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Diagrammatic method for many-body non-Markovian dynamics:
Memory effects and entanglement transitions
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We study the quantum dynamics of a many-body system subject to coherent evolution and coupled to a non-
Markovian bath. We propose a technique to unravel the non-Markovian dynamics in terms of quantum jumps,
a connection that was so far only understood for single-body systems. We develop a systematic method to
calculate the probability of a quantum trajectory and formulate it in a diagrammatic structure. We find that
non-Markovianity renormalizes the probability of realizing a quantum trajectory and that memory effects can
be interpreted as a perturbation on top of the Markovian dynamics. We show that the diagrammatic structure is
akin to that of a Dyson equation and that the probability of the trajectories can be calculated analytically. We
then apply our results to study the measurement-induced entanglement transition in random unitary circuits. We
find that non-Markovianity does not significantly shift the transition but stabilizes the volume law phase of the
entanglement by shielding it from transient strong dissipation.
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I. INTRODUCTION

Quantum systems in the real world are subject to their own
coherent evolution as well as interactions with the environ-
ment. The interplay between these two gives rise to complex
and rich physics that has great relevance in the context of
quantum technologies and has consequently been extensively
studied in recent years. It is the case of many solid-state, cold
atoms, or trapped ions systems, where external interactions
can drive a transition [1–16], such as in dissipative phase
transitions tuned by the dissipation strength, or induce new
relaxation regimes [17–25]. This interplay is important also
in the context of quantum information where, for example,
systems can decouple from the incoherent action of the en-
vironment and form dissipative free subspace with important
error-preventing properties [26–34].

Dissipative phase transitions occur at the level of the av-
erage state—i.e., manifest themselves in the properties of the
density matrix of the system—but new phases may emerge
also at the level of single quantum trajectories, as highlighted
by a series of recent works [35–67]. Focusing mainly on
systems amenable to be realized in cold atoms or quantum
computing platforms, these works have shown that the compe-
tition between quantum measurements and coherent dynamics
also gives rise to transitions of the entanglement that manifest
themselves in specific observables—such as von Neumann en-
tropies, negativities, or two-time correlation functions. These
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transitions are often referred to as measurement-induced
phase transitions (MIPT).

All works published so far consider measurements or baths
that are Markovian. While many experiments can still be
adequately modeled using Markovian baths, this remains an
important issue: Both natural and engineered baths are most
times non-Markovian [68–91], and the backflow of informa-
tion from the bath into the system is inevitably present in
realistic systems and may have dramatic consequences, but
its effects are yet to be explored.

In this work, we investigate the consequences of a non-
Markovian bath on the dynamics of many-body systems and,
within those, the effects of information backflow on the
entanglement transition. We achieve this goal by present-
ing a new methodology to perform the unraveling of the
non-Markovian dynamics of many-body systems in terms of
quantum jumps and showing a specific application of this
method to a random unitary circuit featuring an entanglement
transition.

The study of non-Markovian systems is broad and chal-
lenging [70]. Even at the level of the density matrix, it is not
always possible to describe the dynamics through a Lindblad
equation. This subject has been extensively studied in the
literature, including its many connections to complexity and
entanglement [73,92,93] and how to quantify the degree of
non-Markovianity, etc. [71–73,82,83]. In this paper we choose
to work with a paradigmatic model, in which the dynamics of
the system is described by a master equation of the type

ρ̇(t ) = Ltρ(t ). (1)
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The time-dependent Liouvillian Lt depends on the details of
the unitary evolution and on a time-dependent dissipation rate,
which may be either positive or negative depending on the
direction of the information flow. Information flows from the
system to the environment and the decay rate is positive for
Markovian regions, while it goes from the bath to the sys-
tem (with an associated negative rate) when the evolution is
non-Markovian.

Another difficulty of studying the entanglement of many-
body non-Markovian systems is the need to consider the
quantum trajectories of its dynamics, and so far no clear
and general protocol to unravel such non-Markovian dy-
namics exists. Unlike in Markovian systems, where the
unraveling is performed in a straightforward way using meth-
ods such as Monte Carlo wave function (MCWF) [94–96],
or quantum state diffusion [97], unraveling recipes have
proven to be much harder to implement for non-Markovian
systems.

In this work, we tackle these challenges and formulate a
description of non-Markovian many-body dynamics in terms
of quantum trajectories; this is the backbone of our work and
the most challenging task of our analysis.

While in recent years a protocol implementing the un-
raveling through quantum jumps has been proposed for
single-body systems [98,99], still no general approach to
many-particle systems exists. Indeed, extending the method
of non-Markovian quantum jumps to many-body systems
is not trivial, since the interplay between unitary evolution
and measurements (which generally compete against each
other) makes this task very complicated at a conceptual
level and exponentially complex at a computational level.
Just to cite an example, the quantum trajectories of a non-
Markovian system are interdependent of each other, due to
the memory of the bath, and a statistical sampling of the
trajectory ensemble similar to the Markovian case is no longer
possible.

In our work, we overcome these technical and conceptual
difficulties. We show that the probability of the dynam-
ics realizing a certain quantum trajectory can be calculated
analytically when the information backflow restores the infor-
mation previously lost by the system. The crucial observation
we make is that the quantum state of the system (that is,
the labeling of each quantum trajectory) only depends on
how much and when information was lost by the system
without being restored, processes in which information is
lost and then flows back into the system do not affect its
physical state. Therefore only the unrestored jumps have a
physical meaning (and affect the system) and may be de-
tected. Oppositely, the restored jumps do not—in the sense
that we can label all trajectories without taking them into
account.

Within the above framework, the non-Markovian regions
of the evolution renormalize the probability of a trajectory due
to the (infinitely) many instances in which information sub-
tracted from the system is later restored through information
backflow. Remarkably, such infinite sum can be written in a
diagrammatic form, in which it exhibits the exact same formal
structure of the Dyson equation for the Greens function of an
interacting system, thus providing with an analytic expression
for the probability of any trajectory. Beyond being of key

practical help in terms of computation (that we exploit in full
in the context of random circuits), this unexpected connection
between non-Markovian trajectories and Dyson series allows
us to understand the effect of memory as a renormalization
on top of the Markov case. In particular, it establishes a direct
correspondence between the unraveling of a non-Markovian
Lindblad equation, and the unraveling of a Markovian master
equation in terms of trajectories, whose associated ensemble
probabilities are determined by the Dyson equation above.
We emphasize that, while this feat is generically possible
via artificial extensions of the Hilbert space [100–103], our
mapping is fundamentally distinct, as it identifies a correspon-
dence within the same Hilbert space, thanks to the systematic
simplifications enabled by the diagrammatics.

We then apply our formalism to a one-dimensional
non-Markovian random unitary circuit. The results of our
non-Markovian quantum jumps formulation still depend on
knowing the quantum state of the system along a certain
trajectory, which implies a (practically impossible) full sim-
ulation of the system. However, in many settings of random
circuits [43] the no-measurements probability becomes in-
dependent of the quantum state of the system. This allows
us to perform further analytical calculations and makes such
systems the ideal study case for analyzing the robustness
of the entanglement transition. Our formalism enables us to
straightforwardly generalize known results [40,43] to the non-
Markovian case, and perform a mapping to a two-dimensional
classical Potts model, where the couplings between spins are
inhomogeneous along the time direction. We perform classi-
cal Monte Carlo simulations on such a model, finding that the
effect of non-Markovianity is to strengthen the volume law
phase in the entanglement transition.

The rest of the paper is organized as follows. In Sec. II we
summarize the quantum jump protocol for single-body non-
Markovian systems [98,99] and present a generalization to
the many-body case, which is our first main result. In Sec. III
we calculate the probability of the system dynamics realizing
a certain trajectory and show that the additional contribu-
tion due to non-Markovianity can be calculated analytically.
This is our second main result, summarized in Eq. (29). In
Sec. IV we investigate a random unitary circuit subject to
non-Markovian measurements. We show that the results of
Sec. III can be applied to circuits in order to map them to
a classical Potts model on which, to study the entanglement
transition, we perform Monte Carlo calculations. The Monte
Carlo simulations constitute our third main result. Finally, in
Sec. V we present our conclusions.

II. UNRAVELING OF MANY-BODY
NON-MARKOVIAN DYNAMICS

The quantum dynamics of a large class of non-Markovian
systems can be described using a time-convonlutionless ap-
proximation [68,87,88,98,99,104]. Thus, even if a local in
time master equation is not the most general description of
the dynamics of a non-Markovian system, Eq. (1) is still an
excellent framework to study non-Markovian measurement-
induced transitions.

For many-body systems with multiple decay channels, the
corresponding generalized Gorini-Kossakowski-Sudarshan-
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FIG. 1. (a) Scheme of an entangled spin pair undergoing a
normal jump (NJ) through the jump operator σ−

2 . (b) Trying to
implement the reverse jump (RJ) through σ+

2 re-excites the second
spin but does not take the spins into the initial entangled state, and
the system stays separable. (c) Instead, in order to restore the original
entanglement one has to apply σ+

1 + σ+
2 even though the NJ knew

nothing about the presence of spin 1.

