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Polarization jumps across topological phase transitions in two-dimensional systems
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In topological phase transitions involving a change in topological invariants such as the Chern number and
the Z2 topological invariant, the gap closes, and the electric polarization becomes undefined at the transition. In
this paper, we show that the jump of polarization across such topological phase transitions in two dimensions is
described in terms of positions and monopole charges of Weyl points in the intermediate Weyl semimetal phase.
We find that the jump of polarization is described by the Weyl dipole at Z2 topological phase transitions and
at phase transitions without any change in the value of the Chern number. Meanwhile, when the Chern number
changes at the phase transition, the jump is expressed in terms of the relative positions of Weyl points measured
from a reference point in the reciprocal space.
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I. INTRODUCTION

The notion of topology is now widely used to classify
electronic states in condensed matter physics. This approach
was pioneered by Thouless, Kohmoto, Nightingale, and den
Nijs (TKNN) through the study of the integer quantum Hall
effect [1,2]. They showed that the quantized Hall conductance
can be expressed using the TKNN integer, which is now called
the Chern number. This finding has led to the theoretical dis-
covery of topological insulators. Two-dimensional topological
insulators have novel edge states [3] which persist unless the
energy gap of the system is closed. At the gap closing, there
can appear another topological phase called the topological
semimetal phase such as Dirac semimetal [4–6] and Weyl
semimetal [7–10] phases. In particular, Weyl semimetals have
attracted much interest because of their unique properties such
as the stability against symmetry-preserving perturbations in
three dimensions.

Here we focus on the electric polarization in the context
of topology in the electronic band structure. The electronic
contribution to the polarization in crystals is described by
the Berry curvature of Bloch states according to the modern
theory of polarization [11–13]. The electric polarization is
determined only in terms of modulo the polarization quantum
and is well defined in insulating systems. Electric polarization
in topologically nontrivial phases is a focus of active study
recently [14–16]. We recently discovered that the electric po-
larization in an insulating two-dimensional system can have
a jump when the system changes across the Weyl semimetal
phase [17]. The jump of polarization �P is described by using
a quantity called a “Weyl dipole” representing how the Weyl
points in the intermediate Weyl semimetal phase are displaced
in the reciprocal space. This result is applicable to all types of
Weyl semimetal phases between two normal insulator phases.

In this paper, we study the jump of polarization at topo-
logical phase transitions between two topologically distinct
insulator phases. Unlike the case of the Weyl semimetal phase
between two normal insulator phases in Ref. [17], the two

insulating phases are topologically distinct and cannot be
adiabatically connected. Hence, it is not trivial how to define
a jump of polarization at the transition. Furthermore, when
the Chern number of the system changes, Weyl points do not
necessarily appear in pairs at the topological phase transition,
which hinders the construction of the Weyl dipole. In this
paper, we find that by setting the reference points in the phase
diagram where the polarization is constrained by symmetry,
we can define the jump of polarization at topological phase
transitions as well, and it can be described by positions of the
Weyl points. In short, for general two-dimensional topological
phase transitions, the jump of electric polarization can be
described by the sum of the products of monopole charges
and relative positions of Weyl points from the reference point.
We note that if the Chern number remains unchanged at the
transition, such as a Z2 topological phase transition, the jump
of polarization is still given by the Weyl dipole.

This paper is organized as follows. In Sec. II, we review
the modern theory of polarization and our previous findings
for completeness. Then, we use the Haldane model [18] as
an example to investigate the jump at the phase transition
between a Chern insulator and a normal insulator phase in
Sec. III. In Sec. IV, we use the Kane-Mele model [19] as an
example of a Z2 topological insulator and discuss its electric
polarization and jumps of electric polarization. In Sec. V, we
consider the origin of jumps of polarization at topological
phase transitions. In Sec. VI, we propose BaMnSb2 as a
candidate material to observe the jump at topological phase
transitions. We conclude this paper in Sec. VII.

II. REVIEW OF MODERN THEORY OF POLARIZATION
AND JUMPS OF ELECTRIC POLARIZATION

We briefly review the modern theory of polarization and
the basic understanding of jumps of polarization gained in
Ref. [17] before dealing with topological phase transitions.

Consider a two-dimensional insulator with primitive lattice
vectors a1 and a2. Let ur,n(k) denote the cell periodic part of
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the Bloch state of the nth energy level at position r. Then, the
electronic polarization of this system under the wave-vector-
periodic gauge condition for energy eigenfunctions, ur,n(k) =
eib·rur,n(k + b), is given by [12,13]

P = −ie

(2π )2

∫
BZ

d2k
occ∑
n

〈
un(k)| ∂

∂k
|un(k)

〉 (
mod

e

�
a1,2

)
,

(1)

where b is the reciprocal lattice vector, −e is a charge of an
electron (e > 0), � is the area of the unit cell, the integral
is over the Brillouin zone, and the sum is taken over all the
occupied bands. In addition to the electronic contribution in
Eq. (1), we also have an ionic contribution. Each contribution
depends on the convention of the lattice, i.e., the origin of the
coordinate, but their sum does not.

We next review the theory of the jump of polarization [17].
We consider a two-dimensional system with a real parameter
M, and we assume that the system is a Weyl semimetal when
the parameter M is equal to M0 and otherwise becomes a nor-
mal insulator. Then, the polarization is ill defined at M = M0.
Between both sides of this value, M = M0 ± δ (δ: positive
infinitesimal), the electronic polarization may have a jump,
as proposed in Ref. [17]. In Ref. [17], we found that this jump
is beautifully and compactly expressed in terms of a “Weyl
dipole.” The jump of polarization along the direction of a2

between the two limits M → M0 ± 0 can be written as

�P2 = −e

(2π )2

∫ b1

0
dk1�φ2(k1) sin θ, (2)

�φ2(k1) := φ+
2 (k1) − φ−

2 (k1), (3)

