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The adoption of an accurate kinetic energy density functional (KEDF) to characterize the noninteracting
kinetic energy within the framework of orbital-free density functional theory (OFDFT) is challenging. We
propose a form of the nonlocal KEDF with a real-space truncation cutoff that satisfies the uniform electron
gas limit and design KEDFs for simple metals and silicon. These KEDFs are obtained by minimizing a residual
function, which contains the differences in the total energy and charge density of several representative systems
with respect to the Kohn-Sham DFT results. By systematically testing different cutoffs of these KEDFs, we find
that the cutoff plays a crucial role in determining the properties of metallic Al and semiconductor Si systems. We
conclude that the KEDF with a sufficiently long cutoff performs even better than some representative non-local
KEDFs in some aspects, which sheds light on optimizing the KEDFs in OFDFT to achieve better accuracy.
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I. INTRODUCTION

Kohn-Sham density functional theory (KSDFT) is one of
the most widely used ab initio methods [1,2]. However, since
the traditional KSDFT method introduces orthogonal one-
electron orbitals, solving the Kohn-Sham equation typically
scales as O(N?), with N being the atom number, which is
unfavorable for large-size calculations or long-time molecular
dynamics simulations. Orbital-free DFT (OFDFT) [3,4] is
an alternative choice to improve the efficiency of DFT by
calculating the noninteracting electron kinetic energy 7y via
the kinetic energy density functional (KEDF) instead of the
one-electron Kohn-Sham orbitals. OFDFT has been success-
fully applied to a variety of scientific problems such as alloys,
[4-9] liquid metals [10], quantum dots [11,12], and warm
dense matter [13,14]. Recently, the time-dependent OFDFT
has been proposed to study the stopping power of electrons
in warm dense matter [15,16], the localized surface plasmon
resonances in nanorods [17], and the optical spectra of metal-
lic and semiconductor clusters [18]. Since the magnitude of
electron kinetic energy (7y) is comparable to the total energy
in condensed matter and molecular systems, the accuracy of
OFDFT is sensitive to the approximated forms of the KEDF.
In this regard, proposing an accurate and efficient KEDF
within the framework of OFDFT has been a challenging topic
in this community for decades.

In the past few decades, continuous efforts have been de-
voted to the development of KEDFs. As a result, various
forms of a KEDF have been proposed. A typical category of
KEDFs includes the local and semilocal components, which
can be efficiently evaluated. For instance, Constantin et al.
demonstrated the importance of adopting the Laplacian of
charge density in the construction of KEDFs and proposed
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a series of new semilocal KEDFs [19,20]. Luo et al. gener-
alized the Luo-Karasiev-Trickey (LKT) KEDF [21] to finite
temperatures [22] and applied it to warm dense hydrogen [14].
The next category of KEDFs is the nonlocal form, which sug-
gests that the kinetic density at each real-space point depends
on the nonlocal charge density. For condensed matter sys-
tems, the nonlocal KEDFs are generally more accurate than
the semilocal ones, such as the Wang-Teter (WT) [23], the
Smargiassi-Madden (SM) [24], and the Wang-Govind-Carter
(WGC) [25] KEDFs for metals and the Huang-Carter (HC)
KEDF [26] for semiconductors. While most KEDFs were
constructed based on the Lindhard response function, another
category of KEDFs was introduced by imposing more restric-
tions or using more parameters; for example, the enhanced
von Weizsicker WGC KEDF [27], the KGAP KEDF based
on the jellium-with-gap model [28], and the KEDFs in the
form of functional integrals [29,30]. In particular, the revised
HC KEDF [31] was proposed to achieve higher precision for
the surface of semiconductors.

While most of the nonlocal KEDFs implement a nonlo-
cal kinetic energy kernel, a fundamental yet important issue
regarding how the long- and short-range parts of the kinetic
energy kernel influence the accuracy of KEDFs is still un-
clear. In this regard, a truncated KEDF kernel (TKK) with
a chosen real-space cutoff could provide further information
for this issue. Recently, a truncated WT kernel was proposed
[32] to enable efficient calculations of 1 024 000 lithium (Li)
atoms with the OFDFT method. The truncated WT kernel
is composed of eight spherical Bessel functions and yields
reasonable results for Li systems. Note that the spherical
Bessel functions have been used as localized basis sets in
density functional theory calculations [33-36]. Similarly, Ku-
mar et al. proposed a nonlocal KEDF whose kinetic energy
kernel consists of six Gaussian functions and found improved
performances for a series of one-dimensional systems [37]. In
this regard, constructing a TKK that owns sufficient accuracy
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within the framework of OFDFT has been demonstrated to
be feasible; nevertheless, an important remaining issue is to
reveal the influences of the long- and short-range parts of
KEDF on a selection of target systems.

In this work, we construct two groups of TKK, i.e., one for
metals (labeled TKK;!, with A, being the real-space cutoff)
and the other for semiconductors (labeled TKK; ), because
the asymptotic behaviors of KEDFs for metals and semicon-
ductors are different [26]. In particular, as a first step to find an
optimal KEDF for metals and another one for semiconductors,
we respectively choose Al and Si to validate the two groups of
TKKs. For each group, a few TKKs are represented by a set
of spherical Bessel functions and generated [32] with different
radius cutoffs. The coefficients of spherical Bessel functions
are optimized with the simulated annealing method [38,39].
We systematically test these kernels for a variety of Al and Si
systems. In general, the accuracy of TKKs increases with a
larger cutoff. In particular, we find it crucial to consider the
interactions between an atom and its nearest neighbors, as
well as the next-nearest neighbors in a TKK; otherwise, the
stacking fault energies and surface energies of Al, as well as
the vacancy formation energies and surface energies of Si, are
qualitatively incorrect. Additionally, the TKKTy kernel works
well for Li and Mg bulk systems, demonstrating its transfer-
ability. The computational efficiency of TKKs is similar to the
WT and WGC KEDFs, and higher than the HC KEDF.

The rest of this paper is organized as follows. In Sec. II, we
introduce the method to optimize the truncated WT kernel.
In Sec. III, we list the numerical details of the KSDFT and
OFDFT calculations. In Sec. IV, we analyze the performances
of the KEDF kernel presented here and discuss the results.
Finally, the conclusions are drawn in Sec. V.