Lindblad master equation [105,106] reads as follows:

ρ̇(t ) = 1

i
[H, ρ(t )] +

∑
s

�s(t )

[
asρa†

s − 1

2
{a†

s as, ρ}
]
, (2)

where H is the Hamiltonian of the system, as is the jump
operator relative to the quantum channel s, and �s(t ) is its
associated decay rate.

In order to study measurement-induced transitions, one
has to unravel the dynamics of the system—i.e., follow the
evolution of the state along a single trajectory corresponding
to a particular realization of the random quantum jumps. A
standard technique is that of the MCWF method [94,95],
where the random quantum jumps are realized through the
application of Kraus operators, and the different realizations
of jump sequences result in a stochastic ensemble of wave
functions corresponding to the quantum states, whose av-
erage at any time equals the density matrix of the system.
More precisely, after a quantum jump in channel s occurs at
time t , the system jumps from |ψ〉 to |ψ ′〉 with a probability
ps,+:

|ψ〉 → |ψ ′〉 = as|ψ〉
||as|ψ〉|| ; ps,+ ∝ �s(t ). (3)

We see that adapting this recipe to non-Markovian systems
presents some problems. An evident issue is that for the times
when �s(t ) < 0 the jump probability would become negative,
which has no physical meaning.

Another issue is that the back-flow of information from the
environment to the system restores not only the population of
the excited states but also coherences, i.e., the off-diagonal
elements in the density matrix, as can be seen by solving the
master equation [98,99]. This cannot be implemented through
an “opposite” jump operator that connects two states in the
opposite direction of the corresponding normal jump operator.
Figure 1 shows the simple example of a spin pair that loses its

entanglement on the application of a normal jump operator;
applying the inverse operator does not result in retrieving the
lost entanglement. This is true even for single-body systems:
Take, for example, a two-level system with a = σ−; one may
be tempted to use σ+ to reverse the effect of the quantum
jump, but it can be seen that the application of σ+ leads to an
increase of the population in the excited state, which still re-
sults in a decay of coherences. Restoring quantum coherence
is an operation that requires memory of the past evolution of
the system, a property that a simple implementation in terms
of Kraus operators does not have.

A. Non-Markovian quantum jumps of single-body systems

Before studying the many-body case, we now review in
detail what is known about one- (or few-) body systems. This
is instructive to highlight the conceptual differences with re-
spect to Markovian dynamics, as well as to identify the major
technical challenges that we will address in the many-body
case below.

A technique to unravel non-Markovian dynamics has been
proposed in Refs. [98,99], in the form of the non-Markovian
quantum jumps (NMQJ) method. This prescription allows
us to describe each interaction with the environment (either
Markovian or non-Markovian) in terms of a quantum jump
process and gives back the correct starting master equation (2)
when averaged over the stochastic ensemble of quantum tra-
jectories.

The main feature of the NMQJ method is the introduction
of two different types of quantum jumps in the stochastic
evolution of the state: a “normal jump” (NJ) occurring during
the Markovian regions of the dynamics [�(t ) � 0] and a “re-
verse” quantum jump (RJ) acting during the non-Markovian
regions [�(t ) < 0]. A reverse jump essentially brings the
quantum state back to what it was prior to the last Markovian
normal jump, effectively canceling out its effects on the sys-
tem. More formally, this is described by stating explicitly the
probability of performing a jump (either normal or reverse)
in the Markovian and non-Markovian regions and the corre-
sponding initial and final quantum state before and after the
jump, similarly to Eq. (3).

Similarly to the MCWF method, the evolution of the
state |ψ (t )〉 along a trajectory is deterministic, until a ran-
dom quantum jump occurs. We discretize the evolution
of the system, so that the probability that more than one
jump occurs within each time interval δt is negligible, and
assume the jumps to occur instantaneously. The average
over the stochastic ensemble gives back the density matrix:
ρ(t ) = ∑

{|ψ〉}
N|ψ〉〈ψ |(t )

N |ψ (t )〉 〈ψ (t )|, where N|ψ〉〈ψ |(t ) is the
population of the trajectory |ψ (t )〉 and N is the total popu-
lation of the states in the ensemble—i.e., the ratio N|ψ〉〈ψ |(t )

N is
the stochastic probability of realizing the trajectory |ψ (t )〉.

Let us now consider a time t for which a particular channel
s has a positive rate �s(t ) > 0. The system may perform a
normal jump from a state |ψ〉 to a state |ψ ′〉 with probability
ps,+. Explicitly rewriting Eq. (3),

|ψ (t )〉 → |ψ ′(t )〉 = as|ψ (t )〉
||as|ψ (t )〉|| ; (4)

ps,+ = �s(t )δt〈ψ (t )|a†
s as|ψ (t )〉. (5)
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FIG. 2. Simple example of the dependence of the reverse jump
(RJ) operator on the time at which is performed. A system starts in
an entangled Bell pair state and normal jumps (NJ) into the separable
state through σ−

2 . (a) If the RJ occurs immediately, then the original
state is restored through σ+

1 + σ+
2 . (b) If the system evolves from

time t to t ′ through the unitary operator U = σ x
1 σ x

2 , then the separable
state is now flipped and the RJ operator that restores the original state
is now σ−

1 + σ−
2 = U (σ+

1 + σ+
2 )U†.

The final state is renormalized, and the probability to per-
form the jump is given by the decay rate times the probability
that the system is in a state eligible to perform the jump, i.e.,
〈ψ (t )|a†

s as|ψ (t )〉.
During a non-Markovian region an RJ may occur, cancel-

ing out the effect of the last normal jump,

|ψ ′(t )〉 ← |ψ (t )〉 = as|ψ ′(t )〉
||as|ψ ′(t )〉|| ; (6)

ps,−
|ψ〉→|ψ ′〉 = N ′(t )

N (t )
|�s(t )|δt〈ψ ′(t )|a†

s as|ψ ′(t )〉. (7)

The ← means that the system performs the reverse jump
starting from the initial state |ψ (t )〉, which is the result of
applying the NJ operator as to the final state |ψ ′(t )〉 after the
RJ. This corresponds to effectively erasing the last NJ, and
the initial states eligible to reverse jump are the ones that have
previously performed (at least) one normal jump. This is also
reflected in the expectation value of a†

s as, which expresses the
probability that a certain state is eligible to jump and that for
a reverse jump is calculated on the target state but using the
normal jump operators.

The process in Eq. (6) cannot be described using a
Kraus operator but is formally obtained by applying the
(state-dependent) jump operator |ψ ′(t )〉 〈ψ (t )|. This is a
fundamental difference with the MCWF method and a con-
sequence of the memory of the non-Markovian dynamics:
The operator corresponding to a RJ depends on the current
quantum state and on the target state, see Fig. 2.

Another consequence is the presence of the ratio
N ′(t )/N (t ) in the jump probability: it corresponds to the ratio

between the probability of being in the target state and the
probability of being in the initial state. This ratio ensures that
the evolution averaged over trajectories is described by the
master equation [Eq. (2)].

In Refs. [98,99] the number of inequivalent trajectories—
in the sense that they correspond to different quantum states
(we explain this more in detail later)—is finite and very small,
due to the single-body nature of the considered systems. This
makes a numerical simulation of the system dynamics viable,
since one only has to follow those few trajectories and update
the ensemble statistics based on the type of quantum jump
performed by the system.

The situation is very different for a many-body system: If
the jump operators take the system into states that are not
eigenstates of the unitary evolution given by H , then the time
at which a jump is performed becomes important, resulting in
different trajectories. The number of trajectories is then very
large, being exponential in the time of the evolution. For ex-
ample, this occurs when the many-body Hamiltonian contains
terms that counteract the action of the jump operators, since at
any time the system may or may not decay, and after a decay it
may be excited again by the unitary evolution. A very simple
example is a two spin-1/2 system with jump operators σ−

1/2
and unitary evolution operator σ x

1 σ x
2 : The steady state for the

jump operator has both spins down in the z direction; this is
not an eigenstate of the Hamiltonian, which can move back
the spins to be both up in the z direction, thus effectively
counteracting the action of the jump operators (Fig. 2).

As noted in Refs. [90,99], the dynamics corresponding to
this unraveling [98,99] do not have an immediate physical rep-
resentation in terms of a measurement protocol. For example,
probing the bath to check if a jump occurred may destroy the
information lost by the system and stored in the bath and pre-
vent the possibility of successively restoring such information.
Nevertheless, this method provides key qualitative insights
on non-Markovian dynamics and rigorously illustrates how
information back-flow from the environment to the system
can be captured utilizing pure state dynamics only. Moreover,
we can still treat the trajectories as well-defined mathematical
objects, each with a quantum state that solely determines the
physical properties, and a stochastic probability of realizing
that trajectory. In Sec. III, we will finally show how, under
certain conditions, the inequivalent trajectories we discuss do
describe the evolution of a realistic system (albeit correspond-
ing to a master equation that differs from the one we start
from).

From these considerations, it is evident that the application
of the NMQJ method as described in Ref. [98,99] to many-
body systems is not viable. One needs a new formulation
that incorporates the conceptual understanding gathered from
single-body problems with the nontrivial many-body dynam-
ics in a mathematically coherent manner: This is what we
develop below.

