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Nonlinear current response of two-dimensional systems under in-plane magnetic field
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We theoretically investigate the nonlinear response current of a two-dimensional system under an in-plane
magnetic field. Based on the extended semiclassical theory, we develop a unified theory including both longi-
tudinal and transverse currents and classify contributions according to their scaling with the relaxation time.
Besides time-reversal-even contributions, we reveal a previously unknown time-reversal-odd contribution to
the Hall current, which occurs in magnetic systems, exhibits band geometric origin, and is linear in relaxation
time. We show that the different contributions exhibit different symmetry characters, especially in their angular
dependence on the field orientation, which can be used to distinguish them in experiment. The theory is explicitly
demonstrated in the study of the Rashba model. Our work presents a deepened understanding of nonlinear
planar transport, proposes approaches to distinguish different contributions, and sheds light on possible routes to
enhance the effect in practice.
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I. INTRODUCTION

Electronic transport properties are a central topic in con-
densed matter physics. They are widely used as basic tools to
characterize specific materials, to distinguish different states
of matter, and to extract information about underlying micro-
scopic features. They also form the basis for most electronic
device applications. Recent theoretical and experimental
works have extended the study to various nonlinear transport
effects [1,2]. Importantly, it was shown that these nonlinear
effects may manifest intriguing band structure quantities not
accessible in linear responses, such as the Berry curvature
dipole [3–5], Berry connection polarizability (BCP) [6–8],
anomalous spin/orbital polarizability [9,10], etc. Because of
this and their potential application in nonlinear devices, such
effects have been attracting great interest [11–19].

One of the nonlinear transport effects that has been ac-
tively explored is the nonlinear electric current response in the
presence of an in-plane magnetic field, namely, the response
current scales as j ∼ E2B, and the B field lies in the two-
dimensional (2D) plane (the transport plane) of the response
current and the driving E field. The response current has a
longitudinal component (i.e., component along the driving E
field), which is connected to effects known as bilinear mag-
netoresistance or unidirectional magnetoresistance [20–26]. It
also has a transverse component, which has been probed in
2D systems such as the surface of a topological insulator and
some 2D materials [27,28], and in the topological semimetal
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CoSi [29]. Several previous theories proposed extrinsic mech-
anisms for this effect, with the resulting current ∼τ 2 [27,30–
34], where τ is the relaxation time. In a recent work [35],
we showed that there actually exists an intrinsic contribution
to this nonlinear current which gives a dissipationless (Hall)
response, i.e., the resulting current is independent of scattering
(∼τ 0) and satisfies jaEa = 0 (a labels Cartesian components
and the Einstein summation convention is assumed in this
paper).

The current work serves three purposes. First, we develop
a unified theory for this nonlinear effect in 2D systems,
which captures all previously proposed mechanisms. Our the-
ory is based on the extended semiclassical theory framework
[6,36,37] and at the level of relaxation-time approximation.
The obtained formulas have the advantage of being readily
applicable to model calculations or combined with first-
principles approaches. Second, we predict that in 2D systems
with broken time-reversal symmetry, there is a previously un-
known contribution which scales linearly in τ . Interestingly,
we find that this contribution encodes information about the
anomalous spin polarizability (ASP), which is an important
geometric quantity of band structure for not only nonlinear
transport but also magnetoelectric response and spin-orbit
torque. Third, we demonstrate the application of our theory
to the Rashba model, which highlights the different behaviors
of different contributions and offers guidance for separating
them in experimental studies. By accomplishing these three
targets, the present work will not only deepen our under-
standing of this intriguing nonlinear effect, but also be useful
for subsequent theory development, for predicting suitable
material platforms, and for interpreting experimental results.
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II. THE GENERAL THEORY

A. Basic setup

We consider a 2D system in the x-y plane. As mentioned
in the Introduction, we are concerned with the setup in which
both the applied E field and B field lie in the 2D (x-y) plane,
and we consider the dc limit. Experimentally, the nonlinear
signal is usually extracted by lock-in technique with a low-
frequency modulation on the driving E field [4,5,7]. The dc
limit means the modulation frequency always stays in the
ωτ � 1 regime.

