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Anomalous spatial shifts in interface electronic reflection beyond the linear approximation
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Recently, the electronic analogy of the anomalous spatial shift, including Goos-Hänchen and Imbert-Fedorov
effects, has been attracting widespread interest. Current research on the anomalous spatial shift in interface
electronic reflection is based on the paradigm of linear approximation, under which the center position of
the incident and reflected beams are obtained by expanding the phases of relevant basis states and scattering
amplitudes to the first order of incident momentum. However, in a class of normal cases, the linear approximation
leads to divergent spatial shifts in reflection for certain incident angles, even though the corresponding reflection
possibility is finite. In this paper, we show that these nonphysical results are caused by an abrupt change in
the number of the propagating states at critical parameters, and can be resolved by calculating the center
positions of the scattering beams beyond the linear approximation. Moreover, we find that the beam width
has an important influence on the spatial shift near the critical angles. We demonstrate our idea via concrete
calculations of Goos-Hänchen and Imbert-Fedorov shift on two representative models. These results provide a
deeper understanding of the anomalous spatial shift in calculations.
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I. INTRODUCTION

According to the laws of reflection in geometric optics, one
knows that the incident point is always the same as the point
where the light beam is reflected back at a sharp interface.
However, due to the wave nature of photons, these laws should
be revised in certain cases and a light beam can experience an
anomalous spatial shift under reflection, namely, there exists a
shift between the incident and the reflected beams at the inter-
face [1]. Generally, the spatial shift is divided into longitudinal
and transverse components with respect to the incident plane,
known as the Goos-Hänchen shift [2,3] and Imbert-Fedorov
shift [4–6], respectively. Since the wave-particle duality is a
foundational concept in physics and holds for all particles,
the anomalous spatial shift can also be found in many other
particles, such as electrons [7–13], atoms [14], and neutrons
[15].

In electronic systems, the valence and conduction bands
can cross around the Fermi level, leading to nontrivial
band degeneracy [16–24]. The band degeneracies in three-
dimensional (3D) topological semimetals have many different
types, and can be classified as a 0D nodal point, 1D nodal
line, and 2D nodal surface [25–27]. Remarkably, in the inter-
face constructed by topological semimetals and other systems,
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both longitudinal and transverse shift effects are generally
significant, due to strong (pseudo)spin-orbit coupling in topo-
logical semimetals [8,28–31]. Such a significant anomalous
spatial shift can lead to various physical consequences, such
as chirality-dependent Hall effect [29] and modifying the
dispersion of the confined waveguide modes [8]. Moreover,
the behavior of the longitudinal and transverse shifts in these
systems has a strong dependence on the species of the band
degeneracies [28–31]. For example, when a beam comes
from normal metal onto the interface with topological Weyl
semimetals, there will exist quantum vortices in the vector
field of the spatial shift in the interface momentum space,
and the number of quantum vortices is determined by the
topological charge of the Weyl points [32]. The anomalous
shifts can also be realized in Andreev reflection, during which
the incident particle changes its identity from electron to hole
[33–36]. Similarly, the shifts strongly depend on the pair
potential of the superconductors, which in turn can be used
to probe the superconducting states.

Currently, the standard and the most general approach used
to study the anomalous shifts in electronic systems is the
quantum scattering approach under linear approximation [11].
In this approach, the incident beam is modeled by wave packet
�, which is constructed by the incident basis states ψ i(k) and
is confined in both real and momentum spaces (rc, kc). During
scattering, the wave packet would be reconstructed, as each
incident basis state ψ i(k) is scattered into reflected basis state
ψ r (k) with a certain reflection amplitude. The anomalous
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FIG. 1. (a) Schematic figure showing the anomalous spatial shift
� in interface scattering. (b) Top view of the y − z plane in (a).

shifts then are obtained by comparing the center position of
the incident and reflected beams. In practice, one generally
chooses the wave-packet profile to have a Gaussian form and,
in such case, the anomalous shifts can be analytically obtained
by expanding the phases of the relevant scattering basis states
[ψ i(k) and ψ r (k)] and reflection amplitudes to the linear order
around kc.