B. Many-body non-Markovian quantum jumps

We consider a many-body system subjected to coherent
time evolution. For simplicity, we focus on a Hamiltonian
dynamics, with Hamilton operator H : Most of our reasoning
also applies to stroboscopic time evolution as realized, for
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example, in random unitary circuits (on which we will elabo-
rate further in the next sections).

Let us now suppose for simplicity that only one jump op-
erator a acts on the system; the generalization to many decay
channels is straightforward.

When the system does not jump, it undergoes a determin-
istic evolution which is governed by the Hamiltonian H plus
a non-Hermitian contribution arising from the back-action
of the jump operator, which we can write as Heff = H −
i�(t )a†a/2. Over a time δt the quantum state of the system
then evolves as [98,99]

|ψ (t + δt )〉 = (1 − iHeffδt ) |ψ (t )〉
||(1 − iHeffδt ) |ψ (t )〉 || , (8)

For book-keeping simplicity, we incorporate all these
operations into an operator U (t, t ′) that represents the de-
terministic evolution between t and t ′, so that |ψ (t ′)〉 =
U (t, t ′) |ψ (t ′)〉.

As mentioned, the many-body system can jump at any time
and as many times as possible, and the times at which the
jump operator is applied matter since the jump operator and
the unitary evolution may compete with each other.

The detailed way in which a NJ or a RJ act is shown in
Figs. 2 and 3. Let us suppose that at time t a jump operator a
is applied to the quantum state |ψ〉 of the system. The system
jumps into |ψ ′〉 = a|ψ〉/||a|ψ〉||, but the bath retains memory
of the state |ψ〉 before the jump. From t to t ′ the system then
evolves with U , |ψ ′〉 → U |ψ ′〉. At time t ′ a RJ occurs: The
system does not jump back into |ψ〉 but into |ψ ′′〉 = U |ψ〉. In
other words, the RJ brings the system back to the state it would
have (unitarily) evolved into if it had never normal jumped
at time t . The memory effect is here: The bath remembers
the state of the system before the NJ and once the RJ occurs
this information flows back into the system in the form of
bringing it back to |ψ ′′〉. The operatorial definition of the RJ
is |ψ ′′〉〈ψ ′| = U |ψ〉〈ψ ′|; we stress that it implicitly includes
the unitary evolution U , which was absent in the single-body
case.

The fact that we can reverse the last jump independently
of the time it passed since its occurrence is a consequence
of the infinite-time memory that we assumed for the non-
Markovian bath interacting with the system. On the other end
of the “memory spectrum,” a Markovian bath has a zero time
memory, so that a jump can never be erased. In the middle
of the spectrum, there are baths that have a finite but nonzero
time memory, so it becomes more and more unlikely to reverse
a jump that occurred a long time in the past.

We note an important point: Evolving the system from t to
t ′ with just U or with the sequence RJ ◦ U ◦ NJ produces the
same quantum state |ψ ′′〉 by definition but along two different
trajectories. These two trajectories are equivalent at time t ′, in
the sense that they correspond to the same quantum state and
exhibit the same physical properties.

We can therefore group different trajectories into a class
of trajectories (labeled by the index α) that all exhibit the
same quantum state |ψα (t )〉 at time t . We observe that |ψα (t )〉
is completely specified by the initial state |ψ〉 and by the
sequence of times at which normal jumps are performed
without being reversed later. In other words, if we label a

FIG. 3. Example of normal jump (NJ) and reverse jump (RJ)
processes in a system coupled to a non-Markovian bath. (1) A system
of two spins starts in an entangled Bell pair state (|↑↓〉 + |↓↑〉)/

√
2.

(2) The spins undergo a NJ process (red cross) that destroys the
coherence and collapses the spins onto a separable state; the in-
formation lost in the process is “stored” into the bath (wavy red
line). (3a) The system evolves with unitary U (green square), for
example a spin flip σ−

1 σ+
2 + σ+

1 σ−
2 ; (3b) the bath “remembers” the

state before 2 and evolves it with U (transparent green square)—in
this particular case the entangled state is not changed by the spin flip.
(4) The system undergoes a reverse jump (blue crossed circle): the
information stored in the bath flows back (blue wavy line) into the
system that (5) ends up back into the entangled state, regaining its
coherence.

trajectory class with α = (t1, t2, . . . , tn) (see Fig. 4), then the
quantum state associated to it is given by the unitary evolution,
punctuated by the jump operators at the times specified by α:

|ψα (t )〉 ≡ U (tn, t )a U (tn−1, tn)a · · · a U (0, t1)|ψ〉
||Ua Ua · · · a U |ψ〉|| . (9)

FIG. 4. Different trajectory classes labeled based on the number
and time of jumps. The green squares represent the periods of unitary
evolution, while the red crosses represent normal quantum jumps.

075151-5



GIULIANO CHIRIACÒ et al. PHYSICAL REVIEW B 108, 075151 (2023)

We remark that using this categorization into trajectory
classes, the application of the NMQJ recipe is quite straight-
forward.

Performing a normal jump at time t simply takes the
state of the system from the class α = (t1, t2, . . . , tn) to α′ =
(t1, t2, . . . , tn, t ) = (α, t ). The NJ process and its probability
p+

α→α′ are

|ψα (t )〉 → |ψ(α,t )(t )〉 = a|ψα (t )〉
||a|ψα (t )〉|| ; (10)

p+
α→α′ = �(t )δt〈ψα (t )|a†a|ψα (t )〉. (11)

Conversely, performing a reverse jump from the class α =
(t1, t2, . . . , tn) = (α′, tn) erases the last NJ performed by the
system and takes it into the class α′ = (t1, t2, . . . , tn−1):

|ψα (t )〉 → |ψα′ (t )〉; (12)

U (tn, t )
a|ψα′ (tn)〉

||a|ψα′ (tn)〉|| → U (tn−1, t )|ψα′ (tn−1)〉. (13)

The operator describing the RJ in Eq. (12) is |ψα′ (t )〉〈ψα (t )|,
which again includes implicitly the unitary evolution operator.
The RJ in Eq. (13) effectively erases the jump that occurred
at time tn, but any trajectory that jumped at a time tn−1 <

t ′ < t can reverse jump from (t1, t2, . . . , tn−1, t ′) back to α′.
Therefore we have to account for these possibilities in the def-
inition of the probability to perform the reverse jump, which is
given by

p−
α→α′ (t ) = Nα′∑

tn−1<t ′<t
N(α′,t ′ )

|�(t )|δt〈a†a〉α′ (t ), (14)

where 〈a†a〉α (t ) ≡ 〈ψα (t )|a†a|ψα (t )〉 and Nα is the probabil-
ity for the system to be in trajectory α.

The RJ probability is independent of the starting state, in
the sense that it is independent of the time t ′ at which the
last jump was performed: Every trajectory that originates by
normal jumping from the same α′ has the same probability
of performing a reverse jump back into α′. This property
may seem counterintuitive but actually makes sense since the
system does not care when the last jump occurred. For baths
with a finite time memory, this is no longer true, since the
probability to reverse jump from (α′, t ′) back to α′ decreases
as the time difference t − t ′ increases. This could be quantified
by introducing a memory kernel K (t ′, t ) in the fraction of
Eq. (14): p−

(α′,tn )→α′ (t ) ∼ Nα′ K (tn,t )∑
tn−1<t ′<t

N(α′ ,t ′ )K (t ′,t ) .

We stress that the sum in the denominator is essential
for the quantum jump prescription to be consistent with the
master equation for the density matrix. It can be proven that
averaging the dynamics described by Eqs. (5) and (10)–(14)
correctly recovers the master equation (2). The calculation is
tedious but straightforward if the density matrix is written as

ρ(t ) =
∞∑

n=0

∑
{α=(t1,...,tn )}

Nα (t )

N
|ψα (t )〉〈ψα (t )|, (15)

where the sum over n and over all the times at which the jumps
can be performed exhausts all the trajectory classes generated
by the evolution.

FIG. 5. (a) The trajectories shown in the panel are different
since they have different normal + reverse jumps sequences but
all lead to the same final quantum state. Their probabilities must
then be summed. (b) Diagrammatic method to calculate the dressed
propagator.

As expected, the extension of the NMQJ method to a
many-body system makes the problem very hard to solve
numerically. Not only the number of trajectory classes is
exponential ∼2Nt (with Nt the number of time steps in the
evolution) for each decay channel, but it is not even possible
to do a statistical sampling of the ensemble as in MCWF, due
to the crosstalk between trajectories. Since both the individual
trajectories and classes of trajectories are not independent of
each other as they are in the Markovian case, all of them are
needed to compute the probability of reverse jumps.

However, we observe that a class of trajectories is com-
pletely identified by α, i.e., the times at which the normal
jumps occur. This is also true in the Markovian case, where
the probability of the system ending up in the state associated
to α = (t1, t2, . . . , tn) can be calculated at once by multiply-
ing the probability of jumping at times t1, t2, . . . , tn with the
probability of not jumping at the other times.