The type of nonlinear current we are looking for can be
expressed in terms of a nonlinear conductivity tensor χ as

ja = χabcd EbEcBd , (1)

where the subscripts a, b, c, d ∈ {x, y} according to our setup.
Regarding its symmetry character, χabcd is a fourth-rank axial
tensor. Therefore, it vanishes if the system has an inversion
center or a horizontal mirror plane Mz. Describing the trans-
port process, χ has both time-reversal (T ) even and odd parts,
which are distinguished according to their parities under T
[10,38–40]. Particularly, the T -odd part of χ can only appear
in magnetic systems, whereas the T -even part is allowed in
both nonmagnetic and magnetic systems. Moreover, in mag-
nets the two parts have different transformation properties
under any primed operation which is a combination of T and
a spatial operation.

To investigate this nonlinear current, we adopt the ap-
proach of extended semiclassical theory, which includes
higher-order field corrections not present in usual semiclas-
sical theory. This theory has found great success in describing
many nonlinear response properties [7,41–45].

In this theory, the semiclassical equations of motion for a
Bloch electron wave packet which is centered at (r, k) in phase
space and has band index n take the form of (take e = h̄ = 1)

ṙ = ∂ε̃n

∂k
− k̇ × �̃n, (2)

k̇ = −E − ṙ × B. (3)

These equations have the same structure as the Chang-
Sundaram-Niu equation of the conventional semiclassical
theory [46–48], except that here the band energy ε̃n and the
Berry curvature �̃n include field corrections [6], as high-
lighted by the tilde in these symbols (and similar quantities
without a tilde are defined in terms of unperturbed band struc-
ture). Their specific expressions will be discussed later (and
can be found in Ref. [6]). It should be noted that in our setup,
the B field is in the plane of the 2D system, so it will not
give the Lorentz force term in equation of motion (3). Nev-
ertheless, it modifies the band structure and hence enters ε̃n

and �̃n. Since the orbital motion is confined in the 2D plane,
the in-plane orbital magnetic moment is suppressed, and the
applied B field will mainly couple with the spin magnetic
moment of electrons in the systems we consider.

To calculate the nonlinear current, the equation of motion is
combined with the Boltzmann equation within the relaxation-
time approximation. For a homogeneous system, we have

k̇ · ∇k f = − f − f0

τ
, (4)

where f is the distribution function, and f0 is the equilibrium
Fermi-Dirac distribution. In the semiclassical regime, the so-
lution to this equation can be formally written as

f =
∞∑

η=0

(−τ k̇ · ∇k)η f0(ε̃). (5)

With the equation of motion and the solution of distribution
function, one can calculate the charge current as

j = −
∫

[dk]D(k) ṙ f , (6)

where [dk] is a shorthand notation for
∑

n dk/(2π )2 in a 2D
system, and D(k) is a correction factor for the phase-space
density of states [49] and it is 1 for our present setup. The
desired nonlinear current j can be extracted from Eq. (6) by
collecting the contributing terms that scale as ∼E2B. In the
following, we shall group the contributions to j (or χ ) accord-
ing to their scaling relation with τ . In the current theoretical
framework, this leads to three types of currents.

B. τ0-scaling current

Let us first consider the contribution ∼τ 0. This current,
denoted as j (0), is independent of scattering, so it is called
the intrinsic contribution. The corresponding response tensor
χ (0) is entirely determined by the band structure, manifesting
its significance as an intrinsic material property. The theory
of this intrinsic nonlinear current has been developed in our
recent work, Ref. [35]. Here, we just briefly summarize the
result.

At τ 0 order, only the equilibrium Fermi-Dirac distribution
enters into the current expression (6). Combined with the
equation of motion, one can easily see that the τ 0 transport
current only comes from the following:

j (0) = −
∫

[dk](E × �̃n) f0(ε̃n). (7)

Here, it should be understood that the desired current j (0)

is to take the terms on the right-hand side that scale as
∼E2B. There is already a factor of E in the parentheses. Note
that the E field correction to ε̃n is at least of second order.
Hence, the remaining E factor has to come from its correction
to the Berry curvature �̃n. This E -field correction takes the
form of �E = ∇k × AE , where AE

a = GabEb is the E -field
induced Berry connection (or positional shift of wave-packet
center) and Gab is known as the BCP tensor, which is a
gauge-invariant quantity [6]. For a band with index n, it can
be expressed as

