.

We note that, as contrary to the mode exponentially close
to the continuum (57), the mode obtained in Eq. (61) is not
robust and has a tendency to merge into the continuum at
some point. The reason behind this is the exact cancellation
of logarithm divergence in Eq. (55) (the one with “−” sign)
where the solution (61) is followed from. Just to remind,
Eq. (55) is nothing but Eq. (48b) written at � ≈ �Z .

It is clear that ω⊥ > �4c
Z . So, the mode is Landau damped

when �Z < �4c
Z < ω⊥ and does not show up below the con-

tinuum. This can be seen as an absence of second red peak
below the continuum in Fig. 7(a). The red peak which is
shown in Fig. 7(a) is the one given by Eq. (57). The second
mode peels off the continuum from below only when �4c

Z <

�Z < ω⊥ and given by Eq. (61).
As �Z increases such that the phonon ω⊥ is just below the

continuum, or �4c
Z < ω⊥ � �Z , we reproduce the scenario

as demonstrated in Fig. 7(b). The sharp red peak below the
continuum at higher energy is the one which demonstrates the
second mode (�−

⊥). The one at lower energy is the first mode
(�+

⊥) obtained from Eq. (55) with the “+” sign.
Finally, at large �Z , when the phonon ω⊥ is well below the

continuum, �4c
Z < ω⊥ � �Z , the collective mode is mostly

a renormalized phonon. The solution of Eq. (55) (with “−”
sign) is obtained by expanding the same at large �Z assuming
� ≈ ω⊥. Additionally, we also assume ω⊥ ∼ �R. The solu-
tion obtained in this regime is

�−
⊥ ≈ ω⊥

(
1 − 2A�2

0

3ω2
⊥

+ 2A�2
0

3ω⊥�Z

− 2A�2
0

(
3�2

R + 5ω2
⊥
)

15ω2
⊥�2

Z

+ · · ·
)

, (63)
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which is shown by the higher-energy sharp red peak below the
continuum in Fig. 7(c).

The result for �−
⊥ can summarized for small enough

√
A�0

(more precisely for
√

2A�0 � ω⊥) as

�−
⊥ ≈

⎧⎪⎪⎨
⎪⎪⎩

Mode is Landau damped, �Z < �4c
Z � ω⊥

�Z − (
�Z
2 + A�2

0
�Z

− ω2
⊥

2�Z

)
, �4c

Z < �Z � ω⊥
ω⊥
(
1 − 2A�2

0

3ω2
⊥

+ 2A�2
0

3ω⊥�Z
− 2A�2

0(3�2
R+5ω2

⊥ )
15ω2

⊥�2
Z

+ · · · ), �4c
Z � ω⊥ ∼ �R � �Z

(64)

where �4c
Z is given by Eq. (62). It can be checked from

Eqs. (60) and (64) that �+
⊥ < �−

⊥. This, however, changes
above the continuum and we will see in Sec. III B 2 that above
the continuum �+

⊥ > �−
⊥. We remind the readers that the

superscript +/− in the definition of mode frequency mainly
refers to the solution of Eq. (48b) with −/+ on the right-hand
side.

A comparison between �4c
Z [Eq. (62)] and �3c

Z [Eq. (58)]
suggests that �4c

Z < �3c
Z ≶ ω⊥, as long as

√
2A�0 < ω⊥ ≶

�R/2. According to Eqs. (60) and (64), we conclude that
when �Z < �4c

Z < �3c
Z ≶ ω⊥, we expect to see only one

collective electronic mode in the in-plane sector which is
exponentially bound to the continuum from below as shown
by a sharp red peak in Fig. 7(a). For �Z just above �4c

Z ,
another mode peels off below the continuum, and in this
regime we have two electronic modes below the continuum
in this sector. As �Z increases further and lies in the regime
�4c

Z < ω⊥ � �Z < �3c
Z , with

√
2A�0 < �R/2 < ω⊥, both

the modes possess mixed nature of electrons and phonons,
as shown by red peaks below the continuum in Fig. 7(b).
Finally, for large �Z , or �4c

Z < �3c
Z ≶ ω⊥ � �Z , modes are

primarily phononlike and shown by sharp red peaks below the
continuum in Fig. 7(c).