φ±
2 (k1) := lim

M→M0±0
i

occ∑
n

∫ b2

0
dk2〈un(k)| ∂

∂k2
|un(k)〉, (4)

where b1 and b2 are reciprocal lattice vectors corresponding
to a1 and a2, bi := |bi|, θ is an angle between b1 and b2, the
integration is over the parallelogram spanned by b1 and b2

instead of the Brillouin zone for convenience, and k1 and k2

are the components of k along b1 and b2, respectively. Here,
�φ2(k1) represents a difference of Berry phases between the
two limits M → M0 ± 0. Since the Berry phases become the
same between the two limits, the difference of Berry phases
must be zero in terms of modulo 2π , i.e.,

�φ2(k1) = 2πn(k1) [n(k1) ∈ Z]. (5)

We also find that as a function of k1, �φ2 jumps by 2πQ
across the projection of the Weyl point, where Q is a topolog-
ical quantity called monopole charge defined for Weyl points
in the three-dimensional (k, M ) space. In Fig. 1, we show an
example where Weyl points with monopole charges ±Q are
present in the (k, M ) space with b1 ⊥ b2 for simplicity. The
corresponding �φ2 as a function of k1 is also plotted. Then,
�P2 can be calculated as an area of the yellow rectangle. Sim-
ilar analysis can be done for �P1 and the jump of polarization
is expressed as

�P = e

2π
ẑ × pW

(
mod

e

�
a1,2

)
, (6)

FIG. 1. A pair of Weyl points with monopole charges ±Q in
the (k, M ) space, appearing at the phase transition between two
insulating phases. The difference of Berry phases �φ2 in the limits
M → M0 ± 0 jumps by ±2πQ at these Weyl points. The area shown
by a yellow rectangle contributes to the jump of polarization across
M = M0.

where ẑ is a unit vector perpendicular to the two-
dimensional system. Here we introduced the notion of a Weyl
dipole pW as

pW := QdW (mod Qb1,2), (7)

where dW is a displacement vector from a Weyl point with
a monopole charge −Q to the one with +Q. The jump is
experimentally measurable through the difference of surface
charge densities or the electric current that flows during the
adiabatic change connecting two states before and after the
jump. This result applies to jumps of polarization between
two-dimensional topologically trivial insulating phases via a
Weyl semimetal phase in general cases [17]. In such cases,
Weyl points with opposite monopole charges appear in pairs
at the transition at M = M0 without a change of the Chern
number of the system. In the following, we examine how
these results are changed in the case of topological phase
transitions.

III. POLARIZATION JUMP BETWEEN A CHERN
INSULATOR AND A NORMAL INSULATOR PHASE

We first construct a general theory of the polarization jump
between a Chern insulator and a normal insulator phase. First,
we study the renowned Haldane model as an example [18].
The original Haldane model is a tight-binding model of spin-
less electrons on a hexagonal lattice with staggered on-site
potentials, real nearest neighbor (NN) hoppings, and complex
next nearest neighbor (NNN) hoppings. It has a threefold
rotational symmetry. To get a nontrivial value of the electric
polarization, we need to break this symmetry. For this pur-
pose, we here use an extended Haldane model proposed in
Ref. [20].

A. Extended Haldane model

As in the original paper [18], we parametrize NN hop-
pings by t1(> 0), NNN hoppings in the direction of arrows
in Fig. 2(a) by t2eiφ (t2 > 0, φ ∈ R), and staggered on-site
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FIG. 2. The extended Haldane model without C3 rotational sym-
metry. (a) A schematic illustration of the extended Haldane model.
Compared to the ordinary Haldane model, a nearest neighbor
anisotropic hopping term for the NN hopping along the y axis is
modulated from t1 to ty. (b1)–(b5) The distributions of Weyl points
W1, . . . ,W4 in the reciprocal space for various values of ty/t1 and
M. The monopole charge of each Weyl point within the three-
dimensional (k, M ) space is also shown. We define M0 as M0 =
4t2[1 + ty/(2t1)]

√
1 − [ty/(2t1)]2. We set sin φ > 0 as an example.

The black parallelograms are the unit cell of the reciprocal lattice.

potentials by +M for A sites and −M for B sites. In the
extended Haldane model proposed in Ref. [20], we break the
threefold rotational symmetry by replacing the NN hopping
parameter t1 by ty for NN hoppings in the y direction while
keeping the NN hopping parameters to other directions to be
t1 [Fig. 2(a)]. We take primitive lattice vectors to be a1 =
a(

√
3, 0) and a2 = a

2 (−√
3, 3), where a is a lattice constant.

The reciprocal lattice vectors corresponding to a1 and a2 are
b1 = 2π√

3a
(1, 1√

3
) and b2 = 4π

3a (0, 1), respectively. The Hamil-
tonian of this system is given as

H (k) = g1(k)I + Re f (k)σ x

+ Im f (k)σ y + [M + g2(k)]σ z, (8)

where σ ′s are the Pauli matrices and

f (k) = 2t1 cos

(√
3a

2
kx

)
ei a

2 ky + tye−iaky , (9)

g1(k) = 2t2 cos φ

3∑
i=1

cos(k · di ), (10)

g2(k) = −2t2 sin φ

3∑
i=1

sin(k · di ), (11)

for d1 = a(
√

3, 0), d2 = a
2 (−√

3, 3), d3 = a
2 (−√

3,−3).
Then, the energy eigenvalues of this system are given by
E± = g1 ±

√
| f |2 + (M + g2)2.

For −2 < ty/t1 < 2, ty 	= 0, this system becomes a
Weyl semimetal at M = ±M0 sin φ, where M0 := 4t2[1 +
ty/(2t1)]

√
1 − [ty/(2t1)]2. When M = M0 sin φ, the Weyl

point is located at

W1 :
(
kx, ky

) =
(

2√
3a

cos−1

(
ty
2t1

)
,

2π

3a

)
, (12)

and when M = −M0 sin φ the Weyl point is located at

W2 :
(
kx, ky

) =
(

2√
3a

cos−1

(
− ty

2t1

)
,

4π

3a

)
, (13)

where we set 0 � cos−1 x � π . The case of ty = t1 corre-
sponds to the original Haldane model and the Weyl points
W1 (for M = 3

√
3t2 sin φ) and W2 (for M = −3

√
3t2 sin φ) are

located at K ′ and K points of the Brillouin zone, respectively.
For ty = 0, the system is a Weyl semimetal in the range

−4t2|sin φ| � M � 4t2|sin φ|, and there are two Weyl points
in the reciprocal space at

W3 : (kx, ky) =
(

π√
3a

,
2

3a
cos−1

(
− M

4t2 sin φ

))
, (14)

W4 : (kx, ky) =
(

π√
3a

,− 2

3a
cos−1

(
− M

4t2 sin φ

))
, (15)

where sin φ 	= 0 is assumed. In particular, at M = ±4t2 sin φ,
W3 and W4 overlap, and they are equal to W1 (for M =
4t2 sin φ) or W2 (for M = −4t2 sin φ).