Gn
ab(k) = 2Re

∑
m �=n

vnm
a vmn

b

(εn − εm)3
, (8)

where the v’s are the velocity matrix elements vnm
a =

〈un|v̂a|um〉 with |un〉 the cell-periodic Bloch eigenstate. Fi-
nally, the remaining B factor dependence comes from its
correction to the band structure. (As mentioned before, the
in-plane B field does not produce a Lorentz force.) Here, its
correction enters ε̃n and also translates into a correction to Gab.
Explicitly, we have

ε̃n(k) = εn(k) − Mn · B, (9)
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where Mmn = −gμBsmn is the spin magnetic-moment matrix
element, with g the g factor, μB the Bohr magneton, and
smn the spin matrix element; and Mn ≡ Mnn denotes the
diagonal element. The B-field correction to the BCP tensor
Gab can be expressed as 	abcBc, with

	n
abc(k) = 2Re

∑
m �=n

[
3vnm

a vmn
b

(
Mn

c − Mm
c

)
(εn − εm)4

−
∑

 �=n

(
v
m

a vmn
b + v
m

b vmn
a

)
Mn


c

(εn − ε
)(εn − εm)3

−
∑

 �=m

(
v
n

a vnm
b + v
n

b vnm
a

)
Mm


c

(εm − ε
)(εn − εm)3

]
(10)

being interpreted as the spin susceptibility of BCP.
Collecting all the above relevant terms, we obtain the ex-

pression for the intrinsic nonlinear conductivity tensor

χ
(0)
abcd = −

∫
[dk]�n

abcd (k) f ′
0(εn), (11)

with

�n
abcd = (

vn
a	

n
bcd − vn

b	
n
acd

) + (
∂aGn

bc − ∂bGn
ac

)
Mn

d , (12)

where ∂a is a shorthand notation for ∂/∂ka.
We have a few remarks before proceeding. First, in the

final expression Eqs. (11) and (12) for χ
(0)
abcd , every quantity is

expressed in terms of the intrinsic (unperturbed) band struc-
ture of the system, clearly manifesting its intrinsic character.
Second, the f ′

0 factor in (11) shows that χ
(0)
abcd is a Fermi-

surface property, which is consistent with the general require-
ment of Fermi-liquid theory [50]. Third, the intrinsic currents
found here are dissipationless, which can be easily seen from
Eq. (7) that j (0)

a Ea = 0. It can also be observed that χ
(0)
abcd writ-

ten in the form of (12) is antisymmetric in its first two indices.
Note that in Eqs. (11) and (12), we have not symmetrized the
two mid indices b and c, which can always be done at the
final step if needed. Fourth, the intrinsic current quantified
by χ

(0)
abcd is T even, as can be verified by the T invariance

of Eq. (11). Finally, in this planar setup, since the effect of
the B field is only to correct the band structure (through a
Zeeman-type coupling), the nonlinear current j (0) may be
regarded as effectively an intrinsic second-order anomalous
Hall effect in Ref. [41] applied to the B-field corrected band
structure.

C. τ1-scaling current

As we have mentioned, when the time-reversal symme-
try T is broken, the E2B current response allows a T -odd
contribution. Under the relaxation-time approximation, this
contribution has the form of j (1) ∼ τ . Such a Hall current has
up to now only been discussed in three-dimensional magnetic
Weyl semimetals based on the chiral anomaly mechanism
[51,52], but has not been proposed for 2D systems before.

In our extended semiclassical formalism, j (1) must involve
the nonequilibrium distribution in (5) at linear order in τ .
This automatically gives a factor of E . To obtain a current in
(6) at the second order of E field, we only need to keep terms

in ṙ that are linear in E , resulting in

j (1) =
∫

[dk](E × �̃n)(−τE · ∂k) f0(ε̃n). (13)

On the right-hand side only terms ∼E2B should be retained.
Since there are two E factors in the integrand, we only
need to keep the linear in B correction to �̃n and ε̃n. The
correction for ε̃n is the same as in Eq. (9). Meanwhile, the
B-field correction to �̃n can be expressed as �B = ∇k × AB,
where AB

a = FabBb and Fab is also a gauge-invariant quantity,
known as the ASP tensor [9,10], which describes the spin
magnetoelectric coupling of Bloch electrons, i.e., a positional
shift induced by the B field and an anomalous spin magnetic
moment induced by the E field. For a band with index n, the
ASP can be expressed as

