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Effect of dispersive optical phonons on the properties of the bond Su-Schrieffer-Heeger polaron
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We use a newly developed quantum Monte Carlo method to investigate the impact of finite dispersion of
the optical phonon mode on the properties of the bond Su-Schrieffer-Heeger polaron in two dimensions. We
compare the properties of the bond polaron, such as effective mass, ground state energy, and Z factor, with and
without positive phonon bandwidth. Our findings reveal that when we exclude phonon dispersion, at the same
electron-phonon coupling strength, the effective mass increases as the phonon frequency decreases, indicating a
heavier polaron in the deep adiabatic regime. However, in the dispersive case, we observe that the effective mass
increases as the phonon bandwidth increases. Moreover, we notice a crossover from a light polaron state to a
heavy polaron state in the deep adiabatic regime for both the dispersionless and dispersive cases.
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I. INTRODUCTION

The polaron problem continues to draw significant atten-
tion in condensed matter physics. It studies the behavior of a
particle when coupled to its environment. Depending on the
characteristics of the particle, the environment, and their cou-
pling, various types of polarons can arise, including polarons
with electron-phonon interaction [1–7], spin polarons [8–10],
Fermi polarons [11–14], and protons in neutron-rich matter
[15]. Of particular significance is the polaron with electron-
phonon interaction, as it plays a crucial role in understanding
the mechanism of high-temperature superconductivity in the
dilute-density regime. In the low-density limit, the electron-
phonon interaction can bind two polarons together to form
a single bipolaron, forming of a Bose-Einstein-condensate-
like superconductor. However, for such a superconducting
state to manifest, it is essential to have a bipolaron with a
light effective mass and a robust phonon-mediated pairing
potential.

Previous studies have demonstrated that in the Holstein
model, where the electron-phonon coupling influences the
electron density, both the effective mass of the polaron and the
effective mass of the bipolaron exhibit an exponential increase
under strong electron-phonon coupling strengths [16–19].
However, when the electron-phonon coupling affects the elec-
tron hopping, as seen in the bond Su-Schrieffer-Heeger (SSH)
polaron, the situation takes a different turn [20,21]. Recently,
there has been a notable surge in interest in studying bond
SSH polarons and bipolarons, particularly when phonon dis-
persion is absent. In such cases, the effective mass is not
exponentially large even at strong coupling regimes, resulting
in the formation of light polarons [17,22,23]. Remarkably,
when two polarons form a bound state, the resulting bipolaron
maintains a sufficiently low effective mass [17], and its size
remains small, indicating the potential for high-temperature
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superconductivity [24,25]. It is important to note that in all of
the mentioned cases, only phonons with the Einstein mode
are considered. Extending the bond SSH model to include
dispersion among localized (Einstein) phonons opens up new
possibilities for investigation. However, such an extension
presents challenges due to the scarcity of numerical tech-
niques suitable for analyzing polaron and bipolaron models
with dispersive phonons, even in the well-known Holstein
model. As a result, there have been limited attempts in the lit-
erature to study such systems with dispersive phonons [26,27].

In the dilute density limit, in the Holstein model, the
phonon degrees of freedom dress the electrons, giving rise
to polaron and bipolaron formation. Previous studies [28,29]
have investigated the influence of the dispersion among opti-
cal phonons on the polaron’s effective mass in one dimension.
However, Ref. [28] is limited to one dimension which is not
physical, and the adiabatic regime ω0/t < 1 has not been
explored due to this being computationally hard. At higher
densities, the phonons mediate collective superconducting and
charge-density-wave phases. A recent study employing the
quantum Monte Carlo technique has demonstrated the sig-
nificant influence of phonon dispersion on the formation of
charge-density-wave order in a system with finite electron
density [30]. However, the specific impact of finite dispersion
of the optical phonon mode on the properties of the bond SSH
model, particularly with regard to the effective mass, remains
unexplored.