The linear approximation is valid for most cases and gives
accurate analytical results, which are helpful for gaining in-
sight into the physics of the shifts. However, for a class of
normal cases, the linear approximation leads to a divergence
of the anomalous shifts in reflection at certain incident angles,
even when the corresponding reflection possibility is finite
[8,28,35]. In previous work, Liu et al. demonstrated that the
spectral singularities in parity-time symmetric systems, which
arise due to the assumption of linearity of the medium, can
be removed by considering all-order nonlinearity [37]. Then
two important questions arise: Under what conditions does the
linear approximation not apply? And is it possible to resolve
the divergences by taking all-order nonlinearity into account
or by establishing an alternative approximation?

In this paper, we show that the divergence of the shifts in
linear approximation are closely related to an abrupt change
of the number of propagating states. In scattering, while the
number of the scattering states is fixed, the number of the
propagating states is not, and may abruptly change when some
critical parameters like incident angle or Fermi energy change.
This abrupt change would lead to a singularity in reflection
amplitude or its derivative, which in the framework of lin-
ear approximation inevitably results in divergent anomalous
shifts. We show this divergence can be resolved by calculating
the center position of the incident and reflected beams beyond
the linear approximation. We explicitly demonstrate our idea
by calculating the longitudinal (Goos-Hänchen) and trans-
verse (Imbert-Fedorov) shifts on two representative models
and by two different methods. Our paper will be beneficial for
clarifying the scope of application of the linear approximation
in the study of anomalous spatial shifts.

II. QUANTUM SCATTERING APPROACH

Consider a general model which contains two media, re-
spectively, described by Hamiltonians H1 and H2, and a flat
interface between these two media, as illustrated in Fig. 1(a).
We also assume that the junction model is extended along

y and z directions, indicating that ky and kz are conserved
quantities during scattering. A beam of particles is incoming
from the region of x < 0 (H1) and is scattered at the interface
residing at the x = 0 plane. Besides, there is a rotation angle
α between the incident plane and the y axis, as shown in
Fig. 1(b).

To define the anomalous spatial shift, the incident beam
should be modeled by a wave packet, which is required to
be confined in both real and momentum spaces. We choose
the wave-packet profile to have a Gaussian form. Then, an
incident wave packet centered at kc = (kc

y , kc
z ) can be written

as [8,11]

� i(r, kc) =
∫

w(k − kc)ψ i(k)dk, (1)

where ψ i(k) = eik·r|ui(k)〉 is the Bloch eigenstate of the in-
cident medium and |ui(k)〉 is the cell-periodic part of the
eigenstate. The wave-packet profile w reads

w(k) =
∏
i=y,z

(
√

2πWi )
−1e−k2

i /(2W 2
i ), (2)

where Wi denotes the Gaussian width for the ith component,
controlling the beam width in momentum space. The center
position of the incident beam can be written as [38,39]

rc
i (kc) =

∫
r|� i(r, kc)|2dr∫ |� i(r, kc)|2dr

. (3)

When the incident beam hits the interface, each partial
wave ψ i(k) is scattered into the reflected basis state ψ r (k)
with a certain k-dependent reflection amplitude Ar (k). The
reflection amplitude here is obtained by the standard quantum
scattering approach. Then, the reflected beam also is a wave
packet and can be expressed as

�r (r, kc) =
∫

w(k − kc)Ar (k)ψ r (k)dk, (4)

and its center position is

rc
r (kc) =

∫
r|�r (r, kc)|2dr∫ |�r (r, kc)|2dr

. (5)

By comparing the center position of the incident and reflected
beam, the anomalous shift in reflection is obtained as

�(kc) = rc
r (kc) − rc

i (kc), (6)

which is a vector and forms a vector field in the interface
momentum space. However, it should be noted that based on
Eq. (6), while one always can numerically obtain �(kc), it is
impossible to obtain an analytical expression for �(kc), which
prevents a deep understanding of the physics underlying the
shifts. To resolve this problem, one has to resort to linear
approximation, as it can give an analytical expression of �(kc)
in many cases.