F n
ab(k) = −2Im

∑
m �=n

vnm
a Mmn

b

(εn − εm)2
. (14)

Substituting these corrections into Eq. (13), we obtain the
conductivity tensor χ

(1)
abcd corresponding to current j (1):

χ
(1)
abcd = −τ

∫
[dk]�n

abcd (k) f ′
0(εn), (15)

where we define the quantity

�n
abcd = vn

c

(
∂aF n

bd − ∂bF n
ad

) − εabe(∂c�
n
e )Mn

d , (16)

where εabe is the Levi-Civita symbol.
Similar to χ (0), χ (1) is also a Fermi-surface property, as it

should be. From (13), it is also a purely dissipationless Hall
response, and the response tensor χ

(1)
abcd in (15) is antisym-

metric in its first two indices. Recall that χ (1) is T odd and
requires T symmetry breaking of the original system, e.g.,
when the system has magnetic ordering or under magnetic
proximity effect. One can directly verify that χ (1) vanishes for
a T -invariant system. Moreover, as we shall discuss later, χ (1)

exhibits distinct nonzero elements under magnetic crystalline
symmetry compared to χ (0), leading to distinct angular de-
pendence in the response currents with respect to the applied
external fields.

D. τ2-scaling current

The O(τ 2) contribution to the nonlinear current is a Drude-
like response. Since the nonequilibrium distribution in (5) that
is order of ∼τ 2 already contains an E2 factor, we should
only retain the E -independent group velocity of individual
electrons in order to obtain j (2) ∼ τ 2. The resulting current
can be expressed as

j (2) = −
∫

[dk]

(
∂ε̃n

∂k

)
(τE · ∂k)2 f0(ε̃n), (17)

and we only keep terms that scale as E2B. Here, the B field
comes in through the correction to the band energy, as in
Eq. (9).

After substituting (9) into (17) and collecting the relevant
terms, we find that the corresponding conductivity tensor χ (2)

takes the form of

χ
(2)
abcd = −τ 2

∫
[dk]�n

abcd (k) f ′
0(εn), (18)
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where we have defined

�n
abcd = −(

∂b∂aMn
d

)
vn

c + (
∂c∂bv

n
a

)
Mn

d . (19)

χ
(2)
abcd recovers the previous theoretical result in

Refs. [21,25,27,53]. Indeed, this current can be derived
within the first-order semiclassical theory, as was done in the
previous studies. It is T even, as can be verified by the T
invariance of Eq. (18). Interestingly, by noting that vn

a = ∂aεn,
one observes that χ

(2)
abcd in (18) is symmetric among its first

three indices. In other words, there is no antisymmetric part
in this response, so it does not contain a Hall component.
(For a given driving E field, χ (2) might give current response
transverse to E , but it should be interpreted as an anisotropic
resistance rather than Hall response.) This feature is in sharp
contrast to j (0) and j (1), which are purely Hall responses.
Meanwhile, j (2) contributes to the longitudinal transport (i.e.,
along the driving E field), whereas j (0) and j (1) do not.

Before moving to the model study, we mention that there
is not a nonlinear current of order τ 3 in 2D systems. Such
a contribution can only arise from the conventional Lorentz
force mechanism, which is suppressed in 2D as the cyclotron
motion of electrons in the z direction is quenched.

III. RASHBA MODEL

We shall apply our theory to the Rashba model, which is a
widely studied model for spin-orbit coupled 2D electron gases
with structural inversion symmetry breaking. Here, we first
briefly review the basics of this model.

The Rashba model considered here can be described by the
following Hamiltonian:

H = λk2 + α(kxσy − kyσx ) + �σz. (20)

Here k =
√

k2
x + k2

y , σi’s are Pauli matrices representing the
spin degree of freedom, λ ∼ 1/(2m∗) can be related to the
effective mass m∗ of the system, α is the Rashba spin-orbit
coupling (SOC) strength, and � represents a T -breaking term
which appears as an exchange field along the z direction and
may originate physically from magnetic ordering or magnetic
proximity effect [54,55]. For convenience, in the following
discussion, we assume the model parameters λ, α, and � to
be positive unless specified otherwise.