The monopole charges of Weyl points W1,2 in the (k, M )
space are calculated as

Q1 = −sgn(ty), (16)

Q2 = sgn(ty), (17)

respectively, for ty 	= 0. For ty = 0, monopole charges in the
(k, ty) space are

Q3 = Q4 = sgn(sin φ) (18)

for W3 and W4, respectively, for sin φ 	= 0. These values of the
monopole charges are calculated analytically by expanding
the 2 × 2 Hamiltonian to the linear order around the Weyl
point by following Ref. [21]. These Weyl points are shown
in Figs. 2(b1)–2(b5) for various values of ty/t1 and M with
sin φ > 0 as an example.

Similarly to the original Haldane model, the phase diagram
of the extended Haldane model is shown in Fig. 3(a) for
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FIG. 3. The phase diagrams of the extended Haldane model.
(a) Phase diagram of the extended Haldane model in the (φ, M ) space
for ty/t1 ∈ (0, 2). The phase boundaries are M = ±M0 sin φ. For
ty/t1 ∈ (−2, 0), the diagram becomes the inverted image with respect
to the φ axis with signs of the Chern number also inverted. (b) Phase
diagram in the (ty/t1, M/(t2 sin φ)) space for sin φ > 0. The phase
boundaries are M/(t2 sin φ) = ±4[1 + ty/(2t1)]

√
1 − [ty/(2t1)]2. For

sin φ < 0, the diagram becomes inverted with respect to the ty/t1 axis
with signs of the Chern number also inverted.

the parameter space (φ, M ). The regions enclosed by two
sinusoidal curves are topologically nontrivial Chern insulator
phases having nonzero Chern numbers and are not adiabat-
ically connected to the topologically trivial region outside.
A phase diagram can be drawn also for the parameter space
(ty/t1, M/(t2 sin φ)) as shown in Fig. 3(b) for sin φ > 0. At
the topological phase transitions with the change of the Chern
number, a two-dimensional Weyl semimetal phase appears,
and the change of the Chern number is equal to the sum of
the monopole charges of the three-dimensional Weyl points in
the (k, M ) or (k, ty) spaces at the transition. Using this model,
we calculate the jump of electric polarization at the transition
from the Chern insulator to the normal insulator below.

B. Electric polarization in Chern insulators

Before discussing the jump of polarization, we need to
know whether it is possible to define the electric polarization
in the Chern insulator phase and, if possible, how the defi-
nition differs from that of the normal insulator phase. It is a
nontrivial issue since the edges are metallic. We here briefly
review the paper by Coh and Vanderbilt [20] on the electric
polarization in Chern insulators.

In the Chern insulator phase, the Berry phase is not a
periodic function of the wave vector. The Berry phase defined

by using a cell periodic part of the Bloch state |u〉 as

φ2(k1) := i
∫ b2

0
dk2〈u| ∂

∂k2
|u〉 (19)

satisfies a relation

φ2(k0,1 + b1) − φ2(k0,1) = 2πC, (20)

where C is a Chern number of the system and k0,1 is a compo-
nent along b1 of an arbitrary point k0 in the reciprocal space.
Now, we define the electric polarization through an integration
of this Berry phase as

P[k0] := −ie

(2π )2

∫
[k0]

d2k〈u| ∂

∂k
|u〉, (21)

where the integration is over a parallelogram with vertices k0,
k0 + b1, k0 + b1 + b2, and k0 + b2 for a wave vector k0 and
the Bloch wave function is taken to be continuous within this
parallelogram. Then, P depends on the choice of k0 in the
Chern insulator phase as

P[k0+�k] − P[k0] = − eC

2π
ẑ × �k. (22)

The electric polarization is expected to be equal to the surface
charge density σ through the surface theorem σ = P[k0] · n,
where n is a unit normal vector of the surface. Since σ should
not depend on k0, P[k0] cannot be a physical polarization as it
is. In other words, the value of k0 in P[k0] has to be properly
chosen to get a physical value of σ [20].

C. Definition of polarization jump between a Chern
insulator and a normal insulator phase

We now define the jump of polarization at phase transitions
between a Chern and a normal insulator phase. The crucial
difference from a transition between two normal insulator
phases is that the Chern insulator phase cannot be adiabati-
cally connected to the normal insulator phase. This makes the
jump of polarization ill defined in general. Namely, since P in
the Chern insulator phase depends on k0 but is independent of
k0 in the normal insulator phase, their difference also depends
on the choice of k0. Instead of comparing P between the two
phases, we introduce an extended polarization P̃ within the
Chern insulator phase and compare it with the polarization P
in the normal insulator phase. Suppose that the system is in a
Chern insulator phase for M < M0 and is in a normal insulator
phase for M > M0. Then we define the extended polarization
P̃ as

P̃(M ) := P[k0](M ) (M < M0), (23)

where k0 is taken to be P[k0] = 0 at an inversion symmetric or
twofold rotational symmetric point k0 = n

2 b1 + m
2 b2 (n, m ∈

Z) in the Chern insulator phase on the phase diagram. In in-
version or twofold rotational symmetric systems, one can then
show P[k0] ≡ 0 by extending the proof for atomic insulators in
the supplement of Ref. [22] to Chern insulators. In inversion
or twofold rotational symmetric systems, electric polarization
is restricted to zero or half the polarization quantum in terms
of modulo the polarization quantum e