The Bloch eigenstate of the incident medium may include
multiple (N) components, i.e., |ui(r)(k)〉 = (ui(r)

1 , · · · ui(r)
N )T ,

then the wave packets � i(r) should also have N components.
The nth component of � i and �r are, respectively, expressed
as

� i
n(r, kc) =

∫
dkw(k − kc)eik·r∣∣ui

n(k)
∣∣eiφi

n (k) (7)

075149-2



ANOMALOUS SPATIAL SHIFTS IN INTERFACE … PHYSICAL REVIEW B 108, 075149 (2023)

and

�r
n (r, kc) =

∫
dkw(k − kc)|Ar |eiϕ(k)eik·r∣∣ur

n(k)
∣∣eiφr

n (k), (8)

with φi(r)
n (k) = arg[ui(r)

n (k)] and ϕ(k) = arg[Ar (k)]. In the
framework of linear approximation, the two phases φi(r)

n (k)
and ϕ(k) in Eqs. (7) and (8) are replaced by the first-order
Taylor series expanded around kc:

φi(r)
n (k) = φi(r)

n (kc) + (k − kc) · ∂kφ
i(r)
n

∣∣
k=kc , (9)

ϕ(k) = ϕ(kc) + (k − kc) · ∂kϕ|k=kc . (10)

With the linear approximation, one can find that Eqs. (7) and
(8) will take the following forms:

� i
n(r, kc) ∝ e−W 2

y (y+∂ky φi
n|k=kc )2/2e−W 2

z (z+∂kz φ
i
n|k=kc )2/2, (11)

�r
n (r, kc) ∝ e−W 2

y (y+∂ky (φr
n+ϕ)|k=kc )2/2e−W 2

z (z+∂kz (φr
n+ϕ)|k=kc )2/2,

(12)

indicating that � i
n and �r

n are centered at −∂kφ
i
n|k=kc and

−∂k(φr
n + ϕ)|k=kc , respectively. The center position of inci-

dent and reflected beams are the average of all components,
written as

rc
i = −

∑
n

ν i
n∂kφ

i
n

∣∣
k=kc , (13)

rc
r = −

∑
n

νr
n∂k

(
φr

n + ϕ
)∣∣

k=kc , (14)

with ν i(r)
n the weight of the nth component of |ui(r)〉, satisfy-

ing
∑

n(ν i(r)
n )2 = 1. Hence, the anomalous shift from linear

approximation can be analytically expressed as the difference
between the two center positions:

�LA =
∑

n

[
ν i

n∂kφ
i
n

∣∣
k=kc − νr

n∂k
(
φr

n + ϕ
)∣∣

k=kc

]
. (15)

This expression is equivalent to the shift vector obtained in
Ref. [40]. By analyzing the above derivation, we find that
there are two prerequisites for application of the linear ap-
proximation: (1) After scattering, the reflected beams should
still be centered at kc in momentum space. (2) The reflection
amplitude Ar (k) should be an analytic function in the neigh-
borhood of kc, as it is a prerequisite for the Taylor expansion
of arg[Ar (k)].

These two conditions can be satisfied for most cases.
Generally, condition Eq. (1) is always satisfied except if the
reflection probability is vanishing at k = kc. But, in such
case, the anomalous shift would be irrelevant for physical
observations, as no particle is reflected back and then the
anomalous shift will not happen. In contrast, we show that the
condition Eq. (2) does not hold at certain incident angles and
model parameters, beyond which the number of the scattered
propagating states changes. This abrupt change generally
leads to divergent shifts [obtained from linear approxima-
tion Eq. (15)] at the critical parameters, which apparently
are not correct. Hence, to obtain correct results, we have to
calculate the anomalous shifts via Eq. (6). We find that at
the critical parameters, the anomalous shifts obtained from
Eq. (6) are completely different from that obtained from linear
approximation Eq. (15), and are not divergent. Away from the

FIG. 2. (a) The band structure of incident medium (x < 0) and
transmitted medium (x > 0) in model Eq. (16). The spheres denote
the incident, reflected, and transmitted electron states, and the arrows
indicate their moving directions. (b) The Fermi surfaces of both
x < 0 (blue circle) and x > 0 (red circle) mediums with the label
of the critical angel θc. (c) |Ar |2 and its derivative and (d) the phase
ϕ = arg(Ar ) and its derivative versus incident angle θ . In the calcu-
lation, we choose EF = 100 meV, V = 150 meV, and v = 106 m/s.

critical parameters, the anomalous shifts obtained from both
approaches are almost the same. In addition, the anomalous
shifts around (away from) the critical parameters have a strong
(negligible) dependence on the beam width W . In the follow-
ing, we use two representative examples to demonstrate our
ideas.

III. LONGITUDINAL SHIFT IN GRAPHENE MODEL

In the first case, we consider a graphene junction model.
This model is simple and features a divergent longitudinal
spatial shift with finite reflection probability, as demonstrated
in Ref. [8]. Similar divergence in longitudinal spatial shift also
can be found in the Weyl semimetals [28,29]. However, the
origin of the divergence has not been discussed there. Here,
we will show the divergence is caused by an abrupt change of
scattering environment.

