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Hartree-Fock exploration of electronic ferroelectricity, valence transitions, and metal-insulator
transitions in the extended Falicov-Kimball model
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The Hartree-Fock (HF) approximation with charge-density-wave (CDW) instability is used to examine
ground-state properties of the spinless Falicov-Kimball model extended by f -electron hopping and nonlocal
hybridization with inversion symmetry in two and three dimensions. Particular attention is paid to the effects of
hybridization on the electronic ferroelectricity, valence transitions, and metal-insulator transitions. It is shown
that inhomogeneous HF solutions exist for both the CDW and excitonic order parameters, but generally they
are suppressed with increasing nonlocal hybridization V . The effects of V are very strong, and even relatively
small values of V (V < 1) completely destroy the ferroelectric state. Strong, but positive, effects on excitonic
correlations are exhibited by the interband d- f Coulomb interaction U , which significantly enhances the stability
region of the homogeneous excitonic phase. Unlike the nonlocal hybridization V and the Coulomb interaction
U , the f - f -electron hopping only renormalizes the phase boundaries between different phases in the V -Ef phase
diagrams (with Ef being the f -level position) and does not generate any new phases. In addition, a comparative
HF study of the influence of hydrostatic pressure p on valence and metal-insulator transitions within p-Ef and
p-V parametrizations shows that the p-V parametrization describes much better the relevant aspects of real
experiments in mixed-valence systems (e.g., SmB6), where a nice qualitative accordance between theoretical
predictions and experimental measurements is found for both pressure-induced valence transitions and metal-
insulator transitions. This opens a route for the description of pressure-induced transitions in mixed-valence
systems.
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I. INTRODUCTION

Since its introduction in 1969, the Falicov-Kimball model
(FKM) has become an important standard model for the de-
scription of correlated fermions on the lattice [1]. It has been
used in the literature to study a great variety of many-body
effects in rare-earth and transition-metal compounds, of which
charge density waves, metal-insulator transitions, and mixed-
valence phenomena are the most common examples [2]. In
the past two decades the FKM was extensively studied in
connection with the exciting idea of electronic ferroelectricity
[3–13], which is directly related to the formation and con-
densation of excitonic bound states of conduction (d) and
valence ( f ) electrons [14–26]. The motivation for these stud-
ies comes from the pioneering work of Portengen et al. [3,4],
who studied the FKM with k-dependent hybridization in the
Hartree-Fock (HF) approximation and found that the on-site
Coulomb repulsion U between the conduction d electrons
and the localized f electrons gives rise to a nonvanishing
excitonic 〈 f +d〉 expectation value even in the limit of van-
ishing hybridization V → 0. As an applied electrical field
provides for excitations between d and f states and thus for
a polarization expectation value Pf d = 〈 f +

i di〉, the finding of
a spontaneous Pf d (without hybridization or electric field)
has been interpreted as evidence for electronic ferroelectric-
ity. It should be noted that the existence of ferroelectrics
based on a purely electronic mechanism would provide a
set of new physical properties and technological applica-
tions. For example, it opens possibilities of faster switching

ferroelectrics and controlling their optical properties with
magnetic fields.

Hybridization between the conduction d and localized f
states is not the only way to develop d- f coherence. Theoret-
ical works of Batista and co-workers [10,11] showed that the
ground state with a spontaneous electric polarization can also
be induced in the FKM by f -electron hopping for dimensions
D > 1. For such an extended model the authors postulated the
three main conditions that favor the formation of the elec-
tronically driven ferroelectric state: (a) The system must be
in a mixed-valence regime, and the d and f bands must have
different parity; (b) it is best, but not necessary, if both bands
have similar bandwidths; and (c) a local Coulomb interaction
between the d and f orbitals is required.