b. Collective modes above the continuum.. We now discuss
collective modes above the continuum. At the upper edge of

the continuum, � =
√

�2
R + �2

Z , the real parts of both in-
plane and out-of-plane components of the phonon self-energy,
�scsc

11 and �scsc
33 [Eq. (29)], have a square-root divergence. This

is an indication that the system may always support collective
modes above the continuum at arbitrarily weak coupling in
both {x-y} and {z} sectors. The existence of a mode above the
continuum in the {z} sector at arbitrarily weak coupling (or
all �Z ) is in stark contrast to that below the continuum: below
the continuum, the mode exists only for �Z > �1c

Z [Eq. (51)],
as discussed in Sec. III B 2. Parenthetically, we note that the
off-diagonal component of the self-energy �scsc

12 [Eq. (29)]
does not have any divergence at the upper edge of the contin-
uum. However, this does not pose any problem because since
the in-plane components are coupled, the divergence in only
the diagonal components of this sector, �scsc

ii , with i = {1, 2},
already ensures collective modes above the continuum in the
{x-y} sector.

Above the continuum, Eq. (48a) (equation for the {z}-
sector mode) yields one mode, whereas Eq. (48b) (equa-
tion for the {x-y}-sector modes) yields two modes, as shown
by one blue and two red peaks, respectively, in all the panels
of Fig. 7. We first discuss collective modes in the {z} sector,
followed by same in the {x-y} sector.

Modes in the out-of-plane sector. We start with Eq. (48a)
and look for the solution just above the upper edge of the

continuum: � ≈
√

�2
R + �2

Z + EB, with EB �
√

�2
R + �2

Z .
Using this assumption, Eq. (48a) can be written as

�2
R + �2

Z − ω2
‖

�2
0

+ A
�2

Z

�2
R

(
4 + 2�R√−2EB

(
�2

R + �2
Z

)1/4

× log

[√−2EB
(
�2

R + �2
Z

)1/4 + �R√−2EB
(
�2

R + �2
Z

)1/4 − �R

])
= 0, (65)

which can be expanded further for small EB:

�2
R + �2

Z − ω2
‖

�2
0

≈ A

√
2π�2

Z√
EB�R

(
�2

R + �2
Z

)1/4 . (66)

The right-hand side of Eq. (66) is always positive for A > 0
and �R > 0. Therefore, any real solution of Eq. (66) requires√

�2
R + �2

Z > ω‖ in the left-hand side. Upon solving for EB,
the collective mode frequency above the continuum can be
obtained:

�‖ ≈
√

�2
R + �2

Z

[
1 + 2π2A2�4

Z�4
0

�2
R

(
�2

R + �2
Z

)(
�2

R + �2
Z − ω2

‖
)2

]
.

(67)

This mode is primarily electronic and replicates the scenario
as shown by a blue peak above the continuum in Fig. 7(c).

In the opposite limit
√

�2
R + �2

Z � ω‖, the solution is pri-
marily phononlike with an interaction correction proportional
to A. To obtain the analytical expression of the mode well
above the continuum, we expand Eq. (48a) for large � ∼
ω‖ �

√
�2

R + �2
Z . Upon solving the resulting equation for �,

we get

�‖ ≈ ω‖

(
1 + 4A�2

Z�2
0

3ω4
‖

+ · · ·
)

, (68)

which is illustrated well by a blue peak above the continuum
in Figs. 7(a) and 7(b) for different values of Zeeman field.
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In summary, the asymptotes of the mode polarized along the direction of the polar order are

�‖ ≈

⎧⎪⎨
⎪⎩
√

�2
R + �2

Z

[
1 + 2π2A2�4

Z �4
0

�2
R (�2

R+�2
Z )(�2

R+�2
Z −ω2

‖ )2

]
,

√
�2

R + �2
Z � ω‖

ω‖
(
1 + 4A�2

Z �2
0

3ω4
‖

+ · · · ), √
�2

R + �2
Z � ω‖.