According to the setup in Fig. 1, we assume the junction
model is lied on the x − y plane. Notice that the z direction
here is a dummy degree of freedom, as graphene is a 2D
system and the longitudinal shift is within the scattering plane.
The Hamiltonian of the junction model is given as [8]

H =
{
vkxσx + vkyσy, x < 0

vkxσx + vkyσy + V, x > 0,
(16)

where v is the fermi velocity, σ is the Pauli matrix, and V
denotes a potential energy applied on the x > 0 region.

We plot the band structure of the graphene model in both
x < 0 and x > 0 regions in Fig. 2(a) and the corresponding
equienergy contours in Fig. 2(b). The possible incident and
reflected electron states are also marked in Fig. 2(a). One can
find that for a fixed Fermi energy EF > 0 (measured from
the Dirac point) and a finite V satisfying 0 < V < 2EF , there
exists two critical incident angles ±θc, beyond which there is
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no propagating mode for the transmitted state [see Fig. 2(b)].
The critical angle is given as

θc = arcsin

∣∣∣∣V − EF

EF

∣∣∣∣. (17)

When the incident angle θ = arctan(ky/kx ) is smaller than the
critical angle |θ | < θc, an incident electron from the x < 0
region can be reflected (transmitted) as a propagating state
in x < 0 (x > 0) region. However, the number of transmitted
propagating states varies from one to zero when |θ | > θc,
indicating an abrupt change of scattering environment. As
discussed in Ref. [41], this change generally results in a dis-
continuity in the derivative of the reflection amplitude. As a
consequence, the Taylor expansion of the phase of the reflec-
tion amplitude around the critical incident angles ±θc will be
meaningless, making the anomalous spatial shifts obtained by
linear approximation inaccurate.

To directly show this, we proceed to solve the scattering
states of the graphene junction model Eq. (16), which can be
written as [8]

ψ (k) =
{

ψ i(k) + Arψ
r (k), x < 0

Atψ
t (k), x > 0,

(18)

where Ar(t ) is the reflection (transmission) amplitude and ψ i,
ψ r , and ψ t are the basis states for incident, reflected, and
transmitted states, respectively. Explicitly, the basis states read

ψ i(k) = 1√
2

(
e−iθ/2

eiθ/2

)
eikix+ikyy, (19)

ψ r (k) = 1√
2

(−ieiθ/2

ie−iθ/2

)
e−ikix+ikyy, (20)

ψ t (k) = 1√
2|EF − V |

(
EF − V

v(kt + iky)

)
eikt x+ikyy. (21)

Here ki = v−1
√

EF − v2k2
y , θ = arctan (ky/ki ) is the

incident angle, kt = v−1sgn(EF − V )
√

(EF − V )2 − v2k2
y

for |θ | < θc, and kt = iκ for |θ | > θc, where κ =
v−1

√
v2k2

y − (EF − V )2. For the graphene junction model
here, the boundary condition at the interface is

ψ (x = 0−) = ψ (x = 0+), (22)

with which the reflection amplitude Ar is obtained as [8]

Ar = v(κ + ky) + ieiθ (EF − V )

veiθ (iκ + iky) + (EF − V )
. (23)

The square of the modulus of Ar (|Ar |2) and the phase
ϕ = arg(Ar ) as functions of the incident angle are plotted in
Figs. 2(c) and 2(d), respectively. One observes that for |θ | <

θc, Ar is a finite real number with ϕ = 0, and for |θ | > θc,
Ar becomes a complex number with |Ar |2 = 1, indicating the
appearance of total reflection. This is consistent with the fact
that when |θ | > θc, there no longer exists a propagating mode
for the transmitted state. Importantly, while both |Ar |2 and ϕ

are continuous functions, their derivatives are discontinuous
at the critical angle ±θc [see Figs. 2(c) and 2(d)], correspond-
ing to an abrupt change of the scattering condition, namely,
the disappearance of the transmitted propagating mode for
|θ | > θc.

FIG. 3. The anomalous longitudinal shift in model Eq. (16).
(a) The results obtained with linear approximation LA

y (dashed line)
and that obtained without approximation y (solid line) versus in-
cident angle. (b) y versus θ for different beam width W . The box
in (a) denotes the range of θ in (b). In the calculation, we choose
EF = 100 meV, V = 150 meV, v = 106 m/s.