We note the following two points regarding this model.
First, due to the C2z symmetry of this model, all second-order
current response, such as those ∼EB or ∼E2, must vanish,
whereas our target current j ∼ E2B is allowed. Second, the
presence of the k quadratic term, i.e., the λ term in H , is
necessary for the current j ∼ E2B to be nonzero. This is
because, without the λ term, the Hamiltonian H reduces to
the 2D gapped Dirac model, then the in-plane B field, which
enters into H via a Zeeman coupling term gμBB · σ/2, can
only shift the location of the (gapped) Dirac point but not
affect the eigenstates, hence having no effect on the charge
current. Thus, the λ term must be retained in this model for
studying the j ∼ E2B response.

The energy spectrum for this model can be readily solved
as ε±(k) = λk2 ± √

α2k2 + �2. It is well known that there are
two different cases regarding the shape of the two bands. The
first is the weak exchange field case � < α2/2λ in which the

FIG. 1. Energy spectrum of Rashba model (20) along kx with
ky = 0. We use the parameters in [28]: m∗ = 0.28me, and α = 1eVÅ.
In (a) � = 5meV, and in (b) � = 50meV, corresponding to the two
cases discussed in the main text. [(c),(d),(e)] show the typical Fermi
surface profiles and their in-plane spin structures in three energy
regions marked in (a). The green arrows indicate the in-plane spin
texture.

lower band takes a Mexican hat shape, with band minimum
EM = −λ�2/α2 − α2/4λ located at a circle with a finite ra-
dius k [see Fig. 1(a)]. Then, the whole spectrum can be divided
into three energy regions. Region I is the interval (EM,−�).
For Fermi energy in region I, the Fermi surface consists of
two concentric circles, both from the lower band, as shown in
Fig. 1(a). The two circles are said to have the same helicity,
meaning that they have the same kind of spin winding pattern
[see Fig. 1(c)]. Region II corresponds to the interval (−�,�),
in which the Fermi surface only consists of a single circle.
Finally, region III is given by (�,∞). The constant energy
surface in region III again consists of two circles. However,
differing from region I, here, one circle is from the upper
band and one from the lower band, and they have opposite
helicities, as shown in Fig. 1(e).

The second is the strong exchange field case � > α2/2λ.
As illustrated in Fig. 1(b), in this case, the energy minimum
for the lower band occurs at k = 0 with EM = −�. One can
easily see that the key difference from the previous case is that
region I disappears, and we only have regions II and III [see
Fig. 1(e)].

Since dc transport is a Fermi-surface property, we shall see
below that the expressions of the nonlinear conductivity tensor
differ in the three regions.

IV. RESULT FOR RASHBA MODEL

In this section, we apply our theory to the Rashba model
in Eq. (20). Below, we first analyze the symmetry properties
of the nonlinear conductivity tensor for this model. Then, we
will proceed to evaluate the nonzero tensor elements.

A. Symmetry of χ tensor

The Rashba model in (20) has a quite high symmetry. It
is invariant under any rotation along z. It also respects the
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FIG. 2. Distribution of the BCP tensor components in k space for
the lower Rashba band. The center of each figure is at k = 0. Model
parameters are the same as in Fig. 1(a).

combined MT symmetry where M is any mirror line in the
2D plane. These symmetries strongly constrain the form of
response tensors according to Neumann’s principle [56]. In
addition, the three contributions χ (0), χ (1), and χ (2) each has
its own symmetry characters. For example, χ (0) and χ (1) are
antisymmetric in the first two indices, and χ (2) is symmetric
among its first three indices, as we have discussed before.
Finally, from its definition, only the symmetric component in
the middle two indices contributes to the response. We may
impose a symmetrization on these two indices and use the
standard notation of parentheses to indicate the symmetrized
indices, i.e., χa(bc)d = (χabcd + χacbd )/2.

Combining all these constraints, we find that for each χ (i)

(i = 0, 1, 2), there is only one independent tensor element.
Specifically, for χ (0), the nonzero elements are

χ
(0)
x(yx)x = −χ

(0)
y(xy)y = 1

2χ (0)
xyyy = − 1

2χ (0)
yxxx. (21)

For χ (1), these are

χ
(1)
x(yx)y = χ

(1)
y(xy)x = − 1

2χ (1)
xyyx = − 1

2χ (1)
yxxy. (22)

Finally, for χ (2), the nonzero elements are

χ (2)
xyyy = χ

(2)
y(xy)y = −χ (2)

yxxx = −χ
(2)
x(xy)x

= χ (2)
xxxy

3
= −χ (2)

yyyx

3
. (23)

B. τ0-scaling conductivity

The expression of χ (0) involves two geometric quantities
G (BCP) and 	 (spin susceptibility of BCP). Let us first take
a look at these tensors for the Rashba model (20).