In the non-Markovian case, the Markovian probability is
modified—borrowing a field theory term, we could say it gets
“dressed” or renormalized—by all the trajectories equivalent
to α, in which m other normal jumps were performed but
later canceled out by an equal number of reverse jumps, see
Figs. 4 and 5. If we can find a way to express this additional
contribution, then we can drastically simplify the treatment
of the non-Markovian dynamics. This is the topic of the next
section.

III. DIAGRAMMATICS OF TRAJECTORIES

Our goal in this section is to calculate the “dressed” contri-
butions that affect the probability of realizing each state |ψα〉
due to the presence of equivalent trajectories that feature a
series of reverse jumps. In particular, we need to evaluate how
the latter ones sum up to modify the probability of a given
trajectory class.
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For the sake of concreteness, we assume that the system is
evolved between t = 0 and t = t f and consider the class α =
(t1, . . . , tn). In the Markovian regime, there is only one tra-
jectory contributing to this class, while in the non-Markovian
regime, many trajectories contribute to the population of this
class. For example any trajectory performing normal jumps
at times t1, . . . , tn plus any number of additional pairs of
NJ plus the relative RJ are valid trajectories contributing to
the population of α. We note that the normal and reverse
jumps must occur at times tm and t ′

m comprised between the
times of two successive normal jumps in α, i.e., such that
t j < tm, t ′

m < t j+1, with j = 0, . . . , n and t0 = 0 and tn+1 = t f .
These pairs of normal + reverse jumps constitute sort of
“loops” (to borrow another term from field theory) that renor-
malize and increase the probability of realizing the trajectory
class α = (t1, . . . , tn), see Fig. 5. It is the contribution of these
loops that we want to calculate.

It is useful to write �(t ) = �+(t ) + �−(t ) = �+(t ) −
|�−(t )|, where �±(t ) is the positive or negative part of the
decay rate. We also define Pα (t, t ′) as the conditional prob-
ability that the system is in the state labeled by α at time t
and is again found in the same state α at a later time t ′. Such
probability essentially corresponds to the probability that no
additional normal jumps are performed between t and t ′ or
that all the normal jumps performed are canceled by an equal
number of reverse jumps.

In the limit where the dynamics is Markovian, the “bare”
probability P (0)

α (t, t ′) is given by

P (0)
α (t, t ′) = exp

[
−

∫ t ′

t
dτ�+(τ )〈a†a〉α (τ )

]
. (16)

Equation (16) arises from the fact that the unitary evolution
does not change the probability of the system being in a
certain class and that the product of the probabilities of per-
forming no jumps between t and t ′ is an exponential in the
continuum limit.

A. No jump trajectory

We start from the simpler case in which the class we
consider is the no jump trajectory, i.e., α = ∅, see Fig. 5(a).
The conditional probability of staying in such trajectory is
corrected (with respect to the Markovian case) only by loops
of the type normal jump + reverse jump, because no reverse
jump can occur first since the system has not jumped at all to
begin with.

We indicate with 	+
α (t, t ′) the probability of performing a

normal jump from the class α at time t and then going back to
α with a reverse jump at time t ′. Then we can write P∅ as a
perturbative series in 	+ as follows:

P∅ =P (0)
∅

+ P (0)
∅

◦ 	+ ◦ P (0)
∅

+ P (0)
∅

◦ 	+ ◦ P (0)
∅

◦ 	+ ◦ P (0)
∅

+ · · · ; (17)

P∅ = P (0)
∅

+ (
P (0)
∅

+ P (0)
∅

◦ 	+ ◦ P (0)
∅

+ · · · ) ◦ 	+ ◦ P (0)
∅

;

P∅ = P (0)
∅

+ P∅ ◦ 	+ ◦ P (0)
∅

, (18)

where ◦ represents the convolution over all times between t
and t ′, i.e., (A ◦ B)(t, t ′) = ∫ t ′

t (dt1/δt )A(t, t1)B(t1, t ′); in the

continuum limit we divide the integration over steps of length
δt . The resummation formula contained in Eq. (18) is depicted
graphically in Fig. 5(b).

Writing explicitly the convolutions we find

P∅(t, t ′) = P (0)
∅

(t, t ′) +
∫ t ′

t

dt2
δt

∫ t2

t

dt1
δt

P∅(t, t1)

× 	+
∅

(t1, t2)P (0)
∅

(t2, t ′). (19)

The integration limits express the causality of the jumps: The
normal and reverse jumps must occur between t and t ′ at times
such that t < t1 < t2 < t ′.

It is worth noticing that, within this picture, the no-click
limit takes the role of a mother trajectory: Indeed, a large
number of trajectories is represented by the dressed no-click
case. This may suggest that the latter is particularly infor-
mative about the system dynamics, as already noted in some
Markovian cases [48,107].

B. Generic trajectory

Equation (19) can be extended to a generic conditional
probability Pα . In principle, there exist also reverse loops,
where a reverse jump occurs first and is then followed by a
normal jump. However, the action of such loops on Pα is ill
defined, in the sense that it is not an actual loop since it does
not bring the system back to the same trajectory class.

To be more specific, let us assume that α = (t1, . . . , tm);
a reverse jump at t > tm brings the system into the state la-
beled by (t1, . . . , tm−1) and a successive normal jump closing
the reverse loop takes the system into the state labeled by
(t1, . . . , tm−1, t ′) �= α. Therefore “reverse loops” should not be
taken into account when renormalizing P (0)

α since they always
bring the system into a different trajectory class [108].

It is then straightforward to generalize Eq. (19),

Pα (t, t ′) =P (0)
α (t, t ′) +

∫
dt2
δt

dt1
δt

Pα (t, t1)

× ·	+
α (t1, t2)P (0)

α (t2, t ′). (20)

Borrowing some more terminology from field theory, we
can regard the conditional probability Pα as a sort of propaga-
tor of the class α. We observe that the “dressed” propagator is
related to the “bare” propagator P (0)

α by a relation very similar
to the Dyson equation for the Green function of interacting
systems, where the loop probability 	+ plays the role of the
self-energy.

We write the loop probability 	+(t1, t2) as the probability
to perform a normal jump at time t1 times the conditional
probability to stay in the new trajectory class (α, t1) times the
probability to reverse jump at time t2,

	+
α (t1, t2) = p+

α→(α,t1 )(t1)P(α,t1 )(t1, t2)p−
(α,t1 )→α (t2). (21)

We stress that in Eq. (21) the conditional probability to
stay in (α, t1) is “dressed” because we have to allow for the
possibility of “nested” sequences of jumps, e.g., of the type
NJ + NJ + RJ + RJ, in which the system jumps further away
from (α, t1) and then comes back to it with reverse jumps
before t2.
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Using Eqs. (5) and (7) we write

p+
α→(α,t1 )(t1) = �+(t1)δt〈a†a〉α (t1); (22)

p−
(α,t1 )→α (t2) = Nα (t2)|�−(t2)|δt∫ t2

t
dτ
δt N(α,τ )(t2)

〈a†a〉α (t2). (23)

In the ratio of populations of the target and sources states,
we switched to the continuum limit and replaced the sum-
mation by an integration. An important point is that the
integration in the denominator runs from t to t2. The upper
limit obviously follows from causality, since we can only
reverse at time t2 trajectories that underwent a normal jump
from α before t2. The lower limit is a consequence of the
conditional probability Pα (t, t ′): We condition the system to
be in the state α at time t and we have to only take into account
trajectories that normal jumped from α after that time.

The ratio of populations is essentially a ratio of probabili-
ties, and both numerator and denominators can factorize into
the probability to be in the state α at time t times the probabil-
ity to stay in α (or to jump into (α, τ ) for the denominator),

Nα (t2)∫ t2
t

dτ
δt N(α,τ )(t2)

= Pα (t, t2)∫ t2
t

dτ
δt Pα (t, τ )p+

α→(α,τ )(τ )P(α,τ )(τ, t2)
.

The denominator arises from the fact that the conditional
probability of being in a trajectory eligible to reverse jump is

the sum over all times τ between t and t2 of the probability
Pα (t, τ ) to propagate the state α from t to τ times the prob-
ability p+

α→(α,τ )(τ ) of jumping at time τ times the probability
P(α,τ )(τ, t2) to propagate in (α, τ ) from τ to t2.

Substituting into Eq. (23) and (21), the integral in the
denominator simplifies when integrating over t1,

∫
dt1
δt

Pα (t, t1)	+
α (t1, t2)

=
∫

dt1
δt

Pα (t, t1)p+
α→(α,t1 )(t1)·

× P(α,t1 )(t1, t2)Pα (t, t2)|�−(t2)|δt〈a†a〉α (t2)∫ t2
t dτ/δtPα (t, τ )p+

α→(α,τ )(τ )P(α,)(τ, t2)

= Pα (t, t2)|�−(t2)|δt〈a†a〉α (t2). (24)

This result is remarkable, as after integrating over the
starting time of the loop, the specific trajectory class into
which the system jumps does not matter. This is a conse-
quence of the fact that all trajectories eligible to perform a
reverse jump have the same probability to do so. Combining
Eq. (22) and (20) we obtain

Pα (t, t ′) = P (0)
α (t, t ′) +

∫ t ′

t
dt2Pα (t, t2)|�−(t2)|δt〈ψα (t2)|a†a|ψα (t2)〉P (0)

α (t2, t ′); (25)

Pα (t, t ′) = exp

{
−

∫ t ′

t
dτ [�+(τ ) − |�−(τ )|]〈ψα (τ )|a†a|ψα (τ )〉

}
= exp

[
−

∫ t ′

t
dτ�(τ )〈a†a〉α (τ )

]
. (26)

Equation (26) is particularly telling. It implies that the
regions of non-Markovianity in the decay rate renormalize the
probability of staying in a certain trajectory class α. It is also
similar to the probability of staying in the excited state of a
non-Markovian two-level system (as obtained form solving
the master equation [99]); however, it shows that this simple
expression for the probability of staying in the same state is
also valid for a generic many-body system, provided that the
state |ψα〉 associated to the label α changes in time according
to the unitary and jump evolutions.