In our previous paper [12] we have studied the extended
FKM with f - f hopping in the HF approximation with the
charge-density-wave (CDW) instability, and we have found
that our HF solutions reproduce perfectly the two-dimensional
ground-state phase diagram obtained by Batista et al. [11]
using the constrained-path Monte Carlo (CPMC) method [11],
including all main phases: (i) the integer-valent state, (ii) the
mixed-valent CDW state, and (iii) the mixed-valent ferroelec-
tric state. These results indicate two important things, namely,
that the HF approximation with the CDW instability is a very
effective tool for a study of ground-state properties of mixed-
valence d- and f -electron systems, and that the spinless FKM
with finite f -band width has a great potential to describe
various cooperative phenomena observed experimentally in
these compounds, such as, for example, the valence and
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metal-insulator transitions, charge density waves, and the for-
mation of excitonic bound states. However, in mixed-valence
systems with d and f electrons a further very important in-
teraction is present, namely, the nonlocal hybridization with
inversion symmetry, which can fundamentally change the
picture of valence and metal-insulator transitions as well as
the picture of formation of the CDW order and the excitonic
state described in Ref. [12]. Indeed, the density-matrix-
renormalization-group (DMRG) results that we have obtained
in our recent paper [27] within the one-dimensional spinless
FKM with local and nonlocal hybridization showed that these
different hybridizations have fundamentally different impacts
on some ground-state properties of mixed-valence systems. In
particular, we have found that while the local hybridization
strongly supports the formation of the excitonic condensate,
the nonlocal hybridization destroys it completely, at least in
the half-filled-band case. This indicates what a crucial role is
played by the correct type of hybridization in the description
of ground-state properties of mixed-valence systems. Despite
the popularity of the local hybridization potential, this is ac-
tually forbidden in real d- f systems by parity considerations,
and thus for their correct description one has to use the nonlo-
cal hybridization with inversion symmetry Vi, j = V (δ j,i−1 −
δ j,i+1) that leads to k-dependent hybridization of the oppo-
site parity to that corresponding to the d band [Vk ∼ sin(k)]
[28]. (A straightforward extension of the one-dimensional
results to two dimensions yields Vi, j = V [δix, jx (δiy, jy+1 −
δiy, jy−1) + δiy, jy (δix, jx+1 − δix, jx−1)], where any site on the
lattice is given by Ri = ixax̂ + iyaŷ and a is the lattice
constant.)

The one-dimensional expression was used in our very
recent paper [29], where we studied the influence of the non-
local hybridization with inversion symmetry on the valence
and metal-insulator transitions (without the f -electron hop-
ping) and arrived at a very important observation, namely,
that parametrization between the nonlocal hybridization
and pressure gives a much better description of valence
and metal-insulator transitions than the usually considered
parametrization between the pressure and the f -level posi-
tion. Unfortunately, these results have been obtained in one
dimension (on small clusters), while real systems are usually
two or three dimensional (and macroscopic), and therefore for
their confirmation it is necessary to perform corresponding
calculations in higher dimensions. With respect to the above-
mentioned advantages of the HF approximation with CDW
instability we have decided to use this method to achieve
this goal. The particular subjects that will be investigated in
this way are the following: (i) the influence of the nonlocal
hybridization with inversion symmetry V on the electronic fer-
roelectricity; (ii) the influence of V on the valence transitions;
and (iii) the influence of V on the metal-insulator transitions.
All these subjects will be investigated in two and three dimen-
sions, and the relevance of these results for description of real
materials will be discussed.

To complete the literature review of works dealing with the
same topic and using similar methods and models to those
used in this paper, we refer readers to Refs. [9,30–35], where
the FKM in the limit of large dimensions is studied, and to
Refs. [36–39], where the latest extensions of the FKM are
considered.

II. THE MODEL

In its original form, the FKM describes a two-band sys-
tem of the itinerant d electrons (with the nearest-neighbor
d-electron hopping constant td ) and the localized f electrons
that interact only via a local f -d Coulomb interaction U :

H0 = −td
∑
〈i, j〉

d+
i d j + U

∑
i

f +
i fid

+
i di + E f

∑
i

f +
i fi, (1)

where α+
i and αi are the creation and annihilation operators of

spinless electrons in the α = {d, f } orbital at site i and E f is
the position of the f -level energy.