In this paper, we utilize a newly developed quantum Monte
Carlo method to explore the influence of finite dispersion in
the optical phonon mode on the properties of the bond SSH
polaron in two dimensions. Our methodology combines the
path-integral formulation for the particle sector with real-
space diagrammatic techniques for the phonon sector [31].
Due to the “sign” problem associated with negative phonon
bandwidth in this approach, we focus solely on the positive
phonon bandwidth. Our study quantitatively investigates the
properties of the bond polaron with dispersive phonons in
two dimensions, encompassing phonon bandwidths W smaller
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than, equal to, and larger than the phonon frequency ω0. Ad-
ditionally, we explore properties in the adiabatic regime down
to ω0/t = 0.3. The rest of the paper is organized as follows. In
Sec. II, we present the Hamiltonian of the bond SSH polaron.
In Sec. III, we introduce how to extract the properties from
the Green’s function. In Sec. IV, we discuss the results, and
Sec. V concludes the paper.

II. HAMILTONIAN

We consider a bond SSH electron-phonon coupling on
a simple two-dimensional square lattice. In this model, the
electronic hopping between two sites is modulated by a single
oscillator centered on the bond connecting the two sites. The
model is described by the Hamiltonian [32–35]

H1 = − t
∑

〈i, j〉,σ
(c†

j,σ ci,σ + H.c.) + ω0

∑
〈i, j〉

(
b†

i, jbi, j + 1

2

)

+ g
∑

〈i, j〉,σ
(c†

j,σ ci,σ + H.c.)(b†
i, j + bi, j ), (1)

where 〈i, j〉 denotes the nearest-neighbor sites. bi is the optical
phonon annihilation operator on site i, ci,σ is the annihilation
operator for the electron on site i with spin σ ∈ {↑,↓}, t is
the electron hopping amplitude between the nearest-neighbor
sites (we use it as the unit of energy), and g is the strength
of the electron-phonon coupling of the hopping-displacement
type. ω0 is the local phonon frequency.

We generalize Eq. (1) to H = H1 + H2, to include a cou-
pling strength tph between nearest-neighbor bonds for the
phonons, with

H2 = −tph

∑
〈〈i, j〉,〈i′, j′〉〉

(b†
i, jbi′, j′ + H.c.). (2)

Here, 〈〈i, j〉, 〈i′, j′〉〉 denotes nearest-neighbor bonds. tph is
the hopping amplitude for phonons between nearest-neighbor
bonds, and it can be positive or negative. The sign of the
phonon propagator changes when the phonon hopping am-
plitude tph < 0, causing the sign problem. So here, we only
consider tph > 0. The inclusion of the nearest-neighbor hop-
ping of the phonons tph > 0 leads to a finite phonon bandwidth
W = 8tph. When considering the dispersive case, some of the
phonons are softer, and the phonon frequency is lowered to
ωL = ω0 − W/2.

The properties of the bond SSH polaron are controlled by
two dimensionless parameters: (i) the effective coupling

λ = g2

2tω
, (3)

where ω is defined as ω = ω0 (with ω0 being the local phonon
frequency) for the dispersionless case and ω = ωL for the
dispersive case; and (ii) the adiabaticity ratio ω0/t . In this
paper, we work in the adiabatic regime ω0/t � 1.0, where the
phonon degree of freedom is considered to be comparable to
or slower than the electron motion.

III. GREEN’S FUNCTION

In the following, we study the effect of the positive
phonon bandwidth W at a certain phonon frequency ω0 on the

properties of the bond polaron: the ground state energy, the
effective mass, and the Z factor. The polaron energy E (k) and
Z (k) factor at momentum k can be extracted from the Green’s
function dependence on imaginary time τ . In the asymptotic
limit τ → ∞, this dependence is governed by the ground state
in the corresponding momentum sector, as follows from the
spectral Lehmann representation. For the stable (nondecay-
ing) quasiparticle state, we have

G(k, τ → ∞) → Z (k)e−[E (k)−μ]τ . (4)

The Z factor Z (k) = |〈k|k̃〉|2 is given by the overlap between
the polaron eigenstate |k̃〉 and the free-electron state |k〉 =
c†

k|0〉. The effective polaron mass is obtained from m∗/m0 =
2t/ ∂2E (k)

∂k2 , where the bare electron mass is m0 = 1/2a2t , with
the lattice spacing a = 1. The chemical potential μ here is
added to shift energies and control the rate of the exponential
decays. It is used for computational convenience.