For example, considering the lower band, the BCP tensor
G can be calculated as

[Gab] = α4

4ζ 5

[−k2
y − �2/α2 kxky

kxky −k2
x − �2/α2

]
, (24)

FIG. 3. Distributions of the spin susceptibility of BCP tensor
components (a) 	xyx , (b) 	xyx , (c) 	yyx , and of the ASP component
Fxx , for the lower Rashba band. The parameters are the same as in
Fig. 1(a).

where ζ = √
α2k2 + �2. In Fig. 2, we plot the distribution of

the G tensor elements in k space. One observes that the diag-
onal elements Gxx and Gyy take a monopole shape, whereas
the off-diagonal element Gxy (G is by definition a symmetric
tensor) has a quadrupole-like distribution. All elements are
mainly concentrated in a region around k = 0, where the local
gap between the two bands is small. This is a common feature
that is also observed in previous studies [7,8,41].

In Figs. 3(a)–3(c), we plot the k-space distribution of some
	 tensor elements that are involved in χ (0). One observes that
although the pattern may be more complicated (e.g., 	xyx has
a hexapole-type pattern), the feature that these quantities are
concentrated around the small gap region (around k = 0) re-
mains the same, which is typical for band geometric quantities
encoding the information of interband coherence.

Based on Eqs. (11) and (12), we obtain analytic expres-
sions of χ (0) for the Rashba model. Since there is only one
independent element for this model, we choose to consider
χ (0)

xyyy. The results are listed in Table I. Here, we restore the fac-
tors of e and h̄ in the expressions. Note that the expression for
the nonlinear conductivity differs for Fermi level μ lying in
the three different energy regions, due to the different Fermi-
surface characters. It is worth noting that the results vanish
when λ = 0, confirming our previous observation that the
quadratic term in the Rashba model is needed for a nonzero
signal.

In Fig. 4(a), we plot the numerical result of χ (0)
xyyy as a

function of μ (red solid line) for the case with relatively small
�. One observes the following features. First, the value of
χ (0) is sizable in regions I and III, and it is peaked around
the band-edge energies corresponding to the small gap. Here,
the small local (direct) gap is at k = 0, and the two band edges
are at energies ±�. This can be understood from the behavior
of the geometric quantities G and 	 discussed above. Second,
the two peaks have opposite values. This can be readily seen
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TABLE I. Results of the three contributions to χ in different energy regions for the Rashba model. Here, we define a dimensionless
parameter η = μα2/(λ�2 + μα2). The expressions for χ (0)

xyyy and χ (1)
xyyx in rRegions II and III apply to both the strong and the weak exchange

field cases, whereas those for χ (2)
xyyy are approximate results valid only for the weak exchange field case.

I II III

χ (0)
xyyy

e3gμB
8π h̄

(2λμ+α2 )
μ2α2 η4

√
λ

μ−ER

e3gμB
π h̄

λ5/2[2λμ+α2+2α
√

λ(μ−ER )]
α2√

μ−ER (α+2
√

λ(μ−ER ))4 − e3gμB
4π h̄

λη4

μ2α

χ (1)
xyyx − e3τgμB

8π h̄2
3�(2λμ+α2 )

μ2α2 η4
√

λ

μ−ER

e3τgμB
π h̄2

3�λ5/2[2λμ+α2+2α
√

λ(μ−ER )]
α2√

μ−ER[α+2
√

λ(μ−ER )]4
3e3τgμB

4π h̄2
λ�η4

μ2α

χ (2)
xyyy

e3τ2gμB
8π h̄3 η4

√
λ

μ−ER
≈ e3τ2gμB

8π h̄3
λ√

4λμ+α2
≈− e3τ2gμB

4π h̄3
λ�2η4

μ2α

from the analytic formulas in Table I. Finally, χ (0) is much
smaller (but nonzero) in region II. In this region, there is only
a single Fermi circle, on which the local gap is quite large. The
large local gap suppresses the G and 	 tensors, hence χ (0) is
small.