In the extended spinless FKM considered here for a de-
scription of real d- f materials, also the f - f hopping and
nonlocal hybridization (with inversion symmetry) between the
nearest-neighbor sites are allowed:

H = H0 + Ht f + HV

= H0 − t f

∑
〈i j〉

f +
i f j +

∑
〈i j〉

(Vi jd
+
i f j + H.c.). (2)

Usually, the hopping integral of the d electrons is taken to
be the unit of energy (td = 1), and the f -electron hopping
integral is considered in the limit |t f | < 1. This is a reason
why in some papers [40,41] the d electrons are called light and
the f electrons are called heavy. The model with small finite
t f is also intensively studied in the context of atomic gases on
optical lattices, because it can be realized there considering
two types of atoms with strongly different masses [42–45].

To solve this model Hamiltonian, we use the HF approx-
imation with CDW instability, which except homogeneous
solutions allows also inhomogeneous solutions with periodic
modulation of order parameters. The same approach has been
used in our previous papers, where we have studied individual
effects of f - f hopping [12], local hybridization [27], and
correlated hopping [46]. For this reason we summarize here
only the basic steps of this approximation. In the presence
of CDW instability, the order parameters can be written as
follows: 〈

n f
i

〉 = n f + δ f cos(Q · ri ), (3)

〈
nd

i

〉 = nd + δd cos(Q · ri ), (4)

〈 f +
i di〉 = � + �Q cos(Q · ri ), (5)

where δd and δ f are the order parameters of the CDW state
for the d and f electrons, �Q is the order parameter of the ex-
citonic state, and Q = (π, π ) [Q = (π, π, π )] is the nesting
vector for D = 2 (D = 3).

Using these expressions, the HF Hamiltonian of the ex-
tended spinless FKM (2) is

H = −td
∑
〈i, j〉

d+
i d j − t f

∑
〈i, j〉

f +
i f j + E f

∑
i

n f
i

+U
∑

i

(n f + δ f cos(Q · ri ))nd
i

+U
∑

i

(nd + δd cos(Q · ri ))n
f
i +

∑
i j

(Vi j

−U [� + �Q cos(Q · ri )]δi j )d+
i f j + H.c. (6)
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This Hamiltonian can be diagonalized by the following canonical transformation [47]:

γ m
k = um

k dk + vm
k dk+Q + am

k fk + bm
k fk+Q, m = 1, 2, 3, 4, (7)

where �m
k = (am

k , bm
k , um

k , vm
k )T are solutions of the associated Bogoliubov–de Gennes eigenequations

Hk�
m
k = Em

k �m
k , (8)

with

Hk =

⎛
⎜⎜⎜⎜⎝

εd
k + Un f Uδ f Vk − U� −U�Q

Uδ f εd
k+Q + Un f −U�Q Vk+Q − U�

V ∗
k − U�∗ −U�∗

Q ε
f
k + Und + E f Uδd

−U�∗
Q V ∗

k+Q − U�∗ Uδd ε
f
k+Q + Und + E f

⎞
⎟⎟⎟⎟⎠

, (9)

and the corresponding dispersions εd
k , ε

f
k , and Vk are obtained

by the Fourier transform of the d- or f -electron hopping
amplitudes and the nonlocal hybridization. For the case of a
hypercubic lattice they are given by (α = d, f )

εα
k = −2tα ( cos(kx ) + cos(ky)), for D = 2, (10)

εα
k = −2tα ( cos(kx ) + cos(ky) + cos(kz )), for D = 3 (11)

and

Vk = −2iV ( sin(kx ) + sin(ky)), for D = 2, (12)

Vk = −2iV ( sin(kx ) + sin(ky) + sin(kz )), for D = 3. (13)

The HF parameters nd , δd , n f , δ f , �, and �Q can be written
directly in terms of the Bogoliubov–de Gennes eigenvectors:

nd = 1

N

∑
k

′ ∑
m

{
um∗

k um
k + vm∗

k vm
k

}
f
(
Em

k

)
, (14)

δd = 1

N

∑
k

′ ∑
m

{
vm∗

k um
k + um∗

k vm
k

}
f
(
Em

k

)
, (15)

n f = 1

N

∑
k

′ ∑
m

{
am∗

k am
k + bm∗

k bm
k

}
f
(
Em

k

)
, (16)