C. Probability of a generic outcome

We now want to calculate what is the probability of per-
forming a certain number of normal jumps between an initial
time t = 0 and a final time t .

Let us start from the case of one jump, in which we go
from the class α = ∅ to the class α = (t1) within a small
time interval of width δt and centered around time t1. The
probability P (t1 )

∅
of ending up in this state is then given by

P (t1 )
∅

(0, t ) = P∅(0, t1)�+(t1)δt〈a†a〉∅(t1)P(t1 )(t1, t ).

In other words the probability of the evolution realizing the
outcome (t1) is given by the probability to not jump between 0
and t1, times the probability to perform a normal jump in a δt

interval around t1 times the probability to not jump between t1
and t and stay in the (t1) outcome.

We note that we can write �+(t1) as �(t1) since
normal jumps only occur in the Markovian regions of
the evolution. In this sense we observe P (t1 )

∅
(0, t ) =

[−∂t1P∅(t, t1)]δtP(t1 )(t1, t ) or, in other words, the probability
to jump out of the ∅ outcome at time t1 is minus the time
derivative of the probability to stay into that outcome.

Generalizing the above, we write the probability to jump
from outcome α at time t to outcome (α, t1, t2, . . . , tn) at
time t ′ by performing n jumps at times t < t1 < t2 < · · ·
< tn < t ′ as

P (α,t1,...,tn )
(α) (t, t ′) =P(α)(t, t1)�+(t1)δt〈a†a〉(α)(t1)

× P(α,t1 )(t1, t2) × · · · × �+(tn)δt

× 〈a†a〉(α,t1,...,tn−1 )(tn)P(α,t1,...,tn )(tn, t ′);
(27)

P (α,t1,...,tn )
(α) (t, t ′) =

n∏
j=0

P(α,t1,...,t j )(t j, t j+1)

×
n∏

j=1

�+(t j )δt〈a†a〉(α,t1,...,t j−1 )(t j ), (28)

with the identifications t0 = t and tn+1 = t ′.
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In the case of many decay channels—each with an associ-
ated jump operator as and decay rate �s(t )—we can write a
vector of labels �α = (α1, α2, . . . , αnchannels ), where each αs =
(ts,1, ts,2, . . . ts,ns ) describes the times at which the system
undergoes a jump through channel s. Since the channels are
independent, the total propagator probability of no jump is the
product of the propagator probability for each channel:

P�α (t, t ′) = exp

[
−

∫ t ′

t
dτ

∑
s

�s(τ )〈a†
s as〉�α (τ )

]
. (29)

A similar generalization of Eq. (28) can be written down.

D. Advantages and limitations of the diagrammatic
renormalization method

In this section we have shown that it is possible to obtain
an analytic expression for the probability of a non-Markovian
system realizing a certain sequence α of normal quantum
jumps and ending up in the corresponding state |ψα〉. This is
a remarkable result, as it generalizes known results for the dy-
namics of Markovian systems to non-Markovian many-body
systems.

However, there are some limitations to the applicability
of this formula. One limit is that the results we presented
are technically exact in the limit in which the system is able
to jump an infinite number of times. In fact, in writing the
expression for the 	+ loops and their corrections, we assumed
that the state in which the system jumps is again eligible to
jump itself, which is not the case if the system is only able to
jump a finite number of times.

The comparison with the extreme example, in which the
system may only jump once, shows that our equations cor-
rectly predict the probability to perform zero jumps, see
Eq. (B5) in Ref. [99], but differ from the probability of per-
forming one jump, see Eq. (B6) in [99]. However, this is
not a fatal issue, as our analytic results are more and more
a good approximation as the maximum number of jumps
increases and are essentially indistinguishable from the exact
results when considering large-enough systems and long-
enough time evolutions.

Another practical issue is that applying equations (27)–
(29) to real system still generally requires the knowledge
of the quantum state of the system |ψα (t )〉, which implies
solving the dynamics of a many-body system, which is ex-
ponentially complex in the system size. Note that in a usual
non-Markovian setting, the simulation of all possible trajec-
tories is required, meaning the complexity is still exponential
in the system size and in the evolution time. However, there
are some special cases in which the physics of a system can
be studied without needing to know the quantum state of the
system at all times; one of them is the case of the mapping of
random unitary circuits into a statistical model [43], which we
analyze in detail in the next section.

IV. NON-MARKOVIAN MEASUREMENT-INDUCED
TRANSITION

In this section we apply the results obtained in Sec. III
to investigate the dynamics of the entanglement and the
transition induced by measurements in non-Markovian

FIG. 6. Diagram of a non-Markovian random unitary circuit.
Layers of two-qudits unitary gates (green rectangles) alternate with
layers of local random measurements (red crosses). Whenever the
decay rate becomes negative (blue shaded region), no normal jump
measurements are allowed; this corresponds to a “frozen” layer
where the Potts spins behave ferromagnetically.

systems. The entanglement transition has been studied in
many different systems, including random Haar [36–38,109–
111] and Clifford circuits [37,38,59,112–114], free fermions
[60,63,67,115,116], Ising chains [38,48,107,117,118], stabi-
lizer circuits [44,49,53,119–122], etc.

We specialize to the case of random unitary (Haar) circuits
for a number of reasons. They have been extensively studied
in the literature, so there is an abundance of study cases to use
for comparison; moreover, random circuits can be mapped to
a classical Potts model on which either analytical or Monte
Carlo calculations can be performed. And most importantly,
the measurement protocol usually implemented on such cir-
cuits is such that the exponent in Eq. (29) simplifies and
does not contain the quantum state of the system, greatly
simplifying further analytical calculations.

A. Random unitary circuits

We consider a random unitary circuit similar to the model
studied in Ref. [43]. The system is composed of L q-dits, i.e.,
spins with a d-dimensional Hilbert space. Every time step
the q-dits evolve according to random unitary gates coupling
the odd or even pairs alternatively and then undergo random
local measurements; see Fig. 6. The unitary evolution does
not affect the probability of being in a certain sequence α of
quantum jumps in any way other than changing the state of
the system.

Similarly to Eq. (9), we describe the state of the system at
time ti by a sequence of random unitaries U and local normal
quantum jumps a applied to the initial state:

|ψ (t )〉 = C(t ) |ψ〉
||C(t ) |ψ〉 || ; (30)

C(t ) = U (tn, t )a U (tn−1, tn)a · · · a U (0, t1), (31)

where C(t ) is called circuit operator, α = (t1, . . . , tn) and with
the obvious generalization to multiple channels of decay.

The probability PC of realizing a particular C depends on
the probability PU

C associated to the random unitaries and the
probability PM

C of performing the sequence of normal jumps
specified by C. Note that PU

C and PM
C are independent, so we
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may only focus on the probability associated to the quantum
jumps, which is essentially a discretized version of Eq. (27).

We now specify the protocol for the measurement: We
choose Kraus operators that have equal weight and that con-
stitute a resolution of the identity. For example, for each site
we may have d quantum channels, each corresponding to a
projector on every state of the local Hilbert space as = |s〉 〈s|
(for s = 1, . . . , d); alternatively, we may have a continuous
set of jump operators obtained by transforming with random
unitaries the projector on one of the states as = |s〉 〈s|. We
only require that each jump operator in this set has an equal
weight, i.e., �s = �. This is a crucial assumption, since it
simplifies the sum over the decay channels in Eq. (29):∑

s

�s(τ )〈ψ (τ )|s〉〈s|s〉〈s|ψ (τ )〉

= �(τ )〈ψ (τ )|
∑

s

|s〉〈s|ψ (τ )〉 = �(τ ), (32)

since
∑

s |s〉〈s| = 1. With this simplification, the probability
of no jump becomes independent of the quantum state of the
system, and it is possible to calculate it without having to
study the many-body dynamics of the system.

B. Probability of a circuit realization

We discretize the evolution: For any measurement time
ti we define pi = �(ti )δt . During the Markovian regions
�(ti ) > 0 this is a real probability of performing a jump.
During the non-Markovian regions pi is negative and is not
a physical probability, but still makes sense with the interpre-
tation that when pi < 0 there is no normal jump and there is
an increase of the weight associated to the no jump trajectory.

Indeed, the probability of performing no jumps on a certain
site from time ti to time ti′ is obtained by discretizing the
propagator probability (29):

Pα (ti, ti′ ) = exp

[
−

∫ ti′

ti

dτ�(τ )

]
→

i′∏
j=i

(1 − p j ), (33)

i.e., the probability to not perform any normal jump is given
by the probability to not undergo jumps at any of the in-
termediate times. Regions of non-Markovianity increase this
probability, which is intuitively and formally correct, since
non-Markovianity makes information flow back into the no
jump outcome.