Based on the expression of Ar , the longitudinal shift under
linear approximation is obtained as [8]

LA
y = 2

sin2 θ + 1 − V/EF

κ sin 2θ
. (24)

As discussed above, the accuracy of the anomalous shift ob-
tained from linear approximation requires Ar to be an analytic
function. But Ar is not an analytic function in the neighbor-
hood of θ = ±θc. Hence, Eq. (24) may be inaccurate around
±θc. In Fig. 3(a), we plot the typical behavior of the longitu-
dinal shift LA

y from Eq. (24), along with the shift y obtained
from Eq. (6) beyond linear approximation. We have checked
that the wave packet of the reflected beam still features a
Gaussian-type profile and is centered at same momentum
with the incident wave packet. Hence, the shift obtained from
Eq. (6) should be accurate. From Fig. 3(a), one observes that
the LA

y has two discontinuity points at ±θc. Specifically, it is
zero for |θ | < θc, diverges abruptly at ±θc, and becomes finite
when moving away from ±θc. In contrast, y obtained from
Eq. (6) is always continuous for any incident angle. Partic-
ularly, it is not divergent at ±θc, indicating the nonphysical
divergent results from the linear approximation is resolved
by using Eq. (6) to calculate the anomalous shift. Besides,
there are several other observations. (i) At critical angle ±θc,
while y is not divergent, it still is very large and can reach a
few tens of nanometers with reasonable parameters. (ii) Away
from ±θc, LA

y and y share similar behavior and are almost
identical, as shown in Fig. 3(a).

The anomalous shifts Eq. (24) obtained from linear approx-
imation are always independent of the beam width (∼W =
|W |). However, in optics, it has been demonstrated that the
anomalous shifts around the critical parameters strongly de-
pend on the beam width [42–44]. Here, we also calculate the
longitudinal shift y from Eq. (6) for different W . The obtained
results are shown in Fig. 3(b), from which one can find that the
maximum value of y indeed varies with Wy, consistent with
the results in optics. Again, when moving away from ±θc, y

is not sensitive to the value of W .

IV. TRANSVERSE SHIFT IN ANDREEV REFLECTION

In the second case, we consider the transverse shift in
Andreev reflection [33,35]. In electronic systems, besides
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ordinary electron scattering, Andreev reflection is another
intriguing scattering process that occurs at the interface be-
tween metal and superconductor and is described by the
Bogoliubov–de Gennes (BdG) equation. The junction model
here is of a 3D electron gas interfaced with a d-wave super-
conductor. The corresponding BdG equation can be written as

H (x)ψ = εψ, (25)

with ε the excitation energy

H =
[
− 1

2m ∇2 − EF 0

0 −T
( − 1

2m ∇2
)
T −1 + EF

]
(26)

for normal metal region (x < 0), and

H =
[

H0 + V − EF �(k‖)

�∗(k‖) −T H0T −1 − V + EF

]
(27)

for the superconductor region (x > 0). In addition, the
interface barrier potential hδ(x) is considered. Here, m
denotes the electron mass, EF is the Fermi energy, T
is the time reversal operator, H0 = − 1

2m (∂2
z + ∂2

y ) − 1
2mx

∂2
x ,

�(ky, kz ) = �0 cos(2φk ) represents a dy2−z2 pairing with φk =
arctan(ky/kz ), and V is a potential energy ensuring EF − V 	
�0. According to the setup in Fig. 1, the rotation angle is
identical to φk , namely, α = φk .

This model has been used to show that the transverse shift
can be solely induced by the unconventional pairing, and it
is found that by varying rotation angle α [see Fig. 1(b)], the
transverse shift becomes divergent at certain critical angles.
Here, we will show that the divergence is also caused by the
change in the number of transmitted propagating states at the
critical angles.

