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Canted antiferromagnetism and excitonic order in gated double-layer graphene
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We study the effects of electron-electron interactions on the excitonic properties and charge-density modu-
lations in AB-stacked double-layer (DL) graphene, placed in an external gate potential V . The coexistence of
canted antiferromagnetic order and an excitonic pairing gap has been studied with the help of the generalized
Hubbard model. We calculate the chemical potential μ, the average charge-density difference between the layers
δn̄, the antiferromagnetic gap function �AFM, and the excitonic order parameters �σ in the zero-temperature
limit. We found that the excitonic pairing order parameter has a larger energy scale than the canted antiferro-
magnetic gap function. Charge neutrality in the DL graphene system occurs only in the absence of an external
gate potential V . Moreover, we have shown that the values of the antiferromagnetic gap function �AFM and
excitonic order parameter �σ are always increasing at large values of the interlayer Coulomb interaction, while
they are decreasing for large values of the applied gate potential V .
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I. INTRODUCTION

Double-layer (DL) and bilayer graphene (BLG) structures
have been the subject of intensive research for a long time
[1–6] due to their extraordinary physical [7–10] and mechan-
ical properties [11]. Particularly, excitonic properties of the
BLG structure represent another interesting domain of inter-
est [12–17]. The principal achievement in this field was the
observation of large values of the energy gap [18–20] and the
control of the electronic spectrum of this system [21–30].

When an external electric field is applied to DL or BLG
structures, changes occur in the carrier charge density of
these materials. Those changes lead to unusual variations
of the chemical potential, as a function of electron doping
[31]. If the energy cost in the spectrum of single-particle
excitation is large, then an energy gap appears in the elec-
tronic band structure [32]. Moreover, in some cases, the
mentioned gap function appears also without an external elec-
tric field [33]. This situation takes place when considering the
electron-electron interaction effects in double-layer structures
[12,33] and also when considering the coexistence between
excitonic and antiferromagnetic (AFM) orders [34–37]. The
gap-function appearance, with or without an electric field,
is related first of all to the complicated single-electron re-
configuration effects [38] in the layers of the BLG system.
These effects are governed by the interlayer Coulomb interac-
tion [39] and by the separation distance between the layers
[40] in DL or BLG systems. More complicated physics is
related to the case when considering the competing effects
between AFM order [30,35] and excitonic effects [30,35,36].
Especially, it has been shown in Refs. [30,35] that an on-
site Coulomb interaction stabilizes the AFM ordering which,
furthermore, gets suppressed at large values of the bias volt-
age. Meanwhile, interlayer Coulomb repulsion and nonzero
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voltage stabilize the excitonic order. Here, the principal effect
which leads to the formation of a gap function in an excita-
tion spectrum is related to the formation and condensation of
excitons, which recently have been the subject of many inter-
esting experimental [38,41,42] and theoretical [34–37,43,44]
investigations.

Beside numerous studies on the problem of coexistence of
antiferromagnetism and excitonic order [34–37] in AA BLG
and DL structures, there is a lack of treatments concerning
double-layer AB or AB BLG. Particularly, the type of AFM
order appears to be structurally different in AB DL systems,
due to the canted character of the antiferromagnetism and
which is due to the stacking type of the layers in this system.
For this reason, canted antiferromagnetism (CAFM) and its
coexistence with excitonic order in the AB DL system is
worthy of investigation and will be the principal subject of
the present paper. Here, we study AB-stacked DL graphene
in the presence of an external gate potential. Moreover, we
study the average charge-density imbalance between different
layers, governed by an external gate potential and possible
excitonic condensation states. In both layers, we consider
different partial fillings (i.e., fractional average number of par-
ticles per site) of the atomic lattice sites. A particular case of
this is accomplished when one has one particle per site in the
upper layer, and no particle in the lower layer, i.e., the case of
pumped electron-hole DL graphene. The effects of on-site and
interlayer Coulomb interactions have been treated within the
bilayer Hubbard model, and a mean-field analog theory was
constructed to linearize the second-order interaction terms.