We now consider the probability of performing a normal
jump and split it into two parts: one associated to the proba-
bility of performing a jump and one associated to the weight
of the trajectory where the jump is as = |s〉 〈s|:
�+(ti )δt〈a†

s as〉(ti ) = pi||as |ψ (ti)〉 ||2

= pi
||asC(t−

i ) |ψ〉 ||2
||C(t−

i ) |ψ〉 ||2 = pi
||C(t+

i ) |ψ〉 ||2
||C(t−

i ) |ψ〉 ||2 ,

(34)

where C(t±
i ) is the circuit operator immediately after or

before the normal jump. We have used that |ψ (ti )〉 =
C(t−

i ) |ψ〉 /||C(t−
i ) |ψ〉 || and asC(t−

i ) = C(t+
i ). We have split

the probability associated to the decay rate, i.e., pi = �(ti)δt ,

from the probabilities associated to the weight of the trajec-
tory, i.e., C(t ) |ψ〉. We are now able to write the discretized
form of Eq. (28).

We assume that the system evolves from time t0 = 0 to
time tm = t and that the circuit operator C describes n normal
jumps at times ti1 , . . . , tin , no jumps at times t j �= ti1 , . . . , tin ,
and a certain realization of random unitaries in between
described by the probability PU

C . We can then write the prob-
ability of realizing C associated to the quantum jumps as

PC = PU
C

∏
i �=i1,...,in

(1 − pi )
n∏

a=1

pia

||C(t+
ia

) |ψ〉 ||2
||C(t−

ia
) |ψ〉 ||2 . (35)

The circuit operators between two successive jump times
only differ by a sequence of unitary operators: C(t−

ia+1
) =

(
∏ia+1

j=ia+1 U j )C(t+
ia

). Since the unitaries do not change the norm
of the state we have ||C(t−

ia+1
) |ψ〉 || = ||C(t+

ia
) |ψ〉 ||. There-

fore, the product of the ratio of the norms simplifies

n∏
a=1

||C(t+
ia

) |ψ〉 ||
||C(t−

ia
) |ψ〉 || =

n∏
a=1

||C(t−
ia+1

) |ψ〉 ||
||C(t−

ia
) |ψ〉 || = ||C(t−

in+1
) |ψ〉 ||2

||C(t−
i1

) |ψ〉 ||2 ,

which reduces to ||C(t ) |ψ〉 ||2 because ||C(t−
in+1

) |ψ〉 ||2 =
||C(t ) |ψ〉 ||2 and ||C(t−

i1
) |ψ〉 ||2 = 1.

Therefore we write

PC = ||C |ψ〉 ||2PU
C

n∏
a=1

pia

∏
i �=i1,...,in

(1 − pi ); (36)

PC = ||C |ψ〉 ||2PU
C PM

C ;

PM
C =

L∏
l=1

⎡
⎣ nl∏

al =1

pl
ial

∏
i �=i1,...,inl

(1 − pl
i )

⎤
⎦. (37)

Equation (37) is the generalization to the multiple sites
case, with pl

i the probability for a quantum jump to occur at
site l at time ti.

The total probability is PC = ||C |ψ〉 ||2PU
C PM

C . The first
factor is the norm of the state after applying the circuit opera-
tor and accounts for the probability of the state to be eligible
to perform a jump. The second factor is the probability of a
specific realization of random unitaries.

The third factor in the product is associated to the weight
for the random measurements. This crucial factorization al-
lows us to separate the contributions that depend on the
quantum state (and that thus require exponentially complex
numerical calculations) from the contributions that depend
on the decay rates of the quantum channels. In other words,
the average over the random measurements factorizes—as
in the Markovian case—as the product of the averages over
measurements for each time of the evolution and for each site.

We reiterate that one important difference is that for the
non-Markovian regions the probability to perform a jump is
zero (since no normal jumps can be performed). This is a
consequence of the fact that the state of the system is not
affected by reverse jumps, in the sense that the final quantum
state is only determined by the sequence of normal jumps;
the system only cares about reverse jumps to the extent that
they renormalize the probability of the system being in a
certain quantum state. Indeed, a second difference of the
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non-Markovian regions is that the probability to not perform
any jump is larger than one—meaning a renormalization of
the no jump weight. While the meaning of this probability
being greater than 1 is apparently not very physical, this recipe
is formally correct and can be employed to map the system to
a classical Potts model amenable to Monte Carlo simulations.

C. Mapping to a Potts model

We use the formal mapping machinery of Ref. [43]. The n-
th Renyi entanglement entropy of a partition A of the system is
expressed in terms of the free energy F of a replicated system
where Q replicas live on each site:

SA
n = n

n − 1
lim
Q→1

FA − F0

Q − 1
, (38)

where the free energy is calculated averaging over PU
C PM

C ,

F = − lnZ = − ln
∑
C

PU
C PM

C . (39)

FA is calculated for boundary conditions (in the physical and
replica space) dictated by the partition A and the order n of
the Renyi entropy, while F0 corresponds to a replica system
with no partition of the system. Without going too much into
the details of the mapping (which are discussed extensively
in the literature [40,43]), the 1 + 1 quantum model is mapped
onto a 2 + 0-dimensional classical model, where each site is
associated to a permutation of the replicas. Thus the classical
model is essentially a Q!-states Potts model, where neighbor-
ing Potts spins are coupled via the unitary gates or via the
measurements.

We can split the sum over unitaries and over measurements
in Eq. (39). The sum over the unitaries immediately factorizes
into the sum over unitaries for each site [40,43], yielding
terms proportional to the Weingarten functions. The sum over
the random measurements also factorizes as (Eq. (13) of
Ref. [43])∑

C
PM
C =

∏
〈 j,l〉

∑
g j ,gl ∈SQ

Wp
[
g−1

j (ti )gl (ti+1)
]
, (40)

where SQ is the set of permutations of Q elements. The weight
Wp is the average over the possible outcomes of a random
jump occurring on site j (associated to a Potts spin g j) at time
ti and coupling to the next-neighbor site l at time ti+1 (with
associated Potts spin gl ).

The expression of Wp depends on the local Hilbert space
dimension d , on the probability of jumping pi, and on
whether the set of normal jump operators is a discrete—
i.e., Mp = {1, a1, . . . , ad} with as = |s〉〈s| and weights {1 −
p, p, . . . , p}—or a continuous set of randomly generated pro-
jectors Mp = {I} ∪ {√daU |U ∈ U (d )}, with aU = U †a1U
and U a random unitary matrix. For computational conve-
nience we focus on the second option and find

Wp(g) = (1 − pi )d
|g| + pid

Q pi � 0; (41)

Wp(g) = (1 − pi )d
|g| pi < 0, (42)

where |g| � Q is the number of cycles in the permutation g.
The average over unitaries and measurements can be writ-

ten in terms of the product over triangular plaquettes of the

integrated weight Jp(gi, g j ; gk ),∑
C

PM
C PU

C =
∑

{gi∈SQ}

∏
〈i jk〉∈�

Jp(gi, g j ; gk );

Jp(gi, g j ; gk ) =
∑

gl ∈SQ

Wp
(
g−1

i gl
)
Wp

(
g−1

j gl
)
Wgd2

(
g−1

l gk
)
,

(43)

where Wgd2 is the Weingarten function that expresses the
weight associated to the random unitary evolution. In other
terms, we integrate out the contribution of the unitary evo-
lution in order to obtain a reduced average over the random
measurements only.

We remark that the factorizations Eqs. (40) and (43) only
work if we want to calculate the average of operators local in
time and space; however, this is the case for the entanglement
entropy.

In the large-d limit we have [43]

Jp(gi, g j ; gk ) = e−Ei (g−1
i gk )e−Ej (g−1

j gk ); (44)

Ei(g) = − ln

[
(1 − pi )

(
δg + δ′

g

d

)
+ θpi pi

]
, (45)

where θpi is equal to 1 for Markovian regions pi > 0 and equal
to 0 for non-Markovian regions pi < 0, and δg (δ′

g) is one if g
is the identity (a transposition) and zero otherwise.

Equation (45) is the basis for our subsequent analysis.
Given any decay rate �(t ) we can compute the inhomoge-
neous couplings between different sites on the Potts model.
This allows us to perform numerical Monte Carlo simulations
as well as do a qualitative analysis of the effect of non-
Markovianity on the entanglement transition.

In particular we know from the Markovian case that low
p are associated to a ferromagnetic configurations of the
Potts spins and to a volume law scaling of the entanglement,
i.e., a linear dependence of FA − F0 with the size lA of A.
In fact, from Eq. (45) we observe that if spins are aligned
(i.e., g−1

i gk is the identity) the energy Ei vanishes while it
is approximately Ei = − ln p when they are different; thus,
at low p, spins tend to align while at larger p paramagnetic
configurations with the spins aligned in random directions are
possible.