The scattering states of Eq. (25) can be written as [35]

ψ (k) =
{

ψ i(k) + reψ
r
e (k) + rhψ

r
h (k), x < 0

t1ψ t
1(k) + t2ψ t

2(k), x > 0,
(28)

where re(h) is the amplitude for the normal (Andreev) reflec-
tion, t1(2) is the transmission amplitude, and the ψ are the
corresponding basis states, expressed as

ψ r
e (k) =

(
1
0

)
e−ike

x x+ikyy+ikzz, (29)

ψ r
h (k) =

(
0
1

)
eikh

x x+ikyy+ikzz, (30)

ψ t
±(k) =

(
1
η±

)
eik±

S x+ikyy+ikzz, (31)

where η± = �k±
ε±

√
ε2−�2

k±
S

with �k± = �(kS
±, ky, kz ),

k‖ =
√

k2
y + k2

z , ke/h
x =

√
2mEF − k2

‖ , and k±
S =

±
√

2mx(EF − U − k2
‖/2m).

Before processing to the concrete calculations of the scat-
tering amplitudes and the anomalous shifts, we discuss the
influences of rotation angle and the value of excitation energy
on the scattering in the interface. Since the d-wave supercon-
ductor is anisotropic in the ky − kz plane, the band structure of
the superconductor in different incident planes (determined by
the rotation angle α) will be different, as shown in Figs. 4(a)

FIG. 4. Band structure of the BdG Hamiltonian in model
Eq. (25). (a) and (b) show the BdG spectrum in different incident
planes. (c) denotes the band gap Eg of the BdG spectrum. (d) The
BdG Fermi surfaces with different excitation energies. In the cal-
culation, we choose ε = 10 meV, �0 = 20 meV, EF = 0.4 eV,
V = 0.2 eV, h = 0.3 eV nm, and the incident angle θ = π/12. We
take the ε1 = 10 meV, ε2 = 25 meV in (c), (d).

and 4(b), indicating the transverse shift is sensitive to the ro-
tation angles α and φk . We also plot the band gap Egap = |�k|
of the superconductor as a function of φk in Fig. 4(c), showing
the superconductor becomes gapless at φk = ±π/4, ±3π/4.
Then, a key observation is that for any excitation energy
satisfying |ε| < �0, the two transmitted states (ψ t

1 and ψ t
2)

are propagating modes for | cos 2φ| < ε/�0 (|ε| > Egap) and
are evanescent modes for | cos 2φ| > ε/�0 (|ε| < Egap), as
illustrated in Fig. 4(c). In contrast, the two transmitted states
are always propagating modes when |ε| > �0, as |ε| > Egap

for any φk [see Fig. 4(d)]. Similarly, one can expect that
the critical rotation angles for divergent transverse shifts in
Ref. [35] satisfy | cos 2φc| = ε/�0 with |ε| < �0. Besides,
when |ε| > �0, the transverse shifts obtained from linear ap-
proximation will be accurate and consistent with that obtained
from Eq. (6).

With the boundary conditions,

ψ (x = 0−) = ψ (x = 0+), (32)

1

m
∂xψ (x = 0−) = 1

mx
∂xψ (x = 0+) − hψ (0), (33)

the Andreev reflection amplitude rh is obtained as [35]

rh = −4η−η+�

η+(Z − 2�) − η−(Z + 2�)
, (34)

with Z = 4 mh
ke

2 + 1 + �2 and � = mk+
s

m1ke
.

In Fig. 5, we plot the obtained |rh|2 and ϕh = arg(rh) as
functions of the rotation angle φk for |ε| < �0 and |ε| > �0.
We find that the derivative of |rh|2 and ϕh = arg(rh) exhibit
eight discontinuity points at φc = ±[arccos(ε/�0)]/2 when
|ε| < �0, but are smooth functions when |ε| > �0, consistent
with the analysis of the band structure of the junction model.
Interestingly, rh is a pure real number when |ε| > �0. We
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FIG. 5. (a), (b) The phase ϕh = arg(rh) and its derivative and (c),
(d) |rh|2 and its derivative versus φk in the cases of |ε| < �0 and |ε| >

�0. Here, we choose �0 = 20 meV, EF = 0.4 eV, V = 0.2 eV, h =
0.3 eV nm, and θ = π/12. We take the ε = 10 meV in (a), (c) and
ε = 30 meV in (b), (d).

then study the dependence of anomalous transverse shift on
the rotation angle and φk .

Under the linear approximation, the anomalous transverse
shift in Andreev reflection is established as [35]

LA
T = − 1

k‖
∂φk ϕh = − ρ��2

0 sin(4φk )

k‖ε2(1 + �2/ρ2)
�(|�0 cos 2φk| − ε),

(35)

with ρ = ε/

√
�2

0 cos2(2φk ) − ε2 and � = Z/(2�). Accord-
ing to Eq. (35), we find the transverse shift obtained from
linear approximation LA

T indeed is divergent at φc when
|ε| < �0, as shown Fig. 6. For ε > �0, the transverse shift
will be zero, as rh is a real number with ϕh = 0.