We also consider the case with large �, and the result is
shown in Fig. 4(b). As discussed, in this case, there are only
regions II and III. The amplitude in this case is rather small
due to the large local energy gaps.

C. τ1-scaling conductivity

The formula for χ (1) involves the ASP tensor Fab. For the
lower band of the Rashba model, direct calculation gives the
diagonal element of this tensor as

Fxx = Fyy = gμBα�/ζ 3, (25)

FIG. 4. (a) The chemical potential dependence of the three con-
tributions to χ . The two figures correspond to the two cases in
Figs. 1(a) and 1(b), respectively. Here, we take τ = 100 fs, g = 19.5,
and other model parameters are the same as in Fig. 1.

and the off-diagonal elements are zero. Again, this tensor is
peaked around the small gap at k = 0 [see Fig. 3(d)], as can
be easily observed from its ζ−3 dependence. The appearance
of α and � in the numerator of (25) indicates that both SOC
and an exchange term are needed for a nonzero ASP.

Analytic expressions for χ (1)
xyyx in the three energy regions

are shown in Table I. One observes that besides a finite λ, a
nonzero χ (1) must require a finite �. This verifies our previous
analysis that the time-reversal symmetry breaking is necessary
for the χ (1) response.

In Fig. 4(a), we plot the numerical results for χ (1)
xyyx as a

function of μ. One can see that except for an opposite sign, its
qualitative behavior is quite similar to χ (0). Namely, it exhibits
peaks around the small gap edges in regions I and III, and it
is suppressed in region II. This is expected, because both χ (0)

and χ (1) depend on band geometric quantities that are peaked
around the small gap edges. In fact, from Table I, we find that
for the Rashba model, there is a simple relation between χ (1)

and χ (0), namely,

χ (1)
xyyx

χ
(0)
xyyy

= −3
�

h̄/τ
. (26)

D. τ2-scaling conductivity

The analytic results of χ (2) are summarized in Table I.
Differing from χ (0) and χ (1), as a Drude-like conductivity,
χ (2) is not related to geometric quantities that are enhanced at
small gaps, which can already be seen from formulas (18) and
(19). As a result, the χ (2) versus μ curve exhibits behaviors
distinct from χ (0) and χ (1).

From the numerical result in Fig. 4(a), one can observe the
following features regarding χ (2). First, unlike χ (0) and χ (1), it
does not show peaks at the small gap edges. Second, in region
I, χ (2)’s value increases as μ approaches the band minimum
EM , connected with the large density of states there. Third, its
value is still sizable in region II. Since χ (0) and χ (1) are sup-
pressed in this region, χ (2) becomes the dominant contribution
there. Finally, its value is small in region III. We find that the
contributions from the two Fermi circles in this region tend to
cancel each other due to their opposite helicities. In fact, one
can observe from Table I that the leading order of χ (2) ∝ �2

in region III, so it would vanish identically when � = 0.

V. DISCUSSION AND CONCLUSION

From the above model study, we can learn some general
features of the nonlinear conductivity χ . First, the Hall re-
sponses χ (0) and χ (1) exhibit “band geometric” characters,
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FIG. 5. Dependence of the three contributions to χ on �. Here,
we take τ = 100 fs, g = 19.5, and μ = −10 meV, and other model
parameters are the same as in Fig. 1(a).

i.e., they are strongly enhanced at the edges of small local
gaps. This is a manifestation of their origin from interband
coherence effects. In comparison, χ (2) is a more “classical”
Drude-like contribution. It has more dependence on carrier
density and could dominate in “trivial” energy windows where
local gaps around Fermi level are large.

In analyzing experimental data, a commonly used method
is to plot nonlinear conductivity (or other measured quantities)
against the linear longitudinal conductivity σ which is linear
in τ (e.g., by varying temperature or other system control
parameters). This helps to separate contributions that have
different scaling dependence on τ [4,7,57]. It can certainly
be applied here to separate out the χ (i)’s (i = 0, 1, 2), which
have been grouped according to their τ scaling.

In addition, the different symmetry characters of the χ (i)’s
may also be utilized for their separation. For example, as
we mentioned, χ (1) must require T breaking, whereas χ (0)

and χ (2) do not. From the model results in Table I, one can
immediately observe that χ (0) and χ (2) are even functions of
the exchange field �, whereas χ (1) is an odd function. This
behavior is also illustrated in Fig. 5, which is consistent with
the symmetry character of T even and T odd. Using this prop-
erty, one can separate χ (1) from χ (0) and χ (2) by analyzing the
response under the reversal of magnetic ordering.