�
a1,2. Thus, within this

definition P̃(M ) is defined in terms of modulo e
2�

a1,2.
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Note that, in general, we can take any inversion symmetric
or twofold rotational symmetric point as a reference provided
that we can make P[k0] = 0 by choosing k0 appropriately.
Then, the extended polarization P̃ satisfies the surface theorem
σ = P̃ · n for the surface charge density σ of an inversion
symmetric or twofold rotational symmetric finite system such
as the ribbon-shaped system we introduce in Sec. V. On the
other hand, we cannot use a threefold rotational symmetric
point, for example, as a reference since this symmetry is not
preserved in a ribbon-shaped system. A discussion on the
jump of polarization in systems without any such symmetries
is given at the end of Sec. V. Similarly, there are choices of
k0 which satisfy P[k0] = 0 but such choices have no impact on
the resulting polarization. Then, P̃(M ) is independent of our
choice of reference and it is connected to the physical quantity
σ . We can now define the jump of polarization at M = M0 as

�P := lim
δ→0+

[P(M0 + δ) − P̃(M0 − δ)]. (24)

In the extended Haldane model, M = 0 is a line where the
system becomes inversion symmetric. In inversion symmetric
systems, electric polarization is restricted to zero or half the
polarization quantum in terms of modulo the polarization
quantum e

�
a1,2.

Having defined �P by Eq. (24), we confirm that �P 	= 0
at the phase transition using the extended Haldane model. We
take k0 = 0 and calculate the y component of P and P̃ in each
phase as functions of ty/t1 and M/(t2 sin φ). Results are plot-
ted in Figs. 4(a) and 4(b). In this case, polarizations on the line
M = 0 for both normal and Chern insulator phases are zero.
We can see that there are finite jumps at the phase boundaries
shown in Fig. 3(b). Although there is a phase boundary at
ty = 0 and −4 � M/(t2 sin φ) � 4 between Chern insulator
phases with different Chern numbers, there is no jump of
polarization there for Py. We consider this point soon.

D. Jump of the polarization formula between a Chern
insulator and a normal insulator phase

We next derive a general formula describing the jump of
polarization at the phase transition between a Chern and a
normal insulator phase. These jumps are caused by nonzero
monopole charges of Weyl points as reviewed in Sec. II. As
an example, we plot the Berry phases φ±

y (kx ) in the extended

Haldane model at φ = π
2 , ty/t1 = 1, and M/t2 = 3

√
3 ± 0.01,

close to the phase transition (M/t2 = 3
√

3) in Fig. 4(c). At
M/t2 = 3

√
3, a Weyl point W1 with a monopole charge Q1 =

−1 is present at the K ′ point kW = ( 2π

3
√

3a
, 2π

3a ). As expected
from the general discussion in Sec. II, φy for kx larger and
smaller than the projection of the Weyl point kW

x = 2π

3
√

3a
is

expected to differ by −2π . Indeed, �φy := φ+
y − φ−

y plotted
in Fig. 4(c) has a jump of −2π at kx = 2π

3
√

3a
. Since �φy is

constant at kx other than the projection of Weyl points and
�Py is given as an integration of �φy, the distance between
k0,x and kW

x is needed to calculate �Py. Combining a similar
result for φx, we can write

�P = e

2π

∑
W

QW ẑ × (kW − k0)

(
mod

e

2�
a1,2

)
, (25)

FIG. 4. The y component of the polarization of the extended
Haldane model. (a) A three-dimensional plot of Py and P̃y scaled by
P0 := ae

�
for sin φ > 0 and (b) a two-dimensional color plot of the

same Py in the normal insulator (NI) phase and P̃y in the Chern insu-
lator (CI) phase. (c) Berry phases as a function of kx at the topological
phase transition at φ = π

2 , ty/t1 = 1, and M/t2 = 3
√

3. Two lines φ±
y

indicate Berry phases at M/t2 = 3
√

3 ± 0.01 and �φy := φ+
y − φ−

y .
(d1), (d2) The results of numerical calculations of jumps of electric
polarization �Py for (d1) M > 0 and (d2) M < 0 by markers. The
analytical results from Eq. (25) are also plotted by black lines.

where kW is the position of a Weyl point with a monopole
charge QW , k0 is chosen using an inversion symmetric point
as a reference, and the sum is taken over all Weyl points at
the phase transition. From this derivation, the formula (25)
applies to any topological phase transitions with a change of
the Chern number in general. Since two phases before and
after the phase transition are not adiabatically connected, char-
acterization of the jump of polarization by the accumulated
current is vague. Nevertheless, this jump can still be observed
experimentally through the surface charge density difference.

Now, we compare �P′s from our formula (25) with the nu-
merical results and see that they perfectly agree. At the phase
transition from the Chern insulator to the normal insulator at
M = ±M0 sin φ, there is only one Weyl point W1 (M > 0) or
W2 (M < 0), whose position is given by Eqs. (12) and (13)
with monopole charges given in Eqs. (16) and (17). We plot
the polarization jump �Py from Eq. (25) by the black lines in
Figs. 4(d1) and 4(d2) as functions of ty/t1, together with the
numerical results of �Py in Fig. 4(a) for the phase transitions
at M > 0 and M < 0, respectively. The analytical results from
Eq. (25) and numerical results �Py show good agreements.

We can graphically see that the result here is consistent
with Ref. [17]. If the system has reentrant transitions between
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FIG. 5. An example of Weyl-point distribution in the (k, M )
space in the reentrant transitions between the normal insulator (NI)
and the Chern insulator (CI) phases. A Weyl point with monopole
charge Q1 = +1 is located at (kW1 , M1) and another Weyl point with
Q2 = −1 is located at (kW2 , M2). As M is increased, the system
changes from a normal insulator to a Chern insulator at M = M1 and
from a Chern insulator to a normal insulator at M = M2.

a normal insulator and a Chern insulator as we change a
parameter M, Weyl points are separated in the direction of the
M axis in the (k, M ) space as in Fig. 5. When a Weyl point W1

with monopole charge Q1 = +1 is located at (kW1 , M1) and
another W2 with Q2 = −1 is located at (kW2 , M2), the system
is a Chern insulator in a region between two planes M = M1

and M = M2. In the limit where M1 and M2 become equal, the
two topological phase transitions merge to become a transition
between normal insulators. Thus, Fig. 5 approaches to Fig. 1
and Eq. (25) reduces to Eq. (6).