The numerical results of the transverse shifts T obtained
from Eq. (6) with |ε| < �0 and different beam widths also are
plotted in Fig. 6. We have checked that the wave packets of
the reflected hole beam still can be well-defined and exhibit
a Gaussian-type profile, indicating the calculated anomalous
shift would be reliable. One observes that for all the beam

FIG. 6. The anomalous transverse shift in model Eq. (25).
(a) The results obtained with linear approximation LA

T (dashed line)
and that obtained without approximation T (solid line) versus φk .
(b) T versus φk for different beam widths W . The box in (a) denotes
the range of φk in (b). Here, we choose ε = 10 meV, �0 = 20 meV,
EF = 0.4 eV, V = 0.2 eV, h = 0.3 eV nm, and θ = π/12.

widths, the transverse shifts are not divergent at the critical
angles φc. Similar to the first case, we find that (i) the anoma-
lous shift indeed is significant at the critical angles and can
reach a few tens of nanometers with reasonable parameters,
(ii) T and LA

T are almost identical away from the critical
angle φc, and (iii) the anomalous shift is sensitive to the beam
width when and only when φk is close to αc. Besides, when
|ε|/�0 > 1, the transverse shifts T obtained from Eq. (6) is
negligible, consistent with the results from linear approxima-
tion.

V. ALTERNATIVE APPROXIMATION

In this section, we propose an alternative approximation
to calculate the anomalous shifts, which is much less com-
putationally expensive than the exact expression [Eq. (6)].
Meanwhile, the results obtained by the alternative approxima-
tion are always finite, solving the divergence problem of the
linear approximation [Eq. (15)].

According to the above discussions, one knows that the
dominating factor that affects the anomalous shifts is the
phase rather than the absolute value of the scattering am-
plitudes. Hence, we may rewrite the reflected wave packet
[Eq. (4)] as

�r (r, kc) =
∫

w(k − kc)Ar (k)ψ r (k)dk

≈ |Ar (kc)|
∫

w(k − kc)eiϕψ r (k)dk. (36)

Based on this approximate reflected wave packet, the expres-
sion of the anomalous shifts can be established as

�alter = 1

N

∫
dkw2(k − kc) × �(k), (37)

where N = ∫
dkw2(k − kc), and �(k) is the shift vector [40],

�(k) = Ar − Ai − ∂ϕ

∂k
=

∑
n

[
ν i

n∂kφ
i
n − νr

n∂k
(
φr

n + ϕ
)]

,

(38)

with Ai(r) = i〈ui(r)|∂k|ui(r)〉 the Berry connection. In the
derivation, we have used the following formula [45]:

〈ψ (k′)|r|ψ (k)〉 = δ(k − k′)A(k) + i
∂

∂k
δ(k − k′). (39)

Notice that if the shift vector �(k) is a smooth function of the
momentum k, the anomalous shifts from linear approximation
and the approximation provided here would be identical, i.e.,
�alter = �LA = �(kc). In contrast, when �(k) is divergent at
certain momentum K, there will exit significant deviation
between �alter and �LA in the vicinity of K.

Since the calculations of �alter do not require the spatial
distribution of the incident and reflected wave packets, it is
more convenient than the exact expression [Eq. (6)]. Further-
more, because the divergence of anomalous shifts generally
takes the form of ∼1/k, �alter will be always finite due to the
integral on k. In Fig. 7, we plot the anomalous shifts calculated
from the three different methods. One can find that far away
from the critical (divergent) point, the results obtained by the
three methods have negligible differences. Around the critical
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FIG. 7. The anomalous shift in (a) model Eq. (16) and (b) model
Eq. (25), which are obtained from three different methods. The
blue dashed curves are the results from linear approximation. Green
dotted and red solid curves denote the shifts calculated by Eqs. (6)
and (37), respectively. Here, the beam width W = 8 × 10−4 nm−1,
and the other parameters in (a) and (b) are the same as those in Figs. 3
and 6, respectively.

point, the shift from linear approximation diverges. However,
the shifts from both Eqs. (6) and (37) are finite, and are almost
identical for all the momenta (angles).