The newly developed quantum Monte Carlo method based
on the path-integral formulation of the particle sector in com-
bination with the real-space diagrammatic approach of the
phonon sector is used here to study the effects of a finite
dispersion of the optical phonon mode on the properties of the
bond polaron [31], especially the effective mass. We explore
a large adiabatic regime with ω0/t as low as 0.3 and phonon
bandwidth as large as W = 1.5ω0.

IV. RESULTS AND DISCUSSION

In this section, a comprehensive study of the bond po-
laron’s properties as a function of electron-phonon coupling
g/t for different phonon frequencies ω0/t in the deep adiabatic
regime and different phonon bandwidths W/t (smaller than,
equal to, and larger than the phonon frequency) is provided.
Although the properties of the bond polaron at ω0/t = 0.5
were investigated in Ref. [22] using the diagrammatic Monte
Carlo method in the momentum space, we also put the results
here for self-consistency and to set the stage for the discussion
of the results with positive phonon bandwidth. We verify the
correctness of our results by recalculating the phonon proper-
ties at ω0/t = 0.5 using the newly developed quantum Monte
Carlo method [31].

Dispersionless case. Figure 1 illustrates the main find-
ings of our study for the dispersionless bond polaron in the
deep adiabatic regime. We present the ground state energy
EGS [Fig. 1(a)], the effective mass m∗/m0 [Fig. 1(b)], and
the Z factor [Fig. 1(c)] as functions of the electron-phonon
coupling g/t , while considering different phonon frequen-
cies, for ω0/t = 1.0, 0.75, 0.5, 0.375, 0.3, 0.25, and 0.2. The
EGS(g/t ) curves for all phonon frequencies demonstrate a
smooth evolution of the ground state energy with increasing
g/t . Remarkably, the ground state energy decreases rapidly
as the system enters the deep adiabatic regime. Regarding the
effective mass, we observe a consistent increase as the phonon
frequency decreases, for a fixed electron-phonon coupling g/t .
Specifically, at ω0/t = 1.0, the effective mass exhibits a linear
growth at weak and medium coupling strengths (g/t ∼ 2.0)
before experiencing a change in slope. This trend becomes
more pronounced with decreasing ω0/t . When ω0/t = 0.2,
the effective mass shows a linear increase until the cou-
pling strength reaches around g/t ≈ 0.4, beyond which it
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FIG. 1. The properties of the bond polaron: ground state energy
EGS (a), effective mass m∗/m0 (b), and Z factor (c) as a function of
electron-phonon coupling g/t for dispersionless phonon frequency
ω0/t = 0.2 (black circles), 0.25 (red upward-pointing triangles), 0.3
(blue downward-pointing triangles), 0.375 (green rectangles), 0.5
(orange diamonds), 0.75 (cyan squares), and 1.0 (pink stars). If not
visible, error bars are within the symbol size.

grows exponentially. This behavior signifies the existence of
a crossover, wherein the polaron undergoes a change from
a light state to a heavy state in the deep adiabatic regime,
as discussed in detail later. Furthermore, the quasiparticle
residue Z exhibits a smooth decrease as a function of g/t ,
with a rapid drop observed for smaller ω0/t . Consequently,
lowering the phonon frequency ω0/t leads to a significantly
heavier polaron at lower coupling strengths g/t .

Dispersive case. Figure 2 shows the ground state energy
EGS [Fig. 2(a)], the effective mass [Fig. 2(b)], and the Z factor
[Fig. 2(c)] for phonon bandwidth W/t = 0.5, 1.0, and 1.5
(representing bandwidths smaller than, equal to, and larger
than the phonon frequency) in the adiabatic regime ω0/t =
1.0. In comparison to the dispersionless case with a phonon
frequency of ω0/t = 1.0, the ground state energy EGS de-
creases smoothly as the coupling strength increases, for all
three bandwidths. Additionally, at the same electron-phonon
coupling strength, the ground state energy is lower for a larger
phonon bandwidth.

FIG. 2. The properties of the bond polaron with dispersive
phonons: ground state energy EGS (a), effective mass m∗/m0 (b),
and Z factor (c) as a function of the coupling strength g/t for
dispersionless phonon frequency ω0/t = 1.0 (black circles) and
the dispersive case with ω0/t = 1.0 and phonon bandwidth W/t =
0.5 (red upward-pointing triangles), W/t = 1.0 (blue downward-
pointing triangles), and W/t = 1.5 (green rectangles). If not visible,
error bars are within the symbol size.