The paper is organized as follows: In Sec. II we intro-
duce the Hamiltonian of the model. In Sec. III we obtain
the Green’s function matrix, and in Sec. IV we give the
self-consistent equations. Furthermore, in Sec. V we discuss
the results. At the end of the paper, in Sec. VI, we give a
short conclusion to our paper. The Appendix is devoted to
the calculation of some important coefficients, entering in the
series of self-consistent equations.
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FIG. 1. The structure of AB double-layer (DL) graphene in an
external electric field potential V . The layers of the system have been
indicated as � = 1 (bottom layer) and � = 2 (upper layer). In the
picture, the A, Ã atomic sites are represented by gray balls, and the
B, B̃ atomic sites are represented by green balls.

II. THE HAMILTONIAN OF DL GRAPHENE

Our system is described via the Hubbard Hamiltonian,
written for the two layers,

ĤAB = Ĥ0 + Ĥint + ĤV, (1)

where Ĥ0 is the free part for the noninteracting system, Ĥint

is the term which includes the interactions between electrons,
and ĤV is the Hamiltonian of coupling with an external gate
potential. The free part of the Hamiltonian in Eq. (1) is

Ĥ0 = −γ0

∑
〈rr′〉

∑
�σ

[â†
�σ (r)b̂�σ (r′) + H.c.]

− γ0

∑
〈rr′〉

∑
�σ

[ ˆ̃a
†
�σ (r) ˆ̃b�σ (r′) + H.c.]

− γ1

∑
rσ

[b̂†
σ (r) ˆ̃aσ (r) + H.c.]

−μ
∑
�=1,2

∑
r

n̂�(r). (2)

The operators â�σ (r), b̂�σ (r), â†
�σ (r), and b̂†

�σ (r) in Eq. (2) are
the operators of annihilation and creation for the electrons.
The schematic representation of the system in consideration
is shown in Fig. 1. The parameter γ0 is the hopping amplitude
of the electrons in the layers, and the energy parameter γ1

describes the hopping of the electrons between the layers.
We put for these parameters the values γ0 ∼ 3 eV and γ1 =
0.257 eV (see Ref. [45]). The angle brackets 〈· · · 〉 in the first
two terms in Eq. (2) denote the sum over nearest-neighbor lat-
tice site positions. The index σ in Eq. (2) describes the spins of
the electrons, which take two values σ = ↑(≡1)1,↓(≡−1).
Next, μ is the chemical potential in the system, coupled with
the total electron density operators n̂�, for the individual layer
�. In turn, the operators n̂� are defined in the following way,

n̂�=1(r) =
∑

σ

â†
σ (r)âσ (r) + b̂†

σ (r)bσ (r),

n̂�=2(r) =
∑

σ

ˆ̃a†
σ (r) ˆ̃aσ (r) + ˆ̃b†

σ (r) ˆ̃bσ (r). (3)

The term Ĥint of the Hamiltonian in Eq. (1) describes the
electron-electron interactions in the system,

Ĥint = U
∑

r

∑
�

n̂�↑(r)n̂�η↓(r)

+W
∑

r

∑
σσ ′

n̂bσ (r)n̂ãσ ′ (r), (4)

where U is the on-site Hubbard interaction and W is the
Coulomb interaction potential between the layers, which also
has a local character, as the potential U . The coupling with the
external electric field V is described by the Hamiltonian ĤV,

ĤV = V

2

∑
r

[n̂2(r) − n̂1(r)]. (5)

We suppose that the potential of the electric field at the upper
layer (with the layer index � = 2) is +V

2 and the potential of
the electric field at the bottom layer (with the layer index � =
1) is −V

2 . This is represented in Fig. 1.

III. HARTREE-FOCK DECOUPLING
AND ORDER PARAMETERS

To proceed, we pass to the Grassmann representation for
the fermions [where the operators â�σ (r), b̂�σ (r), â†

�σ (r), and
b̂†

�σ (r) are replaced by the complex numbers a�σ (r), b�σ (r),
ā�σ (r), and b̄�σ (r)] and we linearize the biquadratic density
terms using the Hubbard-Stratanovich transformation. The
total action of the AB DL graphene system could be written
as

S =
∑

η

SB[η̄, η] +
∫ β

0
dτĤAB(τ ), (6)

where SB[η̄, η] in the first term in Eq. (6) is the Berry action,
which is defined as

SB[η̄, η] =
∑
rσ

∫ β

0
dτ η̄σ (rτ )∂τησ (rτ ), (7)

and the summation index η indicates the type of particles, i.e.,

η =
{

a, b if � = 1,

ã, b̃ if � = 2.
(8)

Next, β = 1/kBT , where T is the temperature, and the integra-
tion variable τ is the imaginary time τ , given from the interval
0 � τ � β.