II. METHODS

A. Kinetic energy density functional kernel

The WT KEDF [23] is derived from the Lindhard response
function and takes the form of

2
Twrlp(r)] = Cre f pPw)dr + - f VomI”
8 p (r)

+ Cre / / P (W (r — r)p? (')drdr’, (1)

where Crr = %(37‘[2)2/ 3. The parameters « and f are typ-
ically set to 5/6. The first term is the Thomas-Fermi (TF)
KEDF [40], which is a local functional exact for the uniform
electron gas. The second term is the semilocal von Weizsédcker
(vW) KEDF [41], which is a rigorous lower bound to the T;.
The last term is a nonlocal form of KEDF derived from the
Lindhard response function, with W (r — r’) being the nonlo-
cal KEDF kernel. Furthermore, the kernel can be analytically
written in the reciprocal space as [23,25]

SG(n)

Wn) = W, (2)
where
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Here, n = 2kTF is a dimensionless reciprocal space vector,

while kg = (372 pg)'/? is the Fermi wave vector with p, being
the average charge density. The truncated kinetic kernel is ex-
pressed as a linear combination of spherical Bessel functions
and takes the form
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where j;(g;A) is a spherical Bessel function and ¢; is the
coefficient. The parameter g; satisfies j;(g;A.) = 0. Here, the
real-space cutoff is A. = 2kg|r — r’|. The [/ parameter is set to
0, which is the same as in Ref. [32].

B. Residual function

With the aim of obtaining a more accurate KEDF kernel,
we propose to optimize the coefficients of the spherical Bessel
functions in Eq. (4) for a selected set of representative sys-
tems. In this regard, we define a residual function as

R = |AE| + u|AEu| + v|J[ +§1G], &)

where u, v, and & are the coefficients. Here the first term
denotes the absolute total energy difference of a target system
as calculated by the OFDFT and KSDFT methods, and the
formula is as follows:

N
1 (@) S
|AE| = ﬁ Z ’EtotFj Etlét,j}/nj’ (©6)

where EQF; and EjSY ; are the total energies of the jth system
as computed by the OFDFT utilizing the truncated kinetic
kernels and the KSDFT method, respectively. N is the number
of selected reference systems and n; is the number of atoms
in the jth system.

In order to minimize the charge density difference, we add
a second term to minimize the absolute energy difference of

the Hartree energy term, which takes the form

1 N
=~ 2B — Bl /), ™
j=1

|AEy|

where EQY. and EXS represent the Hartree energies from the
OFDFT and KSDFT calculatlons respectively; both Hartree
energies can be computed from 1 s [[E ?:)pr(rl 2We) gy gy’ with p(r)
being the charge density.

In fact, in a uniform electron gas, the electron density
remains a constant and the TF model is exact to describe the
kinetic energy of electrons. In this case, the nonlocal term is
expected to disappear and the TKK KEDF should be equiva-
lent to the TF model. This implies that the integration of the
nonlocal TKK should yield zero. In this regard, we impose a
constraint in the third term J to satisfy the limit of uniform
electron gas, which can be written as

Ni he
=Y a [ Ridara. ®)
i=1

The term J is the integral of a TKK in real space, with ;
being the number of spherical Bessel functions. For a TKK
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FIG. 1. (a) Workflow of the simulated annealing method to optimize the truncated KEDF kernel (TKK) in the framework of OFDFT.
(b) The fitted TKKSs in reciprocal space for metallic systems (labeled TKK™) with the target systems being Al systems. The Wang-Teter (WT)
KEDF kernel is plotted for comparison. The real-space cutoft X is chosen with different values ranging from 8 to 20. (c) The fitted TKKs in
reciprocal space for semiconductor systems (labeled TKK®) with the target systems being Si systems.

that minimizes the residual function, the J term is supposed to
be zero to satisfy the above-mentioned constraint.

Last, the fourth term, G, is included as a penalty term
to reduce the oscillation behaviors of the truncated kinetic
kernels and takes the form

Ni Ne e
G=) ¢ f n*Fljo(qit)1dn. ©)
i=1 V0

Here, F donates the Fourier transform. The last term is
added because we find that the resulting TKK kernel exhibits
oscillating behavior in real space. Typically, the oscillating
behavior can be effectively reduced in optimizing the shape
of the function in reciprocal space. Therefore, we multiply the
Fourier transform of the kernel function in reciprocal space
by a n* term to reduce the oscillations, especially when the
dimensionless reciprocal space vector 7 is large. In practice,
we set the number of spherical Bessel functions to be N; = 8
and the remaining parameters in Eq. (5), i.e., u, v, and &, are,
respectively, set to 3, 1/10, and 1/20, so that the above four
terms account for similar proportions of the residual.

C. Simulated annealing method

As illustrated in Fig. 1(a), we adopt the simulated anneal-
ing method to minimize the residual function R defined in
Eq. (5). The workflow contains three steps. First, the KSDFT
calculations are performed to yield the total energy EXS and
the Hartree energy EII{(S of selected target systems as refer-
ence data. Second, starting from the truncated WT kernel, the
coefficients {c;} of spherical Bessel functions are updated to
obtain a different TKK Wr(A). We then use this TKK and
perform OFDFT calculations for target systems to obtain the
residual function R and the change of residual AR. Third, we
use the Metropolis algorithm to update the coefficients {c;},

which means that the previously updated coefficient will be
accepted if AR < 0; or, if AR > 0, the updated coefficients
will be accepted with the probability p = e *R/T where T
is the artificial temperature and gradually reduces during the
optimization.

Note that we optimize two types of TKKs, including
TKK™ [Fig. 1(b)] and TKK?® [Fig. 1(c)] for metals and semi-
conductors, respectively. The target systems are selected as
follows. For the target metallic systems, we choose face-
centered-cubic (fcc), body-centered-cubic (bcc), simple cubic
(sc), and hexagonal close-packed (hcp) crystal structures of
bulk Al. In addition, the fcc (111), (100), and (110) surfaces
of Al are considered. We also adopt three different super-
cells (1 x I x1,2x 1 x 1, and 2 x 2 x 2 supercells) of fcc
Al, which contain one vacancy, to fit the vacancy forma-
tion energies. On the other hand, in the target systems for
semiconductor systems, we select the cubic diamond (CD)
and B-tin crystal structures of bulk Si. Moreover, we add the
(100) surface of the CD Si and two different CD Si supercells
containing one vacancy (1 x 1 x 1 and 2 x 1 x 1 supercells)
in the target systems.