The effective mass m∗/m0 increases as a function of cou-
pling strength g/t and changes its slope for larger coupling
strength for all three phonon bandwidths W/t . However, due
to the phonon dispersion, the phonon frequency is lowered as
ωL = ω0 − W/2. For instance, when comparing the phonon
bandwidth W/t = 1.5, the phonon frequency is lowered to
ωL/t = 0.25. At a coupling strength of around g/t ∼ 0.75,
the effective mass m∗/m0 is approximately 2.6. In contrast,
for the dispersionless case ω0/t = 0.25 [red upward-pointing
triangles in Fig. 1(b)], the effective mass increases exponen-
tially around g/t ∼ 0.6 and is approximately 26.0 for g/t ∼
0.75. Compared with the dispersionless case, the effective
mass with dispersive phonons is lighter. When comparing
with the lower frequency ω0 = ωL, with the positive phonon
dispersion we tend to have a light polaron at strong cou-
pling strength. The effective mass increases linearly at a weak
coupling strength and becomes exponential at a strong cou-
pling strength for a large phonon bandwidth W/t = 1.5. This
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FIG. 3. The properties of the bond polaron with dispersive
phonons: ground state energy EGS (a), effective mass m∗/m0 (b),
and Z factor (c) as a function of the coupling strength g/t for
dispersionless phonon frequency ω0/t = 0.5 (black circles) and
the dispersive case with ω0/t = 0.5 and phonon bandwidth W/t =
0.25 (red upward-pointing triangles), W/t = 0.5 (blue downward-
pointing triangles), and W/t = 0.75 (green rectangles). If not visible,
error bars are within the symbol size.

indicates that there exists a crossover from a light polaron state
to a heavy polaron state (see the discussion later).

The quasiparticle residue decreases smoothly as a function
of g/t for all three bandwidths. At the same electron-phonon
coupling g/t , the Z factor drops rapidly to zero as the band-
width W/t increases.

The trend of the polaron properties is the same as the
system goes into the deep adiabatic regime ω0/t = 0.5 for
phonon bandwidth W/t = 0.25, 0.5, and 0.75 (shown in
Fig. 3) and ω/t = 0.3 for phonon bandwidth W/t = 0.125,
0.25, and 0.5 (shown in Fig. 4). However, the change in
the effective mass becomes more abrupt. For instance, at
ω0/t = 0.5 with bandwidth W/t = 0.5, the phonon frequency
is lowered to ωL/t = 0.25, and the effective mass starts to
increase exponentially around g/t = 0.5. When compared
with the dispersionless case with ω0/t = 0.25 [red upward-
pointing triangles in Fig. 1(b)], where the exponential growth
of the effective mass starts around g/t ∼ 0.6 and reaches

FIG. 4. The properties of the bond polaron with dispersive
phonons: ground state energy EGS (a), effective mass m∗/m0 (b), and
Z factor (c) as a function of the coupling strength g/t for dispersion-
less phonon frequency ω0/t = 0.3 (black circles) and the dispersive
case with ω0/t = 0.3 and phonon bandwidth W/t = 0.125 (red
upward-pointing triangles), W/t = 0.25 (blue downward-pointing
triangles), and W/t = 0.5 (green rectangles). If not visible, error bars
are within the symbol size.

m∗/m0 ∼ 26.0 at g/t ∼ 0.75, the effective mass is around 4.6
at g/t ∼ 0.75 in the dispersion case. Thus the polaron in the
dispersive case is much lighter.

Similarly, for ω0/t = 0.3 with bandwidth W/t = 0.25,
the phonon frequency is lowered to ωL/t = 0.05. The ef-
fective mass starts to increase exponentially around g/t ∼
0.22. Although we cannot obtain the exact value of the ef-
fective mass for ω0/t = 0.05 in the dispersionless case due
to numerical challenges, it should be much heavier com-
pared with the dispersive case, based on the trends shown in
Fig. 1(b). Furthermore, at the same phonon frequency ω0/t
and electron-phonon coupling strength g/t , the effective mass
increases more rapidly as the bandwidth increases. This obser-
vation can be explained by the fact that in the dispersive case,
phonons are more mobile, leading to a more extended phonon
cloud. Consequently, this extended phonon cloud effectively
increases the effective mass of the electron by creating more
obstacles for it to overcome as it moves through the lattice.