Furthermore, we use the fermionic path-integral approach,
already employed in Ref. [30]. The linearization procedure
for the bilinear fermionic density terms is quite involved [30],
and for this reason we give here only the form of the resulting
action. Hubbard-Stratanovich decoupling for density-density
terms in the Hamiltonian in Eq. (4) results in Hartree-Fock-
like expressions for the excitonic gap parameter �σ and
antiferromagnetic gap function �AFM. In particular, the an-
tiferromagnetic gap function �AFM for the η-type sublattice
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site is

�
η

AFM = U

2
〈nη↑ − nη↓〉. (9)

Assuming staggered CAFM order in the system, we can
write

�a
AFM = −�AFM,

�ã
AFM = −�AFM,

�b
AFM = �AFM,

�b̃
AFM = �AFM. (10)

We assume in general that |�ã
AFM| = |�b

AFM|, because the
corresponding electron densities are localized in the layers
on the same lattice site positions in the x-y plane. The case
when �ã

AFM 	= �b
AFM (representing the case of inhomoge-

neous CAFM order) is out of the scope of discussion in this
paper. Thus, we have the following averages,

�AFM = U

2
〈nb↑ − nb↓〉,

�σ = W 〈b̄σ (rτ )ãσ (rτ )〉. (11)

The averages 〈· · · 〉 in Eq. (11) can be expressed with the help
of the partition function of the system,

〈· · · 〉 = 1

Z

∫
[Dψ̄Dψ] · · · e−S[ψ̄,ψ], (12)

where Z is the partition function of the AB DL system,

Z =
∫

[Dψ̄Dψ]e−S[ψ̄,ψ]. (13)

We have introduced in Eqs. (12) and (13) the Nambu spinors
ψ̄σ (kνn) and their conjugates fields [ψ̄σ (kνn)]T as

[ψ̄σ (kνn)]T = [āσ (kνn), b̄σ (kνn), ¯̃aσ (kνn), ¯̃bσ (kνn)],

(14)

where νn are Matsubara frequencies for the fermionic Grass-
mann field νn = π (2n + 1)/β, with n = 0,±1,±2, . . .. The
action in Eq. (13) is represented in the following form,

S[ψ̄, ψ] = 1

βN

∑
kνnσ

ψ̄σ (kνn)Ĝ−1
σ (kνn)ψσ (kνn), (15)

where Ĝ−1
σ (kνn) is the inverse Green’s function matrix,

Ĝ−1
σ (kνn) =

⎛
⎜⎜⎜⎝

−μ1σ − iνn −γ̃1k 0 0

−γ̃2k −μ2σ − iνn −γ1 − �̄σ 0

0 −γ1 − �σ −μ3σ − iνn −γ̃2k

0 0 −γ̃1k −μ4σ − iνn

⎞
⎟⎟⎟⎠. (16)

Here, we have introduced the effective chemical potentials μi

with i = 1, . . . , 4, for different spin directions,

μiσ = μ + (−1)iσ�AFM + V

2
− U

2
n̄b

+ (−1)i+1(i − 1)2σW,

μ jσ = μ + (−1)iσ�AFM − V

2
− U

2
n̄ã, (17)

where i = 1, 2 and j = 3, 4. The chemical potentials in
Eq. (17) express the effective single-particle excitation spec-
trum in our system, composed of four sublattices. They
contain the Coulomb interactions U,W , the external gate
potential V , and the CAFM order parameter �AFM. The
parameters γ̃ik with i = 1, 2 in Eq. (16) are the dispersion
relations in the layers of the AB DL graphene,

γ̃1k = γ̃0[e−ikx + 2ei kx
2 cos(ky

√
3)],

γ̃2k = γ̃0[eikx + 2e−i kx
2 cos(ky

√
3)]. (18)

We realize that γ̃2k = γ̃ ∗
1k. In the next section, we derive the

explicit form of the set of self-consistent equations.