During the optimization of TKKSs, we impose a constraint
during the optimization, which ensures the hydrodynamic
limit (n = 0) of TKK to be fixed at zero, as in the conventional
WT KEDF kernel W (n) [32]. The optimization is performed
for 10 temperatures by using the Metropolis algorithm, and
2100 and 1400 steps are carried out for each temperature for
TKK™ and TKK® KEDFs, respectively.

III. NUMERICAL DETAILS

We perform OFDFT and KSDFT calculations by us-
ing the PROFESS 3.0 [42] and ABACUS 2.1.0 [36] packages.
The plane-wave energy cutoffs utilized in the OFDFT and
KSDFT calculations for the above-mentioned systems, as well
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FIG. 2. Total energies (in eV /atom) of target systems as calculated by using the KS-BLPS and OFDFT methods. In OFDFT calculations,
three different TKK kernels with the cutoff being A, = 8, 12, and 16 are chosen. The metallic systems are illustrated in (a), including the fcc,
hcp, bee, and sc crystal structures of Al, which are compressed and expanded with the equilibrium lattice constant ay ranging from 0.94a, to
1.1ay, and five points are chosen for each structure. In addition, the Al fcc surfaces [(110), (100), and (111) surfaces in turn], as well as the
vacancy configurations (1 x 1 x 1,2 x 1 x 1, and 2 x 2 x 2 supercells in turn), are chosen. For the semiconductor systems shown in (b), we
choose the cubic diamond (CD) and B-tin solid phases of Si (compress and expand the unit cell from 0.9g, to 1.1a¢ to obtain 11 points for
each configuration), the CD (100) surface, and the CD vacancy configurations (1 x 1 x 1 and 2 x 1 x 1 supercells in turn).

as the Monkhorst-Pack k-point samplings [43] in KSDFT,
are listed in Table S1 in the Supplemental Material [50].
In both OFDFT and KSDFT calculations, the local density
approximation (LDA) [44] and the bulk-derived local pseu-
dopotentials (BLPS) [45] are used. In particular, the Gaussian
smearing method is used in the KSDFT calculations for metal-
lic systems, with a smearing width of 0.1 eV. In order to
calculate the ground-state bulk properties, we first optimize
the crystal structures until the stress tensor elements are below
5 x 1077 Hartree/Bohr>, then compress and expand the unit
cell from 0.99qy to 1.01ay, where ay is the equilibrium lattice
constant. Once the energy-volume curve is obtained, bulk
modulus B is calculated by fitting Murnaghan’s equation of
state [46]. In order to assess the error of B, we choose two dif-
ferent sets of data for the fcc and hep Al structures and adopt
KSDFT with BLPS and the LDA functional. First, the lattice
constant is chosen from 0.990a( to 1.010aqy. The calculated
bulk moduli of fcc and hep Al are 84 and 81 GPa, respectively.
Second, we change the range of the lattice constant from
0.995a to 1.005ay, and the resulting bulk moduli are 83 and
81 GPa for the fcc Al and hep Al respectively. The two sets
of data are close, suggesting that our method to estimate the
bulk moduli is reasonably accurate.

We compare the TKK results to those obtained from
OFDFT calculations with traditional KEDFs. In detail, the
WT and WGC KEDFs are used for systems involving Al,
Li, and Mg. The WT, WGC, and HC KEDFs are adopted
for Si systems. We set o = 5+Tf5’ B = szfs’ and y = 2.7
in the WGC KEDF for Al, Li and Mg metals, which are
the optimized parameters of the WGC KEDF as proposed in
Ref. [25]. In addition, we choose o = %5, B = 5%5, and
y = 4.2 for the Si systems, which are optimum for semicon-
ductors, as suggested by Ref. [47]. The HC KEDF is chosen
for Si with the parameters g = 0.65, » = 0.01 for the CD
structure and 8 = 0.65, A = 0.0055 for the B-tin structure,

which is optimum for corresponding systems [26]. In all
OFDFT calculations, we set the average charge density pg as
the average charge density over the whole cell.

The Al fcc (111), (100), and (110) surfaces are, respec-
tively, tested with five, five, and seven layers of atoms [25],
while the Si CD(100) surface is modeled with nine layers of
atoms [26]. In addition, each layer of the above slabs contains
one atom, and the lattice vectors are fixed to the equilibrium
bulk lattice vectors while the vacuum is set to be larger than
10 A. The surface energy o is defined as

_ Ega — NEj

N 24
where Ejy, is the total energy of the slab, Ej is the ground
energy per atom of bulk fcc Al or CD Si, N is the number of
atoms in the slab, and A is the lateral area of the slab.

The vacancy configurations of fcc Al (CD Si) are set up by
removing one atom from a supercell, which is constructed by
combining n Al fcc (Si CD) cubic unit cells together in a n; x
n, x nj fashion with n = nynyns3. Next, the vacancy formation
energy E.s is calculated via [48]

(10)

N -1 N -1
Eci—E(N—1. 1, Q)-"—E®. 0, 9. (1)
N N

where E(N, m, 2) is the total energy for a cell. The parame-
ters 2, N, and m depict the volume, the number of atoms, and
the number of defects, respectively.

The mean absolute relative error (MARE) of property x is
defined as

xOF — xS
xKS

1 N
MARE = — > (12)

i

Here, N is the number of data points, and xl-OF and leS are
obtained from OFDFT and KSDFT, respectively.
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FIG. 3. Residual values [Ry and R,,;, in Eq. (5)] for the target sys-
tems before and after the optimization of the truncated KEDF kernel
(TKK) with the simulated annealing method. The optimized TKKs
are labeled TKK™ and TKK® for the (a) metallic and (b) semicon-
ductor systems, respectively. The dimensionless radial cutoff of the
TKKs is A.. Ry and Ry, are the original residuals before optimization
and the minimum residual after optimization, respectively.

The stacking fault energies are calculated with the same
setup as in Bernstein and Tadmor’s work [49]. More informa-
tion, such as the computed stacking fault energies, is shown in
Fig. S1 in the Supplemental Material [50].