δ f = 1

N

∑
k

′ ∑
m

{
bm∗

k am
k + am∗

k bm
k

}
f
(
Em

k

)
, (17)

� = 1

N

∑
k

′ ∑
m

{
am∗

k um
k + bm∗

k vm
k

}
f
(
Em

k

)
, (18)

�Q = 1

N

∑
k

′ ∑
m

{
bm∗

k um
k + am∗

k vm
k

}
f
(
Em

k

)
, (19)

where the prime denotes summation over half the Brillouin
zone and f (E ) = 1/{1 + exp[β(E − μ)]} is the Fermi distri-
bution function. Here, we use the zero-temperature variant of
this procedure, where f (E ) = 1 if E � Fermi energy and zero
otherwise. Since in this paper we consider the half-filled-band
case n f + n f = 1, the Fermi energy for new quasiparticles
γ m

k can be defined directly as the Lth energy level from the
Bogoliubov–de Gennes eigenvalues Em

k arranged in ascending
order, where L is the number of lattice sites. To determine
the ground-state phase diagrams of the extended FKM in
the E f -V plane (corresponding to selected U and t f ), the
HF equations are solved self-consistently for each pair of
(E f ,V ) values. The calculation procedure is as follows: (i)
The Bogoliubov–de Gennes equation is solved by the exact

diagonalization method; (ii) the iteration is started with an
initial set of order parameters nd , δd , n f , δ f , �, and �Q;
and (iii) by solving Eq. (8), the new order parameters are
computed via Eqs. (14)–(19) and substituted back into Eq. (8).
The iteration is repeated until a desired accuracy is achieved.

III. RESULTS AND DISCUSSION

A. Phase diagram in two dimensions

Let us first discuss our HF solutions obtained for the
two-dimensional extended FKM in the intermediate-coupling
regime and with t f negative. For this case a nice accordance
of HF [12] and CPMC [11] results has been found at V = 0,
which entitles us to assume that the same result could also
apply to the case V > 0. To reveal some general trends in a
stabilization of different HF solutions in the ground state of
the model (6), we have calculated dependences of order pa-
rameters as functions of the model parameters V and E f with
steps �V = �E f = 0.01. The results of our numerical calcu-
lations obtained for n f , δ f , �, and �Q at two different values
of t f (t f = −0.1 and t f = −0.2) are displayed in Fig. 1 (we
note that nd = 1 − n f and δd ∼ −δ f ). The general tendencies
that can be read from this figure are as follows. The inho-
mogeneous HF solutions are present for all order parameters,
and generally they are suppressed with increasing nonlocal
interaction V . The effects of V are very strong, and even
relatively small values of V (V ∼ 0.35) completely destroy
HF solutions for nonzero δ f , δd , �, and �Q order parameters.
In principle, the same can be said about the HF solution
obtained for nonzero �, which persists also at higher values
of V , but its stability region is limited to a very narrow band
near E f = 0. This probably answers the question of why it is
so hard to detect the electronic ferroelectricity (the excitonic
phase) in real d- f materials. The second obvious tendency
which can be read from this figure concerns the influence of
the f - f -electron hopping on the inhomogeneous HF CDW
solution (δ f �= 0, δd �= 0) as well as the homogeneous (� �= 0,
�Q = 0) and inhomogeneous (� �= 0, �Q �= 0) HF excitonic
solutions. Comparing different panels in the left and right
columns of Fig. 1 obtained for two different values of t f

(t f = −0.1 and t f = −0.2), one can see that f - f -electron
hopping only renormalizes boundaries of different HF solu-
tions found at t f = −0.1, and for this reason we discuss in
the following only results for one representative value of t f ,
namely, t f = −0.1.
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FIG. 1. HF parameters nf , δ f , �, and �Q as functions of Ef

and V calculated for t f = −0.1 (left column) and t f = −0.2 (right
column) at U = 2 and L = 400 × 400.