IV. THE SELF-CONSISTENT EQUATIONS

Next, we use the partition function in Eq. (13) to calculate
the average charge densities n̄b and n̄ã at the sublattice sites B

and Ã,

n̄b =
∑

σ

〈b̄σ (rτ )bσ (rτ )〉,

n̄ã =
∑

σ

〈 ¯̃aσ (rτ )ãσ (rτ )〉. (19)

Now, we will define the equations which describe the average
particle-filling numbers (with the coefficient 1/κ) and the
average particle-density difference (which we note by δn̄) be-
tween the layers. Those average number of particles concern
the sublattices B (in the bottom layer � = 1) and Ã (in the
upper layer � = 2). Those equations are

n̄b + n̄ã = 1

κ
,

n̄ã − n̄b = δn̄

2
. (20)

Then, we can calculate the averages n̄b and n̄ã with the help of
κ and δn̄,

n̄b = 1

2

(
1

κ
− δn̄

2

)
,

n̄ã = 1

2

(
1

κ
+ δn̄

2

)
. (21)

We evaluate the statistical averages in Eqs. (11) and (19) by
using the inverse Green’s function matrix, given in Eq. (16).
Furthermore, we combine the definitions in Eq. (11) with
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those in Eq. (20) to obtain the complete set of self-consistent
equations. We use also the fact that n̄a = n̄b and n̄ã = n̄b̃. The
system of self-consistent equations for the AB DL system
reads

1

κ
= − 1

N

∑
ik,σ

αikσ nF (μ − εiσ (k)),

δn̄

2
= − 1

N

∑
ik,σ

βikσ nF (μ − εiσ (k)),

�AFM = − U

2N

∑
ik,σ

σγikσ nF (μ − εiσ (k)),

�σ = W

N

∑
ik

δikσ nF (μ − εiσ (k)). (22)

The explicit forms of the coefficients αikσ , βikσ , γikσ , and δikσ

in Eq. (22) are given in the Appendix. Next, the function nF (x)
in Eq. (22) is the Fermi-Dirac distribution

nF (x) = 1

eβ(x−μ) + 1
. (23)

Furthermore, the energy parameters εiσ (k) in Eq. (22) define
the energy band structure in the AB DL graphene. They are
given as

εiσ (k) = μ̄1σ + (−1)i

2

√
Akσ − 2

√
Bkσ ,

ε jσ (k) = μ̄2σ + (−1) j

2

√
Akσ + 2

√
Bkσ , (24)

where i = 1, 2 and j = 3, 4, and

μ̄1σ = (μ1σ + μ2σ )/2,

μ̄2σ = (μ3σ + μ4σ )/2. (25)

The energy- and spin-dependent parameters Akσ and Bkσ in
Eq. (24) have been obtained as

Akσ = 2|�σ + γ1|2 + 4|γ̃k|2 + 4|�AFM|2 + (μ1σ − μ2σ )2,

Bkσ = |�σ + γ1|4 + 4|�σ + γ1|2|γ̃k|2
+ 4(μ1σ − μ2σ )|�σ + γ1|2�AFM

+ 4(μ1σ − μ2σ )2(|γ̃k|2 + |�AFM|2). (26)

In the following, we solve numerically the system of
equations (22) with the help of Newton’s fast convergent
algorithm. We will discuss the obtained results in the next
section.

V. RESULTS

Here, we will discuss the main results obtained in the
present paper. In Fig. 2, we calculate numerically the chem-
ical potential μ and the excitonic order parameter �↑. In
Fig. 2(a), the chemical potential is presented as a function of
the interlayer Coulomb interaction potential W . Several values
of the on-site Coulomb potential U [see Eq. (4)] have been
considered in the picture. Different average particle-filling
regimes have been used. All results have been done in the
zero-temperature limit T = 0, and the external gate potential
was set at a value V = γ0. The black (red) curves show the

FIG. 2. The numerical results for (a) μ and (b) �↑, as a function
of the interlayer Coulomb interaction parameter W . The calculations
have been done in the zero-temperature limit, and different values
of the interaction parameter U and inverse-filling coefficient κ have
been considered. The external gate potential has been fixed at a value
V = γ0 = 3 eV.