(69)

Modes in the in-plane sector. To calculate collective modes
in the in-plane sector we use the same procedure as applied
for the out-of-plane sector mode: � ≈

√
�2

R + �2
Z + EB, with

EB �
√

�2
R + �2

Z , in Eq. (48b). At small EB, we expand
Eq. (48b) and obtain the equation that is required to be solved:

− �2
R + �2

Z − ω2
⊥

�2
0

+ Aπ�R√
2EB

(
�2

R + �2
Z

)1/4

−
2A
(
�2

R − 2�2
Z ∓ 2�Z

√
�2

R + �2
Z

)
�2

R

= 0. (70)

Notice that there are two equations in Eq. (70) which are
distinguished by ∓ sign in the last term. The origin of the
∓ term is basically �scsc

12 which is nonzero because of broken
time-reversal symmetry at finite �Z .

Let us now analyze Eq. (70). The one with a “+” sign in the
last term is overall positive (excluding the overall minus sign
in front of it). Similarly, the first term of Eq. (70) is also posi-
tive for

√
�2

R + �2
Z > ω⊥ (excluding the overall minus sign).

Given that the second term is positive (including the overall
plus sign in front of it), we have a positive-definite solution
for EB. On the other hand, the one with a “−” sign in the last
term of Eq. (70) is not necessarily either positive or negative.
However, it is proportional to the coupling constant A. So,
given that the first term of Eq. (70) is overall negative for

√
�2

R + �2
Z > ω⊥, we can say that at weak coupling (A � 1),

the combination of first and third terms of Eq. (70) is overall
negative. We then again have a positive-definite solution for
EB. Upon solving Eq. (70) for EB, the collective mode for√

�2
R + �2

Z > ω⊥ can be obtained:

�±
⊥ ≈

√
�2

R + �2
Z

[
1 + π2A2�2

R

2
(
�2

R + �2
Z

)
{

�2
R + �2

Z − ω2
⊥

�2
0

+ 2A

(
1 −

2�Z
(
�Z ±

√
�2

R + �2
Z

)
�2

R

)}−2]
. (71)

This solution is represented by two red peaks above the con-
tinuum in Figs. 7(b) and 7(c).

To get the solution in the opposite regime,
√

�2
R + �2

Z �
ω⊥, we expand Eq. (48b) for large � ∼ ω⊥ �

√
�2

R + �2
Z ,

and solve the resulting equation for �. The collective modes
read as

�±
⊥ ≈ ω⊥

(
1 ± 2A�2

0�Z

3ω3
⊥

+ 2A�2
0

(
�2

R + �2
Z

)
3ω4

⊥

)
, (72)

which are shown by red peaks above the continuum in
Fig. 7(a).

Finally, the asymptotes of the mode in the in-plane sector,
or polarized in the plane perpendicular to the polar order, are
summarized:

�±
⊥ ≈

⎧⎪⎨
⎪⎩
√

�2
R + �2

Z

[
1 + π2A2�2

R

2(�2
R+�2

Z )

{�2
R+�2

Z −ω2
⊥

�2
0

+ 2A
(
1 − 2�Z (�Z ±

√
�2

R+�2
Z )

�2
R

)}−2]
,

√
�2

R + �2
Z � ω⊥

ω⊥
(
1 ± 2A�2

0�Z

3ω3
⊥

+ 2A�2
0(�2

R+�2
Z )

3ω4
⊥

)
,

√
�2

R + �2
Z � ω⊥.

(73)

It can be verified that above the continuum �+
⊥ > �−

⊥. This
means that �−

⊥ is always closer to the continuum as compared
to �+

⊥ both below and above the continuum.
Let us now summarize the entire Sec. III B. We summa-

rized our results of collective modes at �Z = 0 in Eq. (47). At
�Z = 0, collective modes exist only above the particle-hole
continuum. Moreover, only the mode polarized in the plane
perpendicular to the polar order undergoes renormalization
due to interaction. At finite �Z , however, the system sup-
ports collective modes both below and above the particle-hole
continuum. Moreover, at finite �Z collective modes polarized
both along the polar order and perpendicular to it get renor-
malized due to interactions. Below the continuum, our results
for z-direction polarized (along the polar order) collective
mode are summarized in Eq. (54), while those for the ones
polarized in the xy plane (perpendicular to the polar order)
are summarized in Eqs. (60) and (64). Finally, above the

continuum, the results for the z-direction polarized mode are
summarized in Eq. (69), while those for the xy-plane polarized
mode are summarized in Eq. (73). We conclude that be it
above or below the continuum, collective modes which are
close to the continuum are primarily electronic, whereas the
ones which are well above or well below the continuum are
primarily phononlike.