In the non-Markovian regions, the energy is − ln(1 −
pi ) < 0 for aligned spins and infinite otherwise [technically,
the energy is finite due to O(1/da) corrections, but still very
large]; therefore, regions of non-Markovianity are essentially
strips of “frozen” spins all aligned to each other (see Fig. 7),
which means that they favor a volume law entanglement. This
is equivalent to saying that memory effects do in fact slow
down the effect of noise and strengthen the role of coherent
dynamics.

D. Monte Carlo simulations

In this section we show the results of Monte Carlo simula-
tions.

In Eq. (38) the number of replicas can be expressed as
Q = nm + 1, with m → 0 an integer; we notice that in prac-
tice we cannot actually use the limit m = 0 because otherwise
the numerics would be trivial. Similarly, we cannot use n = 1
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FIG. 7. Sketch of the time-dependent rate �(t ) with the non-
Markovian region shaded in blue. This region corresponds to a
ferromagnetic region in the Potts model (shaded in blue on the right).
The Markovian regions (shaded in red in the left plot) allow for
paramagnetic regions in the Potts model, with neighboring spins not
aligned.

because we would not be calculating an entanglement entropy
(or in other words the boundary conditions would be trivial).
Therefore the lowest number of replicas we can consider is
Q = 3 (n = 2 and m = 1), corresponding to a Potts model
with six states.

We perform Monte Carlo simulations on a lattice of size
Lx = 40 and Ly = 50 sites (corresponding to a time evolution
of Ly time periods), with periodic boundary conditions in the
x direction, and boundary conditions at the top in the vertical
direction dictated by the value of the partition size lA.

In this model the identity permutation is (0)(1)(2),
while the transposition dictated by the boundary
conditions is (01)(2) because (n = 2 and m = 1). We
can naturally map the permutations onto spin states:
{(0)(1)(2), (0)(12), (01)(2), (021), (012), (02)(1)} → s =
{0, 1, 2, 3, 4, 5}. Therefore the boundary conditions of a
partition of size lA are given by lA sites occupied by the spin
s = 2 and Lx − lA sites with the spin s = 0. We choose the
partition to be centered in the middle of the boundary.

We employ the Wolff cluster algorithm [123,124] for the
update of the lattice configuration. The probability of adding a
site to the cluster built by the Wolff algorithm is the usual one
and based on the interaction energy with the neighbors. When-
ever a site on the top vertical boundary is added to the cluster,
we add its interaction energy with the fixed boundary to the
boundary energy Eb. When the cluster is built, we update it
with probability min(1, e−Eb ), in order to take into account
the fact that configurations that have a high interaction energy
with the cluster are less probable.

We first thermalize the lattice by updating it with Ntherm =
25 000 Wolff steps. To avoid autocorrelations, we then sample
the configuration of the lattice every Nsample = 50 steps and
calculate the observables of interest.

1. Markovian Monte Carlo

We start by considering the Markovian case. For different
values of the probability p we consider different sizes of

the boundary ranging from lA = 0 to lA = Lx/2 and for each
calculate the free energy F (lA). We may also consider the
local energy of each lattice sites due to the interaction with its
next neighbors (and with the boundary). Since aligned spins
have zero interaction energy while spins oriented in different
directions contribute an energy Ei ∼ − ln p, we are immedi-
ately able to identify the ferromagnetic and the paramagnetic
regions by plotting a color map of the local energy.

We notice that at p = pc ≈ 0.25, the phase of the system
changes from ferromagnetic to paramagnetic, as indicated by
the increase in energy over the entire lattice; see Fig. 8. Si-
multaneously, the energy cost of having boundary conditions
with lA �= 0 is large [Figs. 8(a) and 8(b)] at low p, decreases
significantly for p → pc [Fig. 8(c)], and becomes negligible
above the critical probability, as in a paramagnetic phase the
boundary can be accommodated with very little increase in
energy; see Fig. 8(d).

The transition is also observed by performing a linear fit of
the total energy FA = F (p, lA) as function of lA and plotting
the behavior of the slope dFA/dlA as function of p. When
dFA/dlA �= 0 the energy of the Potts model, and thus the
entanglement entropy of the circuit, scales with the size of
the partition subsystem, i.e., it obeys a volume law; when
dFA/dlA = 0, the circuit entanglement is in an area law.

We observe a sharp transition of the slope from nonzero
values for p < pc to very small values for p > pc, see
Fig. 9(a). This is also the case if we perform the linear fit
analysis on the energy normalized to its average value over
lA at fixed p, i.e., FA/〈FA〉lA ; see Fig. 9(b). This procedure
may be necessary to avoid large fluctuations, since at high p
the total energy becomes large and analyzing the normalized
energy may be more sensible. From both fitting methods we
find pc ≈ 0.25.

We also observe a local peak of dFA/dlA and 1
〈FA〉lA

dFA
dlA

at
p = pc; see the insets in Fig. 9. This may be explained as a
consequence of the large fluctuations occurring in proximity
of the transition: The subsystem at the boundary may act as
a nucleation surface that facilitates the appearance of large-
scale paramagnetic domain that extends deep into the system
instead of being confined near the boundary.

2. Non-Markovian Monte Carlo

We now turn to the study of a prototypical non-Markovian
system.

We assume the decay rate �(t ) to originate from a
bath whose spectral density is described by a Lorentzian
centered around ω and with bandwidth 
. Within the
time-convolutionless approximation [68,99], the decay rate
appearing in the master equation (2) is

�(t ) = �0

{



ω
+ e−
t

[
sin(ωt ) − 


ω
cos(ωt )

]}
. (46)

This is a good approximation of a system of qudits, where
each qudit level couples through its occupation number to a
cavity mode with detuning ω and bandwidth 
.

The rate decays to �0
/ω over a timescale ∼1/
 and has
minima at ωt = 3π/2 + 2πn. The first (and lower) minimum
is negative for 
/ω < 0.274, meaning that 
 sets the non-
Markovianity of the dynamics.
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FIG. 8. Color map of the energy Ei of each spin, calculated including the next-neighbors contribution and the boundary contribution for the
spins at the top of the chain. The size of the Monte Carlo system is Lx = 40 and Ly = 50. Each panel shows lA = 0 or lA = 20 for (a) p = 0.1,
(b) p = 0.15, (c) p = 0.25, and (d) p = 0.3. Lower energy corresponds to aligned spins, i.e., ferromagnetic regions, while larger energy
corresponds to paramagnetic spins. The labels Ly in the vertical direction correspond to the time direction in the physical system. [(a) and
(b)] The system is completely ferromagnetic and the energy cost of having a boundary is clearly visible at the top of the right plot, but small
paramagnetic droplets are forming. (c) The system is switching to a paramagnetic phase and the higher energy cost of the boundary is barely
visible. (d) The system is entirely paramagnetic and the energy cost of the boundary vanishes. Note that the bottom boundary has lower energy
because it has fewer next neighbors than the spins in the bulk.

The normalization constant �0 depends on the interaction
strength. We choose each discrete time step in the Ly direc-
tion to correspond to ωt = 1/2. We then set �0 so that the
probability associated to the asymptotic value of �(t ) is p,

pi = p

{
1 + e−
ti

[
sin(ωti )


/ω
− cos(ωti )

]}
. (47)

We remark that the value of pi in Eq. (47) cannot be
immediately mapped to the measurement probability p of the
Markovian case. They can only be compared in a sensible
way at large times, where pi converges to a constant (and
Markovian) measurement probability. We thus refrain from
calling pi explicitly a probability. However, the earlier times
behavior of the non-Markovian pi still affects the behavior
of the system—as we shall see in detail—in a way that an
analogy with the Markovian case cannot really be made.

We also note that depending on p and 
/ω, pi can exceed
one for certain times. This may seem weird but is mathe-
matically correct and corresponds to a coupling that favors a
paramagnetic phase, since it gives a zero energy for aligned
spins and an energy ∼ − ln pi < 0 for paramagnetic spins.

This intuitively makes sense, since for very large pi, i.e., very
large decay rates, the system tends to be paramagnetic rather
than ferromagnetic.

We perform Monte Carlo simulations for 
/ω = 0.2,
which means the rate is negative for 3.77 < ωt < 5.80. Thus
for a system with Ly = 50 spins and ωti this means that the
spins with 8 � iy � 11 have pi < 0, i.e., experience a non-
Markovian coupling. The non-Markovian region is indicated
with the label II in Fig. 11.

Our results are reported in Figs. 10 and 11. We can imme-
diately observe several similarities and some differences with
the Markovian case.

The normalized slope 1
〈FA〉lA

dFA
dlA

drops from very large val-
ues to smaller values (but nonzero) around p = pc1 ≈ 0.08;
this corresponds to an increase of the fluctuations and of the
slope dFA

dlA
. For p > pc2 ≈ 0.25 both slopes decrease to zero,

signaling an entanglement phase transition from volume to
area law.