IV. RESULTS AND DISCUSSION

We generate TKKs with different cutoffs, ie., A, =
8.0, 12.0, 16.0, 20.0, for metallic and semiconductor sys-
tems, and the total energies of the target systems as obtained
by KS-BLPS and OFDFT are shown in Fig. 2. We find that
the total energies obtained by OFDFT get closer to those
obtained by KS-BLPS as the cutoff of KEDF increases; the
starting residual function Ry (green bars) and the final residual
function Ry, (blue bars) in terms of different cutoffs are
shown in Fig. 3. We find that the final residual Ry, is substan-
tially smaller than the original residual Ry, implying that the
optimization scheme is effective. Notably, as A. increases, the
residual decreases first and then increases slightly. This may
be caused by the introduction of the long-range part, which
enhances the accuracy of TKK. However, as the X, increases,
the fitting capability for the two TKKs reaches a saturation
point.

TABLE I. Correspondence between the real-space distance (7,
and r,) and the real-space cutoff (A; = 2kgr; and A, = 2kgr;) in the
fcc Al, hep Al, CD Si, and B-tin Si crystal systems. Here, 7, (72)
depicts the distance between an atom and its nearest neighbor (next-
nearest neighbor), and kr = (37209)/? (in A~') is the Fermi vector
with py the average charge density.

po A ke (A rn Ay n@d) A Ao
fcc Al 0.192 1.785 2.807 3970 10.020 14.171
hep Al 0.191 1.782 2.808 4.586 10.006 16.341
CD Si 0.202 1.815 2342 3.824 8.502 13.883
B-tin Si 0.274 2.010 2462 2.591 9.804 10.412

Furthermore, given that the parameter A = 2kg|r — r'| is
dimensionless, it should be noted that the same real-space cut-
off A. may correspond to varying real-space distances when
the Fermi vector kr takes different values. To clarify this point,
we list the correspondence between the real-space distance
and the cutoff A in Table I. Notably, when it comes to ana-
lyzing the behavior of Al and Si systems, it is crucial to take
into account the interactions between atoms up to the second-
nearest neighbor. This is because these interactions can have
a significant impact on the overall properties of the systems.
Specifically, TKKs only consider the nearest-neighbor atoms
for hep Al when A is less than 16, but consider the atoms up to
the second neighbors when A, is larger than 16. In summary,
TKK{s and TKKj, take into account interactions up to the
second-nearest neighbors, whereas other TKKs with A, < 16
exclude these interactions.

A. Simple metals

Table II lists the bulk properties of the fcc, hep, bee, and
sc crystal structures of Al as obtained from KSDFT and var-
ious kinetic energy functionals adopted in OFDFT. The bulk
properties include the bulk modulus, the equilibrium volume,
and the total energy. When compared to the experimental data,
we find that the KSDFT method with the usage of the BLPS
yields a slightly larger bulk modulus and a smaller equilibrium
volume for fcc Al, but the results are reasonable. In addition,
both KSDFT and OFDFT (the WGC and WT KEDFs) cal-
culations yield similar bulk properties for the four phases of
Al, including the prediction of the fcc structure to be the most
stable solid phase among the four solid structures.

It is worth mentioning that the energy difference between
the hep and fce structures is as small as 0.020, 0.018, and
0.027 eV /atom, which is obtained from the WT, WGC, and
KS-BLPS calculations, respectively. Notably, the TKK} in
OFDFT exhibits different levels of accuracy for the bulk
properties of solid Al phases in terms of the dimensionless
radius cutoff A.. In general, a higher accuracy of TKK}' is
obtained while A, increases from 8 to 16, approaching the
accuracy of the WT/WGC KEDF. Interestingly, we notice
that the energy difference between the hcp and fcc structures
as obtained from TKKg', TKKY;, and TKK is 0.000, 0.000,
and 0.021 eV/atom, respectively. The results indicate that the
TKK} with A, =8 or 12 predicts the same energy for fcc
and hcp structures. In addition, we note that the small energy
difference between the fcc and hep Al structures predicted by
KSDFT-BLPS with the LDA functional and KSDFT-BLPS
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TABLE II. Bulk properties of the fcc, hep, bec, and sc crystal structures of Al, i.e., the bulk modulus (B in GPa), the equilibrium volume (V,
in A3 /atom), and the energy of a given system (E, in eV /atom). The energy (E,) of fcc Al is chosen to be the total energy, while the other energy
terms are set as the energy difference between the fcc Al and other structures. The MARE as defined in Eq. (12) is obtained by comparing
the OFDFT to KS-BLPS results. Both KSDFT and OFDFT calculations are performed with the use of bulk-derived pseudopotentials (BLPS).
For OFDFT calculations, we use the WT KEDF and the TKKs for metals with different cutoffs A, (labeled TKK;’Z). Some of the KS-BLPS
and WGC KEDF data are taken from Ref. [45]. The experimental data of bulk moduli and equilibrium volumes for fcc Al are shown for

comparison.
fcc hep bee sc MARE
B (GPa) KS-BLPS (this work) 84 81 77 66
KS-BLPS [45] 84 81 76 64
WGC [45] 81 80 75 62 3.11%
WT 85 83 77 65 1.72%
TKKT 87 85 76 69 3.99%
TKKY, 89 88 81 68 5.88%
TKKE' 80 80 75 47 9.01%
Expt. [51] 76.2
Vo (A%) KS-BLPS (this work) 15.644 15.741 16.084 18.797
KS-BLPS [45] 15.623 15.767 16.063 18.825
WGC [45] 15.632 15.764 15.887 19.223 0.93%
WT 15.821 15.928 16.223 18.774 0.83%
TKKT; 15.646 15.712 16.117 18.568 0.41%
TKKY, 15.729 15.777 16.107 18.507 0.61%
TKKE' 16.005 15.997 16.192 20.130 2.92%
Expt. [52] 16.363
Ey (eV) KS-BLPS (this work) —57.949 0.027 0.087 0.361
KS-BLPS [45] —57.955 0.038 0.087 0.362
WGC[45] —57.941 0.018 0.079 0.354 0.00%
WT —57.934 0.020 0.078 0.335 0.02%
TKKT; —57.949 0.021 0.080 0.366 0.01%
TKKY, —57.900 0.000 0.043 0.280 0.05%
TKKg' —57.914 0.000 0.057 0.293 0.04%

with the Perdew-Burke-Ernzerhof (PBE) functional is quite
close, which is 0.027 and 0.025 eV /atom, respectively.