IV. PREDICTIONS FOR ELECTRON/ELECTRIC-DIPOLE
SPIN RESONANCE MEASUREMENTS

In this section we demonstrate that the collective modes
predicted above will have signatures in the dynamical spin
susceptibility, contributing to ESR and EDSR measurements
(see Sec. II B): the EDSR response (real part of opti-
cal conductivity) is related to the imaginary part of the
spin susceptibility [see Eq. (16)], so the resonance fea-
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tures in the latter show up at same frequencies as in
the former. The field-tuned collective modes identified in
the renormalized phonon responses will only be accessible in
the dynamical spin susceptibility if there is coupling between
the spin and the spin-current degrees of freedom. Here we
calculate the spin susceptibility and check that it displays the
same poles as those in the renormalized phonon propagator.
We show that these collective modes appear as sharp reso-
nances in the imaginary part of the spin susceptibility both
below and above the particle-hole continuum, and thus we
provide signatures for future spectroscopy experiments.

We calculate spin susceptibility as defined in Sec. II B and
given by Eq. (28). For this, we require the form of spin-
spin (�ss

i j ) and spin–spin-current (�ssc
i j ) correlation functions,

which are defined by Eq. (24) in a compact form. The explicit
form of coherence factors for these correlation functions,
f rr̄,ss
i j and f rr̄,ssc

i j , is given in Eqs. (A2) and (A3) of Appendix A
and the technical details of the calculation of bubble are del-
egated as well to Appendix B. Here we only provide final
results. The explicit forms of nonzero �ss

i j and �ssc
i j can be

calculated as

�ss
11(�n) = −NF

4

[
2 +

(−�2
n + �2

Z

)
�R

√
�2

n + �2
R + �2

Z

L(�n)

]
,

�ss
22(�n) = �ss

11(�n),

�ss
33(�n) = −NF

4

[
4 − 2

(
�2

n + �2
Z

)
�R

√
�2

n + �2
R + �2

Z

L(�n)

]
,

�ss
12(�n) = NF

4

2�n�Z

�R

√
�2

n + �2
R + �2

Z

L(�n),

�ss
21(�n) = −�ss

12(�n), (74)

and

�ssc
33 (�n) = √

ANF
2�Z

�R

[
1 −

(
�2

n + 2�2
R + �2

Z

)
L(�n)

2�R

√
�2

n + �2
R + �2

Z

]
,

�ssc
11 (�n) = �ssc

22 (�n) = −1

2
�ssc

33 (�n),

�ssc
12 (�n) = − �n

2�Z
�ssc

33 (�n),

�ssc
21 (�n) = −�ssc

12 (�n), (75)

respectively, where NF is the total density of states in 3D and,
A and L(�n) are given by Eq. (30). As discussed earlier in
Sec. II B, the applicability of ESR/EDSR in the ordered phase
depends on whether �ssc

i j is finite or not. We emphasize that
�ssc

i j determines the spectral weight of the collective mode and
is finite only in the ordered phase. To see this we expand �ssc

33
in Eq. (75) for small �R:

�ssc
33 (�n)≈√

ANF

(
− 8�Z�R

3
(
�2

n+�2
Z

)+ 8�Z�3
R

5
(
�2

n + �2
Z

)2 +· · ·
)

.

(76)

Since �ssc
33 ∝ �R, it is finite only in the ordered phase ac-

cording to Eqs. (31) and (32). This proportionality (76) holds

true for other components of �̂ssc as well according to the
relations mentioned in Eq. (75). If �ssc

i j vanishes, which would
be the case in the nonpolar (paraelectric) phase where the
static Rashba term (6) is zero, then the Imχ will have signal
corresponding to only single-particle effects coming solely
from the noninteracting spin-polarization bubble �ss

i j . There
is no interaction effect that spin response would be able to
capture in the nonpolar phase.

In the next two sections, we will discuss spin response at
zero (Sec. IV A) and finite (Sec. IV B) magnetic fields. Our
aim is to study whether signatures of the collective modes
discussed in Secs. III B 1 and III B 2 can appear in the spin
susceptibility. If so, then they can be resonantly excited in
ESR by applying an ac magnetic field: in order to excite in-
plane modes (either x or y), one needs to apply an ac magnetic
field along the x or y direction, the out-of-plane modes can be
excited by applying an ac magnetic field along the z direction.