A further important result that one can see in Fig. 1 is
the fact that there are regions in which different phases ex-
ist, where different orders can coexist. This is demonstrated
clearly in Figs. 2(a) and 2(b), where HF solutions for all order
parameters are displayed together. It is seen that there are
four different regions or phases corresponding to different HF

solutions for order parameters, namely, (i) the nonordered
(NO) phase, � = �Q = 0, δd = δ f = 0; (ii) the ferroelectric
(FE) phase without charge order, � �= 0, �Q = 0, δd = 0,
δ f = 0; (iii) the mixed (MX) phase with coexisting ferro-
electric (nonhomogeneous) order and charge order, � �= 0,
�Q �= 0, δd �= 0, δ f �= 0; and (iv) the charge-ordered (CO)
phase, δd �= 0, δ f �= 0, � = 0, �Q = 0 (and nd = n f = 1/2).
With increasing V the width of the individual regions is
systematically reduced [see Fig. 2(b)], which leads to their
disappearance from the phase diagram at the following critical
values of the nonlocal hybridization: Vc ∼ 0.2 for the CO
phase, Vc ∼ 0.35 for the MX phase, and Vc ∼ 1.0 for the FE
phase.

B. Valence and metal-insulator transitions
and their parametrizations

Let us now turn our attention to the problem which is
probably the most intensively discussed one in connection
with physics of d- f materials, namely, the problem of va-
lence and metal-insulator transitions. The most frequently
discussed types of transitions related to this group of ma-
terials are the pressure-induced valence and metal-insulator
transitions. For this group of materials there exist two main
parametrizations between the external hydrostatic pressure p
and internal parameters of the FKM, which can be used for
explanation of valence and metal-insulator changes in d- f
materials. The first one [48,49] utilizes parametrization be-
tween the pressure p and the f -level position E f , and the
second one, which we have proposed in our very recent paper
[29], utilizes parametrization between the pressure and the
nonlocal hybridization V . The first parametrization is based
on the supposition that with external hydrostatic pressure the
electronic structure of d- f materials changes, and the main
effect is the shift of the f -level energy with applied pressure
to higher values of E f . In contrast, the second parametriza-
tion is based on slightly more physical arguments: that with
increasing pressure the nonlocal hybridization also increases,
due to the increasing overlap of d and f orbitals localized
on neighboring sites. Here we will discuss both types of

FIG. 2. (a) HF parameters nf , δ f , δd , �, and �Q as functions of Ef calculated at U = 2, t f = −0.1, V = 0.05, and L = 400 × 400.
(b) Phase diagram of the model calculated for U = 2 and t f = −0.1.
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FIG. 3. (a) The f -electron concentration nf and the energy gap Eg as functions of Ef calculated for several different values of V at U = 2
and t f = −0.1. (b) The energy gap Eg as a function of Ef and V calculated for U = 2 and t f = −0.1.

parametrizations and their impact on valence as well as metal-
insulator transitions.

We begin first with the p-E f parametrization. As follows
from Fig. 2(b) one can expect three different types of va-
lence transitions induced by changes in the f -level position,
corresponding to different cuts of NO, FE, MX, and CO
phases. The first one, represented in Fig. 3(a) by V = 0.1,
goes through all four phases within which n f ∼ 1 (the NO
phase), decreases gradually (the FE phase), decreases steeply
(the MX phase), and is equal to 1/2 (the CO phase). The
existence of the 1/2 plateau in the HF solution with the
CDW instability is the main difference between our results
and previous ones obtained within the HF theory, where only
continuous or discontinuous changes of valence without the
n f = 1/2 plateau have been observed [50], while the very
accurate DMRG method predicts it as the main plateau, ac-
companied by other minor plateaus [51]. These minor plateaus
are smeared in our approach, but n f (E f ) has overall qualita-
tively very similar form to the DMRG one. The second type of
n f (E f ) dependence is represented by a cut at V = 0.2, which
goes through NO, FE, and MX phases. In this case the CO
phase is absent, and thus the constant behavior of n f at E f ∼ 0
is gradually smeared with increasing V ; this tendency is even
enhanced in the third region, V > 0.35, when E f goes through
regions of NO and FE phases.