As explained in Table I, the results suggest that the rel-
atively short-range TKKs of A, = 8 or 12, which involve
only the nearest neighbors, are not able to distinguish the
subtle energy difference between the fcc and hep structures
of Al. The reason is because the two structures have similar
local structures, which are closely packed planes of atoms,
and they own the same atomic packing factor of 0.74 and
the same coordination number of 12. Notably, we empha-
size that the TKK{y KEDF with A, = 16, which involves
the second-nearest neighbors, yields a satisfactory value of
0.021 eV /atom for the energy difference between the hcp and
fce structures. In addition, the bulk moduli and equilibrium
volumes of the four structures of Al, as obtained from the
TKK}y KEDF, match better with the KS-BLPS data as com-
pared to those obtained from TKKg' and TKKY;. This can be
seen by comparing the MARE.

To validate the transferability of TKKs, we perform
OFDFT calculations of the stacking fault energies of fcc Al,
which are crucial mechanical properties of metals, and the
results are shown in Fig. 4. Notably, most OFDFT calcu-
lations yield smaller stacking fault energies than KSDFT.
In particular, the TKK KEDFs with a small A. (8 and 12)
yield incorrect intrinsic stacking fault energy y;sr and extrinsic
stacking fault energy y.ss close to zero. This can be explained

by their inability to distinguish between the hcp and fec crystal
structures since the atoms near the stacking fault plane of fcc
Al are arranged in the hcp configuration. Interestingly, when
the cutoff of TKK increases to the second-nearest neighbor,

b & KSBLPS m TKK}
€ 200t 1
= WGC o TKKD,
= .
£ wr TKKY' .
3 1501 - .
o) [
o
2 100} 5 ¢
=}
8
L ] L ]
o 50 ]
S
X
(&)
3
o o ¢ . ) . ¥
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FIG. 4. Stacking fault energies (in mJ/m?) of Al as obtained
from KS-BLPS [45] and OFDFT calculations. The stacking fault
energies include the twinning energy y, the unstable stacking fault
energy Yus, the intrinsic stacking fault energy i, the unstable twin-
ning energy ). and the extrinsic stacking fault energy yes of fcc
Al The definition and explanation of the above five stacking fault
energies can be found in Ref. [49].
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TABLE IIl. OFDFT and KSDFT results for bulk modulus (B in GPa), equilibrium volume (V; in A3 per atom), and total energy (Ey in eV
per atom) of various solid phases of Li and Mg. The last column is MARE (%). The equilibrium total energies of bcc Li and hcp Mg are given,
while the energy differences are shown for other structures. All results of KSDFT and WGC KEDF for Mg are taken from Ref. [45].

Li bee fcc sc CD MARE
B (GPa) KS-BLPS 17 17 17 12
WGC 17 17 17 12 0.15
WT 17 17 17 12 0.15
TKKT; 17 18 17 12 0.70
Vo (A%) KS-BLPS 18.767 18.693 19.441 21.929
WGC 18.810 18.728 19.528 21.956 0.25
WT 18.796 18.714 19.495 21.980 0.19
TKKT 18.699 18.628 19.474 21.989 0.29
Ey (eV) KS-BLPS —7.599 —0.0004 0.139 0.538
WGC —7.595 —0.002 0.140 0.535 0.04
WT —7.595 —0.002 0.140 0.536 0.04
TKKTy —7.599 —0.003 0.145 0.543 0.05
Mg hep fcc bce sc MARE
B (GPa) KS-BLPS [45] 38 38 37 29
WGC [45] 36 36 36 28 4.15
WT 37 36 36 29 2.54
TKKT; 37 37 36 29 2.02
Vo (A% KS-BLPS [45] 21.176 21.363 21.393 24.929
WGC [45] 21.616 21.465 21.534 25.036 0.91
WT 21.358 21.533 21.590 25.006 0.72
TKKT; 21.246 21.312 21.384 24.933 0.16
Ey (eV) KS-BLPS [45] —24.678 0.011 0.033 0.370
WGC [45] —24.651 0.006 0.024 0.351 0.08
WT —24.654 0.010 0.032 0.352 0.08
TKKT —24.652 0.007 0.027 0.337 0.08

we observe that the TKKT; KEDF yields reasonable stacking
fault energies, which are even better than those obtained from
the WT and WGC KEDFs. Since the TKK; function has a
larger real-space cutoff than the TKKg' and TKKY} functions,
we conclude that the long-range part in the real-space form
of the TKK function is important to distinguish the energy
difference between the fcc and hcp structures of Al, which
is crucial to obtain reasonable stacking fault energies. The
transferability of the proposed KEDF is verified in Table III,
which will be discussed later.

As listed in Table IV, the surface energies of the Al
fcc (100), (110), and (111) surfaces are computed by both
OFDFT and KSDFT with the usage of BLPS. We find that
the WT KEDF significantly overestimates the surface ener-
gies as compared to the KSDFT data. In detail, the KSDFT
predicts the surface energies of Al to be 1010, 1104, and
1212 mJ/m? for the fcc (111), (100), and (110) surfaces,
respectively; the WT KEDF yields surface energy of 1808,
1971, and 1996 mJ/m? for the fcc (111), (100), and (110) sur-
faces, respectively. Furthermore, the WGC KEDF largely im-
proves the data, giving rise to a surface energy of 1176, 1373,
and 1378 mJ/m? for the fcc (111), (100), and (110) surfaces,
respectively. In terms of the TKKs with different cutoffs, the
TKKg' and TKKY, KEDFs predict significantly smaller values
for the surface energies of fcc Al as compared to the KSDFT
data, which may be due to the short-range features of the two
kinetic energy kernels in describing the kinetic energies of

electrons. Notably, the TKKY; KEDF not only predicts the
surface energies of fcc Al close to the KSDFT results, but
also yields the correct energy orderings for the three surfaces
of fcc Al

Table IV lists the vacancy formation energies of Al. First
of all, the results obtained by the WT KEDF are substantially
larger than the KSDFT data. For example, the vacancy forma-
tion energy of a 2 x 2 x 2 cell is 1.447 and 0.794 eV from
the WT and KS-BLPS calculations, respectively. The WGC
KEDF is able to improve the value to 0.874 eV, which is closer
to KSDFT. Second, we observe that all three TKK™ KEDFs
yield a higher level of accuracy for the vacancy formation
energies than the WT KEDF. Among them, the TKKY}, KEDF
performs best for all of the studied system sizes. Figure S2(a)
in the Supplemental Material [50] shows the convergence
behaviors of the vacancy formation energy with respect to
the system size. We find that the TKKY, and TKKg KEDFs
exhibit a higher accuracy in predicting the vacancy formation
energy in large systems compared to TKK'y KEDF, which
may be attributed to the lack of sufficiently large supercells
with vacancies in the target systems.