A. Spin response without magnetic field

As discussed in Sec. III A 1, at zero magnetic field the
particle-hole continuum is gapless and the collective modes
exist only above the continuum (see Sec. III B 1 for details on
collective modes at �Z = 0). The mode in the {z} sector does
not renormalize due to interaction because the correspond-
ing component of the self-energy (29) vanishes in this limit.
Hence, we get bare phonons (ω‖) polarized along the z di-
rection. The mode in the {x-y} sector, however, renormalizes
due to interaction, the form of which is given by Eq. (47) in
different regimes.

To know whether these modes are excited in ESR/EDSR,
we calculate the corresponding observable, the spin suscep-
tibility, and see if same poles as in Di j show up in the spin
susceptibility [see Eq. (28) for the definition] as well or not.
The result is shown in Fig. 8(a) [for same parameter values as
chosen in Fig. 6(a), including the damping parameter which
is chosen to be γ = 10−4ω‖], where only the red peak above
the continuum, corresponding to the mode in the {x-y} sector,
that appears in the imaginary part of the spin susceptibility.
The location of the peak coincides with the one in Fig. 6(a).
This is also clear from the definition of the spin susceptibility
in Eq. (28), where the in-plane components of renormalized
phonon propagator appear in the in-plane components of the
spin susceptibility, while the out-of-plane component of the
phonon propagator shows up in the out-of-plane component
of the spin susceptibility.

The spectral weight of the mode in the out-of-plane sec-
tor (blue peak) is zero and, therefore, is not excited in
ESR/EDSR. This can be understood by looking at the explicit
form of χ33 [Eq. (28)] which depends on �ssc

33 [Eq. (75)]. At
�Z = 0, �ssc

33 vanishes (75), which in turn gives χ33 = �ss
33.

As we see, the out-of-plane susceptibility does not probe the
pole in the D33 component; it only probes the single-particle
continuum coming from Im�ss

33 �= 0, which is shown by blue
shaded region in Fig. 8(a). Component �ssc

33 = 0 also implies
�ssc

11 = 0 [Eq. (75)]. However, the off-diagonal component
�ssc

12 still survives. If we look at the form of χ11 in Eq. (28),
we find that the pole in the D11 component is probed in
ESR/EDSR by �ssc

12 which is nonzero even when �Z = 0. It
is because of this reason the pole in D11 also shows up in χ11
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and, therefore, is ESR/EDSR active, as is evident by sharp red
peak above the continuum in Fig. 8(a). The red shaded region
is the single-particle continuum of the in-plane sector, the
edges of which coincide with those of the out-of-plane sector.
This can be verified from the pole structure of single-particle
bubbles �ss

i j and �ssc
i j , contributing to the spin susceptibility.

B. Spin response with magnetic field

We now discuss the effect of finite magnetic fields
on ESR/EDSR. As discussed in Sec. III A 2, the contin-
uum becomes gapped at finite �Z . This supports collective
modes both below and above the continuum as discussed in
Sec. III B 2. At finite �Z , in addition to modes in the in-plane
sector, the out-of-plane sector modes are also renormalized
due to interaction. Moreover, all the components in Eq. (75)
are now nonzero which clearly indicates that whichever mode
that showed up in ImDi j will also show up in the imaginary
part of χi j , according to Eq. (28). Indeed, it can be seen in
Fig. 8(b) that all the modes below and above the continuum
are excited at finite �Z . The parameter values for this fig-
ure has been chosen to be same as those in Fig. 7(b), including
the damping parameter. It can be checked, and also verified
from the definition (28), that the location of modes coincides
in both these figures, which must be the case if these modes
are probed in ESR/EDSR. To clarify, one of the red peaks in
Fig. 8(b) which is closest to the continuum above it is not well
resolved as compared to that in Fig. 7(b). We emphasize that
the location of the peak in both these figures is the same, it
is just the large spectral weight of the ESR/EDSR continuum
[due to additional contribution from �ss

11, �ssc
11 , and �ssc

12 , as
clear from the definition in Eq. (28)) in Fig. 8(b) makes it
difficult to distinguish.