We finally address the phase transition between two dif-
ferent Chern insulators with C = +1 and −1 at ty/t1 = 0
and −4 � M/(t2 sin φ) � 4. On this line, there are two Weyl
points W3 and W4 at the positions given by Eqs. (14) and
(15) with the same monopole charges Eq. (18). Then, from
Eq. (25), �P is given as

�P =
⎛
⎝ 0

3
2 sgn(sin φ)

0

⎞
⎠P0 ≡ 0

(
mod

e

2�
a1,2

)
, (26)

where P0 = ae
�

, a1 = a(
√

3, 0), and a2 = a
2 (−√

3, 3). It
agrees with the absence of the jump across this phase tran-
sition in Figs. 4(a) and 4(b). Since there is a freedom in
choosing different values of k0 at M = 0 for C = ±1, the
jump of polarization is determined in terms of modulo half
the polarization quantum e

2�
a1,2 and not e

�
a1,2.

IV. POLARIZATION JUMP BETWEEN A Z2

TOPOLOGICAL INSULATOR AND A NORMAL
INSULATOR PHASE

In this section, we construct a general theory of the polar-
ization jump at phase transitions from a Z2-odd to a Z2-even
phase. We first study the Kane-Mele model [19] as an exam-
ple. Similar to the Haldane model, the original Kane-Mele
model possesses C3 rotational symmetry, which prohibits the
presence of electric polarization. We construct an extended
Kane-Mele model by breaking this symmetry, and then we

consider the jump of electric polarization between a Z2-odd
and a Z2-even phase. We argue that this applies to general
cases of Z2 topological phase transitions. Although this is
a topological phase transition unlike the one in Ref. [17]
reviewed in Sec. II, we find that the same description applies
to the jump of polarization using Weyl dipoles.

A. Extended Kane-Mele model

Since the ordinary Kane-Mele model without Rashba cou-
plings is equivalent to the stacking of two Haldane models
with φ = ±π

2 , we construct the extended Kane-Mele model
by stacking two extended Haldane models introduced in the
previous section to break the C3 rotational symmetry. We
use the same notations as in Fig. 2(a) for NN hoppings,
NNN hoppings, and on-site potentials. For simplicity, we ne-
glect the Rashba couplings in the original Kane-Mele model
here. Then, using f (k) the same as Eq. (9) and g2(k) :=
−2t2

∑
i sin(k · di ), the Hamiltonian of this extended Kane-

Mele model is given as

H (k) = Re f (k)
1 + Im f (k)
12 + M
2 + g2(k)
15,

(27)

where we used the same representations of the Dirac matrices
and their commutations as in Ref. [19]. With Pauli matrices
σ i and si representing the sublattice and spin indices, they
can be expressed as 
1 = σ x ⊗ I, 
2 = σ z ⊗ I, 
12 = σ y ⊗
I, 
15 = σ z ⊗ sz. Four energy eigenvalues of this Hamilto-
nian are E±,± = ±

√
| f |2 + (M ± g2)2. At the half filling,

this system becomes a Weyl semimetal by simultaneous gap
closings at W1 and W2 located at W1 = ( 2√

3a
cos−1( ty

2t1
), 2π

3a )

and W2 = ( 2√
3a

cos−1(− ty
2t1

), 4π
3a ), which are the same po-

sitions as Eqs. (12) and (13), respectively, if ty 	= 0 and
M = ±M0 = ±4t2[1 + ty/(2t1)]

√
1 − [ty/(2t1)]2. For ty = 0

and −4 � M/t2 � 4, there are four Weyl points:

W3,4 :

(
π√
3a

,± 2

3a
cos−1

(
− M

4t2

))
, (28)

W5,6 :

(
π√
3a

,± 2

3a
cos−1

(
M

4t2

))
. (29)

As this model is a stacking of two extended Haldane
models, the monopole charges of the Weyl points are Q1,2 =
∓sgn(ty) in the (k, M ) space, Q3,4 = +1, and Q5,6 = −1 in
the (k, ty) space. These Weyl points appear in pairs with
opposite signs of monopole charges as shown in Fig. 6(a) by
the time-reversal symmetry, which guarantees that the Chern
number is always zero. On the other hand, in the gray area
shown in Fig. 6(b), the Z2 topological invariant defined in
Ref. [23] is odd while otherwise even. Hence, the lines M =
±M0 are phase boundaries between the Z2-odd phase and the
Z2-even phase.

B. Electric polarization jump at the transition between
a Z2-odd and a Z2-even phase

We next consider the electric polarization in the Z2-odd
phase in general. In order for an electric polarization derived
by Eq. (1) to have a physical meaning even in the Z2-odd
phase, we naturally expect that the surface theorem σ = P · n
is satisfied. The surface theorem in a normal insulator is
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(a)

(b)

FIG. 6. The extended Kane-Mele model without C3 rotational
symmetry. (a) Positions and monopole charges of Weyl points for
indicated values of ty/t1 and M. Weyl points with opposite monopole
charges appear in pairs and the sum of monopole charges inside the
unit cell of the reciprocal lattice shown by the black parallelogram
is always zero. (b) The phase diagram of the extended Kane-
Mele model. The phase boundaries are given by M/t2 = ±M0/t2 =
±4[1 + ty/(2t1)]

√
1 − [ty/(2t1)]2.

proved through the Wannier representation of wave functions
of electrons [13]. Hence, whether or not it is possible to con-
struct well-localized Wannier functions is a crucial problem
in the definition of polarization through Eq. (1). While it is
impossible to construct such Wannier functions in the Chern
insulator phase [24], it is possible in the Z2-odd phase by
choosing an appropriate gauge [25]. Therefore, we can use
Eq. (1) without modification to calculate the electric polariza-
tion in the Z2-odd phase. However, since Z2-odd and Z2-even
phases are not adiabatically connected, direct computation
of the jump of polarization is impossible in Z2 topological
insulators, also. Similar to the Chern insulator in Sec. III,
we take a reference point within the Z2 topological insulator
phase in the phase diagram, where we know the value of
polarization from symmetries, and calculate the change of
electric polarizations between a Z2-odd and a Z2-even phase.