μ(W ) dependence for U = γ0 (U = 2γ0), and correspond to
the case κ = 1. The blue-squared points correspond to the
case of the smaller value of the coefficient κ , namely κ = 0.8.
The value κ = 1 corresponds to the case when the AB DL
was initially pumped with the electrons in the upper layer and
the holes in the lower layer, or vice versa. We see that μ is
nearly constant as a function of W . The negative values of μ

indicate the possibility of the existence of a stable excitonic
condensate state [33]. The same nearly constant behavior was
observed for the average charge-density imbalance function
δn̄ [see Fig. 3(b)]. We observe also that the values of the
obtained chemical potential are smaller (with modulus) for
the smaller value of the coefficient κ , namely for κ = 0.8 [see
the blue curve in Fig. 2(a)]. This means that the energy cost
for the creation of the single-particle excitation is lower in
that case. We see in Fig. 3(b) that the values of the function
δn̄ are negative for all considered values of the potential U .
This fact shows that the system is in the regime of the hole-
electron DL, i.e., there are fewer electrons in the upper layer
than in the bottom layer (n̄2 < n̄1). The calculated excitonic
order parameter �↑ and the CAFM gap function �AFM have
been showed respectively in Figs. 2(b) and 3(a). We see that
they both are monotonically increasing functions of W , i.e.,
they are continuously increasing with W , for all values of the
localizing Coulomb potential U . In addition, we see that the
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FIG. 3. The numerical results for (a) �AFM and (b) δn̄, as a
function of the interlayer Coulomb interaction parameter W . The cal-
culations have been done in the zero-temperature limit, and different
values of the interaction parameter U and inverse-filling coefficient
κ have been considered. The external gate potential has been fixed at
a value V = γ0 = 3 eV.

excitonic and CAFM order parameters get larger values in
the case of the small value of the inverse-filling coefficient
κ , notably for κ = 0.8. This is directly related to the fact that
the chemical potential μ takes small values in that case [see
blue-square points in Fig. 2(a)], i.e., when the energy cost for
single-particle excitations in the system is lower.

Furthermore, in Figs. 4 and 5 we have shown the V depen-
dence of the same physical quantities. The results in Figs. 4
and 5 have been done for the case W = γ0, U = 2γ0, and κ =
0.8. The calculations were performed in the zero-temperature
limit. We see in Fig. 4(a) that μ < 0 for all considered values
of the applied gate potential V . The excitonic order parameter
and the CAFM deviation function are no longer open func-
tions [see Figs. 4(b) and 5(a)]. Particularly, they are decreasing
when one increases the gate potential parameter V , from zero
up to the value V = 2γ0. The general strategy for finding the
dependence on V for the excitonic gap function is to fix the
distance between the layers, which therefore will lead to the
fixed numerical value for the interlayer Coulomb interaction
W and for the Hubbard-U local interaction. Those values have
been show in Figs. 4 and 5. Namely, we have W = γ0 = 3 eV
and U = 2γ0 = 6 eV. The average charge-density imbalance
δn̄ shown in Fig. 5(b) decreases dramatically with V , being al-
ways negative, i.e., δn̄(V ) < 0 (n̄2 < n̄1). Moreover, for large
values of V (see the values of V in γ0 � V � 2γ0), the average

FIG. 4. The numerical results for (a) μ and (b) �↑, as a function
of the gate potential V . The calculations have been done in the zero-
temperature limit T = 0. The Coulomb interaction parameter U , the
interlayer interaction W , and the inverse-filling coefficient κ have
been set respectively at the values U = 2γ0, W = γ0, and κ = 0.8.

charge imbalance between the layers becomes very large and
the layer with � = 2 becomes depopulated from electrons.
Thus, by increasing the external potential we reconfigure the
electron distributions in the layers and the upper layer with
� = 2 becomes pumped from the electrons. We observe also
that the exact charge neutrality (δn̄ = 0) occurs only at the
value V = 0 of the external gate potential.

VI. DISCUSSIONS AND CONCLUSION

We have studied the coexistence of excitonic and anti-
ferromagnetic orders in double-layer AB-stacked graphene.
The external gate voltage was applied to the DL structure.
Principal attention has been paid to the Coulomb interaction
effects in the bilayer system, which have been treated with
the help of the bilayer Hubbard Hamiltonian. In addition,
the electronic energy spectrum was obtained using effective
chemical potentials. Partial filling has been considered in this
paper, i.e., when the average number of electrons at a given
lattice site position is less than one.