V. DISCUSSION AND CONCLUSION

In this paper we have demonstrated the emergence of
collective modes in polar metals near their polar transition re-
sulting from spin-orbit mediated interaction between electrons
and soft phonons. We have identified the Zeeman energy as a
tuning knob that can control the number, the energies, and the
character, namely, electronic or phononic, of these collective
modes.

We have also shown that these emergent collective modes
can be probed in optical absorption experiments. Both the
phonon (Figs. 6 and 7) and the electronic (Fig. 8) responses
bear fingerprints of the collective modes. Note that the elec-
tronic response is specific to the polar phase. It comes from
both spin susceptibility (electronic spin resonance) and op-
tical conductivity (electronic dipole spin resonance), which
are related to one another in the polar phase as explained in
Sec. II B. In the nonpolar phase, both of these contributions
vanish [23].

We note that our calculations also apply for polar metals
close to thermally driven polar transitions, if they are not
strongly first order. This further broadens the range of possible
candidate materials. Moreover, it indicates that for metals
close to a second-order polar phase transition the relevant
magnetic field scale should go to zero at the transition, al-
lowing for experiments at low fields. However, we note that

calculations presented here are only applicable away from the
transition because the perturbative approach breaks down in
its vicinity (see Appendix B of Ref. [23] for detailed discus-
sion of this issue). Finally, using magnetic doping instead of
external magnetic field may raise the Zeeman splitting scale,
such that the effects we predicted can be observed at larger
frequencies and without the need to apply magnetic field.

A natural candidate for the realization of our proposal
would be the polar Ca-substituted [57] or oxygen-isotope-
substituted [58] SrTiO3 which otherwise is a quantum
paraelectric [59–61]; electron doping in the polar phase of
SrTiO3 makes the system a polar metal. Another material
of interest is KTaO3 [22,62] that has a considerably larger
spin-orbit coupling than SrTiO3.

We now provide an estimate of the magnetic field strength
that is required to change the number and character of the
collective modes presented in Fig. 7. We first note that our
results predict at least one collective mode at low energies
for arbitrarily nonzero �Z . However, to change the mode
character and their number, the characteristic value of �Z

is of the order of the value of polar mode energy in the
weak coupling limit [see Eq. (62), where additionally ω‖ ∼
ω⊥]. Raman measurements give this information for the Ca-
substituted doped SrTiO3, or precisely Sr1−xCaxTiO3−δ [63].
The classical polar metallic transition, associated with the
softening of polar mode frequency, occurs there at roughly
20 K. The minimal mode frequency observed experimentally
around that temperature is ω‖ ≈ 12 cm−1 ≈ 1.5 meV, while at
lower temperature it remains below 20 cm−1 ≈ 2.5 meV. The
corresponding magnetic field strength is, assuming the Landé
g factor for electrons to be 2 (see Ref. [23], and references
therein, for detailed prediction for experiment), is roughly
17 T.

The polar metallic phase of KTaO3 has not been yet re-
alized experimentally. However, a polar transition has been
observed in polycrystalline KTaO3 thin films [64] at 60 K.
Slightly away from the critical point, the associated soft-mode
frequency is ω‖ ≈ 7 meV. If the polar transition survives in
the metallic phase too (similarly as in SrTiO3), the estimate
for the magnetic field strength comes out to be roughly 77 T in
KTaO3 for the same ratio �Z/ω‖ = 1. We note that depending
on the strength of the electron-phonon coupling, effect of
mode hybridization may appear at lower field. For example,
for the parameters used in Fig. 7, the mode number changes
already at �Z/ω‖ = 0.8, corresponding to field around 62 T.

As shown in our previous work [23], spectroscopy of
collective modes can be used to deduce the value of the
spin-orbit mediated electron-phonon coupling (3). A simi-
lar procedure can be developed for deducing the coupling
from ESR or EDSR experiments in the polar phase using
the present results. In the polar phase, an alternative way to
measure the coupling constant is by measuring the beatings of
Shubnikov–de Haas (ShdH) oscillations in the polar phase
arising due to spin splitting. From these beatings, one can
estimate the static Rashba spin-orbit strength (α) which is
eventually related to the coupling constant λ, according to
Eq. (31).