For the extended Kane-Mele model, M = 0 is again a
line where the system becomes inversion symmetric. Since
the electric polarization in an inversion symmetric system is
quantized to zero or half the polarization quantum in terms of
modulo the polarization quantum e

�
a1,2, we can calculate the

jump of polarization in terms of modulo e
2�

a1,2, which is half
the polarization quantum. Figures 7(a) and 7(b) show plots
of the y component of the polarization calculated by Eq. (1).
We can see that there are jumps of polarization at the phase
boundary shown by the black curve in Fig. 6(b).

We next derive the formula of �P. As a function of kx,
the Berry phase difference �φy across the phase transition

FIG. 7. The polarization of the extended Kane-Mele model. (a) A
3D and (b) a 2D plot of Py in a parameter space (ty/t1, M/t2) scaled
by P0 := ae

�
. (c) The Berry phases at the topological phase transition.

The parameters are set to be ty/t1 = 1 and M/t2 = 3
√

3 ± 0.01 for
φ±

y , respectively. The difference �φy := φ+
y − φ−

y is also plotted.
(d1), (d2) The results of numerical calculation of the jump of polar-
izations �P for (d1) M < 0 and (d2) M > 0, respectively, are plotted
by markers. The analytical results from Eq. (31) are also shown by
the black lines.

jumps by ±2π at projections of Weyl points having monopole
charges ±1, respectively, as indicated in Fig. 7(c). Different
from the transition between a Chern insulator and a normal
insulator in Sec. III, Weyl points with opposite monopole
charges appear in pairs at k and −k in this case due to time-
reversal symmetry. This is the same situation as the transition
between normal insulators dealt with in Ref. [17]. Therefore,
the jump of polarization can be described by using the Weyl
dipole as

�P = e

2π

∑
W

(ẑ × pW )
(

mod
e

2�
a1,2

)
. (30)

This argument is easily generalized to Z2 topological phase
transitions in systems with time-reversal symmetry. In the
extended Kane-Mele model, since the positions of the Weyl
points W1,2 at the Z2 topological phase transitions are given in
Eqs. (12) and (13), we can calculate �Py as a function of ty/t1
as

�Py ≡ 3

2π

∣∣∣∣cos−1

(
ty
2t1

)
− cos−1

(
− ty

2t1

)∣∣∣∣P0. (31)

This analytical result is plotted by the black lines in
Figs. 7(d1) and 7(d2) together with numerical results, which
show good agreements. We note that while P in the normal
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insulator phase is determined in terms of modulo the polariza-
tion quantum e

�
a1,2, P in the topological insulator phase has

an ambiguity at reference points and it causes an ambiguity
of �P by a half of the polarization quantum. This is the
significant point of the Z2 topological insulator compared
with the normal insulator case. Although the jump is defined
between two states that cannot be adiabatically connected, like
in the case of the Chern insulator, this jump is experimentally
measurable by surface charge density.

Across the Weyl semimetal phase shown by the orange
line in Fig. 6(b), where the gap closes in the Z2-odd phase,
polarization changes continuously. Indeed, on this line, since
the total Weyl dipole is given by

∑
W pW = [ 4π√

3a
, 0] = 2b1 −

b2 ≡ 0 (mod b1,2), there is no jump across this line. We note
that this absence or presence of a jump of polarization is not
related to whether it is a topological phase transition or not,
but rather depending on the monopole charges and positions
of Weyl points.

V. ORIGIN OF THE JUMP OF POLARIZATION
AT TOPOLOGICAL PHASE TRANSITIONS

In this section, we clarify the origin of the jump of polar-
ization at topological phase transitions from the viewpoint of
chiral or helical metallic states at the edge of the system in
topological insulators.

We first review Ref. [20], which states that to ensure σ =
P · n in Chern insulators, we need to adopt the “adiabatic”
filling as to how the chiral edge states of the Chern insulators
are occupied. In this adiabatic filling, we first take a reference
point in the phase diagram; in the present case, we take M = 0
as a reference point where the inversion symmetry requires
σ = 0. This vanishing value of σ is reproduced by assuming
that all states below EF (=0) are occupied [Fig. 8(b1)]. Let
k∗

x be a point where the occupation of edge states switches
at M = 0. In the case of the extended Haldane model, k∗

x is
given by k∗

x = bx/2 as shown in Fig. 8(b1). In the adiabatic
filling, as we change M, we assume that the value of k∗

x stays
the same as illustrated in Fig. 8(b2), where blue bands are
occupied. This corresponds to the case where the evolution
of M is adiabatic, i.e., it is faster than the tunneling time
between the top and bottom edges but slower than any other
processes. Then, the edge charge density σ defined as such
satisfies σ = P[k0] · n, where the occupation switches in the
ribbon geometry at k∗

x . We note that the adiabatic filling is
different from the “thermalized” filling, where the system is
always thermalized as M changes from zero and all electrons
occupy bands below the Fermi energy EF for any value of
M in the Chern insulator phase. For the adiabatic filling in
general, we can take k∗

x or k∗
y at the crossing point of edge

states. If there are several crossing points, we can take one of
them and the resulting σ does not depend on our choice. If
there are no crossing points of edge states, we cannot apply
our theory.

To see the relationship between jumps of polarization and
these edge states, we introduce ribbon-shaped systems which
are infinitely long in the x direction and have N sites in the
y direction as in Fig. 8(a) for both extended Haldane and
Kane-Mele models. We calculate the edge charge density σtop

at the top of the ribbon of the extended Haldane model as

FIG. 8. The ribbon geometry of the extended Haldane model.
(a) The schematic illustration of the ribbon system extending in-
finitely in the x direction with N sites in the y direction. (b1)–(b3)
Energy bands of the ribbon system of the extended Haldane model
at (b1) M = 0, (b2) 0 < M < M0, and (b3) M0 < M. In the Chern
insulator phase (b1) and (b2), we adopt the adiabatic filling, where
blue bands are occupied by electrons. Occupation at the top and the
bottom of the ribbon switches at k∗

x = bx
2 . (c) Edge charge densities

at the top of the ribbon σtop for thermalized and adiabatic fillings
calculated by the window convolution method and the result from the
modern theory of polarization for the bulk. In the calculation of P, we
take k0 = (bx/2, 0). The unit of the charge density is σ0 = e/(

√
3a)

and the calculated value of P · n is defined modulo σ0
2 . Parameters are

ty/t1 = 1 and φ = π

2 . The number of sites of the ribbon is N = 100.