Figures 5(a) and 5(c), respectively, illustrate the electron
densities of bulk fcc Al and its (100) surface as obtained
from KSDFT and OFDFT calculations, and we choose the
(010) surface of bulk Al to plot the electron density profile.
For the bulk Al, the electron density differences between the
OFDFT and KSDFT calculations and the associated MAREs
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TABLE IV. Surface energies (o, in mJ/m?) and vacancy formation energies (E.s, in eV) of fcc Al and CD Si. The BLPS of Al and Si are
used in both the KSDFT and OFDFT calculations.

Al Systems KS-BLPS WGC WT TKK™ TKK?, TKK?
o Al fee (111) 1010* 1176 1808 919 81 584
Al fec (100) 1104* 1373 1971 1117 394 848
Al fce (110) 1212 1378 1996 1276 485 813
E.° Allx1x1 0.796 0.706 1.237 0.931 0.725 0.574
Al2 x 1 x1 0.757 0.740 1.347 0.905 0.786 0.751
Al2 x2x1 0.747 0.809 1.407 0.769 0.794 0.799
Al2 x2x2 0.794 0.874 1.447 0.592 0.763 0.791
Si Systems KS-BLPS HC WT TKKS, TKKS, TKKS
o Si CD (100) 2062 2548 —7824 2228 1307 —6172
E° Silx1x1 2.735 2.651 —0.572 3.277 3.081 —0.552
Si2x1x1 3.026 2.313 —0.453 3.367 3.024 —0.551
Si2x2x2 3.240 1.445 —0.346 3.583 3.143 —0.575
2Reference [45].
"The experimental value is 0.66 eV [53].
“The experimental value is 3.6 eV [54,55].
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FIG. 5. (a) Electron density profile of the (010) crystal surface inside bulk fcc Al, which is obtained from KS-BLPS calculations.
(b) Electron density differences of the fcc Al (010) crystal surface between OFDFT and KSDFT calculations. (c) Electron density profile on
the longitudinal section of the Al fcc (100) surface, i.e., the fcc (110) surface. Results are obtained from KSDFT calculations. Figure S3(a) of
the Supplemental Material [S0] shows the slab configuration. (d) Electron density differences of the Al fcc (100) surface between OFDFT and
KSDFT calculations. We perform KSDFT calculations to obtain the equilibrium configuration used in the above calculations. The HC, WT,
and TKKj], KEDFs are adopted in OFDFT. The MAREs, as defined in Eq. (12), of density differences shown in the figures are calculated from
the whole electron density in the cell for bulk fcc Al and Al fce (100) surface.
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are displayed in Fig. 5(b). We observe that the WGC, WT,
and TKK'; KEDFs are capable of reproducing the ground-
state charge density obtained by KSDFT, with MAREs on
the same order of 0.001 (0.0018, 0.0045, 0.0040 in turn). On
the other hand, when dealing with the Al fcc (100) surface,
we found the small electron density in vacuum may result
in a large contribution to the MARE as defined in Eq. (12).
Therefore, we did not calculate the contributions to MARE
for a selected length of vacuum (5.2 A) in the Al slab. The
resulting MARESs of the Al fcc (100) surface are 0.17, 0.35,
and 0.25 for the WGC, WT, and TKK}} KEDFs, respectively.
We observe that the MAREs of the fcc (100) surface are
still two orders of magnitude larger than those of the Al fcc
bulk system. This phenomenon can be rationalized by the fact
that the KEDFs are based on the Lindhard response function,
which is suitable for describing Al bulk systems with electron
density distribution similar to the uniform electron gas. How-
ever, when applied to Al surfaces, the electron density changes
rapidly around the surfaces and substantially deviates from
the uniform electron gas, resulting in a large MARE. Still, we
find that the TKK7} KEDF achieves a similar accuracy when
compared to the WGC and WT KEDFs, demonstrating that
the TKK'y KEDF is able to accurately describe the electronic
structure of metallic systems.

In order to assess the transferability of TKKy KEDF, we
conduct bulk property calculations for various solid phases
of Li and Mg. The results are compared with those obtained
from WGC, WT KEDFs, and KSDFT, which are presented
in Table III. Since Li and Mg are simple metals, in which
the electrons are nearly free electron gas, Lindhard-based
KEDFs, such as WGC and WT KEDFs, are suitable to deal
with them. As expected, the MAREs of energies obtained
by WGC and WT KEDFs are of the order of 0.01 for both
Li and Mg systems. In particular, the results obtained by the
TKK'y KEDF are close to those obtained by KSDFT, and the
MARESs are also comparable to those obtained by WGC and
WT KEDFs. Notably, the TKK{§ KEDF is able to reproduce
the slight energy difference between different configurations,
such as the energy difference of 0.007 eV /atom between the
fcc and hcp Mg structures, which is close to the value of
0.011 eV/atom obtained by KSDFT. Overall, these findings
highlight the excellent transferability of TKKY; KEDF for
simple metals. Additionally, TKK'; KEDF also shows good
transferability for Mg-Al alloys, and one can refer to the
Supplemental Material [50].

It would be very interesting to study transition metals using
orbital-free DFT. However, only a few works have tried to
tackle transition metals and two challenges still remain. First,
the framework of OFDFT can hardly handle the localized d
electrons and new methods are needed. For example, the elec-
tron density decomposition method was proposed to examine
Cu and Ag [56]. In addition, angular-momentum-dependent
OFDFT was proposed to investigate Ti [57,58]. Second, well-
tested local pseudopotentials for transition metals are still
needed.

B. Silicon

Table V lists the bulk properties of CD and S-tin crystal
structures of Si as obtained by KSDFT and OFDFT with

various KEDFs, where the CD Si is a typical semiconductor.
For the bulk modulus of CD Si, the KS-BLPS calcula-
tions yield a value of around 99 GPa, which is in excellent
agreement with the experimental data of 98.0 GPa. Mean-
while, the KS-BLPS predicts the equilibrium volume to be
19.774 A3 /atom, which is 1.19% smaller than the experimen-
tal value of 20.013 A3 /atom. Based on the data, we conclude
that the KS-BLPS results are reasonable.