We note that the above estimates for SrTiO3 and KTaO3

are performed for the vicinity of the classical polar transition.
It is possible that by tuning a parameter one can decrease the
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critical temperature down to the lowest value and reach the
quantum limit; see Ref. [57] for SrTiO3 where the quantum
critical point is tuned by increasing doping density. However,
spectroscopic data on the mode frequencies are not yet avail-
able. The predictions of this work should also apply in the
vicinity (but not too close) to the polar QCP.
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APPENDIX A: COHERENCE FACTORS FOR VARIOUS
CORRELATION FUNCTIONS: SPIN CURRENT–SPIN

CURRENT ( f rr̄,scsc
i j ), SPIN-SPIN ( f rr̄,ss

i j ), SPIN–SPIN
CURRENT ( f rr̄,ssc

i j ), AND SPIN CURRENT–SPIN ( f rr̄,scs
i j )

In this Appendix we will provide explicit forms of co-
herence factors for all kinds of bubbles. Using the definition
of spin-spin (18), spin–spin-current (19), spin-current–spin
(20), and spin-current–spin-current (22) correlation functions,
along with that of the Green’s function (23) with �k given
by Eq. (8), we calculate the corresponding coherence factors.
More precisely, they are given by

f rr̄,ss
i j = Tr[σ̂iD̂r̄ (k)σ̂ j D̂r (k)],

f rr̄,ssc
i j = Tr[σ̂iD̂r̄ (k)(k × σ̂ ) j D̂r (k)],

f rr̄,scs
i j = Tr[(k × σ̂ )iD̂r̄ (k)σ̂ j D̂r (k)],

f rr̄,scsc
i j = Tr[(k × σ̂ )iD̂r̄ (k)(k × σ̂ ) j D̂r (k)], (A1)

where D̂s(k) is only the matrix part in the full definition of
the electron Green’s function as defined in the second line of
(23). Here, �k is given in Eq. (8). The chiral Green’s function
gs(iεm, k) does not have any contribute to coherence factors;
they are instead used for frequency summation which we will
show in Eq. (B1) of Appendix B. We note that in this work
we have assumed the momentum transfer to be zero (q = 0);
therefore, the q dependence in D̂s(k) has been suppressed
explicitly. Also, in general, coherence factors are functions
of polar and azimuthal angles: f rr̄,ab

i j (θ, φ), where a and b
could be either spin or spin current. For brevity, we omit this
dependence and write it simply as f rr̄,ab

i j [Eq. (A1)].

Explicit form of f rr̄,ss
i j . Charge is conserved at q = 0. So, all

the charge components of the bubble are zero. However, spins
are no longer a conserved quantity even at q = 0. Therefore,
the components of bubble with (i, j) ∈ (1 . . . 3) are expected
to survive. However, as discussed in Sec. II B of the main
text [see the text below Eq. (24)], because of x → −x and

y → −y symmetry in the system, even some of the spin-sector
components of the bubble vanish. Therefore, we provide the
expression of only those components of spin-spin coherence
factor whose corresponding bubble is finite:

f rr̄,ss
11 = 1

2

[
1 − rr̄

�2
Z

�2
k

]
,

f rr̄,ss
22 = f rr̄,ss

11 ,

f rr̄,ss
33 = 1

2

[
1 + rr̄

�2
Z

�2
k

− rr̄
4α2k2 sin2 θ

�2
k

]
,

f rr̄,ss
12 = 1

2
i(r − r̄)

�Z

�k
,

f rr̄,ss
21 = − f rr̄,ss

12 . (A2)

Explicit form of f rr̄,ssc
i j . Using the same argument as above,

the coherence factors for only nonzero components of the
spin–spin-current bubble can be calculated:

f rr̄,ssc
11 = rr̄

�Z (2αk sin θ )

�2
k

ky sin φ,

f rr̄,ssc
22 = rr̄

�Z (2αk sin θ )

�2
k

kx cos φ,

f rr̄,ssc
33 = −rr̄

�Z (2αk sin θ )

�2
k

(kx cos φ + ky sin φ),

f rr̄,ssc
12 = −i(r − r̄)

αk sin θ

�k
kx cos φ,

f rr̄,ssc
21 = i(r − r̄)

αk sin θ

�k
ky sin φ. (A3)

Although f rr̄,ssc
11 and f rr̄,ssc

22 are different, from the rotational
symmetry in the x-y plane the corresponding bubbles �ssc