The corresponding energy gaps as functions of the f -level
position, calculated for the same values of the nonlocal hy-
bridization as in the case of valence transitions, are displayed
in Fig. 3(a) (the lower panel). One can see that there is rel-
atively complicated behavior of the energy gaps for small
nonlocal hybridizations (V < 0.35) and small values of the
f -level position (|E f | < 0.5), which is obviously connected
with the existence of inhomogeneous CDW and excitonic
HF solutions. However, outside this region the energy gaps
exhibit a simple uniform behavior, namely, they decrease

monotonously with increasing E f , they reach the metallic
state at some critical value of the f -level position, which
depends strongly on V , and finally they start to increase at
|E f | ∼ 2.5 indicating a reentrant metal-insulator transition
induced by changes in the f -level position. Thus using the
E f -p parametrization, our HF solutions are able to describe
two consecutive changes in the conducting state induced by
pressure in real d- f materials, namely, the insulator-metal
transitions that take place at small and intermediate values
of the external hydrostatic pressure and the reentrant metal-
insulator transitions at high pressure. The comprehensive
phase diagram of the model, in which the energy gap is plotted
as a function of E f and V , is shown in Fig. 3(b). Comparing
this diagram with one displayed in Fig. 2(b), one can see that
a part of the NO phase is metallic (NOM) while the other
part is insulating (NOI). For V = 0, this result is expected
since at some critical value of the f -level position there is a
transition from the metallic state [12] to the band-insulator
state described by n f = 0 and nd = 1 for E f > 0 (the fully
occupied d band) and n f = 1 and nd = 0 for E f < 0 (the
fully occupied f band). However, as shown in Fig. 3(a) the
f -electron concentration is finite also in the insulating region,
and thus we cannot bind this region with the band-insulator
case. To reveal what happens at the boundary between the
NOM and NOI phases, we have analyzed in more detail the
behavior of n f (E f ). In Fig. 4(a) we present the first derivation
of n f (E f ) with respect to E f . Although E f dependences of n f

seem to be, at the first glance, the monotonic functions, their
first derivations exhibit the obvious kinks on the NOM-NOI
phase boundary, indicating the transition from the metallic to
insulating state with n f small, but finite. For this reason we
have calculated, in addition, the density of states correspond-
ing to new quasiparticles γ m

k , given by Eq. (7), and found
two subbands associated with these quasiparticles, namely, the
lower subband, which is almost independent of E f , and the
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FIG. 4. (a) The first derivation of nf with respect to Ef calculated for several different values of V at U = 2 and t f = −0.1. (b) The density
of states (DOS) of the model (6) calculated for several different values of Ef at V = 0.6, U = 2, and t f = −0.1.

upper subband, which unlike the lower subband depends very
strongly on E f . Figure 4(b) illustrates that below some critical
value of the f -level position Ec

f ∼ 2.5, which depends only
weakly on the nonlocal hybridization, the lower and upper
subbands overlap, while in the opposite limit the energy gap
between these subbands opens and increases linearly with
increasing E f .

Before discussing the relevance of results obtained within
the E f -p parametrization for a description of pressure-induced
valence and metal-insulator transitions in real d- f materials,
let us first present results obtained within the alternative V -p
parametrization. The HF solutions for n f and Eg as functions
of nonlocal hybridization are shown in Fig. 5(a) for several
different values of E f . Comparing results for n f obtained

within the E f -p and V -p parametrizations, one can see that n f

exhibits now fundamentally different behavior with pressure.
Indeed, while in the case of the E f -p parametrization n f is
always a decreasing function of pressure, in the case of the
V -p parametrization n f is an increasing function of pressure
for |E f | > 0.6, and in the opposite limit n f decreases for small
values of V and E f (corresponding to the MX and CO phases)
and monotonously increases for intermediate and high values
of nonlocal hybridization V . The same regimes are observed
also in the behavior of the energy gaps as functions of V
at different values of E f . Indeed, for small values of E f the
HF solutions predict for the energy gap Eg a steep decrease
in the CO phase; a steep increase followed by a gradual
decrease in the MX phase; a monotonous decrease in the FE

(m
ev
)

(kbar)

(kbar)