Another important difference in symmetry characters is
regarding the directions of the driving field and the re-
sponse current. We have shown that χ (0) and χ (1) are purely
Hall responses, whereas χ (2) contains both longitudinal and
transverse responses but does not have a Hall component.
Moreover, as we have seen in the model study, crystalline
symmetries usually result in different nonzero elements for
χ (i)’s. This will lead to their different angular dependence
when varying the field/current direction.

To demonstrate this point, we use the Rashba model as
an example. In practice, one usually defines the coordinate
axis to be along some crystal axis direction. The applied E
and B fields are not necessarily aligned with such a direction.
In fact, a commonly used technique is to fabricate multiple
leads at different angles on a disk-shaped sample, so that
one can vary the direction of the driving E field and mea-
sure the response at any other direction. Assume the applied
E - and B-field directions are specified by E = E (cos θ, sin θ )
and B = B(cos ϕ, sin ϕ), as shown in Fig. 6(a). Now,

FIG. 6. (a) Schematic measurement setup for the nonlinear
planar Hall effect. (b) The transverse currents from τ 0- and τ 2-
scaling contributions in the Rashba model are cosine functions of the
relative angle between the E and B fields (c), whereas the τ 1-scaling
contribution is a sine function.

using the symmetry character discussed in Sec. IV A, we find
that j (0) flows only in the transverse direction, with j (0) =
j (0)(− sin θ, cos θ ), and the magnitude exhibits the following
angular dependence:

j (0)/(E2B) = χ (0)
xyyy cos(θ − ϕ), (27)

which has a cosine dependence on the relative angle between
the E and B fields. Therefore, the response is maximal when
the two fields are aligned and vanishes when they are perpen-
dicular. As for j (1), it is also in the transverse direction, but its
angular dependence is different:

j (1)/(E2B) = χ (1)
xyyx sin(θ − ϕ), (28)

which becomes maximal when the fields are orthogonal and
vanishes when they are aligned. Meanwhile, j (2) has both
transverse component j (2)

⊥ and longitudinal component j (2)
‖ .

They show the following angular dependence:

j (2)
⊥ /(E2B) = χxyyy cos(θ − ϕ), (29)

j (2)
‖ /(E2B) = 3χxyyy sin(θ − ϕ). (30)

The analysis above is done for the Rashba model [see
Figs. 6(b) and 6(c)]. For a given material, the constraints will
come from its specific crystalline symmetry. The generally
different angular dependence not only helps to separate the
different contributions, but also offers a route to control the
nonlinear signal which may be useful for nonlinear device
design.

Finally, we remind one that the presented theory is within
the relaxation-time approximation, which neglects some pos-
sible delicate disorder-induced effects. Prominent examples of
such effects include side jump and skew scattering of linear
and nonlinear electrical Hall effects [58–63]. Similar effects
have not been investigated in the context of planar Hall ef-
fect yet, and more systematic studies are needed for future
research. It is noted that these disorder-induced effects are
highly sensitive to details of disorder contents, which are usu-
ally hard to determine in practice. In this regard, our present
theory has the advantage to be readily amenable to quanti-
tative evaluation (e.g., using first-principles calculations) for
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real materials and serves as a benchmark for comparing theory
and experiment.

In conclusion, we have presented a unified theory for the
nonlinear charge current response under an in-plane magnetic
field in 2D spin-orbit coupled systems, which not only in-
cludes previously proposed T -even contribution but also puts
forward a new T -odd contribution of band geometric origin
in 2D magnetic systems. We demonstrated that the quantum
geometric quantity ASP plays an important role in this T -odd
nonlinear planar Hall effect. The different symmetry char-
acters of T -even and T -odd nonlinear current responses in
magnetic systems lead to distinctive angular dependence with
respect to applied fields and render a powerful tool for dis-
tinguishing different contributions in experiment. Our theory
is demonstrated by studying the 2D spin-polarized Rashba

model. We also highlight that the nonlinear currents of band
geometric origin, including the intrinsic and the T -odd one,
are enhanced significantly by band near degeneracies around
Fermi surfaces, and they may dominate for systems hosting
topological band features.
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