The numerical calculations have been performed by using
Newton’s fast convergent algorithm, and the results have been
obtained at the zero-temperature limit. The calculated nega-
tive values of the chemical potential in the system show the
possibility of the existence of an excitonic condensate state in
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FIG. 5. The numerical results for (a) �AFM and (b) δn̄, as a func-
tion of the gate potential V . The calculations have been done in the
zero-temperature limit T = 0. The Coulomb interaction parameter
U , the interlayer interaction W , and the inverse-filling coefficient
κ have been set respectively at the values U = 2γ0, W = γ0, and
κ = 0.8.

the DL system, which can be tuned by varying the separation
distance between the layers in the DL structure. We have
shown that the energy scales of the excitonic order parameter
�↑ are much larger than the energy scales corresponding to
the CAFM gap, i.e., �↑ � �AFM. This finding is just the
opposite of the result in Ref. [30], where it has been shown
that the AFM gap is much larger than the excitonic order
parameter, i.e., �AFM � �↑. Moreover, the excitonic order
parameter survives only for one spin direction, particularly
for σ =↑.

Another interesting observation is that the average charge
imbalance δn̄ is always negative for all values of the Coulomb
interaction between the layers and of the electric field poten-
tial which are given in the intervals 0 � W � 2γ0 and 0 �
V � 2γ0. Therefore, the average number of electrons in the
upper layer is always less than in the lower layer. The AB DL
system, with this type of configuration, could be interesting
for modern technological applications [45–49] and is more
useful owing to the high speed of electrons in the graphene
layers [50–52]. The changes in the charge imbalance with
the applied gate potential show the possibility of tuning the
AB DL system from an electron-electron to an electron-hole
type when increasing the external gate potential V . The exact
charge neutrality, i.e., when δn̄ = 0, occurs only at the zero

value of the external voltage V = 0. The charge imbalance
is stronger for large values of V , which means that large
values of V effectively stabilize the electron-hole-type bilayer
rather than the electron-electron one. For fixed V , the variation
of δn̄, as a function of W , is almost constant, so it appears
that the average charge imbalance is indifferent to changes
in the distance of separation between layers. Moreover, all
nonzero values of the gate potential have a destructive effect
on the excitonic gap parameter, while the antiferromagnetic
gap function increases at relatively small values of V , espe-
cially when 0 � V � 0.2γ0.

To summarize, the chemical potential and the charge-
density imbalance between the layers are constant linear
functions of the Coulomb potential between the layers and
therefore they do not depend on the charge modulations in the
layers and the separation distance between layers. The exci-
tonic and CAFM order parameters are increasing functions of
the interaction parameter. The applied gate potential changes
the physical parameters more significantly than the Coulomb
interaction between the layers (note that the Coulomb poten-
tial between the layers varies when changing the separation
distance between the layers). We have shown that the energy
scales, corresponding to the CAFM order parameter, are much
smaller than the excitonic energy scales and we attribute this
result to the stacking type of the system, i.e., AB stacking
of the layers. It is worth noting that in the case of AA-
type stacked DL graphene, the result is exactly the opposite
[30] and an opposite effect occurs for the mentioned energy
scales.

We think that the results obtained in the paper could be
important from both theoretical and experimental points of
view. In particular, the energy scales of the antiferromagnetic
and excitonic orders were unexpectedly modified when con-
sidering the effect of CAFM in the AB-stacked double layer,
instead of AA type of stacking (for comparison, see the results
in Ref. [30]). The results in this paper could be helpful also
for applications of the AB DL system in modern electronics,
optoelectronics, and photonics technologies as a device where
the electron density reconfigurations and optical properties are
simultaneous changed.