Overall, the results from ω0/t = 1.0, 0.5, and 0.3 in the
presence of dispersive phonons suggest the formation of
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FIG. 5. (a) The effective mass m∗/m0 as a function of the effec-
tive coupling λ = g2/2ω0t at ω0/t = 0.25. (b) The effective mass as
a function of the effective coupling λ = g2/2ωLt at ω0/t = 0.3 and
phonon bandwidth W/t = 0.25. The black dotted line is a linear fit,
and the red dotted line is an exponential fit for the effective mass as
a function of effective coupling λ. There exists a crossover from a
light bond polaron to an exponentially increasing heavy polaron as
the electron-phonon coupling g/t increases.

relatively lighter polarons compared with the dispersionless
case with the phonon frequency ω0 = ωL.

As previously mentioned, a crossover from a light polaron
state to a heavy polaron state in the deep adiabatic regime
occurs for both the dispersionless and dispersive cases. We
further investigate the nature of this crossover in Fig. 5,
where we study the effective mass as a function of the effec-
tive coupling λ for the dispersionless case with ω0/t = 0.25
[Fig. 5(a)] and the dispersive case with ω0/t = 0.3 [Fig. 5(b)]
and phonon bandwidth W/t = 0.25. In the dispersive case, the
phonon frequency is lowered to ωL/t = 0.175. In Fig. 5, the
black dotted line represents a linear fit, and the red dotted line
represents an exponential fit for the effective mass as a func-
tion of the effective coupling λ defined in Eq. (3). We observe
that there exists a crossover from a light polaron state to a
heavy polaron state with an exponential increasing of effective
mass at λ ∼ 0.75 for the dispersionless case with ω0/t = 0.25
and at λ ∼ 0.62 for the dispersive case with ωL/t = 0.175.
The crossover is characterized by an abrupt change in slope
of the effective mass, showing a significant difference in the
polaron’s nature at the critical effective coupling in the deep
adiabatic regime in both the dispersionless and dispersive
cases.

V. CONCLUSION

We employed a recently developed quantum Monte Carlo
method, which combines the path-integral formulation of the
particle sector with the real-space diagrammatic approach of
the phonon sector, to investigate the effects of finite dispersion
in the optical phonon mode on the properties of the bond po-
laron. Our analysis focused on the ground state energy, effec-
tive mass, and Z factor of the bond polaron, considering differ-
ent phonon frequencies as low as ω0/t = 0.3, corresponding
to the deeply adiabatic regime, as well as the impact of posi-
tive phonon bandwidth on the bond polaron’s properties.

Our findings revealed that, in the absence of dispersion, the
effective mass increases as the phonon frequency decreases
while keeping the electron-phonon coupling constant. In com-
parison, the dispersive case exhibited lighter effective masses,
particularly at strong electron-phonon coupling strengths.

Moreover, our investigations demonstrated a crossover
from a linear increase in effective mass to an exponential
increase in effective mass in the deeply adiabatic regime,
for both the dispersionless and dispersive cases. Notably,
the dispersive case showed a lighter effective mass at strong
coupling, suggesting the possibility of achieving a compact
and light bipolaron in the strong coupling limit, potentially
leading to an increase in the critical temperature Tc for the
bond model. Achieving the higher Tc in the bond SSH model
requires that the relative materials be in the same parameter
regime as described in Refs. [24,25], which means (i) the
interference of tunneling pathways should be controlled by
light atoms, for example, hydrogen with large ω0, (ii) the
tunneling amplitude should be relatively small, not signifi-
cantly larger than the bottom of the phonon dispersion, and
(iii) there should be a large dielectric constant to reduce the
destructive effect of long-range Coulomb interaction. With a
possible compact and light bipolaron at the strong coupling
limit with dispersive phonons, there will be more possibilities
in the search for new materials with high superconducting
temperatures.
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[27] J. Bonča and S. A. Trugman, Phys. Rev. B 106, 174303 (2022).
[28] D. J. J. Marchand and M. Berciu, Phys. Rev. B 88, 060301(R)

(2013).
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