σtop = ∫ ∞
ycenter

dyρ̄(y), where ycenter is the middle point of the
ribbon. Here, the function ρ̄ is defined in terms of the charge
density ρ(x, y) by the window convolution method [26] as

ρ̄(y) := 1

bc

∫ x0+b

x0

dx
∫ y+ c

2

y− c
2

dy′ρ(x, y′), (32)

where b and c are the lattice constants perpendicular to and
along n, respectively, n is the unit normal vector of the edges,
and x0 is an arbitrary value. We plot the edge charge density
σtop for thermalized and adiabatic fillings, together with the
one calculated by the modern theory of polarization as σtop =
P · n, where n = (0, 1)T for parameters φ = π

2 and ty/t1 = 1
as a function of M in Fig. 8(c). We take k0 = (bx/2, 0) for
the calculation of P. We note that since P is determined in
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FIG. 9. The ribbon geometry of the extended Kane-Mele model.
(a1)–(a3) Energy bands of the ribbon system of the extended Kane-
Mele model at (a1) M = 0, (a2) 0 < M < M0, and (a3) M0 < M. In
the Z2-odd phase (a1) and (a2), we adopt the adiabatic filling, where
blue bands are occupied by electrons. (b) Edge charge densities at the
top of the ribbon σtop for thermalized and adiabatic fillings calculated
by the window convolution method and the result from the modern
theory of polarization for the bulk. The unit of the charge density is
σ0 = e/(

√
3a). The parameter is set to be ty/t1 = 1 and the number

of sites is N = 100.

terms of modulo e
2�

a1,2, the calculated value of P · n is in
terms of modulo e

2
√

3a
= σ0

2 where σ0 = e√
3a

is a unit of the
edge charge density. In agreement with Ref. [20], we can
see that the modern theory of polarization well agrees with
the adiabatic filling having a jump at M = ±M0 in terms of
modulo σ0

2 but not with the thermalized filling, which does not
have a jump at M = ±M0. At the phase transition between
a Chern and a normal insulator, the occupation of electrons
at the edge state between k∗

x and the Weyl point drastically
changes in the adiabatic filling as shown in Figs. 8(b2) and

8(b3). At transition, k0,x−kW
x

2π
(= k∗

x −kW
x

2π
) electrons per unit length

in the x direction move from the top edge to the bottom
edge, giving rise to the polarization jump by e

2π
(k0,x − kW

x ),
in agreement with Eq. (25).

Similarly, we consider thermalized and adiabatic fillings
for the ribbon geometry of the extended Kane-Mele model.
In this case, the adiabatic evolution from M = 0 [Fig. 9(a1)]
requires an inverted occupation of states between two crossing
points of edge states as illustrated in Fig. 9(a2) for the adia-
batic filling, where blue bands are occupied. By the window
convolution method, we calculate σ ′

tops for both fillings and
compare it with P · n in Fig. 9(b). We can see that in this
case too, the modern theory of polarization gives a consistent
result with the adiabatic filling. There is a drastic change of
occupation at phase transitions as shown in Figs. 9(a2) and
9(a3). This observation is consistent with Eq. (30). Thus, the
origin of jumps at topological phase transitions is the change
of the occupation of electrons in the edge states. We note that

in the case of the Z2 topological insulator phase, the bulk
polarization is independent of the choice of high-symmetric
reference point similar to the case of Chern insulators and it
agrees with the surface charge density for the adiabatic filling.

To end this section, we consider a topological phase tran-
sition involving a change in the Chern number, specifically
focusing on a case where the system has no such symme-
tries as to determine the reference point k0. If there are no
points with inversion or twofold rotational symmetries in the
phase diagram, we cannot determine the k0 from the condition
P[k0] = 0 since the extended polarization does not satisfy the
surface theorem for the surface charge density of those finite-
size systems. In this case, we need to calculate k∗

x and k∗
y of the

finite-size system in a geometry of our interest first. Then, k0

in the formula of the jump of polarization Eq. (25) is replaced
by k∗ := (k∗

x , k∗
y ) as

�P = e

2π

∑
W

QW ẑ × (kW − k∗)

(
mod

e

�
a1,2

)
, (33)

by the discussion in Ref. [20] and the origin of the jump
explained above. In contrast to the cases where we choose
the reference point k0 to be inversion symmetric, as shown
in Eqs. (25), (26), and (30), the jump of polarization is deter-
mined in terms of modulo the polarization quantum. Because
of the existence of metallic edge states, we need information
from the finite-size system in order to calculate the bulk po-
larization and its jump when symmetries cannot be used.

VI. MATERIAL PROPOSAL

We here propose a material candidate to observe the jump
of polarization at topological phase transitions. In this section,
we apply our theory to a two-dimensional Z2 topological
insulator BaMnSb2, which was studied in the context of a
jump of the piezoelectric tensor in Ref. [27]. BaMnSb2 is
a three-dimensional orthorhombic material (I2mm), which
consists of alternately stacked Ba-Sb layers and Mn-Sb layers
[Fig. 10(a)]. By the insulating property of Mn-Sb layers, this
system can be considered as a quasi-two-dimensional material
whose conduction properties are determined by Ba-Sb layers
as shown in Fig. 10(b) [27,28]. By applying the distortion and
shifting the positions of Sb atoms in the direction of arrows
in Fig. 10(b), this system can be tuned to be either Z2-odd or
Z2-even phases.