The strange phase between pc1 and pc2 corresponds to an
emergence of paramagnetic domains at earlier times, before
the non-Markovian region, indicated by the label I in Fig. 11.
Indeed, pc1 corresponds to a peak value in the I-a region
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FIG. 9. Behavior of the slope of the normalized energy FA/〈FA〉lA

with respect to lA as function of p. The inset shows the slope of FA

as function of p. The Monte Carlo calculations were performed for
Lx = 40, Ly = 50, and lA = 0, 2, 4, . . . , 20.

approximately equal to pi ∼ 0.4, which is sufficient to turn
paramagnetic the bottom region at early times, see Fig. 11(b).
Consequently, the energy of the system increases, which
explains the drop in 1

〈FA〉lA

dFA
dlA

, and the system is more sus-

FIG. 10. Behavior of the slope of the normalized energy
FA/〈FA〉lA with respect to lA as function of p. The inset shows the
slope of FA as function of p. The Monte Carlo calculations were per-
formed for 
/ω = 0.2, Lx = 40, Ly = 50, and lA = 0, 2, 4, . . . , 20.

ceptible to different boundary conditions, thus explaining the
increase in dFA

dlA
. However, the value of pi at later times (region

III in Fig. 11) is still too small to turn paramagnetic the top
region, so that the system still exhibits a volume law behavior,
as it is evident by the boundary energy cost in Fig. 11(c).

For larger values p ∼ pc2 also the late times regions of the
system start to turn paramagnetic, explaining the decrease of
both slopes, see Figs. 10 and 11(c). For p larger than pc2,
the entire system turns paramagnetic, except for the non-
Markovian region which is constrained to be ferromagnetic,
see Fig. 11(d).

We also notice that for p � 0.15 the region I at earlier times
exhibits two energy subregions I-a and I-b; see Fig. 11(c).
These subregions are both paramagnetic, but I-a has a lower
energy because pi exhibits its peak in I-a; this large probability
lowers the energy of the paramagnetic phase. In I-b, pi de-
creases and eventually vanishes before becoming negative in
region II; thus the energy of the paramagnetic phase increases
as pi decreases, explaining the different energy behavior in-
side of region I.

The phase between pc1 and pc2 is still volume law despite
exhibiting large energy fluctuations. The width of this region
is likely size dependent, since evolving the system for longer
times would suppress the influence of the paramagnetic region
(I) and of the non-Markovian region (II) at early times on the
late times (III) region.

Indeed, the transition from volume law to area law is
mostly determined by the late times values of pi and only
occurs at pc2 ≈ 0.25, similarly to the Markovian transition.
This confirms the intuition that the late times non-Markovian
dynamics, when the rate is always positive, �(t ) > 0, is
equivalent to a Markovian dynamics.

An interesting result is that the volume law phase still
survives even when the peak value of pi becomes significantly
larger than the Markovian critical probability. This occurs
because while the peak pi is large enough to turn paramag-
netic the early times region (I), the successive non-Markovian
region (II) is always ferromagnetic and shields the rest of the
evolution from the effects of this large peak value.

We conclude that, while non-Markovianity does not affect
the volume law phase at late times, when most of the dynamics
has become Markovian, it stabilizes the volume law phase at
early times and protects it from regions of strong measure-
ments, provided they occur before the non-Markovian region.

We remark that while the numerical results obtained
with our Monte Carlo simulations display fluctuations, es-
pecially near the transition, they still provide a qualitative
(and somewhat quantitative) picture of the Markovian and
non-Markovian transition. Precision can be improved by in-
creasing the system size and the number of sampling steps,
but this has a somehow high computational cost, particularly
since we have to utilize boundary conditions that make Monte
Carlo simulations slower compared to a system with periodic
boundary conditions.

V. CONCLUSIONS

We have introduced a theoretical framework to unravel the
non-Markovian dynamics of quantum many-body systems in
terms of quantum trajectories interspersed by quantum jumps.
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FIG. 11. Color map of the energy Ei of each spin. Each panel shows lA = 0 or lA = 20 for (a) p = 0.1, (b) p = 0.3, (c) p = 0.4, and
(d) p = 1. Lower energy corresponds to aligned spins, i.e., ferromagnetic regions, while larger energy corresponds to paramagnetic spins.
The labels Ly in the vertical direction correspond to the time direction in the physical system. (a) The system is completely ferromagnetic
and the energy cost of having a boundary is clearly visible at the top of the right plot. (b) The system is still ferromagnetic at later times
(with the energy cost of the boundary still clearly visible) but small paramagnetic domains start to form at earlier times (when the peak value
is pi ∼ 0.3 � pc

hom). (c) The system is paramagnetic at early times since p ∼ 0.4 > pc
hom contributing to the total energy, but the successive

non-Markovian region is highly ferromagnetic and confines paramagnetism to early times. (d) At late times pi ∼ pc
hom, causing paramagnetic

domains to appear after the non-Markovian region; the energy cost of the boundary is now small.

Our technique relies on two methodological innovations: a
formulation of many-body quantum jumps applicable to cer-
tain classes of non-Markovian dynamics and a diagrammatic
expansion to map the resulting evolution into amenable equa-
tions of motion.

Unlike in the Markov case, non-Markovian many-body
trajectories are not independent from each other, a direct con-
sequence of the fact that the bath retains finite memory due to
nontrivial spectral functions. This features makes averaging
the system dynamics from trajectories practically intractable
at the computational level.

The key feature of our framework is that it allows us
to investigate measurement-induced phase transitions in the
presence of information back-flow—a situation relevant to
any system where measurements are realized via coupling to a
nontrivial bath. This can be done analytically because, under
mild assumptions (i.e., sufficiently large sizes and evolution
times), it is possible to write down closed-form equations gov-
erning the conditional probability of each trajectory using
diagrammatic methods. Remarkably, these equations share
the same functional form of the Dyson equation and can
be manipulated so that the probability of a generic outcome

trajectory is given in terms of the time evolution of the
expectation value of local observables. Within our frame-
work, this result shows how the (highly nonlinear) effect of
non-Markovianity on many-body systems can be cast as a
“dressing” over Markovian trajectories, very much like in-
teractions do for single-particle wave functions in electronic
systems.

This Dyson equation-like description enables the study
of entanglement and measurement-induced transitions in the
presence of information inflow from the bath back to the
system. For the case of one-dimensional Haar circuits, we
formulate a classical statistical mechanics model of the system
dynamics. The key difference with the memory-less case is
that couplings are now time dependent and that there are
large regions of space time where magnetic fluctuations are
suppressed: These are actually the non-Markovian regions,
and their coupling profiles reflects the fact that reverse jumps
are included in the statistical mechanics model implicitly via
the dressed probability distributions. We study the properties
of entanglement via numerical simulations of the Potts model
describing the N = 3 replica space. We point out that our
approach is also applicable to the case of evolution with
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Clifford gates, where statistical mechanics mappings have
been recently proposed [125].

Overall, our results demonstrate a previously unproved
inherent robustness of measurement-induced transition to in-
formation backflow. Combined with the by-now established
fact that such transitions can occur for various kinds of
coherent dynamics and Kraus operators, this suggests that
measurement-induced transitions might indeed take place in
a variety of settings, including systems where the effects of
information back-flow are often non-negligible.

It is worth pointing out a few possible questions that our
work raises. In terms of relevance to experiments, it would be
important to combine our approach with an inherently open
system description of the system (i.e., noise in addition to
measurement) that, for the Markovian case, has been recently
addressed in Ref. [126]. Moreover, our methods may find
application in studying measurement-induced transitions in
solid-state systems, where memory effects are important; for
example, the 1/ f noise is non-Markovian and is the most
common type of noise in quantum devices based on solid-state
platforms [127].

We also remark that the trajectories we consider in our
work can still be realized through a (possibly very compli-
cated) experimental setup, for example through a combination
of quantum simulation of the system and a classical memory
that stores information about the occurrence of the normal
jumps [128,129]. This classical memory is essential to supply
the memory effects of the non-Markovian evolution and al-
lows us to provide memory feedback in a controlled way, but
it also requires exponentially large resources. Another way of
realizing non-Markovian trajectories in a physical system is
by coupling the system of interest to an auxiliary bath with
a nontrivial dynamics and subjected to Markovian measure-
ments, which results in an effective non-Markovian dynamics
of the system. The evolution of system + bath is described
by conventional quantum trajectories, and in the case where
the measurements act globally on the bath, the system evolves
along a pure state trajectory for which the formalism of our
paper is directly applicable. Indeed, we have illustrated the
above idea within the context of coupled free-fermion chains
in a recent work [130], where we also confirmed numerically a
key qualitative prediction of the diagrammatic approach—that
is the stability of the measurement-induced transition.

Within the context of measurement-induced transitions,
another question is about the connection between error cor-
rection schemes and measurement protocols. Given the fact
that memory effects can in principle be precisely quantified
in experiments by performing spectroscopy of the bath, it
would be interesting to see whether that information can be
utilized to improve error correction or at least if the presence
of a measurement-induced transition can at least provide some
intrinsic robustness of decoding methods with respect to mea-
surement errors (that can also be seen as a non-Markovian
effect in some cases) [131].

Another open question is the formulation of practical
numerical procedures to address MIPT in the presence of
memory. Here it might be possible to adapt some meth-
ods that have found success in few-body systems, at least
for a qualitative understanding. Beyond such applications,
it would be interesting to see whether our diagrammatic
method can provide insights on other many-body phenomena
in non-Markovian systems, as well as on recently developed
computational techniques to tackle them [69].
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