FIG. 5. (a) The f -electron concentration nf and the energy gap Eg as functions of V calculated for several different values of Ef at U = 2
and t f = −0.1. (b) The energy gap and the valence of SmB6 as a function of external hydrostatic pressure [52,53].
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FIG. 6. The best HF fits for v and Eg from the (a) Ef -p and (b) V -p parametrization (U = 2, t f = −0.1).

phase; and the insulator-metal transition on the phase bound-
ary between the FE and NOM phases. For larger values of E f

(outside the region of inhomogeneous HF solutions) the en-
ergy gaps exhibit a uniform behavior, namely, the continuous
decrease from the initial value to zero, similar to the case
of E f -p parametrization, however, now without the reentrant
metal-insulator transition for large p.

C. Reference to a real system

Let us now discuss the relevance of these results for a
description of pressure-induced valence and metal-insulator
transitions in real mixed-valence systems. In Fig. 5(b) we
have displayed experimental results for the f -electron va-
lence v as a function of pressure and the energy gap as a
function of pressure in the mixed-valence system SmB6. In
this material the local hybridization is forbidden due to the
parity reason, and only the nonlocal hybridization with in-
version symmetry is allowed in accordance with our model.
It is seen that the f -electron valence, which is related to the
f -electron concentration as v = 3 − n f , is constant (v = 2.5)
for small values of external pressure (up to p = 20 kbar) and
that above this value it starts to increase rapidly and reaches
the value v = 2.78 at p = 60 kbar. In the same interval of p
values the energy gap decreases continuously from the initial
value of 12 meV and approaches zero at p = 40 kbar. The
best fits that we have chosen for n f and Eg as functions
of E f (p) and V (p) from a large number of HF solutions
calculated for a wide range of model parameters E f and V
are shown in Fig. 6. One can see that the HF method with

CDW instability and E f -p parametrization is able to describe
qualitatively both types of experiments in SmB6 including the
increase of valence from its initial value v = 2.5 at ambient
pressure to v = 2.8 as well as simultaneous disappearance of
the energy gap Eg. The lack of this type of parametrization is
the already mentioned reentrant metal-insulator transition that
takes place at large E f (p) values and was not observed in real
experiments. This deficiency of the HF solutions is removed
in the second type of parametrization (V -p), within which
both n f and Eg as a function of V (p) behave in accordance
with real experiments in SmB6 and without the reentrant
metal-insulator transition at high pressure. The accordance
between the theoretical and experimental results can be even
further enhanced within the (V -p) parametrization by varia-
tion of model parameters (E f , t f ,U ). However, it should be
noted that such an optimization process is meaningful only
if the HF solutions are sufficiently accurate. In our previous
paper [12] we have shown that HF solutions with the CDW
instability reproduce perfectly the CPMC results obtained
within the two-dimensional FKM without hybridization, but
it is questionable if this is true also in the case when the
nonlocal hybridization is turned on. Unfortunately, according
to our knowledge, there are no exact results for the extended
FKM with nonlocal hybridization in two dimensions, which
could be used for benchmarking of our HF solutions obtained
for valence and metal-insulator transitions. However, such
results are available in the one-dimensional case [29], and for
this reason we have performed the same calculations also in
D = 1. Results of our HF calculations obtained for several
representative values of E f at U = 1 and t f = 0 are displayed
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FIG. 7. (a) nf and (b) Eg as functions of V calculated by the DMRG method [29] and the HF approximation in D = 1 for t f = 0.

in Fig. 7 and compared with ones obtained by the DMRG
method for the same values of E f , U , and t f . One can see
that the HF solutions reproduce qualitatively very well DMRG
results for both the average f -electron concentration as well
as the energy gap as a function of the nonlocal hybridization;
however, quantitatively there are obvious differences in the
size of the energy gap as well as in the position of the lo-
cal maximum at V > 0.1. This fact indicates that it is not
meaningful to optimize HF solutions in order to achieve the
best possible agreement with experiment, but on the other
hand, it should be noted that these results can be used reliably
for the qualitative description of valence and metal-insulator
transitions in real d- f compounds.