More importantly, with a suitable wave-packet profile, such
as Cauchy form, we can analytically obtain the results of �alter.
The wave-packet profile with Cauchy form reads

w(k) =
∏
i=y,z

(
1

π

Wi

k2
i + W 2

i

)1/2

, (40)

with Wi the Cauchy width. According to the Laurent se-
ries expansion, the shift vector around the critical angle (θc)
reads

�y ≈ a0(kc)(kc − ky)−
1
2 − a1(kc)(kc − ky)

1
2 , (41)

for the model Eq. (16) with a0 = ξ√
|2ky|

, a1 = −ξ+4ky∂ky ξ

4ky

√
|2ky|

, ξ =
2 1+sin2 θ−V/EF

sin 2θ
, ky = EF sin θ/v, and kc = EF sin θc/v. Then

the longitudinal shift can be analytically obtained:

�alter
y = 1

N

∫ ∞

−∞
dky

1

π

Wy

(kc − ky)2 + W 2
y

�y

= −a0(kc)Im

[
1√

iWy − (kc − ky)

]

−a1(kc)Im[
√

iWy − (kc − ky)]. (42)

Similarly, the transverse shift of the model Eq. (25) around
the critical angle (φc) reads

�φ ≈ b0(φc)(φk − φc)−
1
2 − b1(φc)(φk − φc)

1
2 , (43)

with b0 = ζ√|2 sin 4φk | , b1 = cot 4φkζ−∂φk ζ√|2 sin 4φk | , and ζ =
− ��0 sin 4φk

k‖ε(1+�2ρ−2 ) . Note that to guarantee the transverse shift
is finite, the condition | cos 2φk| > ε/�0 is imposed. Then the
transverse shift can be established as

�alter
φ = 1

N

∫ ∞

−∞
dφk

1

π

Wφ

(φc − φk )2 + W 2
φ

�φ

= −b0(φc)Im

[
1√

iWφ − (φk − φc)

]

−b1(φc)Im[
√

iWφ − (φk − φc)]. (44)

FIG. 8. The anomalous shift in (a) model Eq. (16) and (b) model
Eq. (25), which are calculated from Cauchy-form wave packet. The
blue dashed curves are the results from linear approximation. Red
solid curves show the analysis results of (a) Eq. (42) and (b) Eq. (44).
Green dotted curves denote the shifts calculated from Eq. (37). Here,
the beam width W = 8 × 10−4 nm−1, and the other parameters in
(a) and (b) are the same as those in Figs. 3 and 6, respectively.

In the derivation, we have used the approximation∫ |η|
−|η| w(x) f (x)dx ≈ ∫ ∞

−∞ w(x) f (x)dx with η a finite value
and w(x) denoting the Cauchy distribution.

Remarkably, from the analytical expressions, we find that
around the critical angles, there is a simple power law between
the anomalous shift and beam width:

 ∝ W − 1
2 . (45)

The results of the analytical expressions are plotted in Fig. 8,
along with the results from linear approximation and that
numerically obtained from Eq. (37). One observes that the
analytical results match well with the numerical results around
the critical angles, where the shift vector is expanded. We
also present a log-log plot of the anomalous shift versus beam
width in Fig. 9, which clearly demonstrates the −1/2 power
law between the anomalous shift and the beam width.

VI. CONCLUSIONS

In this paper, we study the anomalous shift in inter-
face electronic reflection based on the quantum scattered

FIG. 9. Log-Log plot of the maximum value of the anomalous
shift  versus beam width W , which are calculated from Cauchy-form
wave packet. Red and blue curves denote the analytical expressions
of Eqs. (42) and (44), while the gray dots represent the results
obtained from Eq. (37).
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approach with and without linear approximation. We find
that for a large case of junction models, the propagating
modes of scattering states may be changed by varying cer-
tain parameters like the incident angle. Around the critical
parameters, the linear approximation is invalid and leads
to divergent anomalous shifts in scattering. In contrast, the
quantum scattered approach without linear approximation
always gives more accurate results, which are significant
but not divergent around the critical parameters. Moreover,
we show the anomalous shifts around the critical param-
eters decrease when increasing the width of the incident
beam. This means that the narrower the incident beam,

the more pronounced the anomalous shift. Away from the
critical parameters, the anomalous shifts obtained from the
quantum scattered approach with and without linear ap-
proximation are similar and not sensitive to the beam
width.
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