In the supplementary material of Ref. [27], a tight-binding
model based on the first-principle calculations is presented.
The unit cell is a square with a = ax = ay = 4.5 Å and
unchanged by the distortion. The distortion is parametrized by
α, where α = 0 and 1 correspond to the nondistorted and fully
distorted cases, respectively. While the system is semimetallic
up to α ≈ 0.4, the system becomes a Z2-odd insulator by en-
hancing the distortion. Then, the phase transition from Z2-odd
to Z2-even phase occurs at α ≈ 0.86. At α ≈ 0.86, two Weyl
points W± are present at k± = (0.5, 0.5 ∓ 0.49)b as shown
in Fig. 10(c), where b = 2π/a is the length of the primitive
reciprocal vectors. Details of the tight-binding Hamiltonian
and its parameters are given in the Appendix. From the ef-
fective Hamiltonian given in the supplementary material of
Ref. [27], monopole charges of these Weyl points at k± are
Q± = ±1, respectively. As a result, from Eq. (30), the jump
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FIG. 10. BaMnSb2 as a candidate material. (a) A three-
dimensional crystal structure of BaMnSb2 by CRYSTALMAKER. (b) A
two-dimensional image of the Ba-Sb layer. The distortion shifts Sb
atoms in the directions indicated by gray arrows. The dashed square
is a unit cell with a = ax = ay = 4.5 Å. (c) Positions of Weyl points
W± at α ≈ 0.86, where b = 2π/a is the length of primitive reciprocal
vectors. (d) The calculated x component of the electric polarization.
Here, P0 = e/a is a unit of polarization of this system.

of the x component of polarization with size �Px ≈ 0.98 e
a is

expected. Using the tight-binding Hamiltonian, we numeri-
cally calculated the x component of the polarization around
α = 0.86 in Fig. 10(d). We can see the jump of an expected
size appears at the phase transition.

VII. CONCLUSION

In this paper, we constructed a general theory on the be-
havior of electric polarization at topological phase transitions
in two-dimensional systems. We used the extended Haldane
model and the extended Kane-Mele model to study the jump
of polarization at the phase transition from a Chern insulator
to a normal insulator and from a Z2-odd to a Z2-even phase,
respectively, by tuning the on-site potential and anisotropic
NN hopping parameters. Since topologically trivial and
nontrivial phases are not adiabatically connected, we can de-
fine the jump of polarization between two phases by defining
a reference point in the topological phase where we know the
value of polarization by symmetry constraints.

In the Chern insulator phase, polarization depends on the
corner of the integration k0 in the reciprocal space. By tak-
ing k0 to a value that satisfies the symmetry constraint at a
reference point, we can define the polarization in the Chern in-
sulator phase. At the phase transition where the Chern number
changes, there appear Weyl points whose sum of monopole
charges is not zero. In that case, the jump of polarization is
expressed in terms of the positions of the Weyl points relative
to k0. In the Z2 topological insulator phase, the definition of

polarization is unchanged from that in the normal insulator
phase since the Chern number is zero. In this case, Weyl points
at a topological phase transition always appear in pairs with
opposite monopole charges of ±Q, and the jump of polar-
ization is described by the Weyl dipole, which is originally
introduced for the jump of polarization at transitions between
normal insulator phases. We note that the presence or absence
of particle-hole symmetry has no impact on our results, as
exemplified by the fact that the extended Haldane model lacks
particle-hole symmetry, while the extended Kane-Mele model
possesses particle-hole symmetry.

At topological phase transitions, the change of the electron
occupation in the edge states causes the jump of electric
polarization. We also proposed BaMnSb2 as a candidate ma-
terial to observe the jump of polarization at topological phase
transitions.
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APPENDIX: TIGHT-BINDING HAMILTONIAN
OF BaMnSb2

In this Appendix, we review the tight-binding Hamilto-
nian of BaMnSb2 and its parameters used in Sec. VI, which
are originally presented in the supplementary material of
Ref. [27] for completeness. Details of the construction of
the model are presented in the supplementary material of
Ref. [29].

As mentioned in Sec. VI, the Ba-Sb layer of BaMnSb2

can be considered as a quasi-two-dimensional material.
Main contributions to the bands near the Fermi energy are
from px and py orbitals of Sb atoms and two Sb atoms are
present in a unit cell as shown in Fig. 10(b), labeled as 1
and 2, that have sublattice vectors r1 = (x1a, 0) := ((0.5 −
0.0488α)a, 0) and r2 = (x2a, a/2) := (0.01729αa, 0.5a).
Then, the bases of the tight-binding Hamiltonian are
|R + ri, β, s〉 with the lattice vector R = (lxa, lya) (lx,y ∈
Z), the sublattice index i = 1, 2, the orbital index
β = px, py, and the spin-z index s = ↑,↓. After the Fourier
transformation, an 8 × 8 tight-binding Hamiltonian of this
system H (k) = h0(k) + h1(k) + h2(k) consisting of the
on-site term h0(k), the NN hopping term h1(k), and the NNN
hopping term h2(k) is constructed. These terms are given by

h0(k) =
(

M1

M2

)
, (A1)

h1(k) =
(

0 0
e−i[kx (x2−x1 )+ky/2]a 0

)

⊗ [T1 + T2e−ikxa + T3e−i(kx−ky )a + T4eikya] + H.c.,

(A2)

h2(k) =
(

Qx1

Qx2

)
e−ikxa +

(
Qy1

Qy2

)
e−ikya + H.c.

(A3)
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The forms of M ′s, T ′s, and Q′s are

M1 = m̃0τ0σ0 + m̃1τzσ0 + λ0τyσz, M2 = COS
4z M1

(
COS

4z

)†
,

T1 = t0τ0σ0 + t1τxσ0 + it2τyσ0, T2 = τzσyT1τzσy

f (α)
,

T4 = τzσyT1τzσy, T3 = T1

f (α)
,

Qx1 = t3τ0σ0 + t4τzσ0, Qx2 = t5τ0σ0 + t6τzσ0,

Qy1 = COS
4z Qx2

(
COS

4z

)†
, Qy2 = COS

4z Qx1
(
COS

4z

)†
, (A4)

where τ ′s and σ ′s are Pauli matrices for spin and orbital
indices, f (α) = 0.2α + 1, and COS

4z = −iτye−i π
4 σz . Parameter

values for numerical calculations are

m̃0 = 0, m̃1 = 0.3 eV, λ0 = 0.25 eV,

t0 = 1 eV, t1 = 2 eV, t2 = 0,

t3 = 0.1 eV, t4 = −0.06 eV,

t5 = 0.15 eV, and t6 = −0.06 eV. (A5)
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