D. Phase diagram in three dimensions

To finalize our study, let us present some representative
HF solutions for the physically most interesting three-
dimensional case. In Fig. 8 we have displayed numerical
results for � and �Q obtained at U = 3 (the left column) and
U = 4 (the right column). Comparing these figures with their
two-dimensional counterparts (see Fig. 1), one can see that for
small and intermediate values of the nonlocal hybridization
(V < 0.3) the dependences of order parameters as functions
of the model parameters V and E f have qualitatively the same
form, but they strongly differ in the opposite limit, where
in three-dimensional HF solutions the FE phase (� > 0) ob-
served in D = 2 near E f = 0 is fully absent. This difference
is obviously caused by different shapes of the noninteract-
ing electron density of states, which exhibits a singularity at
E = 0 in D = 2 and a flat minimum in D = 3, similar to what
is observed in the HF solutions for �, for both D = 2 and
D = 3 (the same correspondence we have observed also in
D = 1). Another important result that one can read from Fig. 8
is the fact that with increasing U the ferroelectric HF solution
� > 0 is significantly stabilized at the expense of the remain-
ing HF solutions. The other ground-state characteristics of the
three-dimensional FKM, including the picture of valence and
metal-insulator transitions, are similar to the ones discussed

above for the two-dimensional case (see Fig. 9). From the
point of view of real d- f materials it is also interesting to
ask which predictions are provided by our HF solutions with
respect to pressure effects on the ferroelectric state. For both
types of parametrizations (p vs E f and p vs V ), the answer
to this question can be read directly from Fig. 9 (see the third
row of panels), where the excitonic parameter � is plotted as a
function of E f and V . In contrast to the above-discussed case
of pressure-induced valence and metal-insulator transitions,
where p-E f and p-V parametrizations provide very different
conclusions, they provide qualitatively the same picture of
pressure-induced changes in the ferroelectric state. In both
cases, � is equal to zero for E f and V from the CO phase,
increases within the MX phase, decreases within the FE phase,
and vanishes on the phase boundary between the FE and NO
phases.

FIG. 8. HF parameters � and �Q as functions of Ef and V calcu-
lated for U = 3 (left column) and U = 4 (right column) at t f = −0.2
and L = 40 × 40 × 40.
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FIG. 9. HF parameters nf , δ f , �, �Q, and Eg as functions of Ef

(left column) and V (right column) calculated in D = 3 for U = 4
and t f = −0.2.

IV. CONCLUSION

In this paper we have used the HF approximation with
CDW instability to study the ground-state properties of
the spinless FKM extended by f - f hopping and nonlo-
cal hybridization with inversion symmetry in two and three
dimensions. Our choice of the model Hamiltonian was

motivated by the effort to achieve the most realistic descrip-
tion of the physical situation in mixed-valence d- f materials,
where the local hybridization is forbidden due to the parity
reason and only the nonlocal hybridization with inversion
symmetry is allowed. Particular attention is paid to the effects
of hybridization on the ferroelectric state, valence transitions,
and metal-insulator transitions. We have found that the inho-
mogeneous HF solutions are present for all order parameters
but generally they are suppressed with increasing nonlocal
hybridization V . The effects of V are very strong, and even
relatively small values of V (V < 1) completely destroy the
CDW and ferroelectric state for intermediate values of the
Coulomb interaction. This probably answers the question of
why it is so hard to detect the ferroelectric state (the excitonic
phase) in real d- f materials. Unlike the nonlocal hybridiza-
tion, the f - f -electron hopping only renormalizes the phase
boundary between different phases and does not generate any
new phases. In the three-dimensional case we have observed
strong effects of the interband d- f Coulomb interaction U on
the stability region of the homogeneous ferroelectric phase,
which are significantly enhanced with increasing U at the
expense of remaining phases. Comparative studies of the
influence of hydrostatic pressure p on valence and metal-
insulator transitions within p-E f and p-V parametrizations
showed that the p-V parametrization describes much better
the relevant aspects of real experiments in mixed-valence
systems (e.g., SmB6), where a nice qualitative accordance be-
tween theoretical predictions and experimental measurements
is found for both pressure-induced valence transitions and
metal-insulator transitions. This opens a route for the descrip-
tion of pressure-induced transitions in mixed-valence systems.
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