APPENDIX: THE CALCULATION
OF IMPORTANT COEFFICIENTS

In this Appendix, we show the explicit forms of the co-
efficients, the parameters entering in the right-hand sides of
Eqs. (22). Particularly, we have

αikσ =
⎧⎨
⎩

(−1)i+1

ε1σ (k)−ε2σ (k)

∏
j=3,4

P (3)[εiσ (k)]
[εiσ (k)−ε jσ (k)] , if i = 1, 2,

(−1)i+1

ε3σ (k)−ε4σ (k)

∏
j=1,2

P (3)[εiσ (k)]
[εiσ (k)−ε jσ (k)] , if i = 3, 4,

(A1)

where the band-structure quasienergies εiσ (k) (with i =
1, . . . , 4) have been obtained at the end of Sec. IV and
the third-order polynomial P (3)(x) in Eq. (A1) is defined
as

P (3)(x) = 2x3 + a1σ x2 + b1σ x + c1σ . (A2)
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Here,

a1σ = −3(μ̄1σ + μ̄2σ ),

b1σ = −2|γ̃k|2 − 2�2
AFM + 2σ (μ̄1σ − μ̄2σ )�AFM

+ (μ̄1σ + μ̄2σ )2 + 2μ̄1σ μ̄2σ ,

c1σ = (μ̄1σ + μ̄2σ )|γ̃k|2 + (μ̄1σ + μ̄2σ )�2
AFM

+ σ
(
μ̄2

2σ − μ̄2
1σ

) − μ̄1σ μ̄2σ (μ̄1σ + μ̄2σ ). (A3)

Next, in the second of equations in the system (22), we get for
the coefficient βikσ ,

βikσ =
⎧⎨
⎩

(−1)i+1

ε1σ (k)−ε2σ (k)

∏
j=3,4

P (2)[εiσ (k)]
[εiσ (k)−ε jσ (k)] , if i = 1, 2,

(−1)i+1

ε3σ (k)−ε4σ (k)

∏
j=1,2

P (2)[εiσ (k)]
[εiσ (k)−ε jσ (k)] , if i = 3, 4,

(A4)

with P (2)(x) defined as

P (2)(x) = a2σ x2 + b2σ x + c2σ , (A5)

where

a2σ = −2σ�AFM − μ̄1σ + μ̄2σ ,

b2σ = 2σ (μ̄1σ + μ̄2σ )�AFM + μ̄2
1σ − μ̄2

2σ ,

c2σ = 2�3
AFM − (μ̄1σ − μ̄2σ )|γ̃k|2 − (μ̄1σ − μ̄2σ )�2

AFM

− μ̄1σ μ̄2σ (μ̄1σ − μ̄2σ ) − (
μ̄2

1σ + μ̄2
2σ

)
�AFM

+ 2|γ̃k|2�AFM. (A6)

Furthermore, we get for the coefficient γikσ in the third equa-
tion in Eq. (22),

γikσ =

⎧⎪⎨
⎪⎩

(−1)i+1

ε1σ (k)−ε2σ (k)

∏
j=3,4

P ′ (2)[εiσ (k)]
[εiσ (k)−ε jσ (k)] , if i = 1, 2,

(−1)i+1

ε3σ (k)−ε4σ (k)

∏
j=1,2

P ′ (2)[εiσ (k)]
[εiσ (k)−ε jσ (k)] , if i = 3, 4,

(A7)

where P ′(2)(x) is

P ′(2)(x) = a3σ x2 + b3σ x + c3σ , (A8)

with

a3σ = 2�AFM,

b3σ = 4μ2�AFM,

c3σ = 2μ2
2�AFM − 2�3

AFM − 2|γ̃k|2�AFM. (A9)

The coefficient δkσ in the last equation in Eq. (22) was ob-
tained as

δikσ =

⎧⎪⎨
⎪⎩

(−1)i+1

ε1σ (k)−ε2σ (k)

∏
j=3,4

P (2)
� [εiσ (k)]

[εiσ (k)−ε jσ (k)] , if i = 1, 2,

(−1)i+1

ε3σ (k)−ε4σ (k)

∏
j=1,2

P (2)
� [εiσ (k)]

[εiσ (k)−ε jσ (k)] , if i = 3, 4,

(A10)

where

P (2)
� (x) = −(�σ + γ1)[x2 − x(μ̄1σ + μ̄2σ ) − �2

AFM

+ σ (μ̄1σ − μ̄2σ )�AFM + μ̄1σ μ̄2σ ]. (A11)

Let us mention at the end that the coefficients αikσ in Eq. (A1)
are dimensionless due to the structure of the polynomials
P (3)(x) given in Eq. (A2), while the coefficients βikσ , γikσ ,
and δikσ in Eqs. (A4), (A7), and (A10) have a dimension of
the inverse energy.
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