For the OFDFT calculations, since the WT KEDF is de-
signed for free-electron-like systems, it is not surprising that
the WT KEDF fails to calculate the bulk properties of the CD
Si structure. Therefore, no WT results are included in Table V.
In this regard, we utilize the more sophisticated WGC KEDF,
which yields a substantially smaller bulk modulus of 54 GPa
as compared to the experimental value of 98.0 GPa. Worse
still, the equilibrium volume from WGC is 21.504 A3 /atom,
which is 7.45% larger than the experimental value. In addi-
tion, we list the results of the HC KEDF taken from Ref. [26].
The HC is designed for semiconductors and performs signif-
icantly better than the WGC KEDF for the tested properties
of CD Si. Unfortunately, the HC KEDF yields a worse bulk
modulus and equilibrium volume for the B-tin structure when
compared to WGC.

Notably, the energy difference between the CD and S-tin
Si obtained from the HC KEDF (0.170 eV /atom) is close to
the one from KS-BLPS (0.168 eV/atom), while the WGC
KEDF yields a much smaller one of 0.016 eV/atom. By
utilizing the TKK*’s with the increase of the cutoff from 8
to 16, we observe that the energy difference between CD and
B-tin Si changes from 0.035 to 0.165 eV /atom, approaching
the results of KSDFT (0.168 eV /atom). Although the TKKj,
KEDF yields a worse bulk modulus of CD Si (78 GPa) than
the HC KEDF (97 GPa), it performs better (110 GPa) than
the HC (83 GPa) for the S-tin Si. In addition, the equilibrium
volume of the B-tin Si structure is 14.482 and 15.662 A3 /atom
from the TKK{, KEDF and the HC KEDF, respectively; the
former one is substantially closer to the 14.621 A3/atom as
obtained from KS-BLPS calculations in this work. Regard-
ing the KEDFs proposed in this work, we observe that all
three TKK] ’s perform better than the WGC KEDF, which
is evidenced by the substantially smaller MARE in all three
properties, including the bulk modulus, the equilibrium vol-
ume, and the total energy. This demonstrates that the TKKj,
KEDF exhibits a better balance to describe the two phases of
Si than the HC KEDF, and the long-range part of TKK plays
a crucial role in determining the accuracy of nonlocal KEDF.

The surface energies and vacancy formation energies of
Si are shown in Table IV. Since the Si systems own more
localized electrons than the Al systems, and the correspond-
ing surfaces involve the presence of a vacuum, it is not
surprising that the Lindhard-based KEDFs cannot yield rea-
sonable results for surfaces or vacancies of Si, as previous
works have demonstrated this. For example, we encounter
convergence issues with the WGC KEDF when dealing with
the surface and vacancy of CD Si. Worse still, we find
that the WT and the TKK§{ KEDFs predict negative sur-
face energies and vacancy formation energies, which are
qualitatively incorrect values as compared to the KSDFT
data. Interestingly, the TKKj, KEDF yields close values as
compared to the KS-BLPS method. In detail, the TKKj,
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TABLE V. Bulk properties of the cubic diamond (CD) and S-tin crystal structures of Si, i.e., the bulk modulus (B in GPa), the equilibrium
volume (V, in A3/atom), and the energy of a given system (E, in eV/atom), as well as available experimental data. The MARE, as defined
in Eq. (12), is given by comparing OFDFT to KS-BLPS results. We set the Ej to be the total energy for the CD structure, while the value for
the B-tin is set to the energy difference with respect to the total energy of CD Si. Both the KSDFT and OFDFT calculations are performed
with the use of bulk-derived pseudopotentials (BLPS). For OFDFT calculations, we use the WGC and HC KEDFs, as well as the TKKs for

semiconductors with different cutoffs A. (labeled as TKK;C).

CD B-tin MARE
B (GPa) KS-BLPS (this work) 99 123
KS-BLPS (Ref. [45]) 98 122
HC (Ref. [26]) 97 83 17.18%
WGC 54 140 29.40%
TKKS, 78 110 15.86%
TKKS, 74 87 27.25%
TKKS 93 132 6.45%
Vo (A%) Expt. (Ref. [59]) 98.0
KS-BLPS (this work) 19.774 14.621
KS-BLPS (Ref. [45]) 19.777 14.663
HC (Ref. [26]) 19.962 15.662 4.04%
WGC 21.504 14.406 5.11%
TKKS, 19.470 14.482 1.24%
TKK:, 19.540 14.860 1.41%
TKKS 18.974 14.133 3.69%
Expt. (Ref. [59]) 20.013
E, (eV) KS-BLPS (this work) —109.629 0.168
KS-BLPS (Ref. [45]) —109.629 0.166
HC (Ref. [26]) —109.624 0.170 0.01%
WGC —109.332 0.016 0.2%
TKKS, —109.583 0.165 0.04%
TKK:, —109.562 0.100 0.03%
TKKS —109.545 0.035 0.06%

(KS-BLPS) predicts the CD Si (100) surface energy and
the vacancy formation energy (in a 2 x 2 x 2 cell) in the
CD Si phase as 2228 (2062) mJ /m2 and 3.583 (3.240) eV,
respectively. The TKK}, KEDF performs substantially better
than the HC KEDF, the latter of which predicts the vacancy
formation energy as 1.445 eV. In addition, TKKj3, also yields
a reasonable vacancy formation energy of 3.143 eV, but a
lower surface energy of 1307 mJ/m?. Therefore, we conclude
that the TKKj, performs better than the WT, WGC, and HC
KEDFs for the surface energy and vacancy formation energy
of Si. We plot the convergence trend of vacancy energies with
respect to system size in Fig. S2 of the Supplemental Material
[50]. We notice that in systems containing over 100 atoms,
the results obtained through the TKKj, KEDF are almost
indistinguishable from those obtained through KSDFT. The
results again demonstrate the excellent performance of the
TKKjS¢ KEDF.