11 and
�ssc

22 will be equal, which is indeed the case as presented in
Eq. (75) of the main text. Same way it is also easy to see that
f rr̄,ssc
21 = − f rr̄,ssc

12 .
Explicit form of f rr̄,scs

i j . The coherence factors for nonzero
components of the spin-current–spin bubble are

f rr̄,scs
11 = rr̄

�Z (2αk sin θ )

�2
k

ky sin φ,

f rr̄,scs
22 = rr̄

�Z (2αk sin θ )

�2
k

kx cos φ,

f rr̄,scs
33 = −rr̄

�Z (2αk sin θ )

�2
k

(kx cos φ + ky sin φ),

f rr̄,scs
12 = −i(r − r̄)

αk sin θ

�k
ky sin φ,

f rr̄,scs
21 = i(r − r̄)

αk sin θ

�k
kx cos φ. (A4)

One can notice from the above equation that all the diagonal
components of f rr̄,scs

i j are equal to those of f rr̄,ssc
i j . Moreover,

f rr̄,scs
12 = − f rr̄,ssc

21 and f rr̄,scs
21 = − f rr̄,ssc

12 .
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Explicit form of f rr̄,scsc
i j . Finally, the coherence factors for

nonzero components of the spin-current–spin-current bubble
can be calculated:

f rr̄,scsc
11 = 1

2

[
k2

y

(
1 + rr̄

�2
Z

�2
k

)
− rr̄k2

y

4α2k2 sin2 θ

�2
k

+ k2
z

(
1 − rr̄

�2
Z

�2
k

)]
,

f rr̄,scsc
22 = 1

2

[
k2

x

(
1 + rr̄

�2
Z

�2
k

)
− rr̄k2

x

4α2k2 sin2 θ

�2
k

+ k2
z

(
1 − rr̄

�2
Z

�2
k

)]
,

f rr̄,scsc
33 = 1

2

[(
k2

x + k2
y

)(
1 − rr̄

�2
Z

�2
k

)

+ rr̄
(
k2

x − k2
y

)
cos 2φ

4α2k2 sin2 θ

�2
k

+ rr̄2kxky sin 2φ
4α2k2 sin2 θ

�2
k

]
,

f rr̄,scsc
12 = 1

2
i(r − r̄)k2

z

�Z

�k
,

f rr̄,scsc
21 = − f rr̄,scsc

12 . (A5)

APPENDIX B: CALCULATION OF BUBBLE

The functional form of all kinds of bubbles is same as that
in Eq. (24) of the main text, except that the coherence factor,
as discussed in Appendix A, is replaced by those of bubbles
that we are calculating. In this Appendix, we provide steps
of the calculation of frequency summation and k integral that
show up in Eq. (24). The frequency summation yields

�ab
i j (i�n)=λ2

∫
K

∑
rr̄

f rr̄,ab
i j gr (i(ωm + �n), k)gr̄ (iωm, k)

=λ2
∑

rr̄

∫
d3k

(2π )3
f rr̄,ab
i j

nF
(
εr̄

k − μ
)− nF

(
εr

k − μ
)

i�n − εr
k + εr̄

k

,

(B1)

where εs
k is the eigenvalue as given by Eq. (8) of the main text.

The next step is the calculation of k integral. We
assume that the band splitting caused by the combina-
tion of Rashba SOC and Zeeman field, �k [Eq. (8)],
is small compared to the Fermi energy. This allows us
to expand the Fermi function: nF (εs

k − μ) ≈ nF (εk − μ) +
s(�k/2)n′

F (εk − μ), where εk = k2/2mb. At T = 0, nF (εk −
μ) ≈ �(μ − εk ) and n′

F (εk − μ) ≈ −δ(εk − μ). This results
in Eq. (B1) as

�ab
i j (i�n) = λ2

2

∑
rr̄

∫
d3k

(2π )3
f rr̄,ab
i j

(r − r̄)�kδ(εk − μ)

i�n − (r − r̄)�k/2
.

(B2)

As we see, the δ function immediately projects k onto kF

which is valid in the limit of large μ. The rest is to do angle
integration which results in a logarithm. The origin of the
logarithm is the effective two-dimensionality of the k integral
as shown in Eq. (34) of the main text.
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