We further compare the electron density differences of bulk
CD Si and its (100) surface as obtained from OFDFT and
KSDFT calculations, which are displayed in Fig. 6. Note that
we choose the (010) crystal surface of a bulk Si configuration
to represent the electron density differences of bulk Si. The
representative electron density profiles of the bulk Si and the
(110) surface of Si are shown in Figs. 6(a) and 6(c), respec-
tively. As shown in Fig. 6(b), the MARE:s of electron density
in bulk CD Si as obtained from the HC, WT, and TKKj,

KEDFs are 0.07, 0.12, and 0.10, respectively. The results are
two orders of magnitude larger than those in bulk fcc Al,
indicating that the electronic structure of semiconductors is
more challenging to describe by KEDFs than the metallic
ones. Figure 6(d) illustrates the electron density differences
on the longitudinal section of the Si CD (100) surface, as well
as the MARESs. As explained before, small electron density
in vacuum may result in a large contribution to the MARE
defined in Eq. (12), so we did not calculate the contributions
to MARE for a selected length of vacuum (6.0 A) in the Si
slab. As a result, we find the MAREs obtained by the HC, WT,
and TKKS, KEDFs are 0.18, 0.14, and 0.16, respectively. We
notice that the MARESs of a surface system and bulk system
are of the same order of magnitude. The MAREs of the Si
CD (100) surface are slightly larger than those of bulk CD
Si. This can be explained by the fact that most KEDFs are
not suitable for describing the covalent bonds of Si formed
by electrons. From Fig. 6(d), we also observe that the WT
and TKKj, KEDFs share a similar pattern of electron density
differences. In the future, one can test the revHC KEDF [31]
and see its performance for the above tests. Although the WT
KEDF gives a better electron density, it predicts qualitatively
wrong surface energy and vacancy formation energies, as
listed in Table IV. Among the three KEDFs, both HC and
TKKS¢ KEDFs are capable of capturing both the energies and
the electron density with similar accuracy to KSDFT.
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FIG. 6. (a) Electron density profile of the (010) crystal surface inside bulk CD Si as obtained from KSDFT. (b) Electron density differences
of the CD Si (010) crystal surface between OFDFT and KSDFT calculations. (c) Electron density on the longitudinal section of the Si CD (100)
surface, i.e., the CD (110) surface, as obtained from KSDFT calculation. The slab configuration is shown in Fig. S3(b) of the Supplemental
Material [50]. (d) Electron density differences of the Si CD (100) surface between OFDFT and KSDFT calculations. All of the calculations
are performed in the equilibrium configuration obtained by KSDFT. The HC, WT, and TKK{, KEDFs are used in OFDFT. The MAREs, as
defined in Eq. (12), of density differences are shown in the figures. The MARE:s are calculated based on the whole electron density in the cell

for a bulk CD Si and Si CD (100) surface.

V. CONCLUSION

In this work, we constructed two groups of TKKs with
different cutoffs for metals and semiconductor systems, as a
first step to find an optimal KEDF for metals and semiconduc-
tors. We further compared the performances of these kernels
to validate how the real-space cutoff affects the properties
of Al and Si systems. We systematically investigated several
properties of the bulk and surface structures of Al and Si.

In general, the accuracy of TKKs increases with a larger
cutoff. However, we found the TKK KEDFs with a short-
range kinetic energy kernel (A, = 8, 12) yielded unreasonable
stacking fault energies, surface energies, and vacancy forma-
tion energies for Al systems. Interestingly, we found that when
the real-space cutoff of the TKK was larger than the distance
between an atom and its next-nearest-neighbor atoms, the
TKK was able to accurately characterize these properties and
performed even better than the WT KEDF.

In conclusion, consideration of the interactions between
an atom and its next-nearest-neighbor atoms is crucial for a
nonlocal KEDF to distinguish the energy orderings among
bulk structures, such as the fcc and hcp solid phases of Al,
and CD and B-tin solid phases of Si. Furthermore, it helps to
accurately predict the surface energies and point vacancies of
Al and Si systems.

We found that the TKK'y and TKKj, kernels presented
in this work gave reasonable results in all of the above tests.
In addition, these kernels even performed better than the
WT, WGC, and HC KEDFs in some aspects. For example,
TKKYy yielded more accurate stacking fault energies than
the WGC and WT KEDFs for the fcc structure of Al. The
kernel performed better than the WT KEDF when dealing
with the surface and vacancy formation energies in fcc Al.
On the other hand, the TKKj, kernel yielded better vacancy
formation energies than the HC KEDF for the CD Si structure.
It exhibited reasonable accuracy in predicting the electron
densities for bulk Al and Si systems, as well as the Al fcc
(100) and Si CD (100) surfaces.

Despite the above advantages of the TKKs proposed here,
we also encountered issues in the following three aspects.
First, TKK™’s, which are designed for metals, are not suitable
for semiconductor systems such as Si. On the other hand,
TKK?®s (designed for semiconductors) are not accurate for
metallic systems such as Al. This may be attributed to the
different asymptotic behavior of KEDFs for semiconductors
and metals [26], and we consider that machine learning is
a potential tool to achieve a global KEDF for both metals
and semiconductors. Second, the discrepancies between the
electron densities obtained by OFDFT and KSDFT for semi-
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conductors are considerably larger when compared to those
observed in metals. In particular, for the CD phase of silicon,
it is still challenging to pose a truncated KEDF kernel that
shares the same accuracy as KSDFT. In the future, it would be
interesting to test more solid phases of Si. Third, as expected,
these differences tend to be substantially larger in surface
systems than in bulk systems. However, we note that all of
the WGC, HC, WT, and TKK KEDFs suffer from the above
issues.

The force calculations with the usage of the TKK ker-
nels have been implemented, and we found the current TKK
KEDFs can be used to relax the bulk structure or even per-
form molecular dynamics simulations. However, the surface
structures relaxed by the TKK KEDFs still deviate from the
KSDFT results. One of the reasons is that the forces were not
included in the residual function, and we expect the geome-
try relaxation and molecular dynamics functions be tested in
future works.

To sum up, our investigation into the feasibility of em-
ploying nonlocal KEDFs in characterizing simple metal and
Si systems enhances our comprehension of the forms and
precision of KEDFs. Additionally, it sheds light on de-
signing novel KEDFs. For future studies of other systems,
such as molecules, insulators, and transition metals, etc,
two challenges should be overcome. First, the generation
of transferable local pseudopotentials should be addressed
[45,60-62]. Second, more general KEDFs that can be applied
to a variety of